1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Analysis.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassInstrumentation.h"
49 #include "llvm/IR/PassManagerInternal.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/TimeProfiler.h"
52 #include "llvm/Support/TypeName.h"
53 #include <cassert>
54 #include <cstring>
55 #include <iterator>
56 #include <list>
57 #include <memory>
58 #include <tuple>
59 #include <type_traits>
60 #include <utility>
61 #include <vector>
62 
63 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
64 
65 namespace llvm {
66 
67 // Forward declare the analysis manager template.
68 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
69 
70 /// A CRTP mix-in to automatically provide informational APIs needed for
71 /// passes.
72 ///
73 /// This provides some boilerplate for types that are passes.
74 template <typename DerivedT> struct PassInfoMixin {
75   /// Gets the name of the pass we are mixed into.
namePassInfoMixin76   static StringRef name() {
77     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
78                   "Must pass the derived type as the template argument!");
79     StringRef Name = getTypeName<DerivedT>();
80     Name.consume_front("llvm::");
81     return Name;
82   }
83 
printPipelinePassInfoMixin84   void printPipeline(raw_ostream &OS,
85                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
86     StringRef ClassName = DerivedT::name();
87     auto PassName = MapClassName2PassName(ClassName);
88     OS << PassName;
89   }
90 };
91 
92 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
93 ///
94 /// This provides some boilerplate for types that are analysis passes. It
95 /// automatically mixes in \c PassInfoMixin.
96 template <typename DerivedT>
97 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
98   /// Returns an opaque, unique ID for this analysis type.
99   ///
100   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
101   /// suitable for use in sets, maps, and other data structures that use the low
102   /// bits of pointers.
103   ///
104   /// Note that this requires the derived type provide a static \c AnalysisKey
105   /// member called \c Key.
106   ///
107   /// FIXME: The only reason the mixin type itself can't declare the Key value
108   /// is that some compilers cannot correctly unique a templated static variable
109   /// so it has the same addresses in each instantiation. The only currently
110   /// known platform with this limitation is Windows DLL builds, specifically
111   /// building each part of LLVM as a DLL. If we ever remove that build
112   /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin113   static AnalysisKey *ID() {
114     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
115                   "Must pass the derived type as the template argument!");
116     return &DerivedT::Key;
117   }
118 };
119 
120 namespace detail {
121 
122 /// Actual unpacker of extra arguments in getAnalysisResult,
123 /// passes only those tuple arguments that are mentioned in index_sequence.
124 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
125           typename... ArgTs, size_t... Ns>
126 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)127 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
128                              std::tuple<ArgTs...> Args,
129                              std::index_sequence<Ns...>) {
130   (void)Args;
131   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
132 }
133 
134 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
135 ///
136 /// Arguments passed in tuple come from PassManager, so they might have extra
137 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
138 /// pass to getResult.
139 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
140           typename... MainArgTs>
141 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)142 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
143                   std::tuple<MainArgTs...> Args) {
144   return (getAnalysisResultUnpackTuple<
145           PassT, IRUnitT>)(AM, IR, Args,
146                            std::index_sequence_for<AnalysisArgTs...>{});
147 }
148 
149 } // namespace detail
150 
151 // Forward declare the pass instrumentation analysis explicitly queried in
152 // generic PassManager code.
153 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
154 // header.
155 class PassInstrumentationAnalysis;
156 
157 /// Manages a sequence of passes over a particular unit of IR.
158 ///
159 /// A pass manager contains a sequence of passes to run over a particular unit
160 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
161 /// IR, and when run over some given IR will run each of its contained passes in
162 /// sequence. Pass managers are the primary and most basic building block of a
163 /// pass pipeline.
164 ///
165 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
166 /// argument. The pass manager will propagate that analysis manager to each
167 /// pass it runs, and will call the analysis manager's invalidation routine with
168 /// the PreservedAnalyses of each pass it runs.
169 template <typename IRUnitT,
170           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
171           typename... ExtraArgTs>
172 class PassManager : public PassInfoMixin<
173                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
174 public:
175   /// Construct a pass manager.
176   explicit PassManager() = default;
177 
178   // FIXME: These are equivalent to the default move constructor/move
179   // assignment. However, using = default triggers linker errors due to the
180   // explicit instantiations below. Find away to use the default and remove the
181   // duplicated code here.
PassManager(PassManager && Arg)182   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
183 
184   PassManager &operator=(PassManager &&RHS) {
185     Passes = std::move(RHS.Passes);
186     return *this;
187   }
188 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)189   void printPipeline(raw_ostream &OS,
190                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
191     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
192       auto *P = Passes[Idx].get();
193       P->printPipeline(OS, MapClassName2PassName);
194       if (Idx + 1 < Size)
195         OS << ',';
196     }
197   }
198 
199   /// Run all of the passes in this manager over the given unit of IR.
200   /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)201   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
202                         ExtraArgTs... ExtraArgs) {
203     PreservedAnalyses PA = PreservedAnalyses::all();
204 
205     // Request PassInstrumentation from analysis manager, will use it to run
206     // instrumenting callbacks for the passes later.
207     // Here we use std::tuple wrapper over getResult which helps to extract
208     // AnalysisManager's arguments out of the whole ExtraArgs set.
209     PassInstrumentation PI =
210         detail::getAnalysisResult<PassInstrumentationAnalysis>(
211             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
212 
213     // RemoveDIs: if requested, convert debug-info to DbgRecord representation
214     // for duration of these passes.
215     ScopedDbgInfoFormatSetter FormatSetter(IR, UseNewDbgInfoFormat);
216 
217     for (auto &Pass : Passes) {
218       // Check the PassInstrumentation's BeforePass callbacks before running the
219       // pass, skip its execution completely if asked to (callback returns
220       // false).
221       if (!PI.runBeforePass<IRUnitT>(*Pass, IR))
222         continue;
223 
224       PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...);
225 
226       // Update the analysis manager as each pass runs and potentially
227       // invalidates analyses.
228       AM.invalidate(IR, PassPA);
229 
230       // Call onto PassInstrumentation's AfterPass callbacks immediately after
231       // running the pass.
232       PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA);
233 
234       // Finally, intersect the preserved analyses to compute the aggregate
235       // preserved set for this pass manager.
236       PA.intersect(std::move(PassPA));
237     }
238 
239     // Invalidation was handled after each pass in the above loop for the
240     // current unit of IR. Therefore, the remaining analysis results in the
241     // AnalysisManager are preserved. We mark this with a set so that we don't
242     // need to inspect each one individually.
243     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
244 
245     return PA;
246   }
247 
248   // FIXME: Revert to enable_if style when gcc >= 11.1
addPass(PassT && Pass)249   template <typename PassT> LLVM_ATTRIBUTE_MINSIZE void addPass(PassT &&Pass) {
250     using PassModelT =
251         detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>;
252     if constexpr (!std::is_same_v<PassT, PassManager>) {
253       // Do not use make_unique or emplace_back, they cause too many template
254       // instantiations, causing terrible compile times.
255       Passes.push_back(std::unique_ptr<PassConceptT>(
256           new PassModelT(std::forward<PassT>(Pass))));
257     } else {
258       /// When adding a pass manager pass that has the same type as this pass
259       /// manager, simply move the passes over. This is because we don't have
260       /// use cases rely on executing nested pass managers. Doing this could
261       /// reduce implementation complexity and avoid potential invalidation
262       /// issues that may happen with nested pass managers of the same type.
263       for (auto &P : Pass.Passes)
264         Passes.push_back(std::move(P));
265     }
266   }
267 
268   /// Returns if the pass manager contains any passes.
isEmpty()269   bool isEmpty() const { return Passes.empty(); }
270 
isRequired()271   static bool isRequired() { return true; }
272 
273 protected:
274   using PassConceptT =
275       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
276 
277   std::vector<std::unique_ptr<PassConceptT>> Passes;
278 };
279 
280 extern template class PassManager<Module>;
281 
282 /// Convenience typedef for a pass manager over modules.
283 using ModulePassManager = PassManager<Module>;
284 
285 extern template class PassManager<Function>;
286 
287 /// Convenience typedef for a pass manager over functions.
288 using FunctionPassManager = PassManager<Function>;
289 
290 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
291 /// managers. Goes before AnalysisManager definition to provide its
292 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
293 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
294 /// header.
295 class PassInstrumentationAnalysis
296     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
297   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
298   static AnalysisKey Key;
299 
300   PassInstrumentationCallbacks *Callbacks;
301 
302 public:
303   /// PassInstrumentationCallbacks object is shared, owned by something else,
304   /// not this analysis.
305   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
Callbacks(Callbacks)306       : Callbacks(Callbacks) {}
307 
308   using Result = PassInstrumentation;
309 
310   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
run(IRUnitT &,AnalysisManagerT &,ExtraArgTs &&...)311   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
312     return PassInstrumentation(Callbacks);
313   }
314 };
315 
316 /// A container for analyses that lazily runs them and caches their
317 /// results.
318 ///
319 /// This class can manage analyses for any IR unit where the address of the IR
320 /// unit sufficies as its identity.
321 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
322 public:
323   class Invalidator;
324 
325 private:
326   // Now that we've defined our invalidator, we can define the concept types.
327   using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>;
328   using PassConceptT =
329       detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>;
330 
331   /// List of analysis pass IDs and associated concept pointers.
332   ///
333   /// Requires iterators to be valid across appending new entries and arbitrary
334   /// erases. Provides the analysis ID to enable finding iterators to a given
335   /// entry in maps below, and provides the storage for the actual result
336   /// concept.
337   using AnalysisResultListT =
338       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
339 
340   /// Map type from IRUnitT pointer to our custom list type.
341   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
342 
343   /// Map type from a pair of analysis ID and IRUnitT pointer to an
344   /// iterator into a particular result list (which is where the actual analysis
345   /// result is stored).
346   using AnalysisResultMapT =
347       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
348                typename AnalysisResultListT::iterator>;
349 
350 public:
351   /// API to communicate dependencies between analyses during invalidation.
352   ///
353   /// When an analysis result embeds handles to other analysis results, it
354   /// needs to be invalidated both when its own information isn't preserved and
355   /// when any of its embedded analysis results end up invalidated. We pass an
356   /// \c Invalidator object as an argument to \c invalidate() in order to let
357   /// the analysis results themselves define the dependency graph on the fly.
358   /// This lets us avoid building an explicit representation of the
359   /// dependencies between analysis results.
360   class Invalidator {
361   public:
362     /// Trigger the invalidation of some other analysis pass if not already
363     /// handled and return whether it was in fact invalidated.
364     ///
365     /// This is expected to be called from within a given analysis result's \c
366     /// invalidate method to trigger a depth-first walk of all inter-analysis
367     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
368     /// invalidate method should in turn be provided to this routine.
369     ///
370     /// The first time this is called for a given analysis pass, it will call
371     /// the corresponding result's \c invalidate method.  Subsequent calls will
372     /// use a cache of the results of that initial call.  It is an error to form
373     /// cyclic dependencies between analysis results.
374     ///
375     /// This returns true if the given analysis's result is invalid. Any
376     /// dependecies on it will become invalid as a result.
377     template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)378     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
379       using ResultModelT =
380           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
381                                       Invalidator>;
382 
383       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
384     }
385 
386     /// A type-erased variant of the above invalidate method with the same core
387     /// API other than passing an analysis ID rather than an analysis type
388     /// parameter.
389     ///
390     /// This is sadly less efficient than the above routine, which leverages
391     /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)392     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
393       return invalidateImpl<>(ID, IR, PA);
394     }
395 
396   private:
397     friend class AnalysisManager;
398 
399     template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)400     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
401                         const PreservedAnalyses &PA) {
402       // If we've already visited this pass, return true if it was invalidated
403       // and false otherwise.
404       auto IMapI = IsResultInvalidated.find(ID);
405       if (IMapI != IsResultInvalidated.end())
406         return IMapI->second;
407 
408       // Otherwise look up the result object.
409       auto RI = Results.find({ID, &IR});
410       assert(RI != Results.end() &&
411              "Trying to invalidate a dependent result that isn't in the "
412              "manager's cache is always an error, likely due to a stale result "
413              "handle!");
414 
415       auto &Result = static_cast<ResultT &>(*RI->second->second);
416 
417       // Insert into the map whether the result should be invalidated and return
418       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
419       // as calling invalidate could (recursively) insert things into the map,
420       // making any iterator or reference invalid.
421       bool Inserted;
422       std::tie(IMapI, Inserted) =
423           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
424       (void)Inserted;
425       assert(Inserted && "Should not have already inserted this ID, likely "
426                          "indicates a dependency cycle!");
427       return IMapI->second;
428     }
429 
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)430     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
431                 const AnalysisResultMapT &Results)
432         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
433 
434     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
435     const AnalysisResultMapT &Results;
436   };
437 
438   /// Construct an empty analysis manager.
439   AnalysisManager();
440   AnalysisManager(AnalysisManager &&);
441   AnalysisManager &operator=(AnalysisManager &&);
442 
443   /// Returns true if the analysis manager has an empty results cache.
empty()444   bool empty() const {
445     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
446            "The storage and index of analysis results disagree on how many "
447            "there are!");
448     return AnalysisResults.empty();
449   }
450 
451   /// Clear any cached analysis results for a single unit of IR.
452   ///
453   /// This doesn't invalidate, but instead simply deletes, the relevant results.
454   /// It is useful when the IR is being removed and we want to clear out all the
455   /// memory pinned for it.
456   void clear(IRUnitT &IR, llvm::StringRef Name);
457 
458   /// Clear all analysis results cached by this AnalysisManager.
459   ///
460   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
461   /// deletes them.  This lets you clean up the AnalysisManager when the set of
462   /// IR units itself has potentially changed, and thus we can't even look up a
463   /// a result and invalidate/clear it directly.
clear()464   void clear() {
465     AnalysisResults.clear();
466     AnalysisResultLists.clear();
467   }
468 
469   /// Get the result of an analysis pass for a given IR unit.
470   ///
471   /// Runs the analysis if a cached result is not available.
472   template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)473   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
474     assert(AnalysisPasses.count(PassT::ID()) &&
475            "This analysis pass was not registered prior to being queried");
476     ResultConceptT &ResultConcept =
477         getResultImpl(PassT::ID(), IR, ExtraArgs...);
478 
479     using ResultModelT =
480         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
481                                     Invalidator>;
482 
483     return static_cast<ResultModelT &>(ResultConcept).Result;
484   }
485 
486   /// Get the cached result of an analysis pass for a given IR unit.
487   ///
488   /// This method never runs the analysis.
489   ///
490   /// \returns null if there is no cached result.
491   template <typename PassT>
getCachedResult(IRUnitT & IR)492   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
493     assert(AnalysisPasses.count(PassT::ID()) &&
494            "This analysis pass was not registered prior to being queried");
495 
496     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
497     if (!ResultConcept)
498       return nullptr;
499 
500     using ResultModelT =
501         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
502                                     Invalidator>;
503 
504     return &static_cast<ResultModelT *>(ResultConcept)->Result;
505   }
506 
507   /// Verify that the given Result cannot be invalidated, assert otherwise.
508   template <typename PassT>
verifyNotInvalidated(IRUnitT & IR,typename PassT::Result * Result)509   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
510     PreservedAnalyses PA = PreservedAnalyses::none();
511     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
512     Invalidator Inv(IsResultInvalidated, AnalysisResults);
513     assert(!Result->invalidate(IR, PA, Inv) &&
514            "Cached result cannot be invalidated");
515   }
516 
517   /// Register an analysis pass with the manager.
518   ///
519   /// The parameter is a callable whose result is an analysis pass. This allows
520   /// passing in a lambda to construct the analysis.
521   ///
522   /// The analysis type to register is the type returned by calling the \c
523   /// PassBuilder argument. If that type has already been registered, then the
524   /// argument will not be called and this function will return false.
525   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
526   /// and this function returns true.
527   ///
528   /// (Note: Although the return value of this function indicates whether or not
529   /// an analysis was previously registered, there intentionally isn't a way to
530   /// query this directly.  Instead, you should just register all the analyses
531   /// you might want and let this class run them lazily.  This idiom lets us
532   /// minimize the number of times we have to look up analyses in our
533   /// hashtable.)
534   template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)535   bool registerPass(PassBuilderT &&PassBuilder) {
536     using PassT = decltype(PassBuilder());
537     using PassModelT =
538         detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>;
539 
540     auto &PassPtr = AnalysisPasses[PassT::ID()];
541     if (PassPtr)
542       // Already registered this pass type!
543       return false;
544 
545     // Construct a new model around the instance returned by the builder.
546     PassPtr.reset(new PassModelT(PassBuilder()));
547     return true;
548   }
549 
550   /// Invalidate cached analyses for an IR unit.
551   ///
552   /// Walk through all of the analyses pertaining to this unit of IR and
553   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
554   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
555 
556 private:
557   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)558   PassConceptT &lookUpPass(AnalysisKey *ID) {
559     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
560     assert(PI != AnalysisPasses.end() &&
561            "Analysis passes must be registered prior to being queried!");
562     return *PI->second;
563   }
564 
565   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)566   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
567     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
568     assert(PI != AnalysisPasses.end() &&
569            "Analysis passes must be registered prior to being queried!");
570     return *PI->second;
571   }
572 
573   /// Get an analysis result, running the pass if necessary.
574   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
575                                 ExtraArgTs... ExtraArgs);
576 
577   /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)578   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
579     typename AnalysisResultMapT::const_iterator RI =
580         AnalysisResults.find({ID, &IR});
581     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
582   }
583 
584   /// Map type from analysis pass ID to pass concept pointer.
585   using AnalysisPassMapT =
586       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
587 
588   /// Collection of analysis passes, indexed by ID.
589   AnalysisPassMapT AnalysisPasses;
590 
591   /// Map from IR unit to a list of analysis results.
592   ///
593   /// Provides linear time removal of all analysis results for a IR unit and
594   /// the ultimate storage for a particular cached analysis result.
595   AnalysisResultListMapT AnalysisResultLists;
596 
597   /// Map from an analysis ID and IR unit to a particular cached
598   /// analysis result.
599   AnalysisResultMapT AnalysisResults;
600 };
601 
602 extern template class AnalysisManager<Module>;
603 
604 /// Convenience typedef for the Module analysis manager.
605 using ModuleAnalysisManager = AnalysisManager<Module>;
606 
607 extern template class AnalysisManager<Function>;
608 
609 /// Convenience typedef for the Function analysis manager.
610 using FunctionAnalysisManager = AnalysisManager<Function>;
611 
612 /// An analysis over an "outer" IR unit that provides access to an
613 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
614 /// in the outer unit.
615 ///
616 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
617 /// an analysis over Modules (the "outer" unit) that provides access to a
618 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
619 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
620 /// relationship is valid because each Function is contained in one Module.
621 ///
622 /// If you're (transitively) within a pass manager for an IR unit U that
623 /// contains IR unit V, you should never use an analysis manager over V, except
624 /// via one of these proxies.
625 ///
626 /// Note that the proxy's result is a move-only RAII object.  The validity of
627 /// the analyses in the inner analysis manager is tied to its lifetime.
628 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
629 class InnerAnalysisManagerProxy
630     : public AnalysisInfoMixin<
631           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
632 public:
633   class Result {
634   public:
Result(AnalysisManagerT & InnerAM)635     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
636 
Result(Result && Arg)637     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
638       // We have to null out the analysis manager in the moved-from state
639       // because we are taking ownership of the responsibilty to clear the
640       // analysis state.
641       Arg.InnerAM = nullptr;
642     }
643 
~Result()644     ~Result() {
645       // InnerAM is cleared in a moved from state where there is nothing to do.
646       if (!InnerAM)
647         return;
648 
649       // Clear out the analysis manager if we're being destroyed -- it means we
650       // didn't even see an invalidate call when we got invalidated.
651       InnerAM->clear();
652     }
653 
654     Result &operator=(Result &&RHS) {
655       InnerAM = RHS.InnerAM;
656       // We have to null out the analysis manager in the moved-from state
657       // because we are taking ownership of the responsibilty to clear the
658       // analysis state.
659       RHS.InnerAM = nullptr;
660       return *this;
661     }
662 
663     /// Accessor for the analysis manager.
getManager()664     AnalysisManagerT &getManager() { return *InnerAM; }
665 
666     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
667     ///
668     /// If the proxy analysis itself is not preserved, we assume that the set of
669     /// inner IR objects contained in IRUnit may have changed.  In this case,
670     /// we have to call \c clear() on the inner analysis manager, as it may now
671     /// have stale pointers to its inner IR objects.
672     ///
673     /// Regardless of whether the proxy analysis is marked as preserved, all of
674     /// the analyses in the inner analysis manager are potentially invalidated
675     /// based on the set of preserved analyses.
676     bool invalidate(
677         IRUnitT &IR, const PreservedAnalyses &PA,
678         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
679 
680   private:
681     AnalysisManagerT *InnerAM;
682   };
683 
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)684   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
685       : InnerAM(&InnerAM) {}
686 
687   /// Run the analysis pass and create our proxy result object.
688   ///
689   /// This doesn't do any interesting work; it is primarily used to insert our
690   /// proxy result object into the outer analysis cache so that we can proxy
691   /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)692   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
693              ExtraArgTs...) {
694     return Result(*InnerAM);
695   }
696 
697 private:
698   friend AnalysisInfoMixin<
699       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
700 
701   static AnalysisKey Key;
702 
703   AnalysisManagerT *InnerAM;
704 };
705 
706 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
707 AnalysisKey
708     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
709 
710 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
711 using FunctionAnalysisManagerModuleProxy =
712     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
713 
714 /// Specialization of the invalidate method for the \c
715 /// FunctionAnalysisManagerModuleProxy's result.
716 template <>
717 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
718     Module &M, const PreservedAnalyses &PA,
719     ModuleAnalysisManager::Invalidator &Inv);
720 
721 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
722 // template.
723 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
724                                                 Module>;
725 
726 /// An analysis over an "inner" IR unit that provides access to an
727 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
728 /// in the outer unit.
729 ///
730 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
731 /// analysis over Functions (the "inner" unit) which provides access to a Module
732 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
733 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
734 /// is valid because each Function is contained in one Module.
735 ///
736 /// This proxy only exposes the const interface of the outer analysis manager,
737 /// to indicate that you cannot cause an outer analysis to run from within an
738 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
739 /// due to keeping potential future concurrency in mind. To give an example,
740 /// running a module analysis before any function passes may give a different
741 /// result than running it in a function pass. Both may be valid, but it would
742 /// produce non-deterministic results. GlobalsAA is a good analysis example,
743 /// because the cached information has the mod/ref info for all memory for each
744 /// function at the time the analysis was computed. The information is still
745 /// valid after a function transformation, but it may be *different* if
746 /// recomputed after that transform. GlobalsAA is never invalidated.
747 
748 ///
749 /// This proxy doesn't manage invalidation in any way -- that is handled by the
750 /// recursive return path of each layer of the pass manager.  A consequence of
751 /// this is the outer analyses may be stale.  We invalidate the outer analyses
752 /// only when we're done running passes over the inner IR units.
753 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
754 class OuterAnalysisManagerProxy
755     : public AnalysisInfoMixin<
756           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
757 public:
758   /// Result proxy object for \c OuterAnalysisManagerProxy.
759   class Result {
760   public:
Result(const AnalysisManagerT & OuterAM)761     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
762 
763     /// Get a cached analysis. If the analysis can be invalidated, this will
764     /// assert.
765     template <typename PassT, typename IRUnitTParam>
getCachedResult(IRUnitTParam & IR)766     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
767       typename PassT::Result *Res =
768           OuterAM->template getCachedResult<PassT>(IR);
769       if (Res)
770         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
771       return Res;
772     }
773 
774     /// Method provided for unit testing, not intended for general use.
775     template <typename PassT, typename IRUnitTParam>
cachedResultExists(IRUnitTParam & IR)776     bool cachedResultExists(IRUnitTParam &IR) const {
777       typename PassT::Result *Res =
778           OuterAM->template getCachedResult<PassT>(IR);
779       return Res != nullptr;
780     }
781 
782     /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)783     bool invalidate(
784         IRUnitT &IRUnit, const PreservedAnalyses &PA,
785         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
786       // Loop over the set of registered outer invalidation mappings and if any
787       // of them map to an analysis that is now invalid, clear it out.
788       SmallVector<AnalysisKey *, 4> DeadKeys;
789       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
790         AnalysisKey *OuterID = KeyValuePair.first;
791         auto &InnerIDs = KeyValuePair.second;
792         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
793           return Inv.invalidate(InnerID, IRUnit, PA);
794         });
795         if (InnerIDs.empty())
796           DeadKeys.push_back(OuterID);
797       }
798 
799       for (auto *OuterID : DeadKeys)
800         OuterAnalysisInvalidationMap.erase(OuterID);
801 
802       // The proxy itself remains valid regardless of anything else.
803       return false;
804     }
805 
806     /// Register a deferred invalidation event for when the outer analysis
807     /// manager processes its invalidations.
808     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()809     void registerOuterAnalysisInvalidation() {
810       AnalysisKey *OuterID = OuterAnalysisT::ID();
811       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
812 
813       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
814       // Note, this is a linear scan. If we end up with large numbers of
815       // analyses that all trigger invalidation on the same outer analysis,
816       // this entire system should be changed to some other deterministic
817       // data structure such as a `SetVector` of a pair of pointers.
818       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
819         InvalidatedIDList.push_back(InvalidatedID);
820     }
821 
822     /// Access the map from outer analyses to deferred invalidation requiring
823     /// analyses.
824     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()825     getOuterInvalidations() const {
826       return OuterAnalysisInvalidationMap;
827     }
828 
829   private:
830     const AnalysisManagerT *OuterAM;
831 
832     /// A map from an outer analysis ID to the set of this IR-unit's analyses
833     /// which need to be invalidated.
834     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
835         OuterAnalysisInvalidationMap;
836   };
837 
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)838   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
839       : OuterAM(&OuterAM) {}
840 
841   /// Run the analysis pass and create our proxy result object.
842   /// Nothing to see here, it just forwards the \c OuterAM reference into the
843   /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)844   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
845              ExtraArgTs...) {
846     return Result(*OuterAM);
847   }
848 
849 private:
850   friend AnalysisInfoMixin<
851       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
852 
853   static AnalysisKey Key;
854 
855   const AnalysisManagerT *OuterAM;
856 };
857 
858 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
859 AnalysisKey
860     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
861 
862 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
863                                                 Function>;
864 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
865 using ModuleAnalysisManagerFunctionProxy =
866     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
867 
868 /// Trivial adaptor that maps from a module to its functions.
869 ///
870 /// Designed to allow composition of a FunctionPass(Manager) and
871 /// a ModulePassManager, by running the FunctionPass(Manager) over every
872 /// function in the module.
873 ///
874 /// Function passes run within this adaptor can rely on having exclusive access
875 /// to the function they are run over. They should not read or modify any other
876 /// functions! Other threads or systems may be manipulating other functions in
877 /// the module, and so their state should never be relied on.
878 /// FIXME: Make the above true for all of LLVM's actual passes, some still
879 /// violate this principle.
880 ///
881 /// Function passes can also read the module containing the function, but they
882 /// should not modify that module outside of the use lists of various globals.
883 /// For example, a function pass is not permitted to add functions to the
884 /// module.
885 /// FIXME: Make the above true for all of LLVM's actual passes, some still
886 /// violate this principle.
887 ///
888 /// Note that although function passes can access module analyses, module
889 /// analyses are not invalidated while the function passes are running, so they
890 /// may be stale.  Function analyses will not be stale.
891 class ModuleToFunctionPassAdaptor
892     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
893 public:
894   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
895 
ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,bool EagerlyInvalidate)896   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
897                                        bool EagerlyInvalidate)
898       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
899 
900   /// Runs the function pass across every function in the module.
901   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
902   void printPipeline(raw_ostream &OS,
903                      function_ref<StringRef(StringRef)> MapClassName2PassName);
904 
isRequired()905   static bool isRequired() { return true; }
906 
907 private:
908   std::unique_ptr<PassConceptT> Pass;
909   bool EagerlyInvalidate;
910 };
911 
912 /// A function to deduce a function pass type and wrap it in the
913 /// templated adaptor.
914 template <typename FunctionPassT>
915 ModuleToFunctionPassAdaptor
916 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
917                                   bool EagerlyInvalidate = false) {
918   using PassModelT =
919       detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
920   // Do not use make_unique, it causes too many template instantiations,
921   // causing terrible compile times.
922   return ModuleToFunctionPassAdaptor(
923       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
924           new PassModelT(std::forward<FunctionPassT>(Pass))),
925       EagerlyInvalidate);
926 }
927 
928 /// A utility pass template to force an analysis result to be available.
929 ///
930 /// If there are extra arguments at the pass's run level there may also be
931 /// extra arguments to the analysis manager's \c getResult routine. We can't
932 /// guess how to effectively map the arguments from one to the other, and so
933 /// this specialization just ignores them.
934 ///
935 /// Specific patterns of run-method extra arguments and analysis manager extra
936 /// arguments will have to be defined as appropriate specializations.
937 template <typename AnalysisT, typename IRUnitT,
938           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
939           typename... ExtraArgTs>
940 struct RequireAnalysisPass
941     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
942                                         ExtraArgTs...>> {
943   /// Run this pass over some unit of IR.
944   ///
945   /// This pass can be run over any unit of IR and use any analysis manager
946   /// provided they satisfy the basic API requirements. When this pass is
947   /// created, these methods can be instantiated to satisfy whatever the
948   /// context requires.
runRequireAnalysisPass949   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
950                         ExtraArgTs &&... Args) {
951     (void)AM.template getResult<AnalysisT>(Arg,
952                                            std::forward<ExtraArgTs>(Args)...);
953 
954     return PreservedAnalyses::all();
955   }
printPipelineRequireAnalysisPass956   void printPipeline(raw_ostream &OS,
957                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
958     auto ClassName = AnalysisT::name();
959     auto PassName = MapClassName2PassName(ClassName);
960     OS << "require<" << PassName << '>';
961   }
isRequiredRequireAnalysisPass962   static bool isRequired() { return true; }
963 };
964 
965 /// A no-op pass template which simply forces a specific analysis result
966 /// to be invalidated.
967 template <typename AnalysisT>
968 struct InvalidateAnalysisPass
969     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
970   /// Run this pass over some unit of IR.
971   ///
972   /// This pass can be run over any unit of IR and use any analysis manager,
973   /// provided they satisfy the basic API requirements. When this pass is
974   /// created, these methods can be instantiated to satisfy whatever the
975   /// context requires.
976   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass977   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
978     auto PA = PreservedAnalyses::all();
979     PA.abandon<AnalysisT>();
980     return PA;
981   }
printPipelineInvalidateAnalysisPass982   void printPipeline(raw_ostream &OS,
983                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
984     auto ClassName = AnalysisT::name();
985     auto PassName = MapClassName2PassName(ClassName);
986     OS << "invalidate<" << PassName << '>';
987   }
988 };
989 
990 /// A utility pass that does nothing, but preserves no analyses.
991 ///
992 /// Because this preserves no analyses, any analysis passes queried after this
993 /// pass runs will recompute fresh results.
994 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
995   /// Run this pass over some unit of IR.
996   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass997   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
998     return PreservedAnalyses::none();
999   }
1000 };
1001 
1002 /// A utility pass template that simply runs another pass multiple times.
1003 ///
1004 /// This can be useful when debugging or testing passes. It also serves as an
1005 /// example of how to extend the pass manager in ways beyond composition.
1006 template <typename PassT>
1007 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1008 public:
RepeatedPass(int Count,PassT && P)1009   RepeatedPass(int Count, PassT &&P)
1010       : Count(Count), P(std::forward<PassT>(P)) {}
1011 
1012   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & IR,AnalysisManagerT & AM,Ts &&...Args)1013   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1014 
1015     // Request PassInstrumentation from analysis manager, will use it to run
1016     // instrumenting callbacks for the passes later.
1017     // Here we use std::tuple wrapper over getResult which helps to extract
1018     // AnalysisManager's arguments out of the whole Args set.
1019     PassInstrumentation PI =
1020         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1021             AM, IR, std::tuple<Ts...>(Args...));
1022 
1023     auto PA = PreservedAnalyses::all();
1024     for (int i = 0; i < Count; ++i) {
1025       // Check the PassInstrumentation's BeforePass callbacks before running the
1026       // pass, skip its execution completely if asked to (callback returns
1027       // false).
1028       if (!PI.runBeforePass<IRUnitT>(P, IR))
1029         continue;
1030       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
1031       PA.intersect(IterPA);
1032       PI.runAfterPass(P, IR, IterPA);
1033     }
1034     return PA;
1035   }
1036 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)1037   void printPipeline(raw_ostream &OS,
1038                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1039     OS << "repeat<" << Count << ">(";
1040     P.printPipeline(OS, MapClassName2PassName);
1041     OS << ')';
1042   }
1043 
1044 private:
1045   int Count;
1046   PassT P;
1047 };
1048 
1049 template <typename PassT>
createRepeatedPass(int Count,PassT && P)1050 RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
1051   return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
1052 }
1053 
1054 } // end namespace llvm
1055 
1056 #endif // LLVM_IR_PASSMANAGER_H
1057