1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// @file 10 /// This file contains the declarations for the subclasses of Constant, 11 /// which represent the different flavors of constant values that live in LLVM. 12 /// Note that Constants are immutable (once created they never change) and are 13 /// fully shared by structural equivalence. This means that two structurally 14 /// equivalent constants will always have the same address. Constants are 15 /// created on demand as needed and never deleted: thus clients don't have to 16 /// worry about the lifetime of the objects. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_IR_CONSTANTS_H 21 #define LLVM_IR_CONSTANTS_H 22 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/OperandTraits.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include <cassert> 39 #include <cstddef> 40 #include <cstdint> 41 #include <optional> 42 43 namespace llvm { 44 45 template <class ConstantClass> struct ConstantAggrKeyType; 46 47 /// Base class for constants with no operands. 48 /// 49 /// These constants have no operands; they represent their data directly. 50 /// Since they can be in use by unrelated modules (and are never based on 51 /// GlobalValues), it never makes sense to RAUW them. 52 class ConstantData : public Constant { 53 friend class Constant; 54 handleOperandChangeImpl(Value * From,Value * To)55 Value *handleOperandChangeImpl(Value *From, Value *To) { 56 llvm_unreachable("Constant data does not have operands!"); 57 } 58 59 protected: ConstantData(Type * Ty,ValueTy VT)60 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} 61 new(size_t S)62 void *operator new(size_t S) { return User::operator new(S, 0); } 63 64 public: delete(void * Ptr)65 void operator delete(void *Ptr) { User::operator delete(Ptr); } 66 67 ConstantData(const ConstantData &) = delete; 68 69 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)70 static bool classof(const Value *V) { 71 return V->getValueID() >= ConstantDataFirstVal && 72 V->getValueID() <= ConstantDataLastVal; 73 } 74 }; 75 76 //===----------------------------------------------------------------------===// 77 /// This is the shared class of boolean and integer constants. This class 78 /// represents both boolean and integral constants. 79 /// Class for constant integers. 80 class ConstantInt final : public ConstantData { 81 friend class Constant; 82 friend class ConstantVector; 83 84 APInt Val; 85 86 ConstantInt(Type *Ty, const APInt &V); 87 88 void destroyConstantImpl(); 89 90 /// Return a ConstantInt with the specified value and an implied Type. The 91 /// type is the vector type whose integer element type corresponds to the bit 92 /// width of the value. 93 static ConstantInt *get(LLVMContext &Context, ElementCount EC, 94 const APInt &V); 95 96 public: 97 ConstantInt(const ConstantInt &) = delete; 98 99 static ConstantInt *getTrue(LLVMContext &Context); 100 static ConstantInt *getFalse(LLVMContext &Context); 101 static ConstantInt *getBool(LLVMContext &Context, bool V); 102 static Constant *getTrue(Type *Ty); 103 static Constant *getFalse(Type *Ty); 104 static Constant *getBool(Type *Ty, bool V); 105 106 /// If Ty is a vector type, return a Constant with a splat of the given 107 /// value. Otherwise return a ConstantInt for the given value. 108 static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false); 109 110 /// Return a ConstantInt with the specified integer value for the specified 111 /// type. If the type is wider than 64 bits, the value will be zero-extended 112 /// to fit the type, unless IsSigned is true, in which case the value will 113 /// be interpreted as a 64-bit signed integer and sign-extended to fit 114 /// the type. 115 /// Get a ConstantInt for a specific value. 116 static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false); 117 118 /// Return a ConstantInt with the specified value for the specified type. The 119 /// value V will be canonicalized to a an unsigned APInt. Accessing it with 120 /// either getSExtValue() or getZExtValue() will yield a correctly sized and 121 /// signed value for the type Ty. 122 /// Get a ConstantInt for a specific signed value. getSigned(IntegerType * Ty,int64_t V)123 static ConstantInt *getSigned(IntegerType *Ty, int64_t V) { 124 return get(Ty, V, true); 125 } getSigned(Type * Ty,int64_t V)126 static Constant *getSigned(Type *Ty, int64_t V) { 127 return get(Ty, V, true); 128 } 129 130 /// Return a ConstantInt with the specified value and an implied Type. The 131 /// type is the integer type that corresponds to the bit width of the value. 132 static ConstantInt *get(LLVMContext &Context, const APInt &V); 133 134 /// Return a ConstantInt constructed from the string strStart with the given 135 /// radix. 136 static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix); 137 138 /// If Ty is a vector type, return a Constant with a splat of the given 139 /// value. Otherwise return a ConstantInt for the given value. 140 static Constant *get(Type *Ty, const APInt &V); 141 142 /// Return the constant as an APInt value reference. This allows clients to 143 /// obtain a full-precision copy of the value. 144 /// Return the constant's value. getValue()145 inline const APInt &getValue() const { return Val; } 146 147 /// getBitWidth - Return the scalar bitwidth of this constant. getBitWidth()148 unsigned getBitWidth() const { return Val.getBitWidth(); } 149 150 /// Return the constant as a 64-bit unsigned integer value after it 151 /// has been zero extended as appropriate for the type of this constant. Note 152 /// that this method can assert if the value does not fit in 64 bits. 153 /// Return the zero extended value. getZExtValue()154 inline uint64_t getZExtValue() const { return Val.getZExtValue(); } 155 156 /// Return the constant as a 64-bit integer value after it has been sign 157 /// extended as appropriate for the type of this constant. Note that 158 /// this method can assert if the value does not fit in 64 bits. 159 /// Return the sign extended value. getSExtValue()160 inline int64_t getSExtValue() const { return Val.getSExtValue(); } 161 162 /// Return the constant as an llvm::MaybeAlign. 163 /// Note that this method can assert if the value does not fit in 64 bits or 164 /// is not a power of two. getMaybeAlignValue()165 inline MaybeAlign getMaybeAlignValue() const { 166 return MaybeAlign(getZExtValue()); 167 } 168 169 /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. 170 /// Note that this method can assert if the value does not fit in 64 bits or 171 /// is not a power of two. getAlignValue()172 inline Align getAlignValue() const { 173 return getMaybeAlignValue().valueOrOne(); 174 } 175 176 /// A helper method that can be used to determine if the constant contained 177 /// within is equal to a constant. This only works for very small values, 178 /// because this is all that can be represented with all types. 179 /// Determine if this constant's value is same as an unsigned char. equalsInt(uint64_t V)180 bool equalsInt(uint64_t V) const { return Val == V; } 181 182 /// Variant of the getType() method to always return an IntegerType, which 183 /// reduces the amount of casting needed in parts of the compiler. getIntegerType()184 inline IntegerType *getIntegerType() const { 185 return cast<IntegerType>(Value::getType()); 186 } 187 188 /// This static method returns true if the type Ty is big enough to 189 /// represent the value V. This can be used to avoid having the get method 190 /// assert when V is larger than Ty can represent. Note that there are two 191 /// versions of this method, one for unsigned and one for signed integers. 192 /// Although ConstantInt canonicalizes everything to an unsigned integer, 193 /// the signed version avoids callers having to convert a signed quantity 194 /// to the appropriate unsigned type before calling the method. 195 /// @returns true if V is a valid value for type Ty 196 /// Determine if the value is in range for the given type. 197 static bool isValueValidForType(Type *Ty, uint64_t V); 198 static bool isValueValidForType(Type *Ty, int64_t V); 199 isNegative()200 bool isNegative() const { return Val.isNegative(); } 201 202 /// This is just a convenience method to make client code smaller for a 203 /// common code. It also correctly performs the comparison without the 204 /// potential for an assertion from getZExtValue(). isZero()205 bool isZero() const { return Val.isZero(); } 206 207 /// This is just a convenience method to make client code smaller for a 208 /// common case. It also correctly performs the comparison without the 209 /// potential for an assertion from getZExtValue(). 210 /// Determine if the value is one. isOne()211 bool isOne() const { return Val.isOne(); } 212 213 /// This function will return true iff every bit in this constant is set 214 /// to true. 215 /// @returns true iff this constant's bits are all set to true. 216 /// Determine if the value is all ones. isMinusOne()217 bool isMinusOne() const { return Val.isAllOnes(); } 218 219 /// This function will return true iff this constant represents the largest 220 /// value that may be represented by the constant's type. 221 /// @returns true iff this is the largest value that may be represented 222 /// by this type. 223 /// Determine if the value is maximal. isMaxValue(bool IsSigned)224 bool isMaxValue(bool IsSigned) const { 225 if (IsSigned) 226 return Val.isMaxSignedValue(); 227 else 228 return Val.isMaxValue(); 229 } 230 231 /// This function will return true iff this constant represents the smallest 232 /// value that may be represented by this constant's type. 233 /// @returns true if this is the smallest value that may be represented by 234 /// this type. 235 /// Determine if the value is minimal. isMinValue(bool IsSigned)236 bool isMinValue(bool IsSigned) const { 237 if (IsSigned) 238 return Val.isMinSignedValue(); 239 else 240 return Val.isMinValue(); 241 } 242 243 /// This function will return true iff this constant represents a value with 244 /// active bits bigger than 64 bits or a value greater than the given uint64_t 245 /// value. 246 /// @returns true iff this constant is greater or equal to the given number. 247 /// Determine if the value is greater or equal to the given number. uge(uint64_t Num)248 bool uge(uint64_t Num) const { return Val.uge(Num); } 249 250 /// getLimitedValue - If the value is smaller than the specified limit, 251 /// return it, otherwise return the limit value. This causes the value 252 /// to saturate to the limit. 253 /// @returns the min of the value of the constant and the specified value 254 /// Get the constant's value with a saturation limit 255 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 256 return Val.getLimitedValue(Limit); 257 } 258 259 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)260 static bool classof(const Value *V) { 261 return V->getValueID() == ConstantIntVal; 262 } 263 }; 264 265 //===----------------------------------------------------------------------===// 266 /// ConstantFP - Floating Point Values [float, double] 267 /// 268 class ConstantFP final : public ConstantData { 269 friend class Constant; 270 friend class ConstantVector; 271 272 APFloat Val; 273 274 ConstantFP(Type *Ty, const APFloat &V); 275 276 void destroyConstantImpl(); 277 278 /// Return a ConstantFP with the specified value and an implied Type. The 279 /// type is the vector type whose element type has the same floating point 280 /// semantics as the value. 281 static ConstantFP *get(LLVMContext &Context, ElementCount EC, 282 const APFloat &V); 283 284 public: 285 ConstantFP(const ConstantFP &) = delete; 286 287 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, 288 /// for the specified value in the specified type. This should only be used 289 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as 290 /// host double and as the target format. 291 static Constant *get(Type *Ty, double V); 292 293 /// If Ty is a vector type, return a Constant with a splat of the given 294 /// value. Otherwise return a ConstantFP for the given value. 295 static Constant *get(Type *Ty, const APFloat &V); 296 297 static Constant *get(Type *Ty, StringRef Str); 298 static ConstantFP *get(LLVMContext &Context, const APFloat &V); 299 static Constant *getNaN(Type *Ty, bool Negative = false, 300 uint64_t Payload = 0); 301 static Constant *getQNaN(Type *Ty, bool Negative = false, 302 APInt *Payload = nullptr); 303 static Constant *getSNaN(Type *Ty, bool Negative = false, 304 APInt *Payload = nullptr); 305 static Constant *getZero(Type *Ty, bool Negative = false); getNegativeZero(Type * Ty)306 static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); } 307 static Constant *getInfinity(Type *Ty, bool Negative = false); 308 309 /// Return true if Ty is big enough to represent V. 310 static bool isValueValidForType(Type *Ty, const APFloat &V); getValueAPF()311 inline const APFloat &getValueAPF() const { return Val; } getValue()312 inline const APFloat &getValue() const { return Val; } 313 314 /// Return true if the value is positive or negative zero. isZero()315 bool isZero() const { return Val.isZero(); } 316 317 /// Return true if the sign bit is set. isNegative()318 bool isNegative() const { return Val.isNegative(); } 319 320 /// Return true if the value is infinity isInfinity()321 bool isInfinity() const { return Val.isInfinity(); } 322 323 /// Return true if the value is a NaN. isNaN()324 bool isNaN() const { return Val.isNaN(); } 325 326 /// We don't rely on operator== working on double values, as it returns true 327 /// for things that are clearly not equal, like -0.0 and 0.0. 328 /// As such, this method can be used to do an exact bit-for-bit comparison of 329 /// two floating point values. The version with a double operand is retained 330 /// because it's so convenient to write isExactlyValue(2.0), but please use 331 /// it only for simple constants. 332 bool isExactlyValue(const APFloat &V) const; 333 isExactlyValue(double V)334 bool isExactlyValue(double V) const { 335 bool ignored; 336 APFloat FV(V); 337 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); 338 return isExactlyValue(FV); 339 } 340 341 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)342 static bool classof(const Value *V) { 343 return V->getValueID() == ConstantFPVal; 344 } 345 }; 346 347 //===----------------------------------------------------------------------===// 348 /// All zero aggregate value 349 /// 350 class ConstantAggregateZero final : public ConstantData { 351 friend class Constant; 352 ConstantAggregateZero(Type * Ty)353 explicit ConstantAggregateZero(Type *Ty) 354 : ConstantData(Ty, ConstantAggregateZeroVal) {} 355 356 void destroyConstantImpl(); 357 358 public: 359 ConstantAggregateZero(const ConstantAggregateZero &) = delete; 360 361 static ConstantAggregateZero *get(Type *Ty); 362 363 /// If this CAZ has array or vector type, return a zero with the right element 364 /// type. 365 Constant *getSequentialElement() const; 366 367 /// If this CAZ has struct type, return a zero with the right element type for 368 /// the specified element. 369 Constant *getStructElement(unsigned Elt) const; 370 371 /// Return a zero of the right value for the specified GEP index if we can, 372 /// otherwise return null (e.g. if C is a ConstantExpr). 373 Constant *getElementValue(Constant *C) const; 374 375 /// Return a zero of the right value for the specified GEP index. 376 Constant *getElementValue(unsigned Idx) const; 377 378 /// Return the number of elements in the array, vector, or struct. 379 ElementCount getElementCount() const; 380 381 /// Methods for support type inquiry through isa, cast, and dyn_cast: 382 /// classof(const Value * V)383 static bool classof(const Value *V) { 384 return V->getValueID() == ConstantAggregateZeroVal; 385 } 386 }; 387 388 /// Base class for aggregate constants (with operands). 389 /// 390 /// These constants are aggregates of other constants, which are stored as 391 /// operands. 392 /// 393 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a 394 /// ConstantVector. 395 /// 396 /// \note Some subclasses of \a ConstantData are semantically aggregates -- 397 /// such as \a ConstantDataArray -- but are not subclasses of this because they 398 /// use operands. 399 class ConstantAggregate : public Constant { 400 protected: 401 ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V); 402 403 public: 404 /// Transparently provide more efficient getOperand methods. 405 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 406 407 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)408 static bool classof(const Value *V) { 409 return V->getValueID() >= ConstantAggregateFirstVal && 410 V->getValueID() <= ConstantAggregateLastVal; 411 } 412 }; 413 414 template <> 415 struct OperandTraits<ConstantAggregate> 416 : public VariadicOperandTraits<ConstantAggregate> {}; 417 418 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) 419 420 //===----------------------------------------------------------------------===// 421 /// ConstantArray - Constant Array Declarations 422 /// 423 class ConstantArray final : public ConstantAggregate { 424 friend struct ConstantAggrKeyType<ConstantArray>; 425 friend class Constant; 426 427 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); 428 429 void destroyConstantImpl(); 430 Value *handleOperandChangeImpl(Value *From, Value *To); 431 432 public: 433 // ConstantArray accessors 434 static Constant *get(ArrayType *T, ArrayRef<Constant *> V); 435 436 private: 437 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); 438 439 public: 440 /// Specialize the getType() method to always return an ArrayType, 441 /// which reduces the amount of casting needed in parts of the compiler. 442 inline ArrayType *getType() const { 443 return cast<ArrayType>(Value::getType()); 444 } 445 446 /// Methods for support type inquiry through isa, cast, and dyn_cast: 447 static bool classof(const Value *V) { 448 return V->getValueID() == ConstantArrayVal; 449 } 450 }; 451 452 //===----------------------------------------------------------------------===// 453 // Constant Struct Declarations 454 // 455 class ConstantStruct final : public ConstantAggregate { 456 friend struct ConstantAggrKeyType<ConstantStruct>; 457 friend class Constant; 458 459 ConstantStruct(StructType *T, ArrayRef<Constant *> Val); 460 461 void destroyConstantImpl(); 462 Value *handleOperandChangeImpl(Value *From, Value *To); 463 464 public: 465 // ConstantStruct accessors 466 static Constant *get(StructType *T, ArrayRef<Constant *> V); 467 468 template <typename... Csts> 469 static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> 470 get(StructType *T, Csts *...Vs) { 471 return get(T, ArrayRef<Constant *>({Vs...})); 472 } 473 474 /// Return an anonymous struct that has the specified elements. 475 /// If the struct is possibly empty, then you must specify a context. 476 static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) { 477 return get(getTypeForElements(V, Packed), V); 478 } 479 static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V, 480 bool Packed = false) { 481 return get(getTypeForElements(Ctx, V, Packed), V); 482 } 483 484 /// Return an anonymous struct type to use for a constant with the specified 485 /// set of elements. The list must not be empty. 486 static StructType *getTypeForElements(ArrayRef<Constant *> V, 487 bool Packed = false); 488 /// This version of the method allows an empty list. 489 static StructType *getTypeForElements(LLVMContext &Ctx, 490 ArrayRef<Constant *> V, 491 bool Packed = false); 492 493 /// Specialization - reduce amount of casting. 494 inline StructType *getType() const { 495 return cast<StructType>(Value::getType()); 496 } 497 498 /// Methods for support type inquiry through isa, cast, and dyn_cast: 499 static bool classof(const Value *V) { 500 return V->getValueID() == ConstantStructVal; 501 } 502 }; 503 504 //===----------------------------------------------------------------------===// 505 /// Constant Vector Declarations 506 /// 507 class ConstantVector final : public ConstantAggregate { 508 friend struct ConstantAggrKeyType<ConstantVector>; 509 friend class Constant; 510 511 ConstantVector(VectorType *T, ArrayRef<Constant *> Val); 512 513 void destroyConstantImpl(); 514 Value *handleOperandChangeImpl(Value *From, Value *To); 515 516 public: 517 // ConstantVector accessors 518 static Constant *get(ArrayRef<Constant *> V); 519 520 private: 521 static Constant *getImpl(ArrayRef<Constant *> V); 522 523 public: 524 /// Return a ConstantVector with the specified constant in each element. 525 /// Note that this might not return an instance of ConstantVector 526 static Constant *getSplat(ElementCount EC, Constant *Elt); 527 528 /// Specialize the getType() method to always return a FixedVectorType, 529 /// which reduces the amount of casting needed in parts of the compiler. 530 inline FixedVectorType *getType() const { 531 return cast<FixedVectorType>(Value::getType()); 532 } 533 534 /// If all elements of the vector constant have the same value, return that 535 /// value. Otherwise, return nullptr. Ignore poison elements by setting 536 /// AllowPoison to true. 537 Constant *getSplatValue(bool AllowPoison = false) const; 538 539 /// Methods for support type inquiry through isa, cast, and dyn_cast: 540 static bool classof(const Value *V) { 541 return V->getValueID() == ConstantVectorVal; 542 } 543 }; 544 545 //===----------------------------------------------------------------------===// 546 /// A constant pointer value that points to null 547 /// 548 class ConstantPointerNull final : public ConstantData { 549 friend class Constant; 550 551 explicit ConstantPointerNull(PointerType *T) 552 : ConstantData(T, Value::ConstantPointerNullVal) {} 553 554 void destroyConstantImpl(); 555 556 public: 557 ConstantPointerNull(const ConstantPointerNull &) = delete; 558 559 /// Static factory methods - Return objects of the specified value 560 static ConstantPointerNull *get(PointerType *T); 561 562 /// Specialize the getType() method to always return an PointerType, 563 /// which reduces the amount of casting needed in parts of the compiler. 564 inline PointerType *getType() const { 565 return cast<PointerType>(Value::getType()); 566 } 567 568 /// Methods for support type inquiry through isa, cast, and dyn_cast: 569 static bool classof(const Value *V) { 570 return V->getValueID() == ConstantPointerNullVal; 571 } 572 }; 573 574 //===----------------------------------------------------------------------===// 575 /// ConstantDataSequential - A vector or array constant whose element type is a 576 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements 577 /// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant 578 /// node has no operands because it stores all of the elements of the constant 579 /// as densely packed data, instead of as Value*'s. 580 /// 581 /// This is the common base class of ConstantDataArray and ConstantDataVector. 582 /// 583 class ConstantDataSequential : public ConstantData { 584 friend class LLVMContextImpl; 585 friend class Constant; 586 587 /// A pointer to the bytes underlying this constant (which is owned by the 588 /// uniquing StringMap). 589 const char *DataElements; 590 591 /// This forms a link list of ConstantDataSequential nodes that have 592 /// the same value but different type. For example, 0,0,0,1 could be a 4 593 /// element array of i8, or a 1-element array of i32. They'll both end up in 594 /// the same StringMap bucket, linked up. 595 std::unique_ptr<ConstantDataSequential> Next; 596 597 void destroyConstantImpl(); 598 599 protected: 600 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) 601 : ConstantData(ty, VT), DataElements(Data) {} 602 603 static Constant *getImpl(StringRef Bytes, Type *Ty); 604 605 public: 606 ConstantDataSequential(const ConstantDataSequential &) = delete; 607 608 /// Return true if a ConstantDataSequential can be formed with a vector or 609 /// array of the specified element type. 610 /// ConstantDataArray only works with normal float and int types that are 611 /// stored densely in memory, not with things like i42 or x86_f80. 612 static bool isElementTypeCompatible(Type *Ty); 613 614 /// If this is a sequential container of integers (of any size), return the 615 /// specified element in the low bits of a uint64_t. 616 uint64_t getElementAsInteger(unsigned i) const; 617 618 /// If this is a sequential container of integers (of any size), return the 619 /// specified element as an APInt. 620 APInt getElementAsAPInt(unsigned i) const; 621 622 /// If this is a sequential container of floating point type, return the 623 /// specified element as an APFloat. 624 APFloat getElementAsAPFloat(unsigned i) const; 625 626 /// If this is an sequential container of floats, return the specified element 627 /// as a float. 628 float getElementAsFloat(unsigned i) const; 629 630 /// If this is an sequential container of doubles, return the specified 631 /// element as a double. 632 double getElementAsDouble(unsigned i) const; 633 634 /// Return a Constant for a specified index's element. 635 /// Note that this has to compute a new constant to return, so it isn't as 636 /// efficient as getElementAsInteger/Float/Double. 637 Constant *getElementAsConstant(unsigned i) const; 638 639 /// Return the element type of the array/vector. 640 Type *getElementType() const; 641 642 /// Return the number of elements in the array or vector. 643 unsigned getNumElements() const; 644 645 /// Return the size (in bytes) of each element in the array/vector. 646 /// The size of the elements is known to be a multiple of one byte. 647 uint64_t getElementByteSize() const; 648 649 /// This method returns true if this is an array of \p CharSize integers. 650 bool isString(unsigned CharSize = 8) const; 651 652 /// This method returns true if the array "isString", ends with a null byte, 653 /// and does not contains any other null bytes. 654 bool isCString() const; 655 656 /// If this array is isString(), then this method returns the array as a 657 /// StringRef. Otherwise, it asserts out. 658 StringRef getAsString() const { 659 assert(isString() && "Not a string"); 660 return getRawDataValues(); 661 } 662 663 /// If this array is isCString(), then this method returns the array (without 664 /// the trailing null byte) as a StringRef. Otherwise, it asserts out. 665 StringRef getAsCString() const { 666 assert(isCString() && "Isn't a C string"); 667 StringRef Str = getAsString(); 668 return Str.substr(0, Str.size() - 1); 669 } 670 671 /// Return the raw, underlying, bytes of this data. Note that this is an 672 /// extremely tricky thing to work with, as it exposes the host endianness of 673 /// the data elements. 674 StringRef getRawDataValues() const; 675 676 /// Methods for support type inquiry through isa, cast, and dyn_cast: 677 static bool classof(const Value *V) { 678 return V->getValueID() == ConstantDataArrayVal || 679 V->getValueID() == ConstantDataVectorVal; 680 } 681 682 private: 683 const char *getElementPointer(unsigned Elt) const; 684 }; 685 686 //===----------------------------------------------------------------------===// 687 /// An array constant whose element type is a simple 1/2/4/8-byte integer or 688 /// float/double, and whose elements are just simple data values 689 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 690 /// stores all of the elements of the constant as densely packed data, instead 691 /// of as Value*'s. 692 class ConstantDataArray final : public ConstantDataSequential { 693 friend class ConstantDataSequential; 694 695 explicit ConstantDataArray(Type *ty, const char *Data) 696 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} 697 698 public: 699 ConstantDataArray(const ConstantDataArray &) = delete; 700 701 /// get() constructor - Return a constant with array type with an element 702 /// count and element type matching the ArrayRef passed in. Note that this 703 /// can return a ConstantAggregateZero object. 704 template <typename ElementTy> 705 static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { 706 const char *Data = reinterpret_cast<const char *>(Elts.data()); 707 return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), 708 Type::getScalarTy<ElementTy>(Context)); 709 } 710 711 /// get() constructor - ArrayTy needs to be compatible with 712 /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). 713 template <typename ArrayTy> 714 static Constant *get(LLVMContext &Context, ArrayTy &Elts) { 715 return ConstantDataArray::get(Context, ArrayRef(Elts)); 716 } 717 718 /// getRaw() constructor - Return a constant with array type with an element 719 /// count and element type matching the NumElements and ElementTy parameters 720 /// passed in. Note that this can return a ConstantAggregateZero object. 721 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is 722 /// the buffer containing the elements. Be careful to make sure Data uses the 723 /// right endianness, the buffer will be used as-is. 724 static Constant *getRaw(StringRef Data, uint64_t NumElements, 725 Type *ElementTy) { 726 Type *Ty = ArrayType::get(ElementTy, NumElements); 727 return getImpl(Data, Ty); 728 } 729 730 /// getFP() constructors - Return a constant of array type with a float 731 /// element type taken from argument `ElementType', and count taken from 732 /// argument `Elts'. The amount of bits of the contained type must match the 733 /// number of bits of the type contained in the passed in ArrayRef. 734 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 735 /// that this can return a ConstantAggregateZero object. 736 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 737 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 738 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 739 740 /// This method constructs a CDS and initializes it with a text string. 741 /// The default behavior (AddNull==true) causes a null terminator to 742 /// be placed at the end of the array (increasing the length of the string by 743 /// one more than the StringRef would normally indicate. Pass AddNull=false 744 /// to disable this behavior. 745 static Constant *getString(LLVMContext &Context, StringRef Initializer, 746 bool AddNull = true); 747 748 /// Specialize the getType() method to always return an ArrayType, 749 /// which reduces the amount of casting needed in parts of the compiler. 750 inline ArrayType *getType() const { 751 return cast<ArrayType>(Value::getType()); 752 } 753 754 /// Methods for support type inquiry through isa, cast, and dyn_cast: 755 static bool classof(const Value *V) { 756 return V->getValueID() == ConstantDataArrayVal; 757 } 758 }; 759 760 //===----------------------------------------------------------------------===// 761 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or 762 /// float/double, and whose elements are just simple data values 763 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 764 /// stores all of the elements of the constant as densely packed data, instead 765 /// of as Value*'s. 766 class ConstantDataVector final : public ConstantDataSequential { 767 friend class ConstantDataSequential; 768 769 explicit ConstantDataVector(Type *ty, const char *Data) 770 : ConstantDataSequential(ty, ConstantDataVectorVal, Data), 771 IsSplatSet(false) {} 772 // Cache whether or not the constant is a splat. 773 mutable bool IsSplatSet : 1; 774 mutable bool IsSplat : 1; 775 bool isSplatData() const; 776 777 public: 778 ConstantDataVector(const ConstantDataVector &) = delete; 779 780 /// get() constructors - Return a constant with vector type with an element 781 /// count and element type matching the ArrayRef passed in. Note that this 782 /// can return a ConstantAggregateZero object. 783 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 784 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 785 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 786 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 787 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 788 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 789 790 /// getRaw() constructor - Return a constant with vector type with an element 791 /// count and element type matching the NumElements and ElementTy parameters 792 /// passed in. Note that this can return a ConstantAggregateZero object. 793 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is 794 /// the buffer containing the elements. Be careful to make sure Data uses the 795 /// right endianness, the buffer will be used as-is. 796 static Constant *getRaw(StringRef Data, uint64_t NumElements, 797 Type *ElementTy) { 798 Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements)); 799 return getImpl(Data, Ty); 800 } 801 802 /// getFP() constructors - Return a constant of vector type with a float 803 /// element type taken from argument `ElementType', and count taken from 804 /// argument `Elts'. The amount of bits of the contained type must match the 805 /// number of bits of the type contained in the passed in ArrayRef. 806 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 807 /// that this can return a ConstantAggregateZero object. 808 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 809 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 810 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 811 812 /// Return a ConstantVector with the specified constant in each element. 813 /// The specified constant has to be a of a compatible type (i8/i16/ 814 /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt. 815 static Constant *getSplat(unsigned NumElts, Constant *Elt); 816 817 /// Returns true if this is a splat constant, meaning that all elements have 818 /// the same value. 819 bool isSplat() const; 820 821 /// If this is a splat constant, meaning that all of the elements have the 822 /// same value, return that value. Otherwise return NULL. 823 Constant *getSplatValue() const; 824 825 /// Specialize the getType() method to always return a FixedVectorType, 826 /// which reduces the amount of casting needed in parts of the compiler. 827 inline FixedVectorType *getType() const { 828 return cast<FixedVectorType>(Value::getType()); 829 } 830 831 /// Methods for support type inquiry through isa, cast, and dyn_cast: 832 static bool classof(const Value *V) { 833 return V->getValueID() == ConstantDataVectorVal; 834 } 835 }; 836 837 //===----------------------------------------------------------------------===// 838 /// A constant token which is empty 839 /// 840 class ConstantTokenNone final : public ConstantData { 841 friend class Constant; 842 843 explicit ConstantTokenNone(LLVMContext &Context) 844 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} 845 846 void destroyConstantImpl(); 847 848 public: 849 ConstantTokenNone(const ConstantTokenNone &) = delete; 850 851 /// Return the ConstantTokenNone. 852 static ConstantTokenNone *get(LLVMContext &Context); 853 854 /// Methods to support type inquiry through isa, cast, and dyn_cast. 855 static bool classof(const Value *V) { 856 return V->getValueID() == ConstantTokenNoneVal; 857 } 858 }; 859 860 /// A constant target extension type default initializer 861 class ConstantTargetNone final : public ConstantData { 862 friend class Constant; 863 864 explicit ConstantTargetNone(TargetExtType *T) 865 : ConstantData(T, Value::ConstantTargetNoneVal) {} 866 867 void destroyConstantImpl(); 868 869 public: 870 ConstantTargetNone(const ConstantTargetNone &) = delete; 871 872 /// Static factory methods - Return objects of the specified value. 873 static ConstantTargetNone *get(TargetExtType *T); 874 875 /// Specialize the getType() method to always return an TargetExtType, 876 /// which reduces the amount of casting needed in parts of the compiler. 877 inline TargetExtType *getType() const { 878 return cast<TargetExtType>(Value::getType()); 879 } 880 881 /// Methods for support type inquiry through isa, cast, and dyn_cast. 882 static bool classof(const Value *V) { 883 return V->getValueID() == ConstantTargetNoneVal; 884 } 885 }; 886 887 /// The address of a basic block. 888 /// 889 class BlockAddress final : public Constant { 890 friend class Constant; 891 892 BlockAddress(Function *F, BasicBlock *BB); 893 894 void *operator new(size_t S) { return User::operator new(S, 2); } 895 896 void destroyConstantImpl(); 897 Value *handleOperandChangeImpl(Value *From, Value *To); 898 899 public: 900 void operator delete(void *Ptr) { User::operator delete(Ptr); } 901 902 /// Return a BlockAddress for the specified function and basic block. 903 static BlockAddress *get(Function *F, BasicBlock *BB); 904 905 /// Return a BlockAddress for the specified basic block. The basic 906 /// block must be embedded into a function. 907 static BlockAddress *get(BasicBlock *BB); 908 909 /// Lookup an existing \c BlockAddress constant for the given BasicBlock. 910 /// 911 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. 912 static BlockAddress *lookup(const BasicBlock *BB); 913 914 /// Transparently provide more efficient getOperand methods. 915 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 916 917 Function *getFunction() const { return (Function *)Op<0>().get(); } 918 BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); } 919 920 /// Methods for support type inquiry through isa, cast, and dyn_cast: 921 static bool classof(const Value *V) { 922 return V->getValueID() == BlockAddressVal; 923 } 924 }; 925 926 template <> 927 struct OperandTraits<BlockAddress> 928 : public FixedNumOperandTraits<BlockAddress, 2> {}; 929 930 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) 931 932 /// Wrapper for a function that represents a value that 933 /// functionally represents the original function. This can be a function, 934 /// global alias to a function, or an ifunc. 935 class DSOLocalEquivalent final : public Constant { 936 friend class Constant; 937 938 DSOLocalEquivalent(GlobalValue *GV); 939 940 void *operator new(size_t S) { return User::operator new(S, 1); } 941 942 void destroyConstantImpl(); 943 Value *handleOperandChangeImpl(Value *From, Value *To); 944 945 public: 946 void operator delete(void *Ptr) { User::operator delete(Ptr); } 947 948 /// Return a DSOLocalEquivalent for the specified global value. 949 static DSOLocalEquivalent *get(GlobalValue *GV); 950 951 /// Transparently provide more efficient getOperand methods. 952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 953 954 GlobalValue *getGlobalValue() const { 955 return cast<GlobalValue>(Op<0>().get()); 956 } 957 958 /// Methods for support type inquiry through isa, cast, and dyn_cast: 959 static bool classof(const Value *V) { 960 return V->getValueID() == DSOLocalEquivalentVal; 961 } 962 }; 963 964 template <> 965 struct OperandTraits<DSOLocalEquivalent> 966 : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {}; 967 968 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value) 969 970 /// Wrapper for a value that won't be replaced with a CFI jump table 971 /// pointer in LowerTypeTestsModule. 972 class NoCFIValue final : public Constant { 973 friend class Constant; 974 975 NoCFIValue(GlobalValue *GV); 976 977 void *operator new(size_t S) { return User::operator new(S, 1); } 978 979 void destroyConstantImpl(); 980 Value *handleOperandChangeImpl(Value *From, Value *To); 981 982 public: 983 /// Return a NoCFIValue for the specified function. 984 static NoCFIValue *get(GlobalValue *GV); 985 986 /// Transparently provide more efficient getOperand methods. 987 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 988 989 GlobalValue *getGlobalValue() const { 990 return cast<GlobalValue>(Op<0>().get()); 991 } 992 993 /// NoCFIValue is always a pointer. 994 PointerType *getType() const { 995 return cast<PointerType>(Value::getType()); 996 } 997 998 /// Methods for support type inquiry through isa, cast, and dyn_cast: 999 static bool classof(const Value *V) { 1000 return V->getValueID() == NoCFIValueVal; 1001 } 1002 }; 1003 1004 template <> 1005 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> { 1006 }; 1007 1008 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value) 1009 1010 //===----------------------------------------------------------------------===// 1011 /// A constant value that is initialized with an expression using 1012 /// other constant values. 1013 /// 1014 /// This class uses the standard Instruction opcodes to define the various 1015 /// constant expressions. The Opcode field for the ConstantExpr class is 1016 /// maintained in the Value::SubclassData field. 1017 class ConstantExpr : public Constant { 1018 friend struct ConstantExprKeyType; 1019 friend class Constant; 1020 1021 void destroyConstantImpl(); 1022 Value *handleOperandChangeImpl(Value *From, Value *To); 1023 1024 protected: 1025 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) 1026 : Constant(ty, ConstantExprVal, Ops, NumOps) { 1027 // Operation type (an Instruction opcode) is stored as the SubclassData. 1028 setValueSubclassData(Opcode); 1029 } 1030 1031 ~ConstantExpr() = default; 1032 1033 public: 1034 // Static methods to construct a ConstantExpr of different kinds. Note that 1035 // these methods may return a object that is not an instance of the 1036 // ConstantExpr class, because they will attempt to fold the constant 1037 // expression into something simpler if possible. 1038 1039 /// getAlignOf constant expr - computes the alignment of a type in a target 1040 /// independent way (Note: the return type is an i64). 1041 static Constant *getAlignOf(Type *Ty); 1042 1043 /// getSizeOf constant expr - computes the (alloc) size of a type (in 1044 /// address-units, not bits) in a target independent way (Note: the return 1045 /// type is an i64). 1046 /// 1047 static Constant *getSizeOf(Type *Ty); 1048 1049 static Constant *getNeg(Constant *C, bool HasNSW = false); 1050 static Constant *getNot(Constant *C); 1051 static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, 1052 bool HasNSW = false); 1053 static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, 1054 bool HasNSW = false); 1055 static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, 1056 bool HasNSW = false); 1057 static Constant *getXor(Constant *C1, Constant *C2); 1058 static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false, 1059 bool HasNSW = false); 1060 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1061 static Constant *getPtrToInt(Constant *C, Type *Ty, 1062 bool OnlyIfReduced = false); 1063 static Constant *getIntToPtr(Constant *C, Type *Ty, 1064 bool OnlyIfReduced = false); 1065 static Constant *getBitCast(Constant *C, Type *Ty, 1066 bool OnlyIfReduced = false); 1067 static Constant *getAddrSpaceCast(Constant *C, Type *Ty, 1068 bool OnlyIfReduced = false); 1069 1070 static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); } 1071 1072 static Constant *getNSWAdd(Constant *C1, Constant *C2) { 1073 return getAdd(C1, C2, false, true); 1074 } 1075 1076 static Constant *getNUWAdd(Constant *C1, Constant *C2) { 1077 return getAdd(C1, C2, true, false); 1078 } 1079 1080 static Constant *getNSWSub(Constant *C1, Constant *C2) { 1081 return getSub(C1, C2, false, true); 1082 } 1083 1084 static Constant *getNUWSub(Constant *C1, Constant *C2) { 1085 return getSub(C1, C2, true, false); 1086 } 1087 1088 static Constant *getNSWMul(Constant *C1, Constant *C2) { 1089 return getMul(C1, C2, false, true); 1090 } 1091 1092 static Constant *getNUWMul(Constant *C1, Constant *C2) { 1093 return getMul(C1, C2, true, false); 1094 } 1095 1096 static Constant *getNSWShl(Constant *C1, Constant *C2) { 1097 return getShl(C1, C2, false, true); 1098 } 1099 1100 static Constant *getNUWShl(Constant *C1, Constant *C2) { 1101 return getShl(C1, C2, true, false); 1102 } 1103 1104 /// If C is a scalar/fixed width vector of known powers of 2, then this 1105 /// function returns a new scalar/fixed width vector obtained from logBase2 1106 /// of C. Undef vector elements are set to zero. 1107 /// Return a null pointer otherwise. 1108 static Constant *getExactLogBase2(Constant *C); 1109 1110 /// Return the identity constant for a binary opcode. 1111 /// If the binop is not commutative, callers can acquire the operand 1 1112 /// identity constant by setting AllowRHSConstant to true. For example, any 1113 /// shift has a zero identity constant for operand 1: X shift 0 = X. If this 1114 /// is a fadd/fsub operation and we don't care about signed zeros, then 1115 /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return 1116 /// nullptr if the operator does not have an identity constant. 1117 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, 1118 bool AllowRHSConstant = false, 1119 bool NSZ = false); 1120 1121 static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty); 1122 1123 /// Return the identity constant for a binary or intrinsic Instruction. 1124 /// The identity constant C is defined as X op C = X and C op X = X where C 1125 /// and X are the first two operands, and the operation is commutative. 1126 static Constant *getIdentity(Instruction *I, Type *Ty, 1127 bool AllowRHSConstant = false, bool NSZ = false); 1128 1129 /// Return the absorbing element for the given binary 1130 /// operation, i.e. a constant C such that X op C = C and C op X = C for 1131 /// every X. For example, this returns zero for integer multiplication. 1132 /// It returns null if the operator doesn't have an absorbing element. 1133 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); 1134 1135 /// Transparently provide more efficient getOperand methods. 1136 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1137 1138 /// Convenience function for getting a Cast operation. 1139 /// 1140 /// \param ops The opcode for the conversion 1141 /// \param C The constant to be converted 1142 /// \param Ty The type to which the constant is converted 1143 /// \param OnlyIfReduced see \a getWithOperands() docs. 1144 static Constant *getCast(unsigned ops, Constant *C, Type *Ty, 1145 bool OnlyIfReduced = false); 1146 1147 // Create a Trunc or BitCast cast constant expression 1148 static Constant * 1149 getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast 1150 Type *Ty ///< The type to trunc or bitcast C to 1151 ); 1152 1153 /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant 1154 /// expression. 1155 static Constant * 1156 getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0) 1157 Type *Ty ///< The type to which cast should be made 1158 ); 1159 1160 /// Create a BitCast or AddrSpaceCast for a pointer type depending on 1161 /// the address space. 1162 static Constant *getPointerBitCastOrAddrSpaceCast( 1163 Constant *C, ///< The constant to addrspacecast or bitcast 1164 Type *Ty ///< The type to bitcast or addrspacecast C to 1165 ); 1166 1167 /// Return true if this is a convert constant expression 1168 bool isCast() const; 1169 1170 /// Return true if this is a compare constant expression 1171 bool isCompare() const; 1172 1173 /// get - Return a binary or shift operator constant expression, 1174 /// folding if possible. 1175 /// 1176 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1177 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, 1178 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); 1179 1180 /// Return an ICmp or FCmp comparison operator constant expression. 1181 /// 1182 /// \param OnlyIfReduced see \a getWithOperands() docs. 1183 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, 1184 bool OnlyIfReduced = false); 1185 1186 /// get* - Return some common constants without having to 1187 /// specify the full Instruction::OPCODE identifier. 1188 /// 1189 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, 1190 bool OnlyIfReduced = false); 1191 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, 1192 bool OnlyIfReduced = false); 1193 1194 /// Getelementptr form. Value* is only accepted for convenience; 1195 /// all elements must be Constants. 1196 /// 1197 /// \param InRange the inrange range if present or std::nullopt. 1198 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1199 static Constant * 1200 getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, 1201 bool InBounds = false, 1202 std::optional<ConstantRange> InRange = std::nullopt, 1203 Type *OnlyIfReducedTy = nullptr) { 1204 return getGetElementPtr( 1205 Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), 1206 InBounds, InRange, OnlyIfReducedTy); 1207 } 1208 static Constant * 1209 getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false, 1210 std::optional<ConstantRange> InRange = std::nullopt, 1211 Type *OnlyIfReducedTy = nullptr) { 1212 // This form of the function only exists to avoid ambiguous overload 1213 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1214 // ArrayRef<Value *>. 1215 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRange, 1216 OnlyIfReducedTy); 1217 } 1218 static Constant * 1219 getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, 1220 bool InBounds = false, 1221 std::optional<ConstantRange> InRange = std::nullopt, 1222 Type *OnlyIfReducedTy = nullptr); 1223 1224 /// Create an "inbounds" getelementptr. See the documentation for the 1225 /// "inbounds" flag in LangRef.html for details. 1226 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1227 ArrayRef<Constant *> IdxList) { 1228 return getGetElementPtr(Ty, C, IdxList, true); 1229 } 1230 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1231 Constant *Idx) { 1232 // This form of the function only exists to avoid ambiguous overload 1233 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1234 // ArrayRef<Value *>. 1235 return getGetElementPtr(Ty, C, Idx, true); 1236 } 1237 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1238 ArrayRef<Value *> IdxList) { 1239 return getGetElementPtr(Ty, C, IdxList, true); 1240 } 1241 1242 static Constant *getExtractElement(Constant *Vec, Constant *Idx, 1243 Type *OnlyIfReducedTy = nullptr); 1244 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, 1245 Type *OnlyIfReducedTy = nullptr); 1246 static Constant *getShuffleVector(Constant *V1, Constant *V2, 1247 ArrayRef<int> Mask, 1248 Type *OnlyIfReducedTy = nullptr); 1249 1250 /// Return the opcode at the root of this constant expression 1251 unsigned getOpcode() const { return getSubclassDataFromValue(); } 1252 1253 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or 1254 /// FCMP constant expression. 1255 unsigned getPredicate() const; 1256 1257 /// Assert that this is a shufflevector and return the mask. See class 1258 /// ShuffleVectorInst for a description of the mask representation. 1259 ArrayRef<int> getShuffleMask() const; 1260 1261 /// Assert that this is a shufflevector and return the mask. 1262 /// 1263 /// TODO: This is a temporary hack until we update the bitcode format for 1264 /// shufflevector. 1265 Constant *getShuffleMaskForBitcode() const; 1266 1267 /// Return a string representation for an opcode. 1268 const char *getOpcodeName() const; 1269 1270 /// This returns the current constant expression with the operands replaced 1271 /// with the specified values. The specified array must have the same number 1272 /// of operands as our current one. 1273 Constant *getWithOperands(ArrayRef<Constant *> Ops) const { 1274 return getWithOperands(Ops, getType()); 1275 } 1276 1277 /// Get the current expression with the operands replaced. 1278 /// 1279 /// Return the current constant expression with the operands replaced with \c 1280 /// Ops and the type with \c Ty. The new operands must have the same number 1281 /// as the current ones. 1282 /// 1283 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something 1284 /// gets constant-folded, the type changes, or the expression is otherwise 1285 /// canonicalized. This parameter should almost always be \c false. 1286 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1287 bool OnlyIfReduced = false, 1288 Type *SrcTy = nullptr) const; 1289 1290 /// Returns an Instruction which implements the same operation as this 1291 /// ConstantExpr. It is not inserted into any basic block. 1292 /// 1293 /// A better approach to this could be to have a constructor for Instruction 1294 /// which would take a ConstantExpr parameter, but that would have spread 1295 /// implementation details of ConstantExpr outside of Constants.cpp, which 1296 /// would make it harder to remove ConstantExprs altogether. 1297 Instruction *getAsInstruction() const; 1298 1299 /// Whether creating a constant expression for this binary operator is 1300 /// desirable. 1301 static bool isDesirableBinOp(unsigned Opcode); 1302 1303 /// Whether creating a constant expression for this binary operator is 1304 /// supported. 1305 static bool isSupportedBinOp(unsigned Opcode); 1306 1307 /// Whether creating a constant expression for this cast is desirable. 1308 static bool isDesirableCastOp(unsigned Opcode); 1309 1310 /// Whether creating a constant expression for this cast is supported. 1311 static bool isSupportedCastOp(unsigned Opcode); 1312 1313 /// Whether creating a constant expression for this getelementptr type is 1314 /// supported. 1315 static bool isSupportedGetElementPtr(const Type *SrcElemTy) { 1316 return !SrcElemTy->isScalableTy(); 1317 } 1318 1319 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1320 static bool classof(const Value *V) { 1321 return V->getValueID() == ConstantExprVal; 1322 } 1323 1324 private: 1325 // Shadow Value::setValueSubclassData with a private forwarding method so that 1326 // subclasses cannot accidentally use it. 1327 void setValueSubclassData(unsigned short D) { 1328 Value::setValueSubclassData(D); 1329 } 1330 }; 1331 1332 template <> 1333 struct OperandTraits<ConstantExpr> 1334 : public VariadicOperandTraits<ConstantExpr, 1> {}; 1335 1336 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) 1337 1338 //===----------------------------------------------------------------------===// 1339 /// 'undef' values are things that do not have specified contents. 1340 /// These are used for a variety of purposes, including global variable 1341 /// initializers and operands to instructions. 'undef' values can occur with 1342 /// any first-class type. 1343 /// 1344 /// Undef values aren't exactly constants; if they have multiple uses, they 1345 /// can appear to have different bit patterns at each use. See 1346 /// LangRef.html#undefvalues for details. 1347 /// 1348 class UndefValue : public ConstantData { 1349 friend class Constant; 1350 1351 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} 1352 1353 void destroyConstantImpl(); 1354 1355 protected: 1356 explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {} 1357 1358 public: 1359 UndefValue(const UndefValue &) = delete; 1360 1361 /// Static factory methods - Return an 'undef' object of the specified type. 1362 static UndefValue *get(Type *T); 1363 1364 /// If this Undef has array or vector type, return a undef with the right 1365 /// element type. 1366 UndefValue *getSequentialElement() const; 1367 1368 /// If this undef has struct type, return a undef with the right element type 1369 /// for the specified element. 1370 UndefValue *getStructElement(unsigned Elt) const; 1371 1372 /// Return an undef of the right value for the specified GEP index if we can, 1373 /// otherwise return null (e.g. if C is a ConstantExpr). 1374 UndefValue *getElementValue(Constant *C) const; 1375 1376 /// Return an undef of the right value for the specified GEP index. 1377 UndefValue *getElementValue(unsigned Idx) const; 1378 1379 /// Return the number of elements in the array, vector, or struct. 1380 unsigned getNumElements() const; 1381 1382 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1383 static bool classof(const Value *V) { 1384 return V->getValueID() == UndefValueVal || 1385 V->getValueID() == PoisonValueVal; 1386 } 1387 }; 1388 1389 //===----------------------------------------------------------------------===// 1390 /// In order to facilitate speculative execution, many instructions do not 1391 /// invoke immediate undefined behavior when provided with illegal operands, 1392 /// and return a poison value instead. 1393 /// 1394 /// see LangRef.html#poisonvalues for details. 1395 /// 1396 class PoisonValue final : public UndefValue { 1397 friend class Constant; 1398 1399 explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {} 1400 1401 void destroyConstantImpl(); 1402 1403 public: 1404 PoisonValue(const PoisonValue &) = delete; 1405 1406 /// Static factory methods - Return an 'poison' object of the specified type. 1407 static PoisonValue *get(Type *T); 1408 1409 /// If this poison has array or vector type, return a poison with the right 1410 /// element type. 1411 PoisonValue *getSequentialElement() const; 1412 1413 /// If this poison has struct type, return a poison with the right element 1414 /// type for the specified element. 1415 PoisonValue *getStructElement(unsigned Elt) const; 1416 1417 /// Return an poison of the right value for the specified GEP index if we can, 1418 /// otherwise return null (e.g. if C is a ConstantExpr). 1419 PoisonValue *getElementValue(Constant *C) const; 1420 1421 /// Return an poison of the right value for the specified GEP index. 1422 PoisonValue *getElementValue(unsigned Idx) const; 1423 1424 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1425 static bool classof(const Value *V) { 1426 return V->getValueID() == PoisonValueVal; 1427 } 1428 }; 1429 1430 } // end namespace llvm 1431 1432 #endif // LLVM_IR_CONSTANTS_H 1433