1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/OperandTraits.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 #include <optional>
42 
43 namespace llvm {
44 
45 template <class ConstantClass> struct ConstantAggrKeyType;
46 
47 /// Base class for constants with no operands.
48 ///
49 /// These constants have no operands; they represent their data directly.
50 /// Since they can be in use by unrelated modules (and are never based on
51 /// GlobalValues), it never makes sense to RAUW them.
52 class ConstantData : public Constant {
53   friend class Constant;
54 
handleOperandChangeImpl(Value * From,Value * To)55   Value *handleOperandChangeImpl(Value *From, Value *To) {
56     llvm_unreachable("Constant data does not have operands!");
57   }
58 
59 protected:
ConstantData(Type * Ty,ValueTy VT)60   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
61 
new(size_t S)62   void *operator new(size_t S) { return User::operator new(S, 0); }
63 
64 public:
delete(void * Ptr)65   void operator delete(void *Ptr) { User::operator delete(Ptr); }
66 
67   ConstantData(const ConstantData &) = delete;
68 
69   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)70   static bool classof(const Value *V) {
71     return V->getValueID() >= ConstantDataFirstVal &&
72            V->getValueID() <= ConstantDataLastVal;
73   }
74 };
75 
76 //===----------------------------------------------------------------------===//
77 /// This is the shared class of boolean and integer constants. This class
78 /// represents both boolean and integral constants.
79 /// Class for constant integers.
80 class ConstantInt final : public ConstantData {
81   friend class Constant;
82   friend class ConstantVector;
83 
84   APInt Val;
85 
86   ConstantInt(Type *Ty, const APInt &V);
87 
88   void destroyConstantImpl();
89 
90   /// Return a ConstantInt with the specified value and an implied Type. The
91   /// type is the vector type whose integer element type corresponds to the bit
92   /// width of the value.
93   static ConstantInt *get(LLVMContext &Context, ElementCount EC,
94                           const APInt &V);
95 
96 public:
97   ConstantInt(const ConstantInt &) = delete;
98 
99   static ConstantInt *getTrue(LLVMContext &Context);
100   static ConstantInt *getFalse(LLVMContext &Context);
101   static ConstantInt *getBool(LLVMContext &Context, bool V);
102   static Constant *getTrue(Type *Ty);
103   static Constant *getFalse(Type *Ty);
104   static Constant *getBool(Type *Ty, bool V);
105 
106   /// If Ty is a vector type, return a Constant with a splat of the given
107   /// value. Otherwise return a ConstantInt for the given value.
108   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
109 
110   /// Return a ConstantInt with the specified integer value for the specified
111   /// type. If the type is wider than 64 bits, the value will be zero-extended
112   /// to fit the type, unless IsSigned is true, in which case the value will
113   /// be interpreted as a 64-bit signed integer and sign-extended to fit
114   /// the type.
115   /// Get a ConstantInt for a specific value.
116   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
117 
118   /// Return a ConstantInt with the specified value for the specified type. The
119   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
120   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
121   /// signed value for the type Ty.
122   /// Get a ConstantInt for a specific signed value.
getSigned(IntegerType * Ty,int64_t V)123   static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
124     return get(Ty, V, true);
125   }
getSigned(Type * Ty,int64_t V)126   static Constant *getSigned(Type *Ty, int64_t V) {
127     return get(Ty, V, true);
128   }
129 
130   /// Return a ConstantInt with the specified value and an implied Type. The
131   /// type is the integer type that corresponds to the bit width of the value.
132   static ConstantInt *get(LLVMContext &Context, const APInt &V);
133 
134   /// Return a ConstantInt constructed from the string strStart with the given
135   /// radix.
136   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
137 
138   /// If Ty is a vector type, return a Constant with a splat of the given
139   /// value. Otherwise return a ConstantInt for the given value.
140   static Constant *get(Type *Ty, const APInt &V);
141 
142   /// Return the constant as an APInt value reference. This allows clients to
143   /// obtain a full-precision copy of the value.
144   /// Return the constant's value.
getValue()145   inline const APInt &getValue() const { return Val; }
146 
147   /// getBitWidth - Return the scalar bitwidth of this constant.
getBitWidth()148   unsigned getBitWidth() const { return Val.getBitWidth(); }
149 
150   /// Return the constant as a 64-bit unsigned integer value after it
151   /// has been zero extended as appropriate for the type of this constant. Note
152   /// that this method can assert if the value does not fit in 64 bits.
153   /// Return the zero extended value.
getZExtValue()154   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
155 
156   /// Return the constant as a 64-bit integer value after it has been sign
157   /// extended as appropriate for the type of this constant. Note that
158   /// this method can assert if the value does not fit in 64 bits.
159   /// Return the sign extended value.
getSExtValue()160   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
161 
162   /// Return the constant as an llvm::MaybeAlign.
163   /// Note that this method can assert if the value does not fit in 64 bits or
164   /// is not a power of two.
getMaybeAlignValue()165   inline MaybeAlign getMaybeAlignValue() const {
166     return MaybeAlign(getZExtValue());
167   }
168 
169   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
170   /// Note that this method can assert if the value does not fit in 64 bits or
171   /// is not a power of two.
getAlignValue()172   inline Align getAlignValue() const {
173     return getMaybeAlignValue().valueOrOne();
174   }
175 
176   /// A helper method that can be used to determine if the constant contained
177   /// within is equal to a constant.  This only works for very small values,
178   /// because this is all that can be represented with all types.
179   /// Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)180   bool equalsInt(uint64_t V) const { return Val == V; }
181 
182   /// Variant of the getType() method to always return an IntegerType, which
183   /// reduces the amount of casting needed in parts of the compiler.
getIntegerType()184   inline IntegerType *getIntegerType() const {
185     return cast<IntegerType>(Value::getType());
186   }
187 
188   /// This static method returns true if the type Ty is big enough to
189   /// represent the value V. This can be used to avoid having the get method
190   /// assert when V is larger than Ty can represent. Note that there are two
191   /// versions of this method, one for unsigned and one for signed integers.
192   /// Although ConstantInt canonicalizes everything to an unsigned integer,
193   /// the signed version avoids callers having to convert a signed quantity
194   /// to the appropriate unsigned type before calling the method.
195   /// @returns true if V is a valid value for type Ty
196   /// Determine if the value is in range for the given type.
197   static bool isValueValidForType(Type *Ty, uint64_t V);
198   static bool isValueValidForType(Type *Ty, int64_t V);
199 
isNegative()200   bool isNegative() const { return Val.isNegative(); }
201 
202   /// This is just a convenience method to make client code smaller for a
203   /// common code. It also correctly performs the comparison without the
204   /// potential for an assertion from getZExtValue().
isZero()205   bool isZero() const { return Val.isZero(); }
206 
207   /// This is just a convenience method to make client code smaller for a
208   /// common case. It also correctly performs the comparison without the
209   /// potential for an assertion from getZExtValue().
210   /// Determine if the value is one.
isOne()211   bool isOne() const { return Val.isOne(); }
212 
213   /// This function will return true iff every bit in this constant is set
214   /// to true.
215   /// @returns true iff this constant's bits are all set to true.
216   /// Determine if the value is all ones.
isMinusOne()217   bool isMinusOne() const { return Val.isAllOnes(); }
218 
219   /// This function will return true iff this constant represents the largest
220   /// value that may be represented by the constant's type.
221   /// @returns true iff this is the largest value that may be represented
222   /// by this type.
223   /// Determine if the value is maximal.
isMaxValue(bool IsSigned)224   bool isMaxValue(bool IsSigned) const {
225     if (IsSigned)
226       return Val.isMaxSignedValue();
227     else
228       return Val.isMaxValue();
229   }
230 
231   /// This function will return true iff this constant represents the smallest
232   /// value that may be represented by this constant's type.
233   /// @returns true if this is the smallest value that may be represented by
234   /// this type.
235   /// Determine if the value is minimal.
isMinValue(bool IsSigned)236   bool isMinValue(bool IsSigned) const {
237     if (IsSigned)
238       return Val.isMinSignedValue();
239     else
240       return Val.isMinValue();
241   }
242 
243   /// This function will return true iff this constant represents a value with
244   /// active bits bigger than 64 bits or a value greater than the given uint64_t
245   /// value.
246   /// @returns true iff this constant is greater or equal to the given number.
247   /// Determine if the value is greater or equal to the given number.
uge(uint64_t Num)248   bool uge(uint64_t Num) const { return Val.uge(Num); }
249 
250   /// getLimitedValue - If the value is smaller than the specified limit,
251   /// return it, otherwise return the limit value.  This causes the value
252   /// to saturate to the limit.
253   /// @returns the min of the value of the constant and the specified value
254   /// Get the constant's value with a saturation limit
255   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
256     return Val.getLimitedValue(Limit);
257   }
258 
259   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)260   static bool classof(const Value *V) {
261     return V->getValueID() == ConstantIntVal;
262   }
263 };
264 
265 //===----------------------------------------------------------------------===//
266 /// ConstantFP - Floating Point Values [float, double]
267 ///
268 class ConstantFP final : public ConstantData {
269   friend class Constant;
270   friend class ConstantVector;
271 
272   APFloat Val;
273 
274   ConstantFP(Type *Ty, const APFloat &V);
275 
276   void destroyConstantImpl();
277 
278   /// Return a ConstantFP with the specified value and an implied Type. The
279   /// type is the vector type whose element type has the same floating point
280   /// semantics as the value.
281   static ConstantFP *get(LLVMContext &Context, ElementCount EC,
282                          const APFloat &V);
283 
284 public:
285   ConstantFP(const ConstantFP &) = delete;
286 
287   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
288   /// for the specified value in the specified type. This should only be used
289   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
290   /// host double and as the target format.
291   static Constant *get(Type *Ty, double V);
292 
293   /// If Ty is a vector type, return a Constant with a splat of the given
294   /// value. Otherwise return a ConstantFP for the given value.
295   static Constant *get(Type *Ty, const APFloat &V);
296 
297   static Constant *get(Type *Ty, StringRef Str);
298   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
299   static Constant *getNaN(Type *Ty, bool Negative = false,
300                           uint64_t Payload = 0);
301   static Constant *getQNaN(Type *Ty, bool Negative = false,
302                            APInt *Payload = nullptr);
303   static Constant *getSNaN(Type *Ty, bool Negative = false,
304                            APInt *Payload = nullptr);
305   static Constant *getZero(Type *Ty, bool Negative = false);
getNegativeZero(Type * Ty)306   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
307   static Constant *getInfinity(Type *Ty, bool Negative = false);
308 
309   /// Return true if Ty is big enough to represent V.
310   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()311   inline const APFloat &getValueAPF() const { return Val; }
getValue()312   inline const APFloat &getValue() const { return Val; }
313 
314   /// Return true if the value is positive or negative zero.
isZero()315   bool isZero() const { return Val.isZero(); }
316 
317   /// Return true if the sign bit is set.
isNegative()318   bool isNegative() const { return Val.isNegative(); }
319 
320   /// Return true if the value is infinity
isInfinity()321   bool isInfinity() const { return Val.isInfinity(); }
322 
323   /// Return true if the value is a NaN.
isNaN()324   bool isNaN() const { return Val.isNaN(); }
325 
326   /// We don't rely on operator== working on double values, as it returns true
327   /// for things that are clearly not equal, like -0.0 and 0.0.
328   /// As such, this method can be used to do an exact bit-for-bit comparison of
329   /// two floating point values.  The version with a double operand is retained
330   /// because it's so convenient to write isExactlyValue(2.0), but please use
331   /// it only for simple constants.
332   bool isExactlyValue(const APFloat &V) const;
333 
isExactlyValue(double V)334   bool isExactlyValue(double V) const {
335     bool ignored;
336     APFloat FV(V);
337     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
338     return isExactlyValue(FV);
339   }
340 
341   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)342   static bool classof(const Value *V) {
343     return V->getValueID() == ConstantFPVal;
344   }
345 };
346 
347 //===----------------------------------------------------------------------===//
348 /// All zero aggregate value
349 ///
350 class ConstantAggregateZero final : public ConstantData {
351   friend class Constant;
352 
ConstantAggregateZero(Type * Ty)353   explicit ConstantAggregateZero(Type *Ty)
354       : ConstantData(Ty, ConstantAggregateZeroVal) {}
355 
356   void destroyConstantImpl();
357 
358 public:
359   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
360 
361   static ConstantAggregateZero *get(Type *Ty);
362 
363   /// If this CAZ has array or vector type, return a zero with the right element
364   /// type.
365   Constant *getSequentialElement() const;
366 
367   /// If this CAZ has struct type, return a zero with the right element type for
368   /// the specified element.
369   Constant *getStructElement(unsigned Elt) const;
370 
371   /// Return a zero of the right value for the specified GEP index if we can,
372   /// otherwise return null (e.g. if C is a ConstantExpr).
373   Constant *getElementValue(Constant *C) const;
374 
375   /// Return a zero of the right value for the specified GEP index.
376   Constant *getElementValue(unsigned Idx) const;
377 
378   /// Return the number of elements in the array, vector, or struct.
379   ElementCount getElementCount() const;
380 
381   /// Methods for support type inquiry through isa, cast, and dyn_cast:
382   ///
classof(const Value * V)383   static bool classof(const Value *V) {
384     return V->getValueID() == ConstantAggregateZeroVal;
385   }
386 };
387 
388 /// Base class for aggregate constants (with operands).
389 ///
390 /// These constants are aggregates of other constants, which are stored as
391 /// operands.
392 ///
393 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
394 /// ConstantVector.
395 ///
396 /// \note Some subclasses of \a ConstantData are semantically aggregates --
397 /// such as \a ConstantDataArray -- but are not subclasses of this because they
398 /// use operands.
399 class ConstantAggregate : public Constant {
400 protected:
401   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
402 
403 public:
404   /// Transparently provide more efficient getOperand methods.
405   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
406 
407   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)408   static bool classof(const Value *V) {
409     return V->getValueID() >= ConstantAggregateFirstVal &&
410            V->getValueID() <= ConstantAggregateLastVal;
411   }
412 };
413 
414 template <>
415 struct OperandTraits<ConstantAggregate>
416     : public VariadicOperandTraits<ConstantAggregate> {};
417 
418 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
419 
420 //===----------------------------------------------------------------------===//
421 /// ConstantArray - Constant Array Declarations
422 ///
423 class ConstantArray final : public ConstantAggregate {
424   friend struct ConstantAggrKeyType<ConstantArray>;
425   friend class Constant;
426 
427   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
428 
429   void destroyConstantImpl();
430   Value *handleOperandChangeImpl(Value *From, Value *To);
431 
432 public:
433   // ConstantArray accessors
434   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
435 
436 private:
437   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
438 
439 public:
440   /// Specialize the getType() method to always return an ArrayType,
441   /// which reduces the amount of casting needed in parts of the compiler.
442   inline ArrayType *getType() const {
443     return cast<ArrayType>(Value::getType());
444   }
445 
446   /// Methods for support type inquiry through isa, cast, and dyn_cast:
447   static bool classof(const Value *V) {
448     return V->getValueID() == ConstantArrayVal;
449   }
450 };
451 
452 //===----------------------------------------------------------------------===//
453 // Constant Struct Declarations
454 //
455 class ConstantStruct final : public ConstantAggregate {
456   friend struct ConstantAggrKeyType<ConstantStruct>;
457   friend class Constant;
458 
459   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
460 
461   void destroyConstantImpl();
462   Value *handleOperandChangeImpl(Value *From, Value *To);
463 
464 public:
465   // ConstantStruct accessors
466   static Constant *get(StructType *T, ArrayRef<Constant *> V);
467 
468   template <typename... Csts>
469   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
470   get(StructType *T, Csts *...Vs) {
471     return get(T, ArrayRef<Constant *>({Vs...}));
472   }
473 
474   /// Return an anonymous struct that has the specified elements.
475   /// If the struct is possibly empty, then you must specify a context.
476   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
477     return get(getTypeForElements(V, Packed), V);
478   }
479   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
480                            bool Packed = false) {
481     return get(getTypeForElements(Ctx, V, Packed), V);
482   }
483 
484   /// Return an anonymous struct type to use for a constant with the specified
485   /// set of elements. The list must not be empty.
486   static StructType *getTypeForElements(ArrayRef<Constant *> V,
487                                         bool Packed = false);
488   /// This version of the method allows an empty list.
489   static StructType *getTypeForElements(LLVMContext &Ctx,
490                                         ArrayRef<Constant *> V,
491                                         bool Packed = false);
492 
493   /// Specialization - reduce amount of casting.
494   inline StructType *getType() const {
495     return cast<StructType>(Value::getType());
496   }
497 
498   /// Methods for support type inquiry through isa, cast, and dyn_cast:
499   static bool classof(const Value *V) {
500     return V->getValueID() == ConstantStructVal;
501   }
502 };
503 
504 //===----------------------------------------------------------------------===//
505 /// Constant Vector Declarations
506 ///
507 class ConstantVector final : public ConstantAggregate {
508   friend struct ConstantAggrKeyType<ConstantVector>;
509   friend class Constant;
510 
511   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
512 
513   void destroyConstantImpl();
514   Value *handleOperandChangeImpl(Value *From, Value *To);
515 
516 public:
517   // ConstantVector accessors
518   static Constant *get(ArrayRef<Constant *> V);
519 
520 private:
521   static Constant *getImpl(ArrayRef<Constant *> V);
522 
523 public:
524   /// Return a ConstantVector with the specified constant in each element.
525   /// Note that this might not return an instance of ConstantVector
526   static Constant *getSplat(ElementCount EC, Constant *Elt);
527 
528   /// Specialize the getType() method to always return a FixedVectorType,
529   /// which reduces the amount of casting needed in parts of the compiler.
530   inline FixedVectorType *getType() const {
531     return cast<FixedVectorType>(Value::getType());
532   }
533 
534   /// If all elements of the vector constant have the same value, return that
535   /// value. Otherwise, return nullptr. Ignore poison elements by setting
536   /// AllowPoison to true.
537   Constant *getSplatValue(bool AllowPoison = false) const;
538 
539   /// Methods for support type inquiry through isa, cast, and dyn_cast:
540   static bool classof(const Value *V) {
541     return V->getValueID() == ConstantVectorVal;
542   }
543 };
544 
545 //===----------------------------------------------------------------------===//
546 /// A constant pointer value that points to null
547 ///
548 class ConstantPointerNull final : public ConstantData {
549   friend class Constant;
550 
551   explicit ConstantPointerNull(PointerType *T)
552       : ConstantData(T, Value::ConstantPointerNullVal) {}
553 
554   void destroyConstantImpl();
555 
556 public:
557   ConstantPointerNull(const ConstantPointerNull &) = delete;
558 
559   /// Static factory methods - Return objects of the specified value
560   static ConstantPointerNull *get(PointerType *T);
561 
562   /// Specialize the getType() method to always return an PointerType,
563   /// which reduces the amount of casting needed in parts of the compiler.
564   inline PointerType *getType() const {
565     return cast<PointerType>(Value::getType());
566   }
567 
568   /// Methods for support type inquiry through isa, cast, and dyn_cast:
569   static bool classof(const Value *V) {
570     return V->getValueID() == ConstantPointerNullVal;
571   }
572 };
573 
574 //===----------------------------------------------------------------------===//
575 /// ConstantDataSequential - A vector or array constant whose element type is a
576 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
577 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
578 /// node has no operands because it stores all of the elements of the constant
579 /// as densely packed data, instead of as Value*'s.
580 ///
581 /// This is the common base class of ConstantDataArray and ConstantDataVector.
582 ///
583 class ConstantDataSequential : public ConstantData {
584   friend class LLVMContextImpl;
585   friend class Constant;
586 
587   /// A pointer to the bytes underlying this constant (which is owned by the
588   /// uniquing StringMap).
589   const char *DataElements;
590 
591   /// This forms a link list of ConstantDataSequential nodes that have
592   /// the same value but different type.  For example, 0,0,0,1 could be a 4
593   /// element array of i8, or a 1-element array of i32.  They'll both end up in
594   /// the same StringMap bucket, linked up.
595   std::unique_ptr<ConstantDataSequential> Next;
596 
597   void destroyConstantImpl();
598 
599 protected:
600   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
601       : ConstantData(ty, VT), DataElements(Data) {}
602 
603   static Constant *getImpl(StringRef Bytes, Type *Ty);
604 
605 public:
606   ConstantDataSequential(const ConstantDataSequential &) = delete;
607 
608   /// Return true if a ConstantDataSequential can be formed with a vector or
609   /// array of the specified element type.
610   /// ConstantDataArray only works with normal float and int types that are
611   /// stored densely in memory, not with things like i42 or x86_f80.
612   static bool isElementTypeCompatible(Type *Ty);
613 
614   /// If this is a sequential container of integers (of any size), return the
615   /// specified element in the low bits of a uint64_t.
616   uint64_t getElementAsInteger(unsigned i) const;
617 
618   /// If this is a sequential container of integers (of any size), return the
619   /// specified element as an APInt.
620   APInt getElementAsAPInt(unsigned i) const;
621 
622   /// If this is a sequential container of floating point type, return the
623   /// specified element as an APFloat.
624   APFloat getElementAsAPFloat(unsigned i) const;
625 
626   /// If this is an sequential container of floats, return the specified element
627   /// as a float.
628   float getElementAsFloat(unsigned i) const;
629 
630   /// If this is an sequential container of doubles, return the specified
631   /// element as a double.
632   double getElementAsDouble(unsigned i) const;
633 
634   /// Return a Constant for a specified index's element.
635   /// Note that this has to compute a new constant to return, so it isn't as
636   /// efficient as getElementAsInteger/Float/Double.
637   Constant *getElementAsConstant(unsigned i) const;
638 
639   /// Return the element type of the array/vector.
640   Type *getElementType() const;
641 
642   /// Return the number of elements in the array or vector.
643   unsigned getNumElements() const;
644 
645   /// Return the size (in bytes) of each element in the array/vector.
646   /// The size of the elements is known to be a multiple of one byte.
647   uint64_t getElementByteSize() const;
648 
649   /// This method returns true if this is an array of \p CharSize integers.
650   bool isString(unsigned CharSize = 8) const;
651 
652   /// This method returns true if the array "isString", ends with a null byte,
653   /// and does not contains any other null bytes.
654   bool isCString() const;
655 
656   /// If this array is isString(), then this method returns the array as a
657   /// StringRef. Otherwise, it asserts out.
658   StringRef getAsString() const {
659     assert(isString() && "Not a string");
660     return getRawDataValues();
661   }
662 
663   /// If this array is isCString(), then this method returns the array (without
664   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
665   StringRef getAsCString() const {
666     assert(isCString() && "Isn't a C string");
667     StringRef Str = getAsString();
668     return Str.substr(0, Str.size() - 1);
669   }
670 
671   /// Return the raw, underlying, bytes of this data. Note that this is an
672   /// extremely tricky thing to work with, as it exposes the host endianness of
673   /// the data elements.
674   StringRef getRawDataValues() const;
675 
676   /// Methods for support type inquiry through isa, cast, and dyn_cast:
677   static bool classof(const Value *V) {
678     return V->getValueID() == ConstantDataArrayVal ||
679            V->getValueID() == ConstantDataVectorVal;
680   }
681 
682 private:
683   const char *getElementPointer(unsigned Elt) const;
684 };
685 
686 //===----------------------------------------------------------------------===//
687 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
688 /// float/double, and whose elements are just simple data values
689 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
690 /// stores all of the elements of the constant as densely packed data, instead
691 /// of as Value*'s.
692 class ConstantDataArray final : public ConstantDataSequential {
693   friend class ConstantDataSequential;
694 
695   explicit ConstantDataArray(Type *ty, const char *Data)
696       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
697 
698 public:
699   ConstantDataArray(const ConstantDataArray &) = delete;
700 
701   /// get() constructor - Return a constant with array type with an element
702   /// count and element type matching the ArrayRef passed in.  Note that this
703   /// can return a ConstantAggregateZero object.
704   template <typename ElementTy>
705   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
706     const char *Data = reinterpret_cast<const char *>(Elts.data());
707     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
708                   Type::getScalarTy<ElementTy>(Context));
709   }
710 
711   /// get() constructor - ArrayTy needs to be compatible with
712   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
713   template <typename ArrayTy>
714   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
715     return ConstantDataArray::get(Context, ArrayRef(Elts));
716   }
717 
718   /// getRaw() constructor - Return a constant with array type with an element
719   /// count and element type matching the NumElements and ElementTy parameters
720   /// passed in. Note that this can return a ConstantAggregateZero object.
721   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
722   /// the buffer containing the elements. Be careful to make sure Data uses the
723   /// right endianness, the buffer will be used as-is.
724   static Constant *getRaw(StringRef Data, uint64_t NumElements,
725                           Type *ElementTy) {
726     Type *Ty = ArrayType::get(ElementTy, NumElements);
727     return getImpl(Data, Ty);
728   }
729 
730   /// getFP() constructors - Return a constant of array type with a float
731   /// element type taken from argument `ElementType', and count taken from
732   /// argument `Elts'.  The amount of bits of the contained type must match the
733   /// number of bits of the type contained in the passed in ArrayRef.
734   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
735   /// that this can return a ConstantAggregateZero object.
736   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
737   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
738   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
739 
740   /// This method constructs a CDS and initializes it with a text string.
741   /// The default behavior (AddNull==true) causes a null terminator to
742   /// be placed at the end of the array (increasing the length of the string by
743   /// one more than the StringRef would normally indicate.  Pass AddNull=false
744   /// to disable this behavior.
745   static Constant *getString(LLVMContext &Context, StringRef Initializer,
746                              bool AddNull = true);
747 
748   /// Specialize the getType() method to always return an ArrayType,
749   /// which reduces the amount of casting needed in parts of the compiler.
750   inline ArrayType *getType() const {
751     return cast<ArrayType>(Value::getType());
752   }
753 
754   /// Methods for support type inquiry through isa, cast, and dyn_cast:
755   static bool classof(const Value *V) {
756     return V->getValueID() == ConstantDataArrayVal;
757   }
758 };
759 
760 //===----------------------------------------------------------------------===//
761 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
762 /// float/double, and whose elements are just simple data values
763 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
764 /// stores all of the elements of the constant as densely packed data, instead
765 /// of as Value*'s.
766 class ConstantDataVector final : public ConstantDataSequential {
767   friend class ConstantDataSequential;
768 
769   explicit ConstantDataVector(Type *ty, const char *Data)
770       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
771         IsSplatSet(false) {}
772   // Cache whether or not the constant is a splat.
773   mutable bool IsSplatSet : 1;
774   mutable bool IsSplat : 1;
775   bool isSplatData() const;
776 
777 public:
778   ConstantDataVector(const ConstantDataVector &) = delete;
779 
780   /// get() constructors - Return a constant with vector type with an element
781   /// count and element type matching the ArrayRef passed in.  Note that this
782   /// can return a ConstantAggregateZero object.
783   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
784   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
785   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
786   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
787   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
788   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
789 
790   /// getRaw() constructor - Return a constant with vector type with an element
791   /// count and element type matching the NumElements and ElementTy parameters
792   /// passed in. Note that this can return a ConstantAggregateZero object.
793   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
794   /// the buffer containing the elements. Be careful to make sure Data uses the
795   /// right endianness, the buffer will be used as-is.
796   static Constant *getRaw(StringRef Data, uint64_t NumElements,
797                           Type *ElementTy) {
798     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
799     return getImpl(Data, Ty);
800   }
801 
802   /// getFP() constructors - Return a constant of vector type with a float
803   /// element type taken from argument `ElementType', and count taken from
804   /// argument `Elts'.  The amount of bits of the contained type must match the
805   /// number of bits of the type contained in the passed in ArrayRef.
806   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
807   /// that this can return a ConstantAggregateZero object.
808   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
809   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
810   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
811 
812   /// Return a ConstantVector with the specified constant in each element.
813   /// The specified constant has to be a of a compatible type (i8/i16/
814   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
815   static Constant *getSplat(unsigned NumElts, Constant *Elt);
816 
817   /// Returns true if this is a splat constant, meaning that all elements have
818   /// the same value.
819   bool isSplat() const;
820 
821   /// If this is a splat constant, meaning that all of the elements have the
822   /// same value, return that value. Otherwise return NULL.
823   Constant *getSplatValue() const;
824 
825   /// Specialize the getType() method to always return a FixedVectorType,
826   /// which reduces the amount of casting needed in parts of the compiler.
827   inline FixedVectorType *getType() const {
828     return cast<FixedVectorType>(Value::getType());
829   }
830 
831   /// Methods for support type inquiry through isa, cast, and dyn_cast:
832   static bool classof(const Value *V) {
833     return V->getValueID() == ConstantDataVectorVal;
834   }
835 };
836 
837 //===----------------------------------------------------------------------===//
838 /// A constant token which is empty
839 ///
840 class ConstantTokenNone final : public ConstantData {
841   friend class Constant;
842 
843   explicit ConstantTokenNone(LLVMContext &Context)
844       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
845 
846   void destroyConstantImpl();
847 
848 public:
849   ConstantTokenNone(const ConstantTokenNone &) = delete;
850 
851   /// Return the ConstantTokenNone.
852   static ConstantTokenNone *get(LLVMContext &Context);
853 
854   /// Methods to support type inquiry through isa, cast, and dyn_cast.
855   static bool classof(const Value *V) {
856     return V->getValueID() == ConstantTokenNoneVal;
857   }
858 };
859 
860 /// A constant target extension type default initializer
861 class ConstantTargetNone final : public ConstantData {
862   friend class Constant;
863 
864   explicit ConstantTargetNone(TargetExtType *T)
865       : ConstantData(T, Value::ConstantTargetNoneVal) {}
866 
867   void destroyConstantImpl();
868 
869 public:
870   ConstantTargetNone(const ConstantTargetNone &) = delete;
871 
872   /// Static factory methods - Return objects of the specified value.
873   static ConstantTargetNone *get(TargetExtType *T);
874 
875   /// Specialize the getType() method to always return an TargetExtType,
876   /// which reduces the amount of casting needed in parts of the compiler.
877   inline TargetExtType *getType() const {
878     return cast<TargetExtType>(Value::getType());
879   }
880 
881   /// Methods for support type inquiry through isa, cast, and dyn_cast.
882   static bool classof(const Value *V) {
883     return V->getValueID() == ConstantTargetNoneVal;
884   }
885 };
886 
887 /// The address of a basic block.
888 ///
889 class BlockAddress final : public Constant {
890   friend class Constant;
891 
892   BlockAddress(Function *F, BasicBlock *BB);
893 
894   void *operator new(size_t S) { return User::operator new(S, 2); }
895 
896   void destroyConstantImpl();
897   Value *handleOperandChangeImpl(Value *From, Value *To);
898 
899 public:
900   void operator delete(void *Ptr) { User::operator delete(Ptr); }
901 
902   /// Return a BlockAddress for the specified function and basic block.
903   static BlockAddress *get(Function *F, BasicBlock *BB);
904 
905   /// Return a BlockAddress for the specified basic block.  The basic
906   /// block must be embedded into a function.
907   static BlockAddress *get(BasicBlock *BB);
908 
909   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
910   ///
911   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
912   static BlockAddress *lookup(const BasicBlock *BB);
913 
914   /// Transparently provide more efficient getOperand methods.
915   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
916 
917   Function *getFunction() const { return (Function *)Op<0>().get(); }
918   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
919 
920   /// Methods for support type inquiry through isa, cast, and dyn_cast:
921   static bool classof(const Value *V) {
922     return V->getValueID() == BlockAddressVal;
923   }
924 };
925 
926 template <>
927 struct OperandTraits<BlockAddress>
928     : public FixedNumOperandTraits<BlockAddress, 2> {};
929 
930 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
931 
932 /// Wrapper for a function that represents a value that
933 /// functionally represents the original function. This can be a function,
934 /// global alias to a function, or an ifunc.
935 class DSOLocalEquivalent final : public Constant {
936   friend class Constant;
937 
938   DSOLocalEquivalent(GlobalValue *GV);
939 
940   void *operator new(size_t S) { return User::operator new(S, 1); }
941 
942   void destroyConstantImpl();
943   Value *handleOperandChangeImpl(Value *From, Value *To);
944 
945 public:
946   void operator delete(void *Ptr) { User::operator delete(Ptr); }
947 
948   /// Return a DSOLocalEquivalent for the specified global value.
949   static DSOLocalEquivalent *get(GlobalValue *GV);
950 
951   /// Transparently provide more efficient getOperand methods.
952   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
953 
954   GlobalValue *getGlobalValue() const {
955     return cast<GlobalValue>(Op<0>().get());
956   }
957 
958   /// Methods for support type inquiry through isa, cast, and dyn_cast:
959   static bool classof(const Value *V) {
960     return V->getValueID() == DSOLocalEquivalentVal;
961   }
962 };
963 
964 template <>
965 struct OperandTraits<DSOLocalEquivalent>
966     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
967 
968 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
969 
970 /// Wrapper for a value that won't be replaced with a CFI jump table
971 /// pointer in LowerTypeTestsModule.
972 class NoCFIValue final : public Constant {
973   friend class Constant;
974 
975   NoCFIValue(GlobalValue *GV);
976 
977   void *operator new(size_t S) { return User::operator new(S, 1); }
978 
979   void destroyConstantImpl();
980   Value *handleOperandChangeImpl(Value *From, Value *To);
981 
982 public:
983   /// Return a NoCFIValue for the specified function.
984   static NoCFIValue *get(GlobalValue *GV);
985 
986   /// Transparently provide more efficient getOperand methods.
987   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
988 
989   GlobalValue *getGlobalValue() const {
990     return cast<GlobalValue>(Op<0>().get());
991   }
992 
993   /// NoCFIValue is always a pointer.
994   PointerType *getType() const {
995     return cast<PointerType>(Value::getType());
996   }
997 
998   /// Methods for support type inquiry through isa, cast, and dyn_cast:
999   static bool classof(const Value *V) {
1000     return V->getValueID() == NoCFIValueVal;
1001   }
1002 };
1003 
1004 template <>
1005 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
1006 };
1007 
1008 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
1009 
1010 //===----------------------------------------------------------------------===//
1011 /// A constant value that is initialized with an expression using
1012 /// other constant values.
1013 ///
1014 /// This class uses the standard Instruction opcodes to define the various
1015 /// constant expressions.  The Opcode field for the ConstantExpr class is
1016 /// maintained in the Value::SubclassData field.
1017 class ConstantExpr : public Constant {
1018   friend struct ConstantExprKeyType;
1019   friend class Constant;
1020 
1021   void destroyConstantImpl();
1022   Value *handleOperandChangeImpl(Value *From, Value *To);
1023 
1024 protected:
1025   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1026       : Constant(ty, ConstantExprVal, Ops, NumOps) {
1027     // Operation type (an Instruction opcode) is stored as the SubclassData.
1028     setValueSubclassData(Opcode);
1029   }
1030 
1031   ~ConstantExpr() = default;
1032 
1033 public:
1034   // Static methods to construct a ConstantExpr of different kinds.  Note that
1035   // these methods may return a object that is not an instance of the
1036   // ConstantExpr class, because they will attempt to fold the constant
1037   // expression into something simpler if possible.
1038 
1039   /// getAlignOf constant expr - computes the alignment of a type in a target
1040   /// independent way (Note: the return type is an i64).
1041   static Constant *getAlignOf(Type *Ty);
1042 
1043   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1044   /// address-units, not bits) in a target independent way (Note: the return
1045   /// type is an i64).
1046   ///
1047   static Constant *getSizeOf(Type *Ty);
1048 
1049   static Constant *getNeg(Constant *C, bool HasNSW = false);
1050   static Constant *getNot(Constant *C);
1051   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1052                           bool HasNSW = false);
1053   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1054                           bool HasNSW = false);
1055   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1056                           bool HasNSW = false);
1057   static Constant *getXor(Constant *C1, Constant *C2);
1058   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1059                           bool HasNSW = false);
1060   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1061   static Constant *getPtrToInt(Constant *C, Type *Ty,
1062                                bool OnlyIfReduced = false);
1063   static Constant *getIntToPtr(Constant *C, Type *Ty,
1064                                bool OnlyIfReduced = false);
1065   static Constant *getBitCast(Constant *C, Type *Ty,
1066                               bool OnlyIfReduced = false);
1067   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1068                                     bool OnlyIfReduced = false);
1069 
1070   static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); }
1071 
1072   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1073     return getAdd(C1, C2, false, true);
1074   }
1075 
1076   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1077     return getAdd(C1, C2, true, false);
1078   }
1079 
1080   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1081     return getSub(C1, C2, false, true);
1082   }
1083 
1084   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1085     return getSub(C1, C2, true, false);
1086   }
1087 
1088   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1089     return getMul(C1, C2, false, true);
1090   }
1091 
1092   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1093     return getMul(C1, C2, true, false);
1094   }
1095 
1096   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1097     return getShl(C1, C2, false, true);
1098   }
1099 
1100   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1101     return getShl(C1, C2, true, false);
1102   }
1103 
1104   /// If C is a scalar/fixed width vector of known powers of 2, then this
1105   /// function returns a new scalar/fixed width vector obtained from logBase2
1106   /// of C. Undef vector elements are set to zero.
1107   /// Return a null pointer otherwise.
1108   static Constant *getExactLogBase2(Constant *C);
1109 
1110   /// Return the identity constant for a binary opcode.
1111   /// If the binop is not commutative, callers can acquire the operand 1
1112   /// identity constant by setting AllowRHSConstant to true. For example, any
1113   /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1114   /// is a fadd/fsub operation and we don't care about signed zeros, then
1115   /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1116   /// nullptr if the operator does not have an identity constant.
1117   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1118                                     bool AllowRHSConstant = false,
1119                                     bool NSZ = false);
1120 
1121   static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1122 
1123   /// Return the identity constant for a binary or intrinsic Instruction.
1124   /// The identity constant C is defined as X op C = X and C op X = X where C
1125   /// and X are the first two operands, and the operation is commutative.
1126   static Constant *getIdentity(Instruction *I, Type *Ty,
1127                                bool AllowRHSConstant = false, bool NSZ = false);
1128 
1129   /// Return the absorbing element for the given binary
1130   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1131   /// every X.  For example, this returns zero for integer multiplication.
1132   /// It returns null if the operator doesn't have an absorbing element.
1133   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1134 
1135   /// Transparently provide more efficient getOperand methods.
1136   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1137 
1138   /// Convenience function for getting a Cast operation.
1139   ///
1140   /// \param ops The opcode for the conversion
1141   /// \param C  The constant to be converted
1142   /// \param Ty The type to which the constant is converted
1143   /// \param OnlyIfReduced see \a getWithOperands() docs.
1144   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1145                            bool OnlyIfReduced = false);
1146 
1147   // Create a Trunc or BitCast cast constant expression
1148   static Constant *
1149   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1150                     Type *Ty     ///< The type to trunc or bitcast C to
1151   );
1152 
1153   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1154   /// expression.
1155   static Constant *
1156   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1157                  Type *Ty     ///< The type to which cast should be made
1158   );
1159 
1160   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1161   /// the address space.
1162   static Constant *getPointerBitCastOrAddrSpaceCast(
1163       Constant *C, ///< The constant to addrspacecast or bitcast
1164       Type *Ty     ///< The type to bitcast or addrspacecast C to
1165   );
1166 
1167   /// Return true if this is a convert constant expression
1168   bool isCast() const;
1169 
1170   /// Return true if this is a compare constant expression
1171   bool isCompare() const;
1172 
1173   /// get - Return a binary or shift operator constant expression,
1174   /// folding if possible.
1175   ///
1176   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1177   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1178                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1179 
1180   /// Return an ICmp or FCmp comparison operator constant expression.
1181   ///
1182   /// \param OnlyIfReduced see \a getWithOperands() docs.
1183   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1184                               bool OnlyIfReduced = false);
1185 
1186   /// get* - Return some common constants without having to
1187   /// specify the full Instruction::OPCODE identifier.
1188   ///
1189   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1190                            bool OnlyIfReduced = false);
1191   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1192                            bool OnlyIfReduced = false);
1193 
1194   /// Getelementptr form.  Value* is only accepted for convenience;
1195   /// all elements must be Constants.
1196   ///
1197   /// \param InRange the inrange range if present or std::nullopt.
1198   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1199   static Constant *
1200   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1201                    bool InBounds = false,
1202                    std::optional<ConstantRange> InRange = std::nullopt,
1203                    Type *OnlyIfReducedTy = nullptr) {
1204     return getGetElementPtr(
1205         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1206         InBounds, InRange, OnlyIfReducedTy);
1207   }
1208   static Constant *
1209   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false,
1210                    std::optional<ConstantRange> InRange = std::nullopt,
1211                    Type *OnlyIfReducedTy = nullptr) {
1212     // This form of the function only exists to avoid ambiguous overload
1213     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1214     // ArrayRef<Value *>.
1215     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRange,
1216                             OnlyIfReducedTy);
1217   }
1218   static Constant *
1219   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1220                    bool InBounds = false,
1221                    std::optional<ConstantRange> InRange = std::nullopt,
1222                    Type *OnlyIfReducedTy = nullptr);
1223 
1224   /// Create an "inbounds" getelementptr. See the documentation for the
1225   /// "inbounds" flag in LangRef.html for details.
1226   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1227                                             ArrayRef<Constant *> IdxList) {
1228     return getGetElementPtr(Ty, C, IdxList, true);
1229   }
1230   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1231                                             Constant *Idx) {
1232     // This form of the function only exists to avoid ambiguous overload
1233     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1234     // ArrayRef<Value *>.
1235     return getGetElementPtr(Ty, C, Idx, true);
1236   }
1237   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1238                                             ArrayRef<Value *> IdxList) {
1239     return getGetElementPtr(Ty, C, IdxList, true);
1240   }
1241 
1242   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1243                                      Type *OnlyIfReducedTy = nullptr);
1244   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1245                                     Type *OnlyIfReducedTy = nullptr);
1246   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1247                                     ArrayRef<int> Mask,
1248                                     Type *OnlyIfReducedTy = nullptr);
1249 
1250   /// Return the opcode at the root of this constant expression
1251   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1252 
1253   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1254   /// FCMP constant expression.
1255   unsigned getPredicate() const;
1256 
1257   /// Assert that this is a shufflevector and return the mask. See class
1258   /// ShuffleVectorInst for a description of the mask representation.
1259   ArrayRef<int> getShuffleMask() const;
1260 
1261   /// Assert that this is a shufflevector and return the mask.
1262   ///
1263   /// TODO: This is a temporary hack until we update the bitcode format for
1264   /// shufflevector.
1265   Constant *getShuffleMaskForBitcode() const;
1266 
1267   /// Return a string representation for an opcode.
1268   const char *getOpcodeName() const;
1269 
1270   /// This returns the current constant expression with the operands replaced
1271   /// with the specified values. The specified array must have the same number
1272   /// of operands as our current one.
1273   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1274     return getWithOperands(Ops, getType());
1275   }
1276 
1277   /// Get the current expression with the operands replaced.
1278   ///
1279   /// Return the current constant expression with the operands replaced with \c
1280   /// Ops and the type with \c Ty.  The new operands must have the same number
1281   /// as the current ones.
1282   ///
1283   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1284   /// gets constant-folded, the type changes, or the expression is otherwise
1285   /// canonicalized.  This parameter should almost always be \c false.
1286   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1287                             bool OnlyIfReduced = false,
1288                             Type *SrcTy = nullptr) const;
1289 
1290   /// Returns an Instruction which implements the same operation as this
1291   /// ConstantExpr. It is not inserted into any basic block.
1292   ///
1293   /// A better approach to this could be to have a constructor for Instruction
1294   /// which would take a ConstantExpr parameter, but that would have spread
1295   /// implementation details of ConstantExpr outside of Constants.cpp, which
1296   /// would make it harder to remove ConstantExprs altogether.
1297   Instruction *getAsInstruction() const;
1298 
1299   /// Whether creating a constant expression for this binary operator is
1300   /// desirable.
1301   static bool isDesirableBinOp(unsigned Opcode);
1302 
1303   /// Whether creating a constant expression for this binary operator is
1304   /// supported.
1305   static bool isSupportedBinOp(unsigned Opcode);
1306 
1307   /// Whether creating a constant expression for this cast is desirable.
1308   static bool isDesirableCastOp(unsigned Opcode);
1309 
1310   /// Whether creating a constant expression for this cast is supported.
1311   static bool isSupportedCastOp(unsigned Opcode);
1312 
1313   /// Whether creating a constant expression for this getelementptr type is
1314   /// supported.
1315   static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1316     return !SrcElemTy->isScalableTy();
1317   }
1318 
1319   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1320   static bool classof(const Value *V) {
1321     return V->getValueID() == ConstantExprVal;
1322   }
1323 
1324 private:
1325   // Shadow Value::setValueSubclassData with a private forwarding method so that
1326   // subclasses cannot accidentally use it.
1327   void setValueSubclassData(unsigned short D) {
1328     Value::setValueSubclassData(D);
1329   }
1330 };
1331 
1332 template <>
1333 struct OperandTraits<ConstantExpr>
1334     : public VariadicOperandTraits<ConstantExpr, 1> {};
1335 
1336 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1337 
1338 //===----------------------------------------------------------------------===//
1339 /// 'undef' values are things that do not have specified contents.
1340 /// These are used for a variety of purposes, including global variable
1341 /// initializers and operands to instructions.  'undef' values can occur with
1342 /// any first-class type.
1343 ///
1344 /// Undef values aren't exactly constants; if they have multiple uses, they
1345 /// can appear to have different bit patterns at each use. See
1346 /// LangRef.html#undefvalues for details.
1347 ///
1348 class UndefValue : public ConstantData {
1349   friend class Constant;
1350 
1351   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1352 
1353   void destroyConstantImpl();
1354 
1355 protected:
1356   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1357 
1358 public:
1359   UndefValue(const UndefValue &) = delete;
1360 
1361   /// Static factory methods - Return an 'undef' object of the specified type.
1362   static UndefValue *get(Type *T);
1363 
1364   /// If this Undef has array or vector type, return a undef with the right
1365   /// element type.
1366   UndefValue *getSequentialElement() const;
1367 
1368   /// If this undef has struct type, return a undef with the right element type
1369   /// for the specified element.
1370   UndefValue *getStructElement(unsigned Elt) const;
1371 
1372   /// Return an undef of the right value for the specified GEP index if we can,
1373   /// otherwise return null (e.g. if C is a ConstantExpr).
1374   UndefValue *getElementValue(Constant *C) const;
1375 
1376   /// Return an undef of the right value for the specified GEP index.
1377   UndefValue *getElementValue(unsigned Idx) const;
1378 
1379   /// Return the number of elements in the array, vector, or struct.
1380   unsigned getNumElements() const;
1381 
1382   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1383   static bool classof(const Value *V) {
1384     return V->getValueID() == UndefValueVal ||
1385            V->getValueID() == PoisonValueVal;
1386   }
1387 };
1388 
1389 //===----------------------------------------------------------------------===//
1390 /// In order to facilitate speculative execution, many instructions do not
1391 /// invoke immediate undefined behavior when provided with illegal operands,
1392 /// and return a poison value instead.
1393 ///
1394 /// see LangRef.html#poisonvalues for details.
1395 ///
1396 class PoisonValue final : public UndefValue {
1397   friend class Constant;
1398 
1399   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1400 
1401   void destroyConstantImpl();
1402 
1403 public:
1404   PoisonValue(const PoisonValue &) = delete;
1405 
1406   /// Static factory methods - Return an 'poison' object of the specified type.
1407   static PoisonValue *get(Type *T);
1408 
1409   /// If this poison has array or vector type, return a poison with the right
1410   /// element type.
1411   PoisonValue *getSequentialElement() const;
1412 
1413   /// If this poison has struct type, return a poison with the right element
1414   /// type for the specified element.
1415   PoisonValue *getStructElement(unsigned Elt) const;
1416 
1417   /// Return an poison of the right value for the specified GEP index if we can,
1418   /// otherwise return null (e.g. if C is a ConstantExpr).
1419   PoisonValue *getElementValue(Constant *C) const;
1420 
1421   /// Return an poison of the right value for the specified GEP index.
1422   PoisonValue *getElementValue(unsigned Idx) const;
1423 
1424   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1425   static bool classof(const Value *V) {
1426     return V->getValueID() == PoisonValueVal;
1427   }
1428 };
1429 
1430 } // end namespace llvm
1431 
1432 #endif // LLVM_IR_CONSTANTS_H
1433