1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Analysis/SimplifyQuery.h"
19 #include "llvm/Analysis/WithCache.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/FMF.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include <cassert>
27 #include <cstdint>
28 
29 namespace llvm {
30 
31 class Operator;
32 class AddOperator;
33 class AllocaInst;
34 class APInt;
35 class AssumptionCache;
36 class DominatorTree;
37 class GEPOperator;
38 class LoadInst;
39 class WithOverflowInst;
40 struct KnownBits;
41 class Loop;
42 class LoopInfo;
43 class MDNode;
44 class StringRef;
45 class TargetLibraryInfo;
46 class Value;
47 
48 constexpr unsigned MaxAnalysisRecursionDepth = 6;
49 
50 /// Determine which bits of V are known to be either zero or one and return
51 /// them in the KnownZero/KnownOne bit sets.
52 ///
53 /// This function is defined on values with integer type, values with pointer
54 /// type, and vectors of integers.  In the case
55 /// where V is a vector, the known zero and known one values are the
56 /// same width as the vector element, and the bit is set only if it is true
57 /// for all of the elements in the vector.
58 void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
59                       unsigned Depth = 0, AssumptionCache *AC = nullptr,
60                       const Instruction *CxtI = nullptr,
61                       const DominatorTree *DT = nullptr,
62                       bool UseInstrInfo = true);
63 
64 /// Returns the known bits rather than passing by reference.
65 KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
66                            unsigned Depth = 0, AssumptionCache *AC = nullptr,
67                            const Instruction *CxtI = nullptr,
68                            const DominatorTree *DT = nullptr,
69                            bool UseInstrInfo = true);
70 
71 /// Returns the known bits rather than passing by reference.
72 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
73                            const DataLayout &DL, unsigned Depth = 0,
74                            AssumptionCache *AC = nullptr,
75                            const Instruction *CxtI = nullptr,
76                            const DominatorTree *DT = nullptr,
77                            bool UseInstrInfo = true);
78 
79 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
80                            unsigned Depth, const SimplifyQuery &Q);
81 
82 KnownBits computeKnownBits(const Value *V, unsigned Depth,
83                            const SimplifyQuery &Q);
84 
85 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
86                       const SimplifyQuery &Q);
87 
88 /// Compute known bits from the range metadata.
89 /// \p KnownZero the set of bits that are known to be zero
90 /// \p KnownOne the set of bits that are known to be one
91 void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
92 
93 /// Merge bits known from context-dependent facts into Known.
94 void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
95                                  unsigned Depth, const SimplifyQuery &Q);
96 
97 /// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
98 KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I,
99                                        const KnownBits &KnownLHS,
100                                        const KnownBits &KnownRHS,
101                                        unsigned Depth, const SimplifyQuery &SQ);
102 
103 /// Return true if LHS and RHS have no common bits set.
104 bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
105                          const WithCache<const Value *> &RHSCache,
106                          const SimplifyQuery &SQ);
107 
108 /// Return true if the given value is known to have exactly one bit set when
109 /// defined. For vectors return true if every element is known to be a power
110 /// of two when defined. Supports values with integer or pointer type and
111 /// vectors of integers. If 'OrZero' is set, then return true if the given
112 /// value is either a power of two or zero.
113 bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
114                             bool OrZero = false, unsigned Depth = 0,
115                             AssumptionCache *AC = nullptr,
116                             const Instruction *CxtI = nullptr,
117                             const DominatorTree *DT = nullptr,
118                             bool UseInstrInfo = true);
119 
120 bool isOnlyUsedInZeroComparison(const Instruction *CxtI);
121 
122 bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
123 
124 /// Return true if the given value is known to be non-zero when defined. For
125 /// vectors, return true if every element is known to be non-zero when
126 /// defined. For pointers, if the context instruction and dominator tree are
127 /// specified, perform context-sensitive analysis and return true if the
128 /// pointer couldn't possibly be null at the specified instruction.
129 /// Supports values with integer or pointer type and vectors of integers.
130 bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth = 0);
131 
132 /// Return true if the two given values are negation.
133 /// Currently can recoginze Value pair:
134 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
135 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
136 bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false,
137                      bool AllowPoison = true);
138 
139 /// Returns true if the give value is known to be non-negative.
140 bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
141                         unsigned Depth = 0);
142 
143 /// Returns true if the given value is known be positive (i.e. non-negative
144 /// and non-zero).
145 bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
146                      unsigned Depth = 0);
147 
148 /// Returns true if the given value is known be negative (i.e. non-positive
149 /// and non-zero).
150 bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
151                      unsigned Depth = 0);
152 
153 /// Return true if the given values are known to be non-equal when defined.
154 /// Supports scalar integer types only.
155 bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
156                      AssumptionCache *AC = nullptr,
157                      const Instruction *CxtI = nullptr,
158                      const DominatorTree *DT = nullptr,
159                      bool UseInstrInfo = true);
160 
161 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
162 /// simplify operations downstream. Mask is known to be zero for bits that V
163 /// cannot have.
164 ///
165 /// This function is defined on values with integer type, values with pointer
166 /// type, and vectors of integers.  In the case
167 /// where V is a vector, the mask, known zero, and known one values are the
168 /// same width as the vector element, and the bit is set only if it is true
169 /// for all of the elements in the vector.
170 bool MaskedValueIsZero(const Value *V, const APInt &Mask,
171                        const SimplifyQuery &DL, unsigned Depth = 0);
172 
173 /// Return the number of times the sign bit of the register is replicated into
174 /// the other bits. We know that at least 1 bit is always equal to the sign
175 /// bit (itself), but other cases can give us information. For example,
176 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
177 /// equal to each other, so we return 3. For vectors, return the number of
178 /// sign bits for the vector element with the mininum number of known sign
179 /// bits.
180 unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
181                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
182                             const Instruction *CxtI = nullptr,
183                             const DominatorTree *DT = nullptr,
184                             bool UseInstrInfo = true);
185 
186 /// Get the upper bound on bit size for this Value \p Op as a signed integer.
187 /// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
188 /// Similar to the APInt::getSignificantBits function.
189 unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
190                                    unsigned Depth = 0,
191                                    AssumptionCache *AC = nullptr,
192                                    const Instruction *CxtI = nullptr,
193                                    const DominatorTree *DT = nullptr);
194 
195 /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
196 /// intrinsics are treated as-if they were intrinsics.
197 Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
198                                       const TargetLibraryInfo *TLI);
199 
200 /// Given an exploded icmp instruction, return true if the comparison only
201 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
202 /// the result of the comparison is true when the input value is signed.
203 bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
204                     bool &TrueIfSigned);
205 
206 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
207 /// same result as an fcmp with the given operands.
208 ///
209 /// If \p LookThroughSrc is true, consider the input value when computing the
210 /// mask.
211 ///
212 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
213 /// element will always be LHS.
214 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
215                                                 const Function &F, Value *LHS,
216                                                 Value *RHS,
217                                                 bool LookThroughSrc = true);
218 std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
219                                                 const Function &F, Value *LHS,
220                                                 const APFloat *ConstRHS,
221                                                 bool LookThroughSrc = true);
222 
223 /// Compute the possible floating-point classes that \p LHS could be based on
224 /// fcmp \Pred \p LHS, \p RHS.
225 ///
226 /// \returns { TestedValue, ClassesIfTrue, ClassesIfFalse }
227 ///
228 /// If the compare returns an exact class test, ClassesIfTrue == ~ClassesIfFalse
229 ///
230 /// This is a less exact version of fcmpToClassTest (e.g. fcmpToClassTest will
231 /// only succeed for a test of x > 0 implies positive, but not x > 1).
232 ///
233 /// If \p LookThroughSrc is true, consider the input value when computing the
234 /// mask. This may look through sign bit operations.
235 ///
236 /// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
237 /// element will always be LHS.
238 ///
239 std::tuple<Value *, FPClassTest, FPClassTest>
240 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
241                  Value *RHS, bool LookThroughSrc = true);
242 std::tuple<Value *, FPClassTest, FPClassTest>
243 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
244                  FPClassTest RHS, bool LookThroughSrc = true);
245 std::tuple<Value *, FPClassTest, FPClassTest>
246 fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
247                  const APFloat &RHS, bool LookThroughSrc = true);
248 
249 struct KnownFPClass {
250   /// Floating-point classes the value could be one of.
251   FPClassTest KnownFPClasses = fcAllFlags;
252 
253   /// std::nullopt if the sign bit is unknown, true if the sign bit is
254   /// definitely set or false if the sign bit is definitely unset.
255   std::optional<bool> SignBit;
256 
257   bool operator==(KnownFPClass Other) const {
258     return KnownFPClasses == Other.KnownFPClasses && SignBit == Other.SignBit;
259   }
260 
261   /// Return true if it's known this can never be one of the mask entries.
isKnownNeverKnownFPClass262   bool isKnownNever(FPClassTest Mask) const {
263     return (KnownFPClasses & Mask) == fcNone;
264   }
265 
isUnknownKnownFPClass266   bool isUnknown() const {
267     return KnownFPClasses == fcAllFlags && !SignBit;
268   }
269 
270   /// Return true if it's known this can never be a nan.
isKnownNeverNaNKnownFPClass271   bool isKnownNeverNaN() const {
272     return isKnownNever(fcNan);
273   }
274 
275   /// Return true if it's known this can never be an infinity.
isKnownNeverInfinityKnownFPClass276   bool isKnownNeverInfinity() const {
277     return isKnownNever(fcInf);
278   }
279 
280   /// Return true if it's known this can never be +infinity.
isKnownNeverPosInfinityKnownFPClass281   bool isKnownNeverPosInfinity() const {
282     return isKnownNever(fcPosInf);
283   }
284 
285   /// Return true if it's known this can never be -infinity.
isKnownNeverNegInfinityKnownFPClass286   bool isKnownNeverNegInfinity() const {
287     return isKnownNever(fcNegInf);
288   }
289 
290   /// Return true if it's known this can never be a subnormal
isKnownNeverSubnormalKnownFPClass291   bool isKnownNeverSubnormal() const {
292     return isKnownNever(fcSubnormal);
293   }
294 
295   /// Return true if it's known this can never be a positive subnormal
isKnownNeverPosSubnormalKnownFPClass296   bool isKnownNeverPosSubnormal() const {
297     return isKnownNever(fcPosSubnormal);
298   }
299 
300   /// Return true if it's known this can never be a negative subnormal
isKnownNeverNegSubnormalKnownFPClass301   bool isKnownNeverNegSubnormal() const {
302     return isKnownNever(fcNegSubnormal);
303   }
304 
305   /// Return true if it's known this can never be a zero. This means a literal
306   /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
isKnownNeverZeroKnownFPClass307   bool isKnownNeverZero() const {
308     return isKnownNever(fcZero);
309   }
310 
311   /// Return true if it's known this can never be a literal positive zero.
isKnownNeverPosZeroKnownFPClass312   bool isKnownNeverPosZero() const {
313     return isKnownNever(fcPosZero);
314   }
315 
316   /// Return true if it's known this can never be a negative zero. This means a
317   /// literal -0 and does not include denormal inputs implicitly treated as -0.
isKnownNeverNegZeroKnownFPClass318   bool isKnownNeverNegZero() const {
319     return isKnownNever(fcNegZero);
320   }
321 
322   /// Return true if it's know this can never be interpreted as a zero. This
323   /// extends isKnownNeverZero to cover the case where the assumed
324   /// floating-point mode for the function interprets denormals as zero.
325   bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
326 
327   /// Return true if it's know this can never be interpreted as a negative zero.
328   bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
329 
330   /// Return true if it's know this can never be interpreted as a positive zero.
331   bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
332 
333   static constexpr FPClassTest OrderedLessThanZeroMask =
334       fcNegSubnormal | fcNegNormal | fcNegInf;
335   static constexpr FPClassTest OrderedGreaterThanZeroMask =
336       fcPosSubnormal | fcPosNormal | fcPosInf;
337 
338   /// Return true if we can prove that the analyzed floating-point value is
339   /// either NaN or never less than -0.0.
340   ///
341   ///      NaN --> true
342   ///       +0 --> true
343   ///       -0 --> true
344   ///   x > +0 --> true
345   ///   x < -0 --> false
cannotBeOrderedLessThanZeroKnownFPClass346   bool cannotBeOrderedLessThanZero() const {
347     return isKnownNever(OrderedLessThanZeroMask);
348   }
349 
350   /// Return true if we can prove that the analyzed floating-point value is
351   /// either NaN or never greater than -0.0.
352   ///      NaN --> true
353   ///       +0 --> true
354   ///       -0 --> true
355   ///   x > +0 --> false
356   ///   x < -0 --> true
cannotBeOrderedGreaterThanZeroKnownFPClass357   bool cannotBeOrderedGreaterThanZero() const {
358     return isKnownNever(OrderedGreaterThanZeroMask);
359   }
360 
361   KnownFPClass &operator|=(const KnownFPClass &RHS) {
362     KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
363 
364     if (SignBit != RHS.SignBit)
365       SignBit = std::nullopt;
366     return *this;
367   }
368 
knownNotKnownFPClass369   void knownNot(FPClassTest RuleOut) {
370     KnownFPClasses = KnownFPClasses & ~RuleOut;
371     if (isKnownNever(fcNan) && !SignBit) {
372       if (isKnownNever(fcNegative))
373         SignBit = false;
374       else if (isKnownNever(fcPositive))
375         SignBit = true;
376     }
377   }
378 
fnegKnownFPClass379   void fneg() {
380     KnownFPClasses = llvm::fneg(KnownFPClasses);
381     if (SignBit)
382       SignBit = !*SignBit;
383   }
384 
fabsKnownFPClass385   void fabs() {
386     if (KnownFPClasses & fcNegZero)
387       KnownFPClasses |= fcPosZero;
388 
389     if (KnownFPClasses & fcNegInf)
390       KnownFPClasses |= fcPosInf;
391 
392     if (KnownFPClasses & fcNegSubnormal)
393       KnownFPClasses |= fcPosSubnormal;
394 
395     if (KnownFPClasses & fcNegNormal)
396       KnownFPClasses |= fcPosNormal;
397 
398     signBitMustBeZero();
399   }
400 
401   /// Return true if the sign bit must be 0, ignoring the sign of nans.
signBitIsZeroOrNaNKnownFPClass402   bool signBitIsZeroOrNaN() const {
403     return isKnownNever(fcNegative);
404   }
405 
406   /// Assume the sign bit is zero.
signBitMustBeZeroKnownFPClass407   void signBitMustBeZero() {
408     KnownFPClasses &= (fcPositive | fcNan);
409     SignBit = false;
410   }
411 
412   /// Assume the sign bit is one.
signBitMustBeOneKnownFPClass413   void signBitMustBeOne() {
414     KnownFPClasses &= (fcNegative | fcNan);
415     SignBit = true;
416   }
417 
copysignKnownFPClass418   void copysign(const KnownFPClass &Sign) {
419     // Don't know anything about the sign of the source. Expand the possible set
420     // to its opposite sign pair.
421     if (KnownFPClasses & fcZero)
422       KnownFPClasses |= fcZero;
423     if (KnownFPClasses & fcSubnormal)
424       KnownFPClasses |= fcSubnormal;
425     if (KnownFPClasses & fcNormal)
426       KnownFPClasses |= fcNormal;
427     if (KnownFPClasses & fcInf)
428       KnownFPClasses |= fcInf;
429 
430     // Sign bit is exactly preserved even for nans.
431     SignBit = Sign.SignBit;
432 
433     // Clear sign bits based on the input sign mask.
434     if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
435       KnownFPClasses &= (fcNegative | fcNan);
436     if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
437       KnownFPClasses &= (fcPositive | fcNan);
438   }
439 
440   // Propagate knowledge that a non-NaN source implies the result can also not
441   // be a NaN. For unconstrained operations, signaling nans are not guaranteed
442   // to be quieted but cannot be introduced.
443   void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
444     if (Src.isKnownNever(fcNan)) {
445       knownNot(fcNan);
446       if (PreserveSign)
447         SignBit = Src.SignBit;
448     } else if (Src.isKnownNever(fcSNan))
449       knownNot(fcSNan);
450   }
451 
452   /// Propagate knowledge from a source value that could be a denormal or
453   /// zero. We have to be conservative since output flushing is not guaranteed,
454   /// so known-never-zero may not hold.
455   ///
456   /// This assumes a copy-like operation and will replace any currently known
457   /// information.
458   void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
459 
460   /// Report known classes if \p Src is evaluated through a potentially
461   /// canonicalizing operation. We can assume signaling nans will not be
462   /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
463   ///
464   /// This assumes a copy-like operation and will replace any currently known
465   /// information.
466   void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
467                                   Type *Ty);
468 
resetAllKnownFPClass469   void resetAll() { *this = KnownFPClass(); }
470 };
471 
472 inline KnownFPClass operator|(KnownFPClass LHS, const KnownFPClass &RHS) {
473   LHS |= RHS;
474   return LHS;
475 }
476 
477 inline KnownFPClass operator|(const KnownFPClass &LHS, KnownFPClass &&RHS) {
478   RHS |= LHS;
479   return std::move(RHS);
480 }
481 
482 /// Determine which floating-point classes are valid for \p V, and return them
483 /// in KnownFPClass bit sets.
484 ///
485 /// This function is defined on values with floating-point type, values vectors
486 /// of floating-point type, and arrays of floating-point type.
487 
488 /// \p InterestedClasses is a compile time optimization hint for which floating
489 /// point classes should be queried. Queries not specified in \p
490 /// InterestedClasses should be reliable if they are determined during the
491 /// query.
492 KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts,
493                                  FPClassTest InterestedClasses, unsigned Depth,
494                                  const SimplifyQuery &SQ);
495 
496 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest InterestedClasses,
497                                  unsigned Depth, const SimplifyQuery &SQ);
498 
499 inline KnownFPClass computeKnownFPClass(
500     const Value *V, const DataLayout &DL,
501     FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
502     const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
503     const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
504     bool UseInstrInfo = true) {
505   return computeKnownFPClass(
506       V, InterestedClasses, Depth,
507       SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo));
508 }
509 
510 /// Wrapper to account for known fast math flags at the use instruction.
computeKnownFPClass(const Value * V,FastMathFlags FMF,FPClassTest InterestedClasses,unsigned Depth,const SimplifyQuery & SQ)511 inline KnownFPClass computeKnownFPClass(const Value *V, FastMathFlags FMF,
512                                         FPClassTest InterestedClasses,
513                                         unsigned Depth,
514                                         const SimplifyQuery &SQ) {
515   if (FMF.noNaNs())
516     InterestedClasses &= ~fcNan;
517   if (FMF.noInfs())
518     InterestedClasses &= ~fcInf;
519 
520   KnownFPClass Result = computeKnownFPClass(V, InterestedClasses, Depth, SQ);
521 
522   if (FMF.noNaNs())
523     Result.KnownFPClasses &= ~fcNan;
524   if (FMF.noInfs())
525     Result.KnownFPClasses &= ~fcInf;
526   return Result;
527 }
528 
529 /// Return true if we can prove that the specified FP value is never equal to
530 /// -0.0. Users should use caution when considering PreserveSign
531 /// denormal-fp-math.
cannotBeNegativeZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)532 inline bool cannotBeNegativeZero(const Value *V, unsigned Depth,
533                                  const SimplifyQuery &SQ) {
534   KnownFPClass Known = computeKnownFPClass(V, fcNegZero, Depth, SQ);
535   return Known.isKnownNeverNegZero();
536 }
537 
538 /// Return true if we can prove that the specified FP value is either NaN or
539 /// never less than -0.0.
540 ///
541 ///      NaN --> true
542 ///       +0 --> true
543 ///       -0 --> true
544 ///   x > +0 --> true
545 ///   x < -0 --> false
cannotBeOrderedLessThanZero(const Value * V,unsigned Depth,const SimplifyQuery & SQ)546 inline bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth,
547                                         const SimplifyQuery &SQ) {
548   KnownFPClass Known =
549       computeKnownFPClass(V, KnownFPClass::OrderedLessThanZeroMask, Depth, SQ);
550   return Known.cannotBeOrderedLessThanZero();
551 }
552 
553 /// Return true if the floating-point scalar value is not an infinity or if
554 /// the floating-point vector value has no infinities. Return false if a value
555 /// could ever be infinity.
isKnownNeverInfinity(const Value * V,unsigned Depth,const SimplifyQuery & SQ)556 inline bool isKnownNeverInfinity(const Value *V, unsigned Depth,
557                                  const SimplifyQuery &SQ) {
558   KnownFPClass Known = computeKnownFPClass(V, fcInf, Depth, SQ);
559   return Known.isKnownNeverInfinity();
560 }
561 
562 /// Return true if the floating-point value can never contain a NaN or infinity.
isKnownNeverInfOrNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)563 inline bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth,
564                                  const SimplifyQuery &SQ) {
565   KnownFPClass Known = computeKnownFPClass(V, fcInf | fcNan, Depth, SQ);
566   return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
567 }
568 
569 /// Return true if the floating-point scalar value is not a NaN or if the
570 /// floating-point vector value has no NaN elements. Return false if a value
571 /// could ever be NaN.
isKnownNeverNaN(const Value * V,unsigned Depth,const SimplifyQuery & SQ)572 inline bool isKnownNeverNaN(const Value *V, unsigned Depth,
573                             const SimplifyQuery &SQ) {
574   KnownFPClass Known = computeKnownFPClass(V, fcNan, Depth, SQ);
575   return Known.isKnownNeverNaN();
576 }
577 
578 /// Return false if we can prove that the specified FP value's sign bit is 0.
579 /// Return true if we can prove that the specified FP value's sign bit is 1.
580 /// Otherwise return std::nullopt.
computeKnownFPSignBit(const Value * V,unsigned Depth,const SimplifyQuery & SQ)581 inline std::optional<bool> computeKnownFPSignBit(const Value *V, unsigned Depth,
582                                                  const SimplifyQuery &SQ) {
583   KnownFPClass Known = computeKnownFPClass(V, fcAllFlags, Depth, SQ);
584   return Known.SignBit;
585 }
586 
587 /// If the specified value can be set by repeating the same byte in memory,
588 /// return the i8 value that it is represented with. This is true for all i8
589 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
590 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
591 /// i16 0x1234), return null. If the value is entirely undef and padding,
592 /// return undef.
593 Value *isBytewiseValue(Value *V, const DataLayout &DL);
594 
595 /// Given an aggregate and an sequence of indices, see if the scalar value
596 /// indexed is already around as a register, for example if it were inserted
597 /// directly into the aggregate.
598 ///
599 /// If InsertBefore is not empty, this function will duplicate (modified)
600 /// insertvalues when a part of a nested struct is extracted.
601 Value *FindInsertedValue(
602     Value *V, ArrayRef<unsigned> idx_range,
603     std::optional<BasicBlock::iterator> InsertBefore = std::nullopt);
604 
605 /// Analyze the specified pointer to see if it can be expressed as a base
606 /// pointer plus a constant offset. Return the base and offset to the caller.
607 ///
608 /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
609 /// creates and later unpacks the required APInt.
610 inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
611                                                const DataLayout &DL,
612                                                bool AllowNonInbounds = true) {
613   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
614   Value *Base =
615       Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
616 
617   Offset = OffsetAPInt.getSExtValue();
618   return Base;
619 }
620 inline const Value *
621 GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
622                                  const DataLayout &DL,
623                                  bool AllowNonInbounds = true) {
624   return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
625                                           AllowNonInbounds);
626 }
627 
628 /// Returns true if the GEP is based on a pointer to a string (array of
629 // \p CharSize integers) and is indexing into this string.
630 bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
631 
632 /// Represents offset+length into a ConstantDataArray.
633 struct ConstantDataArraySlice {
634   /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
635   /// initializer, it just doesn't fit the ConstantDataArray interface).
636   const ConstantDataArray *Array;
637 
638   /// Slice starts at this Offset.
639   uint64_t Offset;
640 
641   /// Length of the slice.
642   uint64_t Length;
643 
644   /// Moves the Offset and adjusts Length accordingly.
moveConstantDataArraySlice645   void move(uint64_t Delta) {
646     assert(Delta < Length);
647     Offset += Delta;
648     Length -= Delta;
649   }
650 
651   /// Convenience accessor for elements in the slice.
652   uint64_t operator[](unsigned I) const {
653     return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
654   }
655 };
656 
657 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
658 /// If successful \p Slice will point to a ConstantDataArray info object
659 /// with an appropriate offset.
660 bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
661                               unsigned ElementSize, uint64_t Offset = 0);
662 
663 /// This function computes the length of a null-terminated C string pointed to
664 /// by V. If successful, it returns true and returns the string in Str. If
665 /// unsuccessful, it returns false. This does not include the trailing null
666 /// character by default. If TrimAtNul is set to false, then this returns any
667 /// trailing null characters as well as any other characters that come after
668 /// it.
669 bool getConstantStringInfo(const Value *V, StringRef &Str,
670                            bool TrimAtNul = true);
671 
672 /// If we can compute the length of the string pointed to by the specified
673 /// pointer, return 'len+1'.  If we can't, return 0.
674 uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
675 
676 /// This function returns call pointer argument that is considered the same by
677 /// aliasing rules. You CAN'T use it to replace one value with another. If
678 /// \p MustPreserveNullness is true, the call must preserve the nullness of
679 /// the pointer.
680 const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
681                                                   bool MustPreserveNullness);
getArgumentAliasingToReturnedPointer(CallBase * Call,bool MustPreserveNullness)682 inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
683                                                    bool MustPreserveNullness) {
684   return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
685       const_cast<const CallBase *>(Call), MustPreserveNullness));
686 }
687 
688 /// {launder,strip}.invariant.group returns pointer that aliases its argument,
689 /// and it only captures pointer by returning it.
690 /// These intrinsics are not marked as nocapture, because returning is
691 /// considered as capture. The arguments are not marked as returned neither,
692 /// because it would make it useless. If \p MustPreserveNullness is true,
693 /// the intrinsic must preserve the nullness of the pointer.
694 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
695     const CallBase *Call, bool MustPreserveNullness);
696 
697 /// This method strips off any GEP address adjustments, pointer casts
698 /// or `llvm.threadlocal.address` from the specified value \p V, returning the
699 /// original object being addressed. Note that the returned value has pointer
700 /// type if the specified value does. If the \p MaxLookup value is non-zero, it
701 /// limits the number of instructions to be stripped off.
702 const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
703 inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
704   // Force const to avoid infinite recursion.
705   const Value *VConst = V;
706   return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
707 }
708 
709 /// This method is similar to getUnderlyingObject except that it can
710 /// look through phi and select instructions and return multiple objects.
711 ///
712 /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
713 /// accesses different objects in each iteration, we don't look through the
714 /// phi node. E.g. consider this loop nest:
715 ///
716 ///   int **A;
717 ///   for (i)
718 ///     for (j) {
719 ///        A[i][j] = A[i-1][j] * B[j]
720 ///     }
721 ///
722 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
723 /// of the outer loop:
724 ///
725 ///   Curr = A[0];          // Prev_0
726 ///   for (i: 1..N) {
727 ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
728 ///     Curr = A[i];
729 ///     for (j: 0..N) {
730 ///        Curr[j] = Prev[j] * B[j]
731 ///     }
732 ///   }
733 ///
734 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
735 /// should not assume that Curr and Prev share the same underlying object thus
736 /// it shouldn't look through the phi above.
737 void getUnderlyingObjects(const Value *V,
738                           SmallVectorImpl<const Value *> &Objects,
739                           LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
740 
741 /// This is a wrapper around getUnderlyingObjects and adds support for basic
742 /// ptrtoint+arithmetic+inttoptr sequences.
743 bool getUnderlyingObjectsForCodeGen(const Value *V,
744                                     SmallVectorImpl<Value *> &Objects);
745 
746 /// Returns unique alloca where the value comes from, or nullptr.
747 /// If OffsetZero is true check that V points to the begining of the alloca.
748 AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
749 inline const AllocaInst *findAllocaForValue(const Value *V,
750                                             bool OffsetZero = false) {
751   return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
752 }
753 
754 /// Return true if the only users of this pointer are lifetime markers.
755 bool onlyUsedByLifetimeMarkers(const Value *V);
756 
757 /// Return true if the only users of this pointer are lifetime markers or
758 /// droppable instructions.
759 bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
760 
761 /// Return true if speculation of the given load must be suppressed to avoid
762 /// ordering or interfering with an active sanitizer.  If not suppressed,
763 /// dereferenceability and alignment must be proven separately.  Note: This
764 /// is only needed for raw reasoning; if you use the interface below
765 /// (isSafeToSpeculativelyExecute), this is handled internally.
766 bool mustSuppressSpeculation(const LoadInst &LI);
767 
768 /// Return true if the instruction does not have any effects besides
769 /// calculating the result and does not have undefined behavior.
770 ///
771 /// This method never returns true for an instruction that returns true for
772 /// mayHaveSideEffects; however, this method also does some other checks in
773 /// addition. It checks for undefined behavior, like dividing by zero or
774 /// loading from an invalid pointer (but not for undefined results, like a
775 /// shift with a shift amount larger than the width of the result). It checks
776 /// for malloc and alloca because speculatively executing them might cause a
777 /// memory leak. It also returns false for instructions related to control
778 /// flow, specifically terminators and PHI nodes.
779 ///
780 /// If the CtxI is specified this method performs context-sensitive analysis
781 /// and returns true if it is safe to execute the instruction immediately
782 /// before the CtxI.
783 ///
784 /// If the CtxI is NOT specified this method only looks at the instruction
785 /// itself and its operands, so if this method returns true, it is safe to
786 /// move the instruction as long as the correct dominance relationships for
787 /// the operands and users hold.
788 ///
789 /// This method can return true for instructions that read memory;
790 /// for such instructions, moving them may change the resulting value.
791 bool isSafeToSpeculativelyExecute(const Instruction *I,
792                                   const Instruction *CtxI = nullptr,
793                                   AssumptionCache *AC = nullptr,
794                                   const DominatorTree *DT = nullptr,
795                                   const TargetLibraryInfo *TLI = nullptr);
796 
797 inline bool
798 isSafeToSpeculativelyExecute(const Instruction *I, BasicBlock::iterator CtxI,
799                              AssumptionCache *AC = nullptr,
800                              const DominatorTree *DT = nullptr,
801                              const TargetLibraryInfo *TLI = nullptr) {
802   // Take an iterator, and unwrap it into an Instruction *.
803   return isSafeToSpeculativelyExecute(I, &*CtxI, AC, DT, TLI);
804 }
805 
806 /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
807 /// the actual opcode of Inst. If the provided and actual opcode differ, the
808 /// function (virtually) overrides the opcode of Inst with the provided
809 /// Opcode. There are come constraints in this case:
810 /// * If Opcode has a fixed number of operands (eg, as binary operators do),
811 ///   then Inst has to have at least as many leading operands. The function
812 ///   will ignore all trailing operands beyond that number.
813 /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
814 ///   do), then all operands are considered.
815 /// * The virtual instruction has to satisfy all typing rules of the provided
816 ///   Opcode.
817 /// * This function is pessimistic in the following sense: If one actually
818 ///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
819 ///   may say that the materialized instruction is speculatable whereas this
820 ///   function may have said that the instruction wouldn't be speculatable.
821 ///   This behavior is a shortcoming in the current implementation and not
822 ///   intentional.
823 bool isSafeToSpeculativelyExecuteWithOpcode(
824     unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
825     AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
826     const TargetLibraryInfo *TLI = nullptr);
827 
828 /// Returns true if the result or effects of the given instructions \p I
829 /// depend values not reachable through the def use graph.
830 /// * Memory dependence arises for example if the instruction reads from
831 ///   memory or may produce effects or undefined behaviour. Memory dependent
832 ///   instructions generally cannot be reorderd with respect to other memory
833 ///   dependent instructions.
834 /// * Control dependence arises for example if the instruction may fault
835 ///   if lifted above a throwing call or infinite loop.
836 bool mayHaveNonDefUseDependency(const Instruction &I);
837 
838 /// Return true if it is an intrinsic that cannot be speculated but also
839 /// cannot trap.
840 bool isAssumeLikeIntrinsic(const Instruction *I);
841 
842 /// Return true if it is valid to use the assumptions provided by an
843 /// assume intrinsic, I, at the point in the control-flow identified by the
844 /// context instruction, CxtI. By default, ephemeral values of the assumption
845 /// are treated as an invalid context, to prevent the assumption from being used
846 /// to optimize away its argument. If the caller can ensure that this won't
847 /// happen, it can call with AllowEphemerals set to true to get more valid
848 /// assumptions.
849 bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
850                              const DominatorTree *DT = nullptr,
851                              bool AllowEphemerals = false);
852 
853 enum class OverflowResult {
854   /// Always overflows in the direction of signed/unsigned min value.
855   AlwaysOverflowsLow,
856   /// Always overflows in the direction of signed/unsigned max value.
857   AlwaysOverflowsHigh,
858   /// May or may not overflow.
859   MayOverflow,
860   /// Never overflows.
861   NeverOverflows,
862 };
863 
864 OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
865                                              const SimplifyQuery &SQ,
866                                              bool IsNSW = false);
867 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
868                                            const SimplifyQuery &SQ);
869 OverflowResult
870 computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
871                               const WithCache<const Value *> &RHS,
872                               const SimplifyQuery &SQ);
873 OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
874                                            const WithCache<const Value *> &RHS,
875                                            const SimplifyQuery &SQ);
876 /// This version also leverages the sign bit of Add if known.
877 OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
878                                            const SimplifyQuery &SQ);
879 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
880                                              const SimplifyQuery &SQ);
881 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
882                                            const SimplifyQuery &SQ);
883 
884 /// Returns true if the arithmetic part of the \p WO 's result is
885 /// used only along the paths control dependent on the computation
886 /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
887 bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
888                                const DominatorTree &DT);
889 
890 /// Determine the possible constant range of vscale with the given bit width,
891 /// based on the vscale_range function attribute.
892 ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
893 
894 /// Determine the possible constant range of an integer or vector of integer
895 /// value. This is intended as a cheap, non-recursive check.
896 ConstantRange computeConstantRange(const Value *V, bool ForSigned,
897                                    bool UseInstrInfo = true,
898                                    AssumptionCache *AC = nullptr,
899                                    const Instruction *CtxI = nullptr,
900                                    const DominatorTree *DT = nullptr,
901                                    unsigned Depth = 0);
902 
903 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
904 ConstantRange
905 computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
906                                        bool ForSigned, const SimplifyQuery &SQ);
907 
908 /// Return true if this function can prove that the instruction I will
909 /// always transfer execution to one of its successors (including the next
910 /// instruction that follows within a basic block). E.g. this is not
911 /// guaranteed for function calls that could loop infinitely.
912 ///
913 /// In other words, this function returns false for instructions that may
914 /// transfer execution or fail to transfer execution in a way that is not
915 /// captured in the CFG nor in the sequence of instructions within a basic
916 /// block.
917 ///
918 /// Undefined behavior is assumed not to happen, so e.g. division is
919 /// guaranteed to transfer execution to the following instruction even
920 /// though division by zero might cause undefined behavior.
921 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
922 
923 /// Returns true if this block does not contain a potential implicit exit.
924 /// This is equivelent to saying that all instructions within the basic block
925 /// are guaranteed to transfer execution to their successor within the basic
926 /// block. This has the same assumptions w.r.t. undefined behavior as the
927 /// instruction variant of this function.
928 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
929 
930 /// Return true if every instruction in the range (Begin, End) is
931 /// guaranteed to transfer execution to its static successor. \p ScanLimit
932 /// bounds the search to avoid scanning huge blocks.
933 bool isGuaranteedToTransferExecutionToSuccessor(
934     BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
935     unsigned ScanLimit = 32);
936 
937 /// Same as previous, but with range expressed via iterator_range.
938 bool isGuaranteedToTransferExecutionToSuccessor(
939     iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
940 
941 /// Return true if this function can prove that the instruction I
942 /// is executed for every iteration of the loop L.
943 ///
944 /// Note that this currently only considers the loop header.
945 bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
946                                             const Loop *L);
947 
948 /// Return true if \p PoisonOp's user yields poison or raises UB if its
949 /// operand \p PoisonOp is poison.
950 ///
951 /// If \p PoisonOp is a vector or an aggregate and the operation's result is a
952 /// single value, any poison element in /p PoisonOp should make the result
953 /// poison or raise UB.
954 ///
955 /// To filter out operands that raise UB on poison, you can use
956 /// getGuaranteedNonPoisonOp.
957 bool propagatesPoison(const Use &PoisonOp);
958 
959 /// Insert operands of I into Ops such that I will trigger undefined behavior
960 /// if I is executed and that operand has a poison value.
961 void getGuaranteedNonPoisonOps(const Instruction *I,
962                                SmallVectorImpl<const Value *> &Ops);
963 
964 /// Insert operands of I into Ops such that I will trigger undefined behavior
965 /// if I is executed and that operand is not a well-defined value
966 /// (i.e. has undef bits or poison).
967 void getGuaranteedWellDefinedOps(const Instruction *I,
968                                  SmallVectorImpl<const Value *> &Ops);
969 
970 /// Return true if the given instruction must trigger undefined behavior
971 /// when I is executed with any operands which appear in KnownPoison holding
972 /// a poison value at the point of execution.
973 bool mustTriggerUB(const Instruction *I,
974                    const SmallPtrSetImpl<const Value *> &KnownPoison);
975 
976 /// Return true if this function can prove that if Inst is executed
977 /// and yields a poison value or undef bits, then that will trigger
978 /// undefined behavior.
979 ///
980 /// Note that this currently only considers the basic block that is
981 /// the parent of Inst.
982 bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
983 bool programUndefinedIfPoison(const Instruction *Inst);
984 
985 /// canCreateUndefOrPoison returns true if Op can create undef or poison from
986 /// non-undef & non-poison operands.
987 /// For vectors, canCreateUndefOrPoison returns true if there is potential
988 /// poison or undef in any element of the result when vectors without
989 /// undef/poison poison are given as operands.
990 /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
991 /// true. If Op raises immediate UB but never creates poison or undef
992 /// (e.g. sdiv I, 0), canCreatePoison returns false.
993 ///
994 /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
995 /// metadata on the instruction are considered.  This can be used to see if the
996 /// instruction could still introduce undef or poison even without poison
997 /// generating flags and metadata which might be on the instruction.
998 /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
999 /// poison or undef)
1000 ///
1001 /// canCreatePoison returns true if Op can create poison from non-poison
1002 /// operands.
1003 bool canCreateUndefOrPoison(const Operator *Op,
1004                             bool ConsiderFlagsAndMetadata = true);
1005 bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
1006 
1007 /// Return true if V is poison given that ValAssumedPoison is already poison.
1008 /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
1009 /// impliesPoison returns true.
1010 bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
1011 
1012 /// Return true if this function can prove that V does not have undef bits
1013 /// and is never poison. If V is an aggregate value or vector, check whether
1014 /// all elements (except padding) are not undef or poison.
1015 /// Note that this is different from canCreateUndefOrPoison because the
1016 /// function assumes Op's operands are not poison/undef.
1017 ///
1018 /// If CtxI and DT are specified this method performs flow-sensitive analysis
1019 /// and returns true if it is guaranteed to be never undef or poison
1020 /// immediately before the CtxI.
1021 bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
1022                                       AssumptionCache *AC = nullptr,
1023                                       const Instruction *CtxI = nullptr,
1024                                       const DominatorTree *DT = nullptr,
1025                                       unsigned Depth = 0);
1026 
1027 /// Returns true if V cannot be poison, but may be undef.
1028 bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
1029                                const Instruction *CtxI = nullptr,
1030                                const DominatorTree *DT = nullptr,
1031                                unsigned Depth = 0);
1032 
1033 inline bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
1034                                       BasicBlock::iterator CtxI,
1035                                       const DominatorTree *DT = nullptr,
1036                                       unsigned Depth = 0) {
1037   // Takes an iterator as a position, passes down to Instruction *
1038   // implementation.
1039   return isGuaranteedNotToBePoison(V, AC, &*CtxI, DT, Depth);
1040 }
1041 
1042 /// Returns true if V cannot be undef, but may be poison.
1043 bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1044                               const Instruction *CtxI = nullptr,
1045                               const DominatorTree *DT = nullptr,
1046                               unsigned Depth = 0);
1047 
1048 /// Return true if undefined behavior would provable be executed on the path to
1049 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
1050 /// anything about whether OnPathTo is actually executed or whether Root is
1051 /// actually poison.  This can be used to assess whether a new use of Root can
1052 /// be added at a location which is control equivalent with OnPathTo (such as
1053 /// immediately before it) without introducing UB which didn't previously
1054 /// exist.  Note that a false result conveys no information.
1055 bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1056                                    Instruction *OnPathTo,
1057                                    DominatorTree *DT);
1058 
1059 /// Specific patterns of select instructions we can match.
1060 enum SelectPatternFlavor {
1061   SPF_UNKNOWN = 0,
1062   SPF_SMIN,    /// Signed minimum
1063   SPF_UMIN,    /// Unsigned minimum
1064   SPF_SMAX,    /// Signed maximum
1065   SPF_UMAX,    /// Unsigned maximum
1066   SPF_FMINNUM, /// Floating point minnum
1067   SPF_FMAXNUM, /// Floating point maxnum
1068   SPF_ABS,     /// Absolute value
1069   SPF_NABS     /// Negated absolute value
1070 };
1071 
1072 /// Behavior when a floating point min/max is given one NaN and one
1073 /// non-NaN as input.
1074 enum SelectPatternNaNBehavior {
1075   SPNB_NA = 0,        /// NaN behavior not applicable.
1076   SPNB_RETURNS_NAN,   /// Given one NaN input, returns the NaN.
1077   SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1078   SPNB_RETURNS_ANY    /// Given one NaN input, can return either (or
1079                       /// it has been determined that no operands can
1080                       /// be NaN).
1081 };
1082 
1083 struct SelectPatternResult {
1084   SelectPatternFlavor Flavor;
1085   SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1086                                         /// SPF_FMINNUM or SPF_FMAXNUM.
1087   bool Ordered; /// When implementing this min/max pattern as
1088                 /// fcmp; select, does the fcmp have to be
1089                 /// ordered?
1090 
1091   /// Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult1092   static bool isMinOrMax(SelectPatternFlavor SPF) {
1093     return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1094   }
1095 };
1096 
1097 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1098 /// and providing the out parameter results if we successfully match.
1099 ///
1100 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1101 /// the negation instruction from the idiom.
1102 ///
1103 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1104 /// not match that of the original select. If this is the case, the cast
1105 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
1106 /// type of LHS and RHS into the type of V is returned in CastOp.
1107 ///
1108 /// For example:
1109 ///   %1 = icmp slt i32 %a, i32 4
1110 ///   %2 = sext i32 %a to i64
1111 ///   %3 = select i1 %1, i64 %2, i64 4
1112 ///
1113 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1114 ///
1115 SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1116                                        Instruction::CastOps *CastOp = nullptr,
1117                                        unsigned Depth = 0);
1118 
matchSelectPattern(const Value * V,const Value * & LHS,const Value * & RHS)1119 inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
1120                                               const Value *&RHS) {
1121   Value *L = const_cast<Value *>(LHS);
1122   Value *R = const_cast<Value *>(RHS);
1123   auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1124   LHS = L;
1125   RHS = R;
1126   return Result;
1127 }
1128 
1129 /// Determine the pattern that a select with the given compare as its
1130 /// predicate and given values as its true/false operands would match.
1131 SelectPatternResult matchDecomposedSelectPattern(
1132     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1133     Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1134 
1135 /// Return the canonical comparison predicate for the specified
1136 /// minimum/maximum flavor.
1137 CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1138 
1139 /// Return the inverse minimum/maximum flavor of the specified flavor.
1140 /// For example, signed minimum is the inverse of signed maximum.
1141 SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
1142 
1143 Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
1144 
1145 /// Return the minimum or maximum constant value for the specified integer
1146 /// min/max flavor and type.
1147 APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1148 
1149 /// Check if the values in \p VL are select instructions that can be converted
1150 /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1151 /// conversion is possible, together with a bool indicating whether all select
1152 /// conditions are only used by the selects. Otherwise return
1153 /// Intrinsic::not_intrinsic.
1154 std::pair<Intrinsic::ID, bool>
1155 canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1156 
1157 /// Attempt to match a simple first order recurrence cycle of the form:
1158 ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1159 ///   %inc = binop %iv, %step
1160 /// OR
1161 ///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1162 ///   %inc = binop %step, %iv
1163 ///
1164 /// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1165 ///
1166 /// A couple of notes on subtleties in that definition:
1167 /// * The Step does not have to be loop invariant.  In math terms, it can
1168 ///   be a free variable.  We allow recurrences with both constant and
1169 ///   variable coefficients. Callers may wish to filter cases where Step
1170 ///   does not dominate P.
1171 /// * For non-commutative operators, we will match both forms.  This
1172 ///   results in some odd recurrence structures.  Callers may wish to filter
1173 ///   out recurrences where the phi is not the LHS of the returned operator.
1174 /// * Because of the structure matched, the caller can assume as a post
1175 ///   condition of the match the presence of a Loop with P's parent as it's
1176 ///   header *except* in unreachable code.  (Dominance decays in unreachable
1177 ///   code.)
1178 ///
1179 /// NOTE: This is intentional simple.  If you want the ability to analyze
1180 /// non-trivial loop conditons, see ScalarEvolution instead.
1181 bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1182                            Value *&Step);
1183 
1184 /// Analogous to the above, but starting from the binary operator
1185 bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1186                            Value *&Step);
1187 
1188 /// Return true if RHS is known to be implied true by LHS.  Return false if
1189 /// RHS is known to be implied false by LHS.  Otherwise, return std::nullopt if
1190 /// no implication can be made. A & B must be i1 (boolean) values or a vector of
1191 /// such values. Note that the truth table for implication is the same as <=u on
1192 /// i1 values (but not
1193 /// <=s!).  The truth table for both is:
1194 ///    | T | F (B)
1195 ///  T | T | F
1196 ///  F | T | T
1197 /// (A)
1198 std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1199                                        const DataLayout &DL,
1200                                        bool LHSIsTrue = true,
1201                                        unsigned Depth = 0);
1202 std::optional<bool> isImpliedCondition(const Value *LHS,
1203                                        CmpInst::Predicate RHSPred,
1204                                        const Value *RHSOp0, const Value *RHSOp1,
1205                                        const DataLayout &DL,
1206                                        bool LHSIsTrue = true,
1207                                        unsigned Depth = 0);
1208 
1209 /// Return the boolean condition value in the context of the given instruction
1210 /// if it is known based on dominating conditions.
1211 std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1212                                             const Instruction *ContextI,
1213                                             const DataLayout &DL);
1214 std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
1215                                             const Value *LHS, const Value *RHS,
1216                                             const Instruction *ContextI,
1217                                             const DataLayout &DL);
1218 
1219 /// Call \p InsertAffected on all Values whose known bits / value may be
1220 /// affected by the condition \p Cond. Used by AssumptionCache and
1221 /// DomConditionCache.
1222 void findValuesAffectedByCondition(Value *Cond, bool IsAssume,
1223                                    function_ref<void(Value *)> InsertAffected);
1224 
1225 } // end namespace llvm
1226 
1227 #endif // LLVM_ANALYSIS_VALUETRACKING_H
1228