1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Sequence.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/ModRef.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <optional>
51 #include <vector>
52 
53 namespace llvm {
54 
55 class AnalysisUsage;
56 class AtomicCmpXchgInst;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class LoopInfo;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
AliasResult(const Kind & Alias)112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
Kind()115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
117   bool operator==(const AliasResult &Other) const {
118     return Alias == Other.Alias && HasOffset == Other.HasOffset &&
119            Offset == Other.Offset;
120   }
121   bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
122 
123   bool operator==(Kind K) const { return Alias == K; }
124   bool operator!=(Kind K) const { return !(*this == K); }
125 
hasOffset()126   constexpr bool hasOffset() const { return HasOffset; }
getOffset()127   constexpr int32_t getOffset() const {
128     assert(HasOffset && "No offset!");
129     return Offset;
130   }
setOffset(int32_t NewOffset)131   void setOffset(int32_t NewOffset) {
132     if (isInt<OffsetBits>(NewOffset)) {
133       HasOffset = true;
134       Offset = NewOffset;
135     }
136   }
137 
138   /// Helper for processing AliasResult for swapped memory location pairs.
139   void swap(bool DoSwap = true) {
140     if (DoSwap && hasOffset())
141       setOffset(-getOffset());
142   }
143 };
144 
145 static_assert(sizeof(AliasResult) == 4,
146               "AliasResult size is intended to be 4 bytes!");
147 
148 /// << operator for AliasResult.
149 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
150 
151 /// Virtual base class for providers of capture information.
152 struct CaptureInfo {
153   virtual ~CaptureInfo() = 0;
154 
155   /// Check whether Object is not captured before instruction I. If OrAt is
156   /// true, captures by instruction I itself are also considered.
157   ///
158   /// If I is nullptr, then captures at any point will be considered.
159   virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I,
160                                    bool OrAt) = 0;
161 };
162 
163 /// Context-free CaptureInfo provider, which computes and caches whether an
164 /// object is captured in the function at all, but does not distinguish whether
165 /// it was captured before or after the context instruction.
166 class SimpleCaptureInfo final : public CaptureInfo {
167   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
168 
169 public:
170   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
171                            bool OrAt) override;
172 };
173 
174 /// Context-sensitive CaptureInfo provider, which computes and caches the
175 /// earliest common dominator closure of all captures. It provides a good
176 /// approximation to a precise "captures before" analysis.
177 class EarliestEscapeInfo final : public CaptureInfo {
178   DominatorTree &DT;
179   const LoopInfo *LI;
180 
181   /// Map from identified local object to an instruction before which it does
182   /// not escape, or nullptr if it never escapes. The "earliest" instruction
183   /// may be a conservative approximation, e.g. the first instruction in the
184   /// function is always a legal choice.
185   DenseMap<const Value *, Instruction *> EarliestEscapes;
186 
187   /// Reverse map from instruction to the objects it is the earliest escape for.
188   /// This is used for cache invalidation purposes.
189   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
190 
191 public:
192   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo *LI = nullptr)
DT(DT)193       : DT(DT), LI(LI) {}
194 
195   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
196                            bool OrAt) override;
197 
198   void removeInstruction(Instruction *I);
199 };
200 
201 /// Cache key for BasicAA results. It only includes the pointer and size from
202 /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
203 /// the value of MayBeCrossIteration, which may affect BasicAA results.
204 struct AACacheLoc {
205   using PtrTy = PointerIntPair<const Value *, 1, bool>;
206   PtrTy Ptr;
207   LocationSize Size;
208 
AACacheLocAACacheLoc209   AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
AACacheLocAACacheLoc210   AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
211       : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
212 };
213 
214 template <> struct DenseMapInfo<AACacheLoc> {
215   static inline AACacheLoc getEmptyKey() {
216     return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
217             DenseMapInfo<LocationSize>::getEmptyKey()};
218   }
219   static inline AACacheLoc getTombstoneKey() {
220     return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
221             DenseMapInfo<LocationSize>::getTombstoneKey()};
222   }
223   static unsigned getHashValue(const AACacheLoc &Val) {
224     return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
225            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
226   }
227   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
228     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
229   }
230 };
231 
232 class AAResults;
233 
234 /// This class stores info we want to provide to or retain within an alias
235 /// query. By default, the root query is stateless and starts with a freshly
236 /// constructed info object. Specific alias analyses can use this query info to
237 /// store per-query state that is important for recursive or nested queries to
238 /// avoid recomputing. To enable preserving this state across multiple queries
239 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
240 /// The information stored in an `AAQueryInfo` is currently limitted to the
241 /// caches used by BasicAA, but can further be extended to fit other AA needs.
242 class AAQueryInfo {
243 public:
244   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
245   struct CacheEntry {
246     AliasResult Result;
247     /// Number of times a NoAlias assumption has been used.
248     /// 0 for assumptions that have not been used, -1 for definitive results.
249     int NumAssumptionUses;
250     /// Whether this is a definitive (non-assumption) result.
251     bool isDefinitive() const { return NumAssumptionUses < 0; }
252   };
253 
254   // Alias analysis result aggregration using which this query is performed.
255   // Can be used to perform recursive queries.
256   AAResults &AAR;
257 
258   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
259   AliasCacheT AliasCache;
260 
261   CaptureInfo *CI;
262 
263   /// Query depth used to distinguish recursive queries.
264   unsigned Depth = 0;
265 
266   /// How many active NoAlias assumption uses there are.
267   int NumAssumptionUses = 0;
268 
269   /// Location pairs for which an assumption based result is currently stored.
270   /// Used to remove all potentially incorrect results from the cache if an
271   /// assumption is disproven.
272   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
273 
274   /// Tracks whether the accesses may be on different cycle iterations.
275   ///
276   /// When interpret "Value" pointer equality as value equality we need to make
277   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
278   /// come from different "iterations" of a cycle and see different values for
279   /// the same "Value" pointer.
280   ///
281   /// The following example shows the problem:
282   ///   %p = phi(%alloca1, %addr2)
283   ///   %l = load %ptr
284   ///   %addr1 = gep, %alloca2, 0, %l
285   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
286   ///      alias(%p, %addr1) -> MayAlias !
287   ///   store %l, ...
288   bool MayBeCrossIteration = false;
289 
290   /// Whether alias analysis is allowed to use the dominator tree, for use by
291   /// passes that lazily update the DT while performing AA queries.
292   bool UseDominatorTree = true;
293 
294   AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
295 };
296 
297 /// AAQueryInfo that uses SimpleCaptureInfo.
298 class SimpleAAQueryInfo : public AAQueryInfo {
299   SimpleCaptureInfo CI;
300 
301 public:
302   SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
303 };
304 
305 class BatchAAResults;
306 
307 class AAResults {
308 public:
309   // Make these results default constructable and movable. We have to spell
310   // these out because MSVC won't synthesize them.
311   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
312   AAResults(AAResults &&Arg);
313   ~AAResults();
314 
315   /// Register a specific AA result.
316   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
317     // FIXME: We should use a much lighter weight system than the usual
318     // polymorphic pattern because we don't own AAResult. It should
319     // ideally involve two pointers and no separate allocation.
320     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
321   }
322 
323   /// Register a function analysis ID that the results aggregation depends on.
324   ///
325   /// This is used in the new pass manager to implement the invalidation logic
326   /// where we must invalidate the results aggregation if any of our component
327   /// analyses become invalid.
328   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
329 
330   /// Handle invalidation events in the new pass manager.
331   ///
332   /// The aggregation is invalidated if any of the underlying analyses is
333   /// invalidated.
334   bool invalidate(Function &F, const PreservedAnalyses &PA,
335                   FunctionAnalysisManager::Invalidator &Inv);
336 
337   //===--------------------------------------------------------------------===//
338   /// \name Alias Queries
339   /// @{
340 
341   /// The main low level interface to the alias analysis implementation.
342   /// Returns an AliasResult indicating whether the two pointers are aliased to
343   /// each other. This is the interface that must be implemented by specific
344   /// alias analysis implementations.
345   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
346 
347   /// A convenience wrapper around the primary \c alias interface.
348   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
349                     LocationSize V2Size) {
350     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
351   }
352 
353   /// A convenience wrapper around the primary \c alias interface.
354   AliasResult alias(const Value *V1, const Value *V2) {
355     return alias(MemoryLocation::getBeforeOrAfter(V1),
356                  MemoryLocation::getBeforeOrAfter(V2));
357   }
358 
359   /// A trivial helper function to check to see if the specified pointers are
360   /// no-alias.
361   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
362     return alias(LocA, LocB) == AliasResult::NoAlias;
363   }
364 
365   /// A convenience wrapper around the \c isNoAlias helper interface.
366   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
367                  LocationSize V2Size) {
368     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
369   }
370 
371   /// A convenience wrapper around the \c isNoAlias helper interface.
372   bool isNoAlias(const Value *V1, const Value *V2) {
373     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
374                      MemoryLocation::getBeforeOrAfter(V2));
375   }
376 
377   /// A trivial helper function to check to see if the specified pointers are
378   /// must-alias.
379   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
380     return alias(LocA, LocB) == AliasResult::MustAlias;
381   }
382 
383   /// A convenience wrapper around the \c isMustAlias helper interface.
384   bool isMustAlias(const Value *V1, const Value *V2) {
385     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
386            AliasResult::MustAlias;
387   }
388 
389   /// Checks whether the given location points to constant memory, or if
390   /// \p OrLocal is true whether it points to a local alloca.
391   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
392     return isNoModRef(getModRefInfoMask(Loc, OrLocal));
393   }
394 
395   /// A convenience wrapper around the primary \c pointsToConstantMemory
396   /// interface.
397   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
398     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
399   }
400 
401   /// @}
402   //===--------------------------------------------------------------------===//
403   /// \name Simple mod/ref information
404   /// @{
405 
406   /// Returns a bitmask that should be unconditionally applied to the ModRef
407   /// info of a memory location. This allows us to eliminate Mod and/or Ref
408   /// from the ModRef info based on the knowledge that the memory location
409   /// points to constant and/or locally-invariant memory.
410   ///
411   /// If IgnoreLocals is true, then this method returns NoModRef for memory
412   /// that points to a local alloca.
413   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
414                                bool IgnoreLocals = false);
415 
416   /// A convenience wrapper around the primary \c getModRefInfoMask
417   /// interface.
418   ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
419     return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
420   }
421 
422   /// Get the ModRef info associated with a pointer argument of a call. The
423   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
424   /// that these bits do not necessarily account for the overall behavior of
425   /// the function, but rather only provide additional per-argument
426   /// information.
427   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
428 
429   /// Return the behavior of the given call site.
430   MemoryEffects getMemoryEffects(const CallBase *Call);
431 
432   /// Return the behavior when calling the given function.
433   MemoryEffects getMemoryEffects(const Function *F);
434 
435   /// Checks if the specified call is known to never read or write memory.
436   ///
437   /// Note that if the call only reads from known-constant memory, it is also
438   /// legal to return true. Also, calls that unwind the stack are legal for
439   /// this predicate.
440   ///
441   /// Many optimizations (such as CSE and LICM) can be performed on such calls
442   /// without worrying about aliasing properties, and many calls have this
443   /// property (e.g. calls to 'sin' and 'cos').
444   ///
445   /// This property corresponds to the GCC 'const' attribute.
446   bool doesNotAccessMemory(const CallBase *Call) {
447     return getMemoryEffects(Call).doesNotAccessMemory();
448   }
449 
450   /// Checks if the specified function is known to never read or write memory.
451   ///
452   /// Note that if the function only reads from known-constant memory, it is
453   /// also legal to return true. Also, function that unwind the stack are legal
454   /// for this predicate.
455   ///
456   /// Many optimizations (such as CSE and LICM) can be performed on such calls
457   /// to such functions without worrying about aliasing properties, and many
458   /// functions have this property (e.g. 'sin' and 'cos').
459   ///
460   /// This property corresponds to the GCC 'const' attribute.
461   bool doesNotAccessMemory(const Function *F) {
462     return getMemoryEffects(F).doesNotAccessMemory();
463   }
464 
465   /// Checks if the specified call is known to only read from non-volatile
466   /// memory (or not access memory at all).
467   ///
468   /// Calls that unwind the stack are legal for this predicate.
469   ///
470   /// This property allows many common optimizations to be performed in the
471   /// absence of interfering store instructions, such as CSE of strlen calls.
472   ///
473   /// This property corresponds to the GCC 'pure' attribute.
474   bool onlyReadsMemory(const CallBase *Call) {
475     return getMemoryEffects(Call).onlyReadsMemory();
476   }
477 
478   /// Checks if the specified function is known to only read from non-volatile
479   /// memory (or not access memory at all).
480   ///
481   /// Functions that unwind the stack are legal for this predicate.
482   ///
483   /// This property allows many common optimizations to be performed in the
484   /// absence of interfering store instructions, such as CSE of strlen calls.
485   ///
486   /// This property corresponds to the GCC 'pure' attribute.
487   bool onlyReadsMemory(const Function *F) {
488     return getMemoryEffects(F).onlyReadsMemory();
489   }
490 
491   /// Check whether or not an instruction may read or write the optionally
492   /// specified memory location.
493   ///
494   ///
495   /// An instruction that doesn't read or write memory may be trivially LICM'd
496   /// for example.
497   ///
498   /// For function calls, this delegates to the alias-analysis specific
499   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
500   /// helpers above.
501   ModRefInfo getModRefInfo(const Instruction *I,
502                            const std::optional<MemoryLocation> &OptLoc) {
503     SimpleAAQueryInfo AAQIP(*this);
504     return getModRefInfo(I, OptLoc, AAQIP);
505   }
506 
507   /// A convenience wrapper for constructing the memory location.
508   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
509                            LocationSize Size) {
510     return getModRefInfo(I, MemoryLocation(P, Size));
511   }
512 
513   /// Return information about whether a call and an instruction may refer to
514   /// the same memory locations.
515   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
516 
517   /// Return information about whether a particular call site modifies
518   /// or reads the specified memory location \p MemLoc before instruction \p I
519   /// in a BasicBlock.
520   ModRefInfo callCapturesBefore(const Instruction *I,
521                                 const MemoryLocation &MemLoc,
522                                 DominatorTree *DT) {
523     SimpleAAQueryInfo AAQIP(*this);
524     return callCapturesBefore(I, MemLoc, DT, AAQIP);
525   }
526 
527   /// A convenience wrapper to synthesize a memory location.
528   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
529                                 LocationSize Size, DominatorTree *DT) {
530     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
531   }
532 
533   /// @}
534   //===--------------------------------------------------------------------===//
535   /// \name Higher level methods for querying mod/ref information.
536   /// @{
537 
538   /// Check if it is possible for execution of the specified basic block to
539   /// modify the location Loc.
540   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
541 
542   /// A convenience wrapper synthesizing a memory location.
543   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
544                            LocationSize Size) {
545     return canBasicBlockModify(BB, MemoryLocation(P, Size));
546   }
547 
548   /// Check if it is possible for the execution of the specified instructions
549   /// to mod\ref (according to the mode) the location Loc.
550   ///
551   /// The instructions to consider are all of the instructions in the range of
552   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
553   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
554                                  const MemoryLocation &Loc,
555                                  const ModRefInfo Mode);
556 
557   /// A convenience wrapper synthesizing a memory location.
558   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
559                                  const Value *Ptr, LocationSize Size,
560                                  const ModRefInfo Mode) {
561     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
562   }
563 
564   // CtxI can be nullptr, in which case the query is whether or not the aliasing
565   // relationship holds through the entire function.
566   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
567                     AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
568 
569   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
570                                bool IgnoreLocals = false);
571   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
572                            AAQueryInfo &AAQIP);
573   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
574                            AAQueryInfo &AAQI);
575   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
576                            AAQueryInfo &AAQI);
577   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
578                            AAQueryInfo &AAQI);
579   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
580                            AAQueryInfo &AAQI);
581   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
582                            AAQueryInfo &AAQI);
583   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
584                            AAQueryInfo &AAQI);
585   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
586                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
587   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
588                            AAQueryInfo &AAQI);
589   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
590                            AAQueryInfo &AAQI);
591   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
592                            AAQueryInfo &AAQI);
593   ModRefInfo getModRefInfo(const Instruction *I,
594                            const std::optional<MemoryLocation> &OptLoc,
595                            AAQueryInfo &AAQIP);
596   ModRefInfo callCapturesBefore(const Instruction *I,
597                                 const MemoryLocation &MemLoc, DominatorTree *DT,
598                                 AAQueryInfo &AAQIP);
599   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
600 
601 private:
602   class Concept;
603 
604   template <typename T> class Model;
605 
606   friend class AAResultBase;
607 
608   const TargetLibraryInfo &TLI;
609 
610   std::vector<std::unique_ptr<Concept>> AAs;
611 
612   std::vector<AnalysisKey *> AADeps;
613 
614   friend class BatchAAResults;
615 };
616 
617 /// This class is a wrapper over an AAResults, and it is intended to be used
618 /// only when there are no IR changes inbetween queries. BatchAAResults is
619 /// reusing the same `AAQueryInfo` to preserve the state across queries,
620 /// esentially making AA work in "batch mode". The internal state cannot be
621 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
622 /// or create a new BatchAAResults.
623 class BatchAAResults {
624   AAResults &AA;
625   AAQueryInfo AAQI;
626   SimpleCaptureInfo SimpleCI;
627 
628 public:
629   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
630   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
631 
632   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
633     return AA.alias(LocA, LocB, AAQI);
634   }
635   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
636     return isNoModRef(AA.getModRefInfoMask(Loc, AAQI, OrLocal));
637   }
638   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
639                                bool IgnoreLocals = false) {
640     return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
641   }
642   ModRefInfo getModRefInfo(const Instruction *I,
643                            const std::optional<MemoryLocation> &OptLoc) {
644     return AA.getModRefInfo(I, OptLoc, AAQI);
645   }
646   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
647     return AA.getModRefInfo(I, Call2, AAQI);
648   }
649   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
650     return AA.getArgModRefInfo(Call, ArgIdx);
651   }
652   MemoryEffects getMemoryEffects(const CallBase *Call) {
653     return AA.getMemoryEffects(Call, AAQI);
654   }
655   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
656     return alias(LocA, LocB) == AliasResult::MustAlias;
657   }
658   bool isMustAlias(const Value *V1, const Value *V2) {
659     return alias(MemoryLocation(V1, LocationSize::precise(1)),
660                  MemoryLocation(V2, LocationSize::precise(1))) ==
661            AliasResult::MustAlias;
662   }
663   ModRefInfo callCapturesBefore(const Instruction *I,
664                                 const MemoryLocation &MemLoc,
665                                 DominatorTree *DT) {
666     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
667   }
668 
669   /// Assume that values may come from different cycle iterations.
670   void enableCrossIterationMode() {
671     AAQI.MayBeCrossIteration = true;
672   }
673 
674   /// Disable the use of the dominator tree during alias analysis queries.
675   void disableDominatorTree() { AAQI.UseDominatorTree = false; }
676 };
677 
678 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
679 /// pointer or reference.
680 using AliasAnalysis = AAResults;
681 
682 /// A private abstract base class describing the concept of an individual alias
683 /// analysis implementation.
684 ///
685 /// This interface is implemented by any \c Model instantiation. It is also the
686 /// interface which a type used to instantiate the model must provide.
687 ///
688 /// All of these methods model methods by the same name in the \c
689 /// AAResults class. Only differences and specifics to how the
690 /// implementations are called are documented here.
691 class AAResults::Concept {
692 public:
693   virtual ~Concept() = 0;
694 
695   //===--------------------------------------------------------------------===//
696   /// \name Alias Queries
697   /// @{
698 
699   /// The main low level interface to the alias analysis implementation.
700   /// Returns an AliasResult indicating whether the two pointers are aliased to
701   /// each other. This is the interface that must be implemented by specific
702   /// alias analysis implementations.
703   virtual AliasResult alias(const MemoryLocation &LocA,
704                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
705                             const Instruction *CtxI) = 0;
706 
707   /// @}
708   //===--------------------------------------------------------------------===//
709   /// \name Simple mod/ref information
710   /// @{
711 
712   /// Returns a bitmask that should be unconditionally applied to the ModRef
713   /// info of a memory location. This allows us to eliminate Mod and/or Ref from
714   /// the ModRef info based on the knowledge that the memory location points to
715   /// constant and/or locally-invariant memory.
716   virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
717                                        AAQueryInfo &AAQI,
718                                        bool IgnoreLocals) = 0;
719 
720   /// Get the ModRef info associated with a pointer argument of a callsite. The
721   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
722   /// that these bits do not necessarily account for the overall behavior of
723   /// the function, but rather only provide additional per-argument
724   /// information.
725   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
726                                       unsigned ArgIdx) = 0;
727 
728   /// Return the behavior of the given call site.
729   virtual MemoryEffects getMemoryEffects(const CallBase *Call,
730                                          AAQueryInfo &AAQI) = 0;
731 
732   /// Return the behavior when calling the given function.
733   virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
734 
735   /// getModRefInfo (for call sites) - Return information about whether
736   /// a particular call site modifies or reads the specified memory location.
737   virtual ModRefInfo getModRefInfo(const CallBase *Call,
738                                    const MemoryLocation &Loc,
739                                    AAQueryInfo &AAQI) = 0;
740 
741   /// Return information about whether two call sites may refer to the same set
742   /// of memory locations. See the AA documentation for details:
743   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
744   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
745                                    AAQueryInfo &AAQI) = 0;
746 
747   /// @}
748 };
749 
750 /// A private class template which derives from \c Concept and wraps some other
751 /// type.
752 ///
753 /// This models the concept by directly forwarding each interface point to the
754 /// wrapped type which must implement a compatible interface. This provides
755 /// a type erased binding.
756 template <typename AAResultT> class AAResults::Model final : public Concept {
757   AAResultT &Result;
758 
759 public:
760   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
761   ~Model() override = default;
762 
763   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
764                     AAQueryInfo &AAQI, const Instruction *CtxI) override {
765     return Result.alias(LocA, LocB, AAQI, CtxI);
766   }
767 
768   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
769                                bool IgnoreLocals) override {
770     return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
771   }
772 
773   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
774     return Result.getArgModRefInfo(Call, ArgIdx);
775   }
776 
777   MemoryEffects getMemoryEffects(const CallBase *Call,
778                                  AAQueryInfo &AAQI) override {
779     return Result.getMemoryEffects(Call, AAQI);
780   }
781 
782   MemoryEffects getMemoryEffects(const Function *F) override {
783     return Result.getMemoryEffects(F);
784   }
785 
786   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
787                            AAQueryInfo &AAQI) override {
788     return Result.getModRefInfo(Call, Loc, AAQI);
789   }
790 
791   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
792                            AAQueryInfo &AAQI) override {
793     return Result.getModRefInfo(Call1, Call2, AAQI);
794   }
795 };
796 
797 /// A base class to help implement the function alias analysis results concept.
798 ///
799 /// Because of the nature of many alias analysis implementations, they often
800 /// only implement a subset of the interface. This base class will attempt to
801 /// implement the remaining portions of the interface in terms of simpler forms
802 /// of the interface where possible, and otherwise provide conservatively
803 /// correct fallback implementations.
804 ///
805 /// Implementors of an alias analysis should derive from this class, and then
806 /// override specific methods that they wish to customize. There is no need to
807 /// use virtual anywhere.
808 class AAResultBase {
809 protected:
810   explicit AAResultBase() = default;
811 
812   // Provide all the copy and move constructors so that derived types aren't
813   // constrained.
814   AAResultBase(const AAResultBase &Arg) {}
815   AAResultBase(AAResultBase &&Arg) {}
816 
817 public:
818   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
819                     AAQueryInfo &AAQI, const Instruction *I) {
820     return AliasResult::MayAlias;
821   }
822 
823   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
824                                bool IgnoreLocals) {
825     return ModRefInfo::ModRef;
826   }
827 
828   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
829     return ModRefInfo::ModRef;
830   }
831 
832   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
833     return MemoryEffects::unknown();
834   }
835 
836   MemoryEffects getMemoryEffects(const Function *F) {
837     return MemoryEffects::unknown();
838   }
839 
840   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
841                            AAQueryInfo &AAQI) {
842     return ModRefInfo::ModRef;
843   }
844 
845   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
846                            AAQueryInfo &AAQI) {
847     return ModRefInfo::ModRef;
848   }
849 };
850 
851 /// Return true if this pointer is returned by a noalias function.
852 bool isNoAliasCall(const Value *V);
853 
854 /// Return true if this pointer refers to a distinct and identifiable object.
855 /// This returns true for:
856 ///    Global Variables and Functions (but not Global Aliases)
857 ///    Allocas
858 ///    ByVal and NoAlias Arguments
859 ///    NoAlias returns (e.g. calls to malloc)
860 ///
861 bool isIdentifiedObject(const Value *V);
862 
863 /// Return true if V is umabigously identified at the function-level.
864 /// Different IdentifiedFunctionLocals can't alias.
865 /// Further, an IdentifiedFunctionLocal can not alias with any function
866 /// arguments other than itself, which is not necessarily true for
867 /// IdentifiedObjects.
868 bool isIdentifiedFunctionLocal(const Value *V);
869 
870 /// Returns true if the pointer is one which would have been considered an
871 /// escape by isNonEscapingLocalObject.
872 bool isEscapeSource(const Value *V);
873 
874 /// Return true if Object memory is not visible after an unwind, in the sense
875 /// that program semantics cannot depend on Object containing any particular
876 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
877 /// to true, then the memory is only not visible if the object has not been
878 /// captured prior to the unwind. Otherwise it is not visible even if captured.
879 bool isNotVisibleOnUnwind(const Value *Object,
880                           bool &RequiresNoCaptureBeforeUnwind);
881 
882 /// Return true if the Object is writable, in the sense that any location based
883 /// on this pointer that can be loaded can also be stored to without trapping.
884 /// Additionally, at the point Object is declared, stores can be introduced
885 /// without data races. At later points, this is only the case if the pointer
886 /// can not escape to a different thread.
887 ///
888 /// If ExplicitlyDereferenceableOnly is set to true, this property only holds
889 /// for the part of Object that is explicitly marked as dereferenceable, e.g.
890 /// using the dereferenceable(N) attribute. It does not necessarily hold for
891 /// parts that are only known to be dereferenceable due to the presence of
892 /// loads.
893 bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
894 
895 /// A manager for alias analyses.
896 ///
897 /// This class can have analyses registered with it and when run, it will run
898 /// all of them and aggregate their results into single AA results interface
899 /// that dispatches across all of the alias analysis results available.
900 ///
901 /// Note that the order in which analyses are registered is very significant.
902 /// That is the order in which the results will be aggregated and queried.
903 ///
904 /// This manager effectively wraps the AnalysisManager for registering alias
905 /// analyses. When you register your alias analysis with this manager, it will
906 /// ensure the analysis itself is registered with its AnalysisManager.
907 ///
908 /// The result of this analysis is only invalidated if one of the particular
909 /// aggregated AA results end up being invalidated. This removes the need to
910 /// explicitly preserve the results of `AAManager`. Note that analyses should no
911 /// longer be registered once the `AAManager` is run.
912 class AAManager : public AnalysisInfoMixin<AAManager> {
913 public:
914   using Result = AAResults;
915 
916   /// Register a specific AA result.
917   template <typename AnalysisT> void registerFunctionAnalysis() {
918     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
919   }
920 
921   /// Register a specific AA result.
922   template <typename AnalysisT> void registerModuleAnalysis() {
923     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
924   }
925 
926   Result run(Function &F, FunctionAnalysisManager &AM);
927 
928 private:
929   friend AnalysisInfoMixin<AAManager>;
930 
931   static AnalysisKey Key;
932 
933   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
934                        AAResults &AAResults),
935               4> ResultGetters;
936 
937   template <typename AnalysisT>
938   static void getFunctionAAResultImpl(Function &F,
939                                       FunctionAnalysisManager &AM,
940                                       AAResults &AAResults) {
941     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
942     AAResults.addAADependencyID(AnalysisT::ID());
943   }
944 
945   template <typename AnalysisT>
946   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
947                                     AAResults &AAResults) {
948     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
949     if (auto *R =
950             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
951       AAResults.addAAResult(*R);
952       MAMProxy
953           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
954     }
955   }
956 };
957 
958 /// A wrapper pass to provide the legacy pass manager access to a suitably
959 /// prepared AAResults object.
960 class AAResultsWrapperPass : public FunctionPass {
961   std::unique_ptr<AAResults> AAR;
962 
963 public:
964   static char ID;
965 
966   AAResultsWrapperPass();
967 
968   AAResults &getAAResults() { return *AAR; }
969   const AAResults &getAAResults() const { return *AAR; }
970 
971   bool runOnFunction(Function &F) override;
972 
973   void getAnalysisUsage(AnalysisUsage &AU) const override;
974 };
975 
976 /// A wrapper pass for external alias analyses. This just squirrels away the
977 /// callback used to run any analyses and register their results.
978 struct ExternalAAWrapperPass : ImmutablePass {
979   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
980 
981   CallbackT CB;
982 
983   static char ID;
984 
985   ExternalAAWrapperPass();
986 
987   explicit ExternalAAWrapperPass(CallbackT CB);
988 
989   void getAnalysisUsage(AnalysisUsage &AU) const override {
990     AU.setPreservesAll();
991   }
992 };
993 
994 /// A wrapper pass around a callback which can be used to populate the
995 /// AAResults in the AAResultsWrapperPass from an external AA.
996 ///
997 /// The callback provided here will be used each time we prepare an AAResults
998 /// object, and will receive a reference to the function wrapper pass, the
999 /// function, and the AAResults object to populate. This should be used when
1000 /// setting up a custom pass pipeline to inject a hook into the AA results.
1001 ImmutablePass *createExternalAAWrapperPass(
1002     std::function<void(Pass &, Function &, AAResults &)> Callback);
1003 
1004 } // end namespace llvm
1005 
1006 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1007