1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <optional>
24 #include <utility>
25 
26 namespace llvm {
27 class FoldingSetNodeID;
28 class StringRef;
29 class hash_code;
30 class raw_ostream;
31 struct Align;
32 
33 template <typename T> class SmallVectorImpl;
34 template <typename T> class ArrayRef;
35 template <typename T, typename Enable> struct DenseMapInfo;
36 
37 class APInt;
38 
39 inline APInt operator-(APInt);
40 
41 //===----------------------------------------------------------------------===//
42 //                              APInt Class
43 //===----------------------------------------------------------------------===//
44 
45 /// Class for arbitrary precision integers.
46 ///
47 /// APInt is a functional replacement for common case unsigned integer type like
48 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
51 /// and methods to manipulate integer values of any bit-width. It supports both
52 /// the typical integer arithmetic and comparison operations as well as bitwise
53 /// manipulation.
54 ///
55 /// The class has several invariants worth noting:
56 ///   * All bit, byte, and word positions are zero-based.
57 ///   * Once the bit width is set, it doesn't change except by the Truncate,
58 ///     SignExtend, or ZeroExtend operations.
59 ///   * All binary operators must be on APInt instances of the same bit width.
60 ///     Attempting to use these operators on instances with different bit
61 ///     widths will yield an assertion.
62 ///   * The value is stored canonically as an unsigned value. For operations
63 ///     where it makes a difference, there are both signed and unsigned variants
64 ///     of the operation. For example, sdiv and udiv. However, because the bit
65 ///     widths must be the same, operations such as Mul and Add produce the same
66 ///     results regardless of whether the values are interpreted as signed or
67 ///     not.
68 ///   * In general, the class tries to follow the style of computation that LLVM
69 ///     uses in its IR. This simplifies its use for LLVM.
70 ///   * APInt supports zero-bit-width values, but operations that require bits
71 ///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
72 ///     integer).  This means that operations like zero extension and logical
73 ///     shifts are defined, but sign extension and ashr is not.  Zero bit values
74 ///     compare and hash equal to themselves, and countLeadingZeros returns 0.
75 ///
76 class [[nodiscard]] APInt {
77 public:
78   typedef uint64_t WordType;
79 
80   /// This enum is used to hold the constants we needed for APInt.
81   enum : unsigned {
82     /// Byte size of a word.
83     APINT_WORD_SIZE = sizeof(WordType),
84     /// Bits in a word.
85     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
86   };
87 
88   enum class Rounding {
89     DOWN,
90     TOWARD_ZERO,
91     UP,
92   };
93 
94   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
95 
96   /// \name Constructors
97   /// @{
98 
99   /// Create a new APInt of numBits width, initialized as val.
100   ///
101   /// If isSigned is true then val is treated as if it were a signed value
102   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104   /// the range of val are zero filled).
105   ///
106   /// \param numBits the bit width of the constructed APInt
107   /// \param val the initial value of the APInt
108   /// \param isSigned how to treat signedness of val
109   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)110       : BitWidth(numBits) {
111     if (isSingleWord()) {
112       U.VAL = val;
113       clearUnusedBits();
114     } else {
115       initSlowCase(val, isSigned);
116     }
117   }
118 
119   /// Construct an APInt of numBits width, initialized as bigVal[].
120   ///
121   /// Note that bigVal.size() can be smaller or larger than the corresponding
122   /// bit width but any extraneous bits will be dropped.
123   ///
124   /// \param numBits the bit width of the constructed APInt
125   /// \param bigVal a sequence of words to form the initial value of the APInt
126   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
127 
128   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
129   /// deprecated because this constructor is prone to ambiguity with the
130   /// APInt(unsigned, uint64_t, bool) constructor.
131   ///
132   /// If this overload is ever deleted, care should be taken to prevent calls
133   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
134   /// constructor.
135   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
136 
137   /// Construct an APInt from a string representation.
138   ///
139   /// This constructor interprets the string \p str in the given radix. The
140   /// interpretation stops when the first character that is not suitable for the
141   /// radix is encountered, or the end of the string. Acceptable radix values
142   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
143   /// string to require more bits than numBits.
144   ///
145   /// \param numBits the bit width of the constructed APInt
146   /// \param str the string to be interpreted
147   /// \param radix the radix to use for the conversion
148   APInt(unsigned numBits, StringRef str, uint8_t radix);
149 
150   /// Default constructor that creates an APInt with a 1-bit zero value.
APInt()151   explicit APInt() { U.VAL = 0; }
152 
153   /// Copy Constructor.
APInt(const APInt & that)154   APInt(const APInt &that) : BitWidth(that.BitWidth) {
155     if (isSingleWord())
156       U.VAL = that.U.VAL;
157     else
158       initSlowCase(that);
159   }
160 
161   /// Move Constructor.
APInt(APInt && that)162   APInt(APInt &&that) : BitWidth(that.BitWidth) {
163     memcpy(&U, &that.U, sizeof(U));
164     that.BitWidth = 0;
165   }
166 
167   /// Destructor.
~APInt()168   ~APInt() {
169     if (needsCleanup())
170       delete[] U.pVal;
171   }
172 
173   /// @}
174   /// \name Value Generators
175   /// @{
176 
177   /// Get the '0' value for the specified bit-width.
getZero(unsigned numBits)178   static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
179 
180   /// Return an APInt zero bits wide.
getZeroWidth()181   static APInt getZeroWidth() { return getZero(0); }
182 
183   /// Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)184   static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
185 
186   /// Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)187   static APInt getSignedMaxValue(unsigned numBits) {
188     APInt API = getAllOnes(numBits);
189     API.clearBit(numBits - 1);
190     return API;
191   }
192 
193   /// Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)194   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
195 
196   /// Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)197   static APInt getSignedMinValue(unsigned numBits) {
198     APInt API(numBits, 0);
199     API.setBit(numBits - 1);
200     return API;
201   }
202 
203   /// Get the SignMask for a specific bit width.
204   ///
205   /// This is just a wrapper function of getSignedMinValue(), and it helps code
206   /// readability when we want to get a SignMask.
getSignMask(unsigned BitWidth)207   static APInt getSignMask(unsigned BitWidth) {
208     return getSignedMinValue(BitWidth);
209   }
210 
211   /// Return an APInt of a specified width with all bits set.
getAllOnes(unsigned numBits)212   static APInt getAllOnes(unsigned numBits) {
213     return APInt(numBits, WORDTYPE_MAX, true);
214   }
215 
216   /// Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)217   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
218     APInt Res(numBits, 0);
219     Res.setBit(BitNo);
220     return Res;
221   }
222 
223   /// Get a value with a block of bits set.
224   ///
225   /// Constructs an APInt value that has a contiguous range of bits set. The
226   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
227   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
228   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
229   /// \p hiBit.
230   ///
231   /// \param numBits the intended bit width of the result
232   /// \param loBit the index of the lowest bit set.
233   /// \param hiBit the index of the highest bit set.
234   ///
235   /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)236   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
237     APInt Res(numBits, 0);
238     Res.setBits(loBit, hiBit);
239     return Res;
240   }
241 
242   /// Wrap version of getBitsSet.
243   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
244   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
245   /// with parameters (32, 28, 4), you would get 0xF000000F.
246   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
247   /// set.
getBitsSetWithWrap(unsigned numBits,unsigned loBit,unsigned hiBit)248   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
249                                   unsigned hiBit) {
250     APInt Res(numBits, 0);
251     Res.setBitsWithWrap(loBit, hiBit);
252     return Res;
253   }
254 
255   /// Constructs an APInt value that has a contiguous range of bits set. The
256   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
257   /// bits will be zero. For example, with parameters(32, 12) you would get
258   /// 0xFFFFF000.
259   ///
260   /// \param numBits the intended bit width of the result
261   /// \param loBit the index of the lowest bit to set.
262   ///
263   /// \returns An APInt value with the requested bits set.
getBitsSetFrom(unsigned numBits,unsigned loBit)264   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
265     APInt Res(numBits, 0);
266     Res.setBitsFrom(loBit);
267     return Res;
268   }
269 
270   /// Constructs an APInt value that has the top hiBitsSet bits set.
271   ///
272   /// \param numBits the bitwidth of the result
273   /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)274   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
275     APInt Res(numBits, 0);
276     Res.setHighBits(hiBitsSet);
277     return Res;
278   }
279 
280   /// Constructs an APInt value that has the bottom loBitsSet bits set.
281   ///
282   /// \param numBits the bitwidth of the result
283   /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)284   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
285     APInt Res(numBits, 0);
286     Res.setLowBits(loBitsSet);
287     return Res;
288   }
289 
290   /// Return a value containing V broadcasted over NewLen bits.
291   static APInt getSplat(unsigned NewLen, const APInt &V);
292 
293   /// @}
294   /// \name Value Tests
295   /// @{
296 
297   /// Determine if this APInt just has one word to store value.
298   ///
299   /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()300   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
301 
302   /// Determine sign of this APInt.
303   ///
304   /// This tests the high bit of this APInt to determine if it is set.
305   ///
306   /// \returns true if this APInt is negative, false otherwise
isNegative()307   bool isNegative() const { return (*this)[BitWidth - 1]; }
308 
309   /// Determine if this APInt Value is non-negative (>= 0)
310   ///
311   /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()312   bool isNonNegative() const { return !isNegative(); }
313 
314   /// Determine if sign bit of this APInt is set.
315   ///
316   /// This tests the high bit of this APInt to determine if it is set.
317   ///
318   /// \returns true if this APInt has its sign bit set, false otherwise.
isSignBitSet()319   bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
320 
321   /// Determine if sign bit of this APInt is clear.
322   ///
323   /// This tests the high bit of this APInt to determine if it is clear.
324   ///
325   /// \returns true if this APInt has its sign bit clear, false otherwise.
isSignBitClear()326   bool isSignBitClear() const { return !isSignBitSet(); }
327 
328   /// Determine if this APInt Value is positive.
329   ///
330   /// This tests if the value of this APInt is positive (> 0). Note
331   /// that 0 is not a positive value.
332   ///
333   /// \returns true if this APInt is positive.
isStrictlyPositive()334   bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
335 
336   /// Determine if this APInt Value is non-positive (<= 0).
337   ///
338   /// \returns true if this APInt is non-positive.
isNonPositive()339   bool isNonPositive() const { return !isStrictlyPositive(); }
340 
341   /// Determine if this APInt Value only has the specified bit set.
342   ///
343   /// \returns true if this APInt only has the specified bit set.
isOneBitSet(unsigned BitNo)344   bool isOneBitSet(unsigned BitNo) const {
345     return (*this)[BitNo] && popcount() == 1;
346   }
347 
348   /// Determine if all bits are set.  This is true for zero-width values.
isAllOnes()349   bool isAllOnes() const {
350     if (BitWidth == 0)
351       return true;
352     if (isSingleWord())
353       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
354     return countTrailingOnesSlowCase() == BitWidth;
355   }
356 
357   /// Determine if this value is zero, i.e. all bits are clear.
isZero()358   bool isZero() const {
359     if (isSingleWord())
360       return U.VAL == 0;
361     return countLeadingZerosSlowCase() == BitWidth;
362   }
363 
364   /// Determine if this is a value of 1.
365   ///
366   /// This checks to see if the value of this APInt is one.
isOne()367   bool isOne() const {
368     if (isSingleWord())
369       return U.VAL == 1;
370     return countLeadingZerosSlowCase() == BitWidth - 1;
371   }
372 
373   /// Determine if this is the largest unsigned value.
374   ///
375   /// This checks to see if the value of this APInt is the maximum unsigned
376   /// value for the APInt's bit width.
isMaxValue()377   bool isMaxValue() const { return isAllOnes(); }
378 
379   /// Determine if this is the largest signed value.
380   ///
381   /// This checks to see if the value of this APInt is the maximum signed
382   /// value for the APInt's bit width.
isMaxSignedValue()383   bool isMaxSignedValue() const {
384     if (isSingleWord()) {
385       assert(BitWidth && "zero width values not allowed");
386       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
387     }
388     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
389   }
390 
391   /// Determine if this is the smallest unsigned value.
392   ///
393   /// This checks to see if the value of this APInt is the minimum unsigned
394   /// value for the APInt's bit width.
isMinValue()395   bool isMinValue() const { return isZero(); }
396 
397   /// Determine if this is the smallest signed value.
398   ///
399   /// This checks to see if the value of this APInt is the minimum signed
400   /// value for the APInt's bit width.
isMinSignedValue()401   bool isMinSignedValue() const {
402     if (isSingleWord()) {
403       assert(BitWidth && "zero width values not allowed");
404       return U.VAL == (WordType(1) << (BitWidth - 1));
405     }
406     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
407   }
408 
409   /// Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)410   bool isIntN(unsigned N) const { return getActiveBits() <= N; }
411 
412   /// Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)413   bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
414 
415   /// Check if this APInt's value is a power of two greater than zero.
416   ///
417   /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()418   bool isPowerOf2() const {
419     if (isSingleWord()) {
420       assert(BitWidth && "zero width values not allowed");
421       return isPowerOf2_64(U.VAL);
422     }
423     return countPopulationSlowCase() == 1;
424   }
425 
426   /// Check if this APInt's negated value is a power of two greater than zero.
isNegatedPowerOf2()427   bool isNegatedPowerOf2() const {
428     assert(BitWidth && "zero width values not allowed");
429     if (isNonNegative())
430       return false;
431     // NegatedPowerOf2 - shifted mask in the top bits.
432     unsigned LO = countl_one();
433     unsigned TZ = countr_zero();
434     return (LO + TZ) == BitWidth;
435   }
436 
437   /// Checks if this APInt -interpreted as an address- is aligned to the
438   /// provided value.
439   bool isAligned(Align A) const;
440 
441   /// Check if the APInt's value is returned by getSignMask.
442   ///
443   /// \returns true if this is the value returned by getSignMask.
isSignMask()444   bool isSignMask() const { return isMinSignedValue(); }
445 
446   /// Convert APInt to a boolean value.
447   ///
448   /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()449   bool getBoolValue() const { return !isZero(); }
450 
451   /// If this value is smaller than the specified limit, return it, otherwise
452   /// return the limit value.  This causes the value to saturate to the limit.
453   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
454     return ugt(Limit) ? Limit : getZExtValue();
455   }
456 
457   /// Check if the APInt consists of a repeated bit pattern.
458   ///
459   /// e.g. 0x01010101 satisfies isSplat(8).
460   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
461   /// width without remainder.
462   bool isSplat(unsigned SplatSizeInBits) const;
463 
464   /// \returns true if this APInt value is a sequence of \param numBits ones
465   /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits)466   bool isMask(unsigned numBits) const {
467     assert(numBits != 0 && "numBits must be non-zero");
468     assert(numBits <= BitWidth && "numBits out of range");
469     if (isSingleWord())
470       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
471     unsigned Ones = countTrailingOnesSlowCase();
472     return (numBits == Ones) &&
473            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
474   }
475 
476   /// \returns true if this APInt is a non-empty sequence of ones starting at
477   /// the least significant bit with the remainder zero.
478   /// Ex. isMask(0x0000FFFFU) == true.
isMask()479   bool isMask() const {
480     if (isSingleWord())
481       return isMask_64(U.VAL);
482     unsigned Ones = countTrailingOnesSlowCase();
483     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484   }
485 
486   /// Return true if this APInt value contains a non-empty sequence of ones with
487   /// the remainder zero.
isShiftedMask()488   bool isShiftedMask() const {
489     if (isSingleWord())
490       return isShiftedMask_64(U.VAL);
491     unsigned Ones = countPopulationSlowCase();
492     unsigned LeadZ = countLeadingZerosSlowCase();
493     return (Ones + LeadZ + countr_zero()) == BitWidth;
494   }
495 
496   /// Return true if this APInt value contains a non-empty sequence of ones with
497   /// the remainder zero. If true, \p MaskIdx will specify the index of the
498   /// lowest set bit and \p MaskLen is updated to specify the length of the
499   /// mask, else neither are updated.
isShiftedMask(unsigned & MaskIdx,unsigned & MaskLen)500   bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
501     if (isSingleWord())
502       return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
503     unsigned Ones = countPopulationSlowCase();
504     unsigned LeadZ = countLeadingZerosSlowCase();
505     unsigned TrailZ = countTrailingZerosSlowCase();
506     if ((Ones + LeadZ + TrailZ) != BitWidth)
507       return false;
508     MaskLen = Ones;
509     MaskIdx = TrailZ;
510     return true;
511   }
512 
513   /// Compute an APInt containing numBits highbits from this APInt.
514   ///
515   /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
516   /// bits and right shift to the least significant bit.
517   ///
518   /// \returns the high "numBits" bits of this APInt.
519   APInt getHiBits(unsigned numBits) const;
520 
521   /// Compute an APInt containing numBits lowbits from this APInt.
522   ///
523   /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
524   /// bits.
525   ///
526   /// \returns the low "numBits" bits of this APInt.
527   APInt getLoBits(unsigned numBits) const;
528 
529   /// Determine if two APInts have the same value, after zero-extending
530   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)531   static bool isSameValue(const APInt &I1, const APInt &I2) {
532     if (I1.getBitWidth() == I2.getBitWidth())
533       return I1 == I2;
534 
535     if (I1.getBitWidth() > I2.getBitWidth())
536       return I1 == I2.zext(I1.getBitWidth());
537 
538     return I1.zext(I2.getBitWidth()) == I2;
539   }
540 
541   /// Overload to compute a hash_code for an APInt value.
542   friend hash_code hash_value(const APInt &Arg);
543 
544   /// This function returns a pointer to the internal storage of the APInt.
545   /// This is useful for writing out the APInt in binary form without any
546   /// conversions.
getRawData()547   const uint64_t *getRawData() const {
548     if (isSingleWord())
549       return &U.VAL;
550     return &U.pVal[0];
551   }
552 
553   /// @}
554   /// \name Unary Operators
555   /// @{
556 
557   /// Postfix increment operator.  Increment *this by 1.
558   ///
559   /// \returns a new APInt value representing the original value of *this.
560   APInt operator++(int) {
561     APInt API(*this);
562     ++(*this);
563     return API;
564   }
565 
566   /// Prefix increment operator.
567   ///
568   /// \returns *this incremented by one
569   APInt &operator++();
570 
571   /// Postfix decrement operator. Decrement *this by 1.
572   ///
573   /// \returns a new APInt value representing the original value of *this.
574   APInt operator--(int) {
575     APInt API(*this);
576     --(*this);
577     return API;
578   }
579 
580   /// Prefix decrement operator.
581   ///
582   /// \returns *this decremented by one.
583   APInt &operator--();
584 
585   /// Logical negation operation on this APInt returns true if zero, like normal
586   /// integers.
587   bool operator!() const { return isZero(); }
588 
589   /// @}
590   /// \name Assignment Operators
591   /// @{
592 
593   /// Copy assignment operator.
594   ///
595   /// \returns *this after assignment of RHS.
596   APInt &operator=(const APInt &RHS) {
597     // The common case (both source or dest being inline) doesn't require
598     // allocation or deallocation.
599     if (isSingleWord() && RHS.isSingleWord()) {
600       U.VAL = RHS.U.VAL;
601       BitWidth = RHS.BitWidth;
602       return *this;
603     }
604 
605     assignSlowCase(RHS);
606     return *this;
607   }
608 
609   /// Move assignment operator.
610   APInt &operator=(APInt &&that) {
611 #ifdef EXPENSIVE_CHECKS
612     // Some std::shuffle implementations still do self-assignment.
613     if (this == &that)
614       return *this;
615 #endif
616     assert(this != &that && "Self-move not supported");
617     if (!isSingleWord())
618       delete[] U.pVal;
619 
620     // Use memcpy so that type based alias analysis sees both VAL and pVal
621     // as modified.
622     memcpy(&U, &that.U, sizeof(U));
623 
624     BitWidth = that.BitWidth;
625     that.BitWidth = 0;
626     return *this;
627   }
628 
629   /// Assignment operator.
630   ///
631   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
632   /// the bit width, the excess bits are truncated. If the bit width is larger
633   /// than 64, the value is zero filled in the unspecified high order bits.
634   ///
635   /// \returns *this after assignment of RHS value.
636   APInt &operator=(uint64_t RHS) {
637     if (isSingleWord()) {
638       U.VAL = RHS;
639       return clearUnusedBits();
640     }
641     U.pVal[0] = RHS;
642     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
643     return *this;
644   }
645 
646   /// Bitwise AND assignment operator.
647   ///
648   /// Performs a bitwise AND operation on this APInt and RHS. The result is
649   /// assigned to *this.
650   ///
651   /// \returns *this after ANDing with RHS.
652   APInt &operator&=(const APInt &RHS) {
653     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654     if (isSingleWord())
655       U.VAL &= RHS.U.VAL;
656     else
657       andAssignSlowCase(RHS);
658     return *this;
659   }
660 
661   /// Bitwise AND assignment operator.
662   ///
663   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
664   /// logically zero-extended or truncated to match the bit-width of
665   /// the LHS.
666   APInt &operator&=(uint64_t RHS) {
667     if (isSingleWord()) {
668       U.VAL &= RHS;
669       return *this;
670     }
671     U.pVal[0] &= RHS;
672     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
673     return *this;
674   }
675 
676   /// Bitwise OR assignment operator.
677   ///
678   /// Performs a bitwise OR operation on this APInt and RHS. The result is
679   /// assigned *this;
680   ///
681   /// \returns *this after ORing with RHS.
682   APInt &operator|=(const APInt &RHS) {
683     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
684     if (isSingleWord())
685       U.VAL |= RHS.U.VAL;
686     else
687       orAssignSlowCase(RHS);
688     return *this;
689   }
690 
691   /// Bitwise OR assignment operator.
692   ///
693   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
694   /// logically zero-extended or truncated to match the bit-width of
695   /// the LHS.
696   APInt &operator|=(uint64_t RHS) {
697     if (isSingleWord()) {
698       U.VAL |= RHS;
699       return clearUnusedBits();
700     }
701     U.pVal[0] |= RHS;
702     return *this;
703   }
704 
705   /// Bitwise XOR assignment operator.
706   ///
707   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
708   /// assigned to *this.
709   ///
710   /// \returns *this after XORing with RHS.
711   APInt &operator^=(const APInt &RHS) {
712     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
713     if (isSingleWord())
714       U.VAL ^= RHS.U.VAL;
715     else
716       xorAssignSlowCase(RHS);
717     return *this;
718   }
719 
720   /// Bitwise XOR assignment operator.
721   ///
722   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
723   /// logically zero-extended or truncated to match the bit-width of
724   /// the LHS.
725   APInt &operator^=(uint64_t RHS) {
726     if (isSingleWord()) {
727       U.VAL ^= RHS;
728       return clearUnusedBits();
729     }
730     U.pVal[0] ^= RHS;
731     return *this;
732   }
733 
734   /// Multiplication assignment operator.
735   ///
736   /// Multiplies this APInt by RHS and assigns the result to *this.
737   ///
738   /// \returns *this
739   APInt &operator*=(const APInt &RHS);
740   APInt &operator*=(uint64_t RHS);
741 
742   /// Addition assignment operator.
743   ///
744   /// Adds RHS to *this and assigns the result to *this.
745   ///
746   /// \returns *this
747   APInt &operator+=(const APInt &RHS);
748   APInt &operator+=(uint64_t RHS);
749 
750   /// Subtraction assignment operator.
751   ///
752   /// Subtracts RHS from *this and assigns the result to *this.
753   ///
754   /// \returns *this
755   APInt &operator-=(const APInt &RHS);
756   APInt &operator-=(uint64_t RHS);
757 
758   /// Left-shift assignment function.
759   ///
760   /// Shifts *this left by shiftAmt and assigns the result to *this.
761   ///
762   /// \returns *this after shifting left by ShiftAmt
763   APInt &operator<<=(unsigned ShiftAmt) {
764     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
765     if (isSingleWord()) {
766       if (ShiftAmt == BitWidth)
767         U.VAL = 0;
768       else
769         U.VAL <<= ShiftAmt;
770       return clearUnusedBits();
771     }
772     shlSlowCase(ShiftAmt);
773     return *this;
774   }
775 
776   /// Left-shift assignment function.
777   ///
778   /// Shifts *this left by shiftAmt and assigns the result to *this.
779   ///
780   /// \returns *this after shifting left by ShiftAmt
781   APInt &operator<<=(const APInt &ShiftAmt);
782 
783   /// @}
784   /// \name Binary Operators
785   /// @{
786 
787   /// Multiplication operator.
788   ///
789   /// Multiplies this APInt by RHS and returns the result.
790   APInt operator*(const APInt &RHS) const;
791 
792   /// Left logical shift operator.
793   ///
794   /// Shifts this APInt left by \p Bits and returns the result.
795   APInt operator<<(unsigned Bits) const { return shl(Bits); }
796 
797   /// Left logical shift operator.
798   ///
799   /// Shifts this APInt left by \p Bits and returns the result.
800   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
801 
802   /// Arithmetic right-shift function.
803   ///
804   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(unsigned ShiftAmt)805   APInt ashr(unsigned ShiftAmt) const {
806     APInt R(*this);
807     R.ashrInPlace(ShiftAmt);
808     return R;
809   }
810 
811   /// Arithmetic right-shift this APInt by ShiftAmt in place.
ashrInPlace(unsigned ShiftAmt)812   void ashrInPlace(unsigned ShiftAmt) {
813     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
814     if (isSingleWord()) {
815       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
816       if (ShiftAmt == BitWidth)
817         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
818       else
819         U.VAL = SExtVAL >> ShiftAmt;
820       clearUnusedBits();
821       return;
822     }
823     ashrSlowCase(ShiftAmt);
824   }
825 
826   /// Logical right-shift function.
827   ///
828   /// Logical right-shift this APInt by shiftAmt.
lshr(unsigned shiftAmt)829   APInt lshr(unsigned shiftAmt) const {
830     APInt R(*this);
831     R.lshrInPlace(shiftAmt);
832     return R;
833   }
834 
835   /// Logical right-shift this APInt by ShiftAmt in place.
lshrInPlace(unsigned ShiftAmt)836   void lshrInPlace(unsigned ShiftAmt) {
837     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
838     if (isSingleWord()) {
839       if (ShiftAmt == BitWidth)
840         U.VAL = 0;
841       else
842         U.VAL >>= ShiftAmt;
843       return;
844     }
845     lshrSlowCase(ShiftAmt);
846   }
847 
848   /// Left-shift function.
849   ///
850   /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)851   APInt shl(unsigned shiftAmt) const {
852     APInt R(*this);
853     R <<= shiftAmt;
854     return R;
855   }
856 
857   /// relative logical shift right
relativeLShr(int RelativeShift)858   APInt relativeLShr(int RelativeShift) const {
859     return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
860   }
861 
862   /// relative logical shift left
relativeLShl(int RelativeShift)863   APInt relativeLShl(int RelativeShift) const {
864     return relativeLShr(-RelativeShift);
865   }
866 
867   /// relative arithmetic shift right
relativeAShr(int RelativeShift)868   APInt relativeAShr(int RelativeShift) const {
869     return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
870   }
871 
872   /// relative arithmetic shift left
relativeAShl(int RelativeShift)873   APInt relativeAShl(int RelativeShift) const {
874     return relativeAShr(-RelativeShift);
875   }
876 
877   /// Rotate left by rotateAmt.
878   APInt rotl(unsigned rotateAmt) const;
879 
880   /// Rotate right by rotateAmt.
881   APInt rotr(unsigned rotateAmt) const;
882 
883   /// Arithmetic right-shift function.
884   ///
885   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(const APInt & ShiftAmt)886   APInt ashr(const APInt &ShiftAmt) const {
887     APInt R(*this);
888     R.ashrInPlace(ShiftAmt);
889     return R;
890   }
891 
892   /// Arithmetic right-shift this APInt by shiftAmt in place.
893   void ashrInPlace(const APInt &shiftAmt);
894 
895   /// Logical right-shift function.
896   ///
897   /// Logical right-shift this APInt by shiftAmt.
lshr(const APInt & ShiftAmt)898   APInt lshr(const APInt &ShiftAmt) const {
899     APInt R(*this);
900     R.lshrInPlace(ShiftAmt);
901     return R;
902   }
903 
904   /// Logical right-shift this APInt by ShiftAmt in place.
905   void lshrInPlace(const APInt &ShiftAmt);
906 
907   /// Left-shift function.
908   ///
909   /// Left-shift this APInt by shiftAmt.
shl(const APInt & ShiftAmt)910   APInt shl(const APInt &ShiftAmt) const {
911     APInt R(*this);
912     R <<= ShiftAmt;
913     return R;
914   }
915 
916   /// Rotate left by rotateAmt.
917   APInt rotl(const APInt &rotateAmt) const;
918 
919   /// Rotate right by rotateAmt.
920   APInt rotr(const APInt &rotateAmt) const;
921 
922   /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
923   /// equivalent to:
924   ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
concat(const APInt & NewLSB)925   APInt concat(const APInt &NewLSB) const {
926     /// If the result will be small, then both the merged values are small.
927     unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
928     if (NewWidth <= APINT_BITS_PER_WORD)
929       return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
930     return concatSlowCase(NewLSB);
931   }
932 
933   /// Unsigned division operation.
934   ///
935   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
936   /// RHS are treated as unsigned quantities for purposes of this division.
937   ///
938   /// \returns a new APInt value containing the division result, rounded towards
939   /// zero.
940   APInt udiv(const APInt &RHS) const;
941   APInt udiv(uint64_t RHS) const;
942 
943   /// Signed division function for APInt.
944   ///
945   /// Signed divide this APInt by APInt RHS.
946   ///
947   /// The result is rounded towards zero.
948   APInt sdiv(const APInt &RHS) const;
949   APInt sdiv(int64_t RHS) const;
950 
951   /// Unsigned remainder operation.
952   ///
953   /// Perform an unsigned remainder operation on this APInt with RHS being the
954   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
955   /// of this operation.
956   ///
957   /// \returns a new APInt value containing the remainder result
958   APInt urem(const APInt &RHS) const;
959   uint64_t urem(uint64_t RHS) const;
960 
961   /// Function for signed remainder operation.
962   ///
963   /// Signed remainder operation on APInt.
964   ///
965   /// Note that this is a true remainder operation and not a modulo operation
966   /// because the sign follows the sign of the dividend which is *this.
967   APInt srem(const APInt &RHS) const;
968   int64_t srem(int64_t RHS) const;
969 
970   /// Dual division/remainder interface.
971   ///
972   /// Sometimes it is convenient to divide two APInt values and obtain both the
973   /// quotient and remainder. This function does both operations in the same
974   /// computation making it a little more efficient. The pair of input arguments
975   /// may overlap with the pair of output arguments. It is safe to call
976   /// udivrem(X, Y, X, Y), for example.
977   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
978                       APInt &Remainder);
979   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
980                       uint64_t &Remainder);
981 
982   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
983                       APInt &Remainder);
984   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
985                       int64_t &Remainder);
986 
987   // Operations that return overflow indicators.
988   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
989   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
990   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
991   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
992   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
993   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
994   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
995   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
996   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
997   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
998   APInt ushl_ov(unsigned Amt, bool &Overflow) const;
999 
1000   /// Signed integer floor division operation.
1001   ///
1002   /// Rounds towards negative infinity, i.e. 5 / -2 = -3. Iff minimum value
1003   /// divided by -1 set Overflow to true.
1004   APInt sfloordiv_ov(const APInt &RHS, bool &Overflow) const;
1005 
1006   // Operations that saturate
1007   APInt sadd_sat(const APInt &RHS) const;
1008   APInt uadd_sat(const APInt &RHS) const;
1009   APInt ssub_sat(const APInt &RHS) const;
1010   APInt usub_sat(const APInt &RHS) const;
1011   APInt smul_sat(const APInt &RHS) const;
1012   APInt umul_sat(const APInt &RHS) const;
1013   APInt sshl_sat(const APInt &RHS) const;
1014   APInt sshl_sat(unsigned RHS) const;
1015   APInt ushl_sat(const APInt &RHS) const;
1016   APInt ushl_sat(unsigned RHS) const;
1017 
1018   /// Array-indexing support.
1019   ///
1020   /// \returns the bit value at bitPosition
1021   bool operator[](unsigned bitPosition) const {
1022     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1023     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1024   }
1025 
1026   /// @}
1027   /// \name Comparison Operators
1028   /// @{
1029 
1030   /// Equality operator.
1031   ///
1032   /// Compares this APInt with RHS for the validity of the equality
1033   /// relationship.
1034   bool operator==(const APInt &RHS) const {
1035     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1036     if (isSingleWord())
1037       return U.VAL == RHS.U.VAL;
1038     return equalSlowCase(RHS);
1039   }
1040 
1041   /// Equality operator.
1042   ///
1043   /// Compares this APInt with a uint64_t for the validity of the equality
1044   /// relationship.
1045   ///
1046   /// \returns true if *this == Val
1047   bool operator==(uint64_t Val) const {
1048     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1049   }
1050 
1051   /// Equality comparison.
1052   ///
1053   /// Compares this APInt with RHS for the validity of the equality
1054   /// relationship.
1055   ///
1056   /// \returns true if *this == Val
eq(const APInt & RHS)1057   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1058 
1059   /// Inequality operator.
1060   ///
1061   /// Compares this APInt with RHS for the validity of the inequality
1062   /// relationship.
1063   ///
1064   /// \returns true if *this != Val
1065   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1066 
1067   /// Inequality operator.
1068   ///
1069   /// Compares this APInt with a uint64_t for the validity of the inequality
1070   /// relationship.
1071   ///
1072   /// \returns true if *this != Val
1073   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1074 
1075   /// Inequality comparison
1076   ///
1077   /// Compares this APInt with RHS for the validity of the inequality
1078   /// relationship.
1079   ///
1080   /// \returns true if *this != Val
ne(const APInt & RHS)1081   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1082 
1083   /// Unsigned less than comparison
1084   ///
1085   /// Regards both *this and RHS as unsigned quantities and compares them for
1086   /// the validity of the less-than relationship.
1087   ///
1088   /// \returns true if *this < RHS when both are considered unsigned.
ult(const APInt & RHS)1089   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1090 
1091   /// Unsigned less than comparison
1092   ///
1093   /// Regards both *this as an unsigned quantity and compares it with RHS for
1094   /// the validity of the less-than relationship.
1095   ///
1096   /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1097   bool ult(uint64_t RHS) const {
1098     // Only need to check active bits if not a single word.
1099     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1100   }
1101 
1102   /// Signed less than comparison
1103   ///
1104   /// Regards both *this and RHS as signed quantities and compares them for
1105   /// validity of the less-than relationship.
1106   ///
1107   /// \returns true if *this < RHS when both are considered signed.
slt(const APInt & RHS)1108   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1109 
1110   /// Signed less than comparison
1111   ///
1112   /// Regards both *this as a signed quantity and compares it with RHS for
1113   /// the validity of the less-than relationship.
1114   ///
1115   /// \returns true if *this < RHS when considered signed.
slt(int64_t RHS)1116   bool slt(int64_t RHS) const {
1117     return (!isSingleWord() && getSignificantBits() > 64)
1118                ? isNegative()
1119                : getSExtValue() < RHS;
1120   }
1121 
1122   /// Unsigned less or equal comparison
1123   ///
1124   /// Regards both *this and RHS as unsigned quantities and compares them for
1125   /// validity of the less-or-equal relationship.
1126   ///
1127   /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1128   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1129 
1130   /// Unsigned less or equal comparison
1131   ///
1132   /// Regards both *this as an unsigned quantity and compares it with RHS for
1133   /// the validity of the less-or-equal relationship.
1134   ///
1135   /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1136   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1137 
1138   /// Signed less or equal comparison
1139   ///
1140   /// Regards both *this and RHS as signed quantities and compares them for
1141   /// validity of the less-or-equal relationship.
1142   ///
1143   /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1144   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1145 
1146   /// Signed less or equal comparison
1147   ///
1148   /// Regards both *this as a signed quantity and compares it with RHS for the
1149   /// validity of the less-or-equal relationship.
1150   ///
1151   /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1152   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1153 
1154   /// Unsigned greater than comparison
1155   ///
1156   /// Regards both *this and RHS as unsigned quantities and compares them for
1157   /// the validity of the greater-than relationship.
1158   ///
1159   /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1160   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1161 
1162   /// Unsigned greater than comparison
1163   ///
1164   /// Regards both *this as an unsigned quantity and compares it with RHS for
1165   /// the validity of the greater-than relationship.
1166   ///
1167   /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1168   bool ugt(uint64_t RHS) const {
1169     // Only need to check active bits if not a single word.
1170     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1171   }
1172 
1173   /// Signed greater than comparison
1174   ///
1175   /// Regards both *this and RHS as signed quantities and compares them for the
1176   /// validity of the greater-than relationship.
1177   ///
1178   /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1179   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1180 
1181   /// Signed greater than comparison
1182   ///
1183   /// Regards both *this as a signed quantity and compares it with RHS for
1184   /// the validity of the greater-than relationship.
1185   ///
1186   /// \returns true if *this > RHS when considered signed.
sgt(int64_t RHS)1187   bool sgt(int64_t RHS) const {
1188     return (!isSingleWord() && getSignificantBits() > 64)
1189                ? !isNegative()
1190                : getSExtValue() > RHS;
1191   }
1192 
1193   /// Unsigned greater or equal comparison
1194   ///
1195   /// Regards both *this and RHS as unsigned quantities and compares them for
1196   /// validity of the greater-or-equal relationship.
1197   ///
1198   /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1199   bool uge(const APInt &RHS) const { return !ult(RHS); }
1200 
1201   /// Unsigned greater or equal comparison
1202   ///
1203   /// Regards both *this as an unsigned quantity and compares it with RHS for
1204   /// the validity of the greater-or-equal relationship.
1205   ///
1206   /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1207   bool uge(uint64_t RHS) const { return !ult(RHS); }
1208 
1209   /// Signed greater or equal comparison
1210   ///
1211   /// Regards both *this and RHS as signed quantities and compares them for
1212   /// validity of the greater-or-equal relationship.
1213   ///
1214   /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1215   bool sge(const APInt &RHS) const { return !slt(RHS); }
1216 
1217   /// Signed greater or equal comparison
1218   ///
1219   /// Regards both *this as a signed quantity and compares it with RHS for
1220   /// the validity of the greater-or-equal relationship.
1221   ///
1222   /// \returns true if *this >= RHS when considered signed.
sge(int64_t RHS)1223   bool sge(int64_t RHS) const { return !slt(RHS); }
1224 
1225   /// This operation tests if there are any pairs of corresponding bits
1226   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1227   bool intersects(const APInt &RHS) const {
1228     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1229     if (isSingleWord())
1230       return (U.VAL & RHS.U.VAL) != 0;
1231     return intersectsSlowCase(RHS);
1232   }
1233 
1234   /// This operation checks that all bits set in this APInt are also set in RHS.
isSubsetOf(const APInt & RHS)1235   bool isSubsetOf(const APInt &RHS) const {
1236     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1237     if (isSingleWord())
1238       return (U.VAL & ~RHS.U.VAL) == 0;
1239     return isSubsetOfSlowCase(RHS);
1240   }
1241 
1242   /// @}
1243   /// \name Resizing Operators
1244   /// @{
1245 
1246   /// Truncate to new width.
1247   ///
1248   /// Truncate the APInt to a specified width. It is an error to specify a width
1249   /// that is greater than the current width.
1250   APInt trunc(unsigned width) const;
1251 
1252   /// Truncate to new width with unsigned saturation.
1253   ///
1254   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1255   /// the new bitwidth, then return truncated APInt. Else, return max value.
1256   APInt truncUSat(unsigned width) const;
1257 
1258   /// Truncate to new width with signed saturation.
1259   ///
1260   /// If this APInt, treated as signed integer, can be losslessly truncated to
1261   /// the new bitwidth, then return truncated APInt. Else, return either
1262   /// signed min value if the APInt was negative, or signed max value.
1263   APInt truncSSat(unsigned width) const;
1264 
1265   /// Sign extend to a new width.
1266   ///
1267   /// This operation sign extends the APInt to a new width. If the high order
1268   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1269   /// It is an error to specify a width that is less than the
1270   /// current width.
1271   APInt sext(unsigned width) const;
1272 
1273   /// Zero extend to a new width.
1274   ///
1275   /// This operation zero extends the APInt to a new width. The high order bits
1276   /// are filled with 0 bits.  It is an error to specify a width that is less
1277   /// than the current width.
1278   APInt zext(unsigned width) const;
1279 
1280   /// Sign extend or truncate to width
1281   ///
1282   /// Make this APInt have the bit width given by \p width. The value is sign
1283   /// extended, truncated, or left alone to make it that width.
1284   APInt sextOrTrunc(unsigned width) const;
1285 
1286   /// Zero extend or truncate to width
1287   ///
1288   /// Make this APInt have the bit width given by \p width. The value is zero
1289   /// extended, truncated, or left alone to make it that width.
1290   APInt zextOrTrunc(unsigned width) const;
1291 
1292   /// @}
1293   /// \name Bit Manipulation Operators
1294   /// @{
1295 
1296   /// Set every bit to 1.
setAllBits()1297   void setAllBits() {
1298     if (isSingleWord())
1299       U.VAL = WORDTYPE_MAX;
1300     else
1301       // Set all the bits in all the words.
1302       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1303     // Clear the unused ones
1304     clearUnusedBits();
1305   }
1306 
1307   /// Set the given bit to 1 whose position is given as "bitPosition".
setBit(unsigned BitPosition)1308   void setBit(unsigned BitPosition) {
1309     assert(BitPosition < BitWidth && "BitPosition out of range");
1310     WordType Mask = maskBit(BitPosition);
1311     if (isSingleWord())
1312       U.VAL |= Mask;
1313     else
1314       U.pVal[whichWord(BitPosition)] |= Mask;
1315   }
1316 
1317   /// Set the sign bit to 1.
setSignBit()1318   void setSignBit() { setBit(BitWidth - 1); }
1319 
1320   /// Set a given bit to a given value.
setBitVal(unsigned BitPosition,bool BitValue)1321   void setBitVal(unsigned BitPosition, bool BitValue) {
1322     if (BitValue)
1323       setBit(BitPosition);
1324     else
1325       clearBit(BitPosition);
1326   }
1327 
1328   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1329   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1330   /// setBits when \p loBit < \p hiBit.
1331   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
setBitsWithWrap(unsigned loBit,unsigned hiBit)1332   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1333     assert(hiBit <= BitWidth && "hiBit out of range");
1334     assert(loBit <= BitWidth && "loBit out of range");
1335     if (loBit < hiBit) {
1336       setBits(loBit, hiBit);
1337       return;
1338     }
1339     setLowBits(hiBit);
1340     setHighBits(BitWidth - loBit);
1341   }
1342 
1343   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1344   /// This function handles case when \p loBit <= \p hiBit.
setBits(unsigned loBit,unsigned hiBit)1345   void setBits(unsigned loBit, unsigned hiBit) {
1346     assert(hiBit <= BitWidth && "hiBit out of range");
1347     assert(loBit <= BitWidth && "loBit out of range");
1348     assert(loBit <= hiBit && "loBit greater than hiBit");
1349     if (loBit == hiBit)
1350       return;
1351     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1352       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1353       mask <<= loBit;
1354       if (isSingleWord())
1355         U.VAL |= mask;
1356       else
1357         U.pVal[0] |= mask;
1358     } else {
1359       setBitsSlowCase(loBit, hiBit);
1360     }
1361   }
1362 
1363   /// Set the top bits starting from loBit.
setBitsFrom(unsigned loBit)1364   void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1365 
1366   /// Set the bottom loBits bits.
setLowBits(unsigned loBits)1367   void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1368 
1369   /// Set the top hiBits bits.
setHighBits(unsigned hiBits)1370   void setHighBits(unsigned hiBits) {
1371     return setBits(BitWidth - hiBits, BitWidth);
1372   }
1373 
1374   /// Set every bit to 0.
clearAllBits()1375   void clearAllBits() {
1376     if (isSingleWord())
1377       U.VAL = 0;
1378     else
1379       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1380   }
1381 
1382   /// Set a given bit to 0.
1383   ///
1384   /// Set the given bit to 0 whose position is given as "bitPosition".
clearBit(unsigned BitPosition)1385   void clearBit(unsigned BitPosition) {
1386     assert(BitPosition < BitWidth && "BitPosition out of range");
1387     WordType Mask = ~maskBit(BitPosition);
1388     if (isSingleWord())
1389       U.VAL &= Mask;
1390     else
1391       U.pVal[whichWord(BitPosition)] &= Mask;
1392   }
1393 
1394   /// Set bottom loBits bits to 0.
clearLowBits(unsigned loBits)1395   void clearLowBits(unsigned loBits) {
1396     assert(loBits <= BitWidth && "More bits than bitwidth");
1397     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1398     *this &= Keep;
1399   }
1400 
1401   /// Set the sign bit to 0.
clearSignBit()1402   void clearSignBit() { clearBit(BitWidth - 1); }
1403 
1404   /// Toggle every bit to its opposite value.
flipAllBits()1405   void flipAllBits() {
1406     if (isSingleWord()) {
1407       U.VAL ^= WORDTYPE_MAX;
1408       clearUnusedBits();
1409     } else {
1410       flipAllBitsSlowCase();
1411     }
1412   }
1413 
1414   /// Toggles a given bit to its opposite value.
1415   ///
1416   /// Toggle a given bit to its opposite value whose position is given
1417   /// as "bitPosition".
1418   void flipBit(unsigned bitPosition);
1419 
1420   /// Negate this APInt in place.
negate()1421   void negate() {
1422     flipAllBits();
1423     ++(*this);
1424   }
1425 
1426   /// Insert the bits from a smaller APInt starting at bitPosition.
1427   void insertBits(const APInt &SubBits, unsigned bitPosition);
1428   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1429 
1430   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1431   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1432   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1433 
1434   /// @}
1435   /// \name Value Characterization Functions
1436   /// @{
1437 
1438   /// Return the number of bits in the APInt.
getBitWidth()1439   unsigned getBitWidth() const { return BitWidth; }
1440 
1441   /// Get the number of words.
1442   ///
1443   /// Here one word's bitwidth equals to that of uint64_t.
1444   ///
1445   /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1446   unsigned getNumWords() const { return getNumWords(BitWidth); }
1447 
1448   /// Get the number of words.
1449   ///
1450   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1451   ///
1452   /// \returns the number of words to hold the integer value with a given bit
1453   /// width.
getNumWords(unsigned BitWidth)1454   static unsigned getNumWords(unsigned BitWidth) {
1455     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1456   }
1457 
1458   /// Compute the number of active bits in the value
1459   ///
1460   /// This function returns the number of active bits which is defined as the
1461   /// bit width minus the number of leading zeros. This is used in several
1462   /// computations to see how "wide" the value is.
getActiveBits()1463   unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1464 
1465   /// Compute the number of active words in the value of this APInt.
1466   ///
1467   /// This is used in conjunction with getActiveData to extract the raw value of
1468   /// the APInt.
getActiveWords()1469   unsigned getActiveWords() const {
1470     unsigned numActiveBits = getActiveBits();
1471     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1472   }
1473 
1474   /// Get the minimum bit size for this signed APInt
1475   ///
1476   /// Computes the minimum bit width for this APInt while considering it to be a
1477   /// signed (and probably negative) value. If the value is not negative, this
1478   /// function returns the same value as getActiveBits()+1. Otherwise, it
1479   /// returns the smallest bit width that will retain the negative value. For
1480   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1481   /// for -1, this function will always return 1.
getSignificantBits()1482   unsigned getSignificantBits() const {
1483     return BitWidth - getNumSignBits() + 1;
1484   }
1485 
1486   /// Get zero extended value
1487   ///
1488   /// This method attempts to return the value of this APInt as a zero extended
1489   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1490   /// uint64_t. Otherwise an assertion will result.
getZExtValue()1491   uint64_t getZExtValue() const {
1492     if (isSingleWord())
1493       return U.VAL;
1494     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1495     return U.pVal[0];
1496   }
1497 
1498   /// Get zero extended value if possible
1499   ///
1500   /// This method attempts to return the value of this APInt as a zero extended
1501   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1502   /// uint64_t. Otherwise no value is returned.
tryZExtValue()1503   std::optional<uint64_t> tryZExtValue() const {
1504     return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1505                                    : std::nullopt;
1506   };
1507 
1508   /// Get sign extended value
1509   ///
1510   /// This method attempts to return the value of this APInt as a sign extended
1511   /// int64_t. The bit width must be <= 64 or the value must fit within an
1512   /// int64_t. Otherwise an assertion will result.
getSExtValue()1513   int64_t getSExtValue() const {
1514     if (isSingleWord())
1515       return SignExtend64(U.VAL, BitWidth);
1516     assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1517     return int64_t(U.pVal[0]);
1518   }
1519 
1520   /// Get sign extended value if possible
1521   ///
1522   /// This method attempts to return the value of this APInt as a sign extended
1523   /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1524   /// int64_t. Otherwise no value is returned.
trySExtValue()1525   std::optional<int64_t> trySExtValue() const {
1526     return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1527                                         : std::nullopt;
1528   };
1529 
1530   /// Get bits required for string value.
1531   ///
1532   /// This method determines how many bits are required to hold the APInt
1533   /// equivalent of the string given by \p str.
1534   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1535 
1536   /// Get the bits that are sufficient to represent the string value. This may
1537   /// over estimate the amount of bits required, but it does not require
1538   /// parsing the value in the string.
1539   static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1540 
1541   /// The APInt version of std::countl_zero.
1542   ///
1543   /// It counts the number of zeros from the most significant bit to the first
1544   /// one bit.
1545   ///
1546   /// \returns BitWidth if the value is zero, otherwise returns the number of
1547   ///   zeros from the most significant bit to the first one bits.
countl_zero()1548   unsigned countl_zero() const {
1549     if (isSingleWord()) {
1550       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1551       return llvm::countl_zero(U.VAL) - unusedBits;
1552     }
1553     return countLeadingZerosSlowCase();
1554   }
1555 
countLeadingZeros()1556   unsigned countLeadingZeros() const { return countl_zero(); }
1557 
1558   /// Count the number of leading one bits.
1559   ///
1560   /// This function is an APInt version of std::countl_one. It counts the number
1561   /// of ones from the most significant bit to the first zero bit.
1562   ///
1563   /// \returns 0 if the high order bit is not set, otherwise returns the number
1564   /// of 1 bits from the most significant to the least
countl_one()1565   unsigned countl_one() const {
1566     if (isSingleWord()) {
1567       if (LLVM_UNLIKELY(BitWidth == 0))
1568         return 0;
1569       return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1570     }
1571     return countLeadingOnesSlowCase();
1572   }
1573 
countLeadingOnes()1574   unsigned countLeadingOnes() const { return countl_one(); }
1575 
1576   /// Computes the number of leading bits of this APInt that are equal to its
1577   /// sign bit.
getNumSignBits()1578   unsigned getNumSignBits() const {
1579     return isNegative() ? countl_one() : countl_zero();
1580   }
1581 
1582   /// Count the number of trailing zero bits.
1583   ///
1584   /// This function is an APInt version of std::countr_zero. It counts the
1585   /// number of zeros from the least significant bit to the first set bit.
1586   ///
1587   /// \returns BitWidth if the value is zero, otherwise returns the number of
1588   /// zeros from the least significant bit to the first one bit.
countr_zero()1589   unsigned countr_zero() const {
1590     if (isSingleWord()) {
1591       unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1592       return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1593     }
1594     return countTrailingZerosSlowCase();
1595   }
1596 
countTrailingZeros()1597   unsigned countTrailingZeros() const { return countr_zero(); }
1598 
1599   /// Count the number of trailing one bits.
1600   ///
1601   /// This function is an APInt version of std::countr_one. It counts the number
1602   /// of ones from the least significant bit to the first zero bit.
1603   ///
1604   /// \returns BitWidth if the value is all ones, otherwise returns the number
1605   /// of ones from the least significant bit to the first zero bit.
countr_one()1606   unsigned countr_one() const {
1607     if (isSingleWord())
1608       return llvm::countr_one(U.VAL);
1609     return countTrailingOnesSlowCase();
1610   }
1611 
countTrailingOnes()1612   unsigned countTrailingOnes() const { return countr_one(); }
1613 
1614   /// Count the number of bits set.
1615   ///
1616   /// This function is an APInt version of std::popcount. It counts the number
1617   /// of 1 bits in the APInt value.
1618   ///
1619   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
popcount()1620   unsigned popcount() const {
1621     if (isSingleWord())
1622       return llvm::popcount(U.VAL);
1623     return countPopulationSlowCase();
1624   }
1625 
1626   /// @}
1627   /// \name Conversion Functions
1628   /// @{
1629   void print(raw_ostream &OS, bool isSigned) const;
1630 
1631   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1632   /// SmallString. If Radix > 10, UpperCase determine the case of letter
1633   /// digits.
1634   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1635                 bool formatAsCLiteral = false, bool UpperCase = true,
1636                 bool InsertSeparators = false) const;
1637 
1638   /// Considers the APInt to be unsigned and converts it into a string in the
1639   /// radix given. The radix can be 2, 8, 10 16, or 36.
1640   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1641     toString(Str, Radix, false, false);
1642   }
1643 
1644   /// Considers the APInt to be signed and converts it into a string in the
1645   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1646   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1647     toString(Str, Radix, true, false);
1648   }
1649 
1650   /// \returns a byte-swapped representation of this APInt Value.
1651   APInt byteSwap() const;
1652 
1653   /// \returns the value with the bit representation reversed of this APInt
1654   /// Value.
1655   APInt reverseBits() const;
1656 
1657   /// Converts this APInt to a double value.
1658   double roundToDouble(bool isSigned) const;
1659 
1660   /// Converts this unsigned APInt to a double value.
roundToDouble()1661   double roundToDouble() const { return roundToDouble(false); }
1662 
1663   /// Converts this signed APInt to a double value.
signedRoundToDouble()1664   double signedRoundToDouble() const { return roundToDouble(true); }
1665 
1666   /// Converts APInt bits to a double
1667   ///
1668   /// The conversion does not do a translation from integer to double, it just
1669   /// re-interprets the bits as a double. Note that it is valid to do this on
1670   /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1671   double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1672 
1673   /// Converts APInt bits to a float
1674   ///
1675   /// The conversion does not do a translation from integer to float, it just
1676   /// re-interprets the bits as a float. Note that it is valid to do this on
1677   /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1678   float bitsToFloat() const {
1679     return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1680   }
1681 
1682   /// Converts a double to APInt bits.
1683   ///
1684   /// The conversion does not do a translation from double to integer, it just
1685   /// re-interprets the bits of the double.
doubleToBits(double V)1686   static APInt doubleToBits(double V) {
1687     return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1688   }
1689 
1690   /// Converts a float to APInt bits.
1691   ///
1692   /// The conversion does not do a translation from float to integer, it just
1693   /// re-interprets the bits of the float.
floatToBits(float V)1694   static APInt floatToBits(float V) {
1695     return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1696   }
1697 
1698   /// @}
1699   /// \name Mathematics Operations
1700   /// @{
1701 
1702   /// \returns the floor log base 2 of this APInt.
logBase2()1703   unsigned logBase2() const { return getActiveBits() - 1; }
1704 
1705   /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1706   unsigned ceilLogBase2() const {
1707     APInt temp(*this);
1708     --temp;
1709     return temp.getActiveBits();
1710   }
1711 
1712   /// \returns the nearest log base 2 of this APInt. Ties round up.
1713   ///
1714   /// NOTE: When we have a BitWidth of 1, we define:
1715   ///
1716   ///   log2(0) = UINT32_MAX
1717   ///   log2(1) = 0
1718   ///
1719   /// to get around any mathematical concerns resulting from
1720   /// referencing 2 in a space where 2 does no exist.
1721   unsigned nearestLogBase2() const;
1722 
1723   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1724   /// otherwise
exactLogBase2()1725   int32_t exactLogBase2() const {
1726     if (!isPowerOf2())
1727       return -1;
1728     return logBase2();
1729   }
1730 
1731   /// Compute the square root.
1732   APInt sqrt() const;
1733 
1734   /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1735   /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1736   /// wide APInt) is unchanged due to how negation works.
abs()1737   APInt abs() const {
1738     if (isNegative())
1739       return -(*this);
1740     return *this;
1741   }
1742 
1743   /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1744   APInt multiplicativeInverse() const;
1745 
1746   /// @}
1747   /// \name Building-block Operations for APInt and APFloat
1748   /// @{
1749 
1750   // These building block operations operate on a representation of arbitrary
1751   // precision, two's-complement, bignum integer values. They should be
1752   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1753   // generally a pointer to the base of an array of integer parts, representing
1754   // an unsigned bignum, and a count of how many parts there are.
1755 
1756   /// Sets the least significant part of a bignum to the input value, and zeroes
1757   /// out higher parts.
1758   static void tcSet(WordType *, WordType, unsigned);
1759 
1760   /// Assign one bignum to another.
1761   static void tcAssign(WordType *, const WordType *, unsigned);
1762 
1763   /// Returns true if a bignum is zero, false otherwise.
1764   static bool tcIsZero(const WordType *, unsigned);
1765 
1766   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1767   static int tcExtractBit(const WordType *, unsigned bit);
1768 
1769   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1770   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1771   /// significant bit of DST.  All high bits above srcBITS in DST are
1772   /// zero-filled.
1773   static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1774                         unsigned srcBits, unsigned srcLSB);
1775 
1776   /// Set the given bit of a bignum.  Zero-based.
1777   static void tcSetBit(WordType *, unsigned bit);
1778 
1779   /// Clear the given bit of a bignum.  Zero-based.
1780   static void tcClearBit(WordType *, unsigned bit);
1781 
1782   /// Returns the bit number of the least or most significant set bit of a
1783   /// number.  If the input number has no bits set -1U is returned.
1784   static unsigned tcLSB(const WordType *, unsigned n);
1785   static unsigned tcMSB(const WordType *parts, unsigned n);
1786 
1787   /// Negate a bignum in-place.
1788   static void tcNegate(WordType *, unsigned);
1789 
1790   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1791   static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1792   /// DST += RHS.  Returns the carry flag.
1793   static WordType tcAddPart(WordType *, WordType, unsigned);
1794 
1795   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1796   static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1797                              unsigned);
1798   /// DST -= RHS.  Returns the carry flag.
1799   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1800 
1801   /// DST += SRC * MULTIPLIER + PART   if add is true
1802   /// DST  = SRC * MULTIPLIER + PART   if add is false
1803   ///
1804   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1805   /// start at the same point, i.e. DST == SRC.
1806   ///
1807   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1808   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1809   /// result, and if all of the omitted higher parts were zero return zero,
1810   /// otherwise overflow occurred and return one.
1811   static int tcMultiplyPart(WordType *dst, const WordType *src,
1812                             WordType multiplier, WordType carry,
1813                             unsigned srcParts, unsigned dstParts, bool add);
1814 
1815   /// DST = LHS * RHS, where DST has the same width as the operands and is
1816   /// filled with the least significant parts of the result.  Returns one if
1817   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1818   /// operands.
1819   static int tcMultiply(WordType *, const WordType *, const WordType *,
1820                         unsigned);
1821 
1822   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1823   /// operands. No overflow occurs. DST must be disjoint from both operands.
1824   static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1825                              unsigned, unsigned);
1826 
1827   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1828   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1829   /// REMAINDER to the remainder, return zero.  i.e.
1830   ///
1831   ///  OLD_LHS = RHS * LHS + REMAINDER
1832   ///
1833   /// SCRATCH is a bignum of the same size as the operands and result for use by
1834   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1835   /// REMAINDER and SCRATCH must be distinct.
1836   static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1837                       WordType *scratch, unsigned parts);
1838 
1839   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1840   /// restrictions on Count.
1841   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1842 
1843   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1844   /// restrictions on Count.
1845   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1846 
1847   /// Comparison (unsigned) of two bignums.
1848   static int tcCompare(const WordType *, const WordType *, unsigned);
1849 
1850   /// Increment a bignum in-place.  Return the carry flag.
tcIncrement(WordType * dst,unsigned parts)1851   static WordType tcIncrement(WordType *dst, unsigned parts) {
1852     return tcAddPart(dst, 1, parts);
1853   }
1854 
1855   /// Decrement a bignum in-place.  Return the borrow flag.
tcDecrement(WordType * dst,unsigned parts)1856   static WordType tcDecrement(WordType *dst, unsigned parts) {
1857     return tcSubtractPart(dst, 1, parts);
1858   }
1859 
1860   /// Used to insert APInt objects, or objects that contain APInt objects, into
1861   ///  FoldingSets.
1862   void Profile(FoldingSetNodeID &id) const;
1863 
1864   /// debug method
1865   void dump() const;
1866 
1867   /// Returns whether this instance allocated memory.
needsCleanup()1868   bool needsCleanup() const { return !isSingleWord(); }
1869 
1870 private:
1871   /// This union is used to store the integer value. When the
1872   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1873   union {
1874     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1875     uint64_t *pVal; ///< Used to store the >64 bits integer value.
1876   } U;
1877 
1878   unsigned BitWidth = 1; ///< The number of bits in this APInt.
1879 
1880   friend struct DenseMapInfo<APInt, void>;
1881   friend class APSInt;
1882 
1883   /// This constructor is used only internally for speed of construction of
1884   /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1885   /// is not public.
1886   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1887 
1888   /// Determine which word a bit is in.
1889   ///
1890   /// \returns the word position for the specified bit position.
1891   static unsigned whichWord(unsigned bitPosition) {
1892     return bitPosition / APINT_BITS_PER_WORD;
1893   }
1894 
1895   /// Determine which bit in a word the specified bit position is in.
1896   static unsigned whichBit(unsigned bitPosition) {
1897     return bitPosition % APINT_BITS_PER_WORD;
1898   }
1899 
1900   /// Get a single bit mask.
1901   ///
1902   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1903   /// This method generates and returns a uint64_t (word) mask for a single
1904   /// bit at a specific bit position. This is used to mask the bit in the
1905   /// corresponding word.
1906   static uint64_t maskBit(unsigned bitPosition) {
1907     return 1ULL << whichBit(bitPosition);
1908   }
1909 
1910   /// Clear unused high order bits
1911   ///
1912   /// This method is used internally to clear the top "N" bits in the high order
1913   /// word that are not used by the APInt. This is needed after the most
1914   /// significant word is assigned a value to ensure that those bits are
1915   /// zero'd out.
1916   APInt &clearUnusedBits() {
1917     // Compute how many bits are used in the final word.
1918     unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1919 
1920     // Mask out the high bits.
1921     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1922     if (LLVM_UNLIKELY(BitWidth == 0))
1923       mask = 0;
1924 
1925     if (isSingleWord())
1926       U.VAL &= mask;
1927     else
1928       U.pVal[getNumWords() - 1] &= mask;
1929     return *this;
1930   }
1931 
1932   /// Get the word corresponding to a bit position
1933   /// \returns the corresponding word for the specified bit position.
1934   uint64_t getWord(unsigned bitPosition) const {
1935     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1936   }
1937 
1938   /// Utility method to change the bit width of this APInt to new bit width,
1939   /// allocating and/or deallocating as necessary. There is no guarantee on the
1940   /// value of any bits upon return. Caller should populate the bits after.
1941   void reallocate(unsigned NewBitWidth);
1942 
1943   /// Convert a char array into an APInt
1944   ///
1945   /// \param radix 2, 8, 10, 16, or 36
1946   /// Converts a string into a number.  The string must be non-empty
1947   /// and well-formed as a number of the given base. The bit-width
1948   /// must be sufficient to hold the result.
1949   ///
1950   /// This is used by the constructors that take string arguments.
1951   ///
1952   /// StringRef::getAsInteger is superficially similar but (1) does
1953   /// not assume that the string is well-formed and (2) grows the
1954   /// result to hold the input.
1955   void fromString(unsigned numBits, StringRef str, uint8_t radix);
1956 
1957   /// An internal division function for dividing APInts.
1958   ///
1959   /// This is used by the toString method to divide by the radix. It simply
1960   /// provides a more convenient form of divide for internal use since KnuthDiv
1961   /// has specific constraints on its inputs. If those constraints are not met
1962   /// then it provides a simpler form of divide.
1963   static void divide(const WordType *LHS, unsigned lhsWords,
1964                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1965                      WordType *Remainder);
1966 
1967   /// out-of-line slow case for inline constructor
1968   void initSlowCase(uint64_t val, bool isSigned);
1969 
1970   /// shared code between two array constructors
1971   void initFromArray(ArrayRef<uint64_t> array);
1972 
1973   /// out-of-line slow case for inline copy constructor
1974   void initSlowCase(const APInt &that);
1975 
1976   /// out-of-line slow case for shl
1977   void shlSlowCase(unsigned ShiftAmt);
1978 
1979   /// out-of-line slow case for lshr.
1980   void lshrSlowCase(unsigned ShiftAmt);
1981 
1982   /// out-of-line slow case for ashr.
1983   void ashrSlowCase(unsigned ShiftAmt);
1984 
1985   /// out-of-line slow case for operator=
1986   void assignSlowCase(const APInt &RHS);
1987 
1988   /// out-of-line slow case for operator==
1989   bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1990 
1991   /// out-of-line slow case for countLeadingZeros
1992   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1993 
1994   /// out-of-line slow case for countLeadingOnes.
1995   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1996 
1997   /// out-of-line slow case for countTrailingZeros.
1998   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1999 
2000   /// out-of-line slow case for countTrailingOnes
2001   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
2002 
2003   /// out-of-line slow case for countPopulation
2004   unsigned countPopulationSlowCase() const LLVM_READONLY;
2005 
2006   /// out-of-line slow case for intersects.
2007   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2008 
2009   /// out-of-line slow case for isSubsetOf.
2010   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2011 
2012   /// out-of-line slow case for setBits.
2013   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2014 
2015   /// out-of-line slow case for flipAllBits.
2016   void flipAllBitsSlowCase();
2017 
2018   /// out-of-line slow case for concat.
2019   APInt concatSlowCase(const APInt &NewLSB) const;
2020 
2021   /// out-of-line slow case for operator&=.
2022   void andAssignSlowCase(const APInt &RHS);
2023 
2024   /// out-of-line slow case for operator|=.
2025   void orAssignSlowCase(const APInt &RHS);
2026 
2027   /// out-of-line slow case for operator^=.
2028   void xorAssignSlowCase(const APInt &RHS);
2029 
2030   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2031   /// to, or greater than RHS.
2032   int compare(const APInt &RHS) const LLVM_READONLY;
2033 
2034   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2035   /// to, or greater than RHS.
2036   int compareSigned(const APInt &RHS) const LLVM_READONLY;
2037 
2038   /// @}
2039 };
2040 
2041 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2042 
2043 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2044 
2045 /// Unary bitwise complement operator.
2046 ///
2047 /// \returns an APInt that is the bitwise complement of \p v.
2048 inline APInt operator~(APInt v) {
2049   v.flipAllBits();
2050   return v;
2051 }
2052 
2053 inline APInt operator&(APInt a, const APInt &b) {
2054   a &= b;
2055   return a;
2056 }
2057 
2058 inline APInt operator&(const APInt &a, APInt &&b) {
2059   b &= a;
2060   return std::move(b);
2061 }
2062 
2063 inline APInt operator&(APInt a, uint64_t RHS) {
2064   a &= RHS;
2065   return a;
2066 }
2067 
2068 inline APInt operator&(uint64_t LHS, APInt b) {
2069   b &= LHS;
2070   return b;
2071 }
2072 
2073 inline APInt operator|(APInt a, const APInt &b) {
2074   a |= b;
2075   return a;
2076 }
2077 
2078 inline APInt operator|(const APInt &a, APInt &&b) {
2079   b |= a;
2080   return std::move(b);
2081 }
2082 
2083 inline APInt operator|(APInt a, uint64_t RHS) {
2084   a |= RHS;
2085   return a;
2086 }
2087 
2088 inline APInt operator|(uint64_t LHS, APInt b) {
2089   b |= LHS;
2090   return b;
2091 }
2092 
2093 inline APInt operator^(APInt a, const APInt &b) {
2094   a ^= b;
2095   return a;
2096 }
2097 
2098 inline APInt operator^(const APInt &a, APInt &&b) {
2099   b ^= a;
2100   return std::move(b);
2101 }
2102 
2103 inline APInt operator^(APInt a, uint64_t RHS) {
2104   a ^= RHS;
2105   return a;
2106 }
2107 
2108 inline APInt operator^(uint64_t LHS, APInt b) {
2109   b ^= LHS;
2110   return b;
2111 }
2112 
2113 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2114   I.print(OS, true);
2115   return OS;
2116 }
2117 
2118 inline APInt operator-(APInt v) {
2119   v.negate();
2120   return v;
2121 }
2122 
2123 inline APInt operator+(APInt a, const APInt &b) {
2124   a += b;
2125   return a;
2126 }
2127 
2128 inline APInt operator+(const APInt &a, APInt &&b) {
2129   b += a;
2130   return std::move(b);
2131 }
2132 
2133 inline APInt operator+(APInt a, uint64_t RHS) {
2134   a += RHS;
2135   return a;
2136 }
2137 
2138 inline APInt operator+(uint64_t LHS, APInt b) {
2139   b += LHS;
2140   return b;
2141 }
2142 
2143 inline APInt operator-(APInt a, const APInt &b) {
2144   a -= b;
2145   return a;
2146 }
2147 
2148 inline APInt operator-(const APInt &a, APInt &&b) {
2149   b.negate();
2150   b += a;
2151   return std::move(b);
2152 }
2153 
2154 inline APInt operator-(APInt a, uint64_t RHS) {
2155   a -= RHS;
2156   return a;
2157 }
2158 
2159 inline APInt operator-(uint64_t LHS, APInt b) {
2160   b.negate();
2161   b += LHS;
2162   return b;
2163 }
2164 
2165 inline APInt operator*(APInt a, uint64_t RHS) {
2166   a *= RHS;
2167   return a;
2168 }
2169 
2170 inline APInt operator*(uint64_t LHS, APInt b) {
2171   b *= LHS;
2172   return b;
2173 }
2174 
2175 namespace APIntOps {
2176 
2177 /// Determine the smaller of two APInts considered to be signed.
2178 inline const APInt &smin(const APInt &A, const APInt &B) {
2179   return A.slt(B) ? A : B;
2180 }
2181 
2182 /// Determine the larger of two APInts considered to be signed.
2183 inline const APInt &smax(const APInt &A, const APInt &B) {
2184   return A.sgt(B) ? A : B;
2185 }
2186 
2187 /// Determine the smaller of two APInts considered to be unsigned.
2188 inline const APInt &umin(const APInt &A, const APInt &B) {
2189   return A.ult(B) ? A : B;
2190 }
2191 
2192 /// Determine the larger of two APInts considered to be unsigned.
2193 inline const APInt &umax(const APInt &A, const APInt &B) {
2194   return A.ugt(B) ? A : B;
2195 }
2196 
2197 /// Determine the absolute difference of two APInts considered to be signed.
2198 inline const APInt abds(const APInt &A, const APInt &B) {
2199   return A.sge(B) ? (A - B) : (B - A);
2200 }
2201 
2202 /// Determine the absolute difference of two APInts considered to be unsigned.
2203 inline const APInt abdu(const APInt &A, const APInt &B) {
2204   return A.uge(B) ? (A - B) : (B - A);
2205 }
2206 
2207 /// Compute the floor of the signed average of C1 and C2
2208 APInt avgFloorS(const APInt &C1, const APInt &C2);
2209 
2210 /// Compute the floor of the unsigned average of C1 and C2
2211 APInt avgFloorU(const APInt &C1, const APInt &C2);
2212 
2213 /// Compute the ceil of the signed average of C1 and C2
2214 APInt avgCeilS(const APInt &C1, const APInt &C2);
2215 
2216 /// Compute the ceil of the unsigned average of C1 and C2
2217 APInt avgCeilU(const APInt &C1, const APInt &C2);
2218 
2219 /// Performs (2*N)-bit multiplication on sign-extended operands.
2220 /// Returns the high N bits of the multiplication result.
2221 APInt mulhs(const APInt &C1, const APInt &C2);
2222 
2223 /// Performs (2*N)-bit multiplication on zero-extended operands.
2224 /// Returns the high N bits of the multiplication result.
2225 APInt mulhu(const APInt &C1, const APInt &C2);
2226 
2227 /// Compute GCD of two unsigned APInt values.
2228 ///
2229 /// This function returns the greatest common divisor of the two APInt values
2230 /// using Stein's algorithm.
2231 ///
2232 /// \returns the greatest common divisor of A and B.
2233 APInt GreatestCommonDivisor(APInt A, APInt B);
2234 
2235 /// Converts the given APInt to a double value.
2236 ///
2237 /// Treats the APInt as an unsigned value for conversion purposes.
2238 inline double RoundAPIntToDouble(const APInt &APIVal) {
2239   return APIVal.roundToDouble();
2240 }
2241 
2242 /// Converts the given APInt to a double value.
2243 ///
2244 /// Treats the APInt as a signed value for conversion purposes.
2245 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2246   return APIVal.signedRoundToDouble();
2247 }
2248 
2249 /// Converts the given APInt to a float value.
2250 inline float RoundAPIntToFloat(const APInt &APIVal) {
2251   return float(RoundAPIntToDouble(APIVal));
2252 }
2253 
2254 /// Converts the given APInt to a float value.
2255 ///
2256 /// Treats the APInt as a signed value for conversion purposes.
2257 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2258   return float(APIVal.signedRoundToDouble());
2259 }
2260 
2261 /// Converts the given double value into a APInt.
2262 ///
2263 /// This function convert a double value to an APInt value.
2264 APInt RoundDoubleToAPInt(double Double, unsigned width);
2265 
2266 /// Converts a float value into a APInt.
2267 ///
2268 /// Converts a float value into an APInt value.
2269 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2270   return RoundDoubleToAPInt(double(Float), width);
2271 }
2272 
2273 /// Return A unsign-divided by B, rounded by the given rounding mode.
2274 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2275 
2276 /// Return A sign-divided by B, rounded by the given rounding mode.
2277 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2278 
2279 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2280 /// (e.g. 32 for i32).
2281 /// This function finds the smallest number n, such that
2282 /// (a) n >= 0 and q(n) = 0, or
2283 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2284 ///     integers, belong to two different intervals [Rk, Rk+R),
2285 ///     where R = 2^BW, and k is an integer.
2286 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2287 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2288 /// subtraction (treated as addition of negated numbers) would always
2289 /// count as an overflow, but here we want to allow values to decrease
2290 /// and increase as long as they are within the same interval.
2291 /// Specifically, adding of two negative numbers should not cause an
2292 /// overflow (as long as the magnitude does not exceed the bit width).
2293 /// On the other hand, given a positive number, adding a negative
2294 /// number to it can give a negative result, which would cause the
2295 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2296 /// treated as a special case of an overflow.
2297 ///
2298 /// This function returns std::nullopt if after finding k that minimizes the
2299 /// positive solution to q(n) = kR, both solutions are contained between
2300 /// two consecutive integers.
2301 ///
2302 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2303 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2304 /// virtue of *signed* overflow. This function will *not* find such an n,
2305 /// however it may find a value of n satisfying the inequalities due to
2306 /// an *unsigned* overflow (if the values are treated as unsigned).
2307 /// To find a solution for a signed overflow, treat it as a problem of
2308 /// finding an unsigned overflow with a range with of BW-1.
2309 ///
2310 /// The returned value may have a different bit width from the input
2311 /// coefficients.
2312 std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2313                                                 unsigned RangeWidth);
2314 
2315 /// Compare two values, and if they are different, return the position of the
2316 /// most significant bit that is different in the values.
2317 std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2318                                                        const APInt &B);
2319 
2320 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2321 /// by \param A to \param NewBitWidth bits.
2322 ///
2323 /// MatchAnyBits: (Default)
2324 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2325 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2326 ///
2327 /// MatchAllBits:
2328 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2329 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2330 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2331 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2332                    bool MatchAllBits = false);
2333 } // namespace APIntOps
2334 
2335 // See friend declaration above. This additional declaration is required in
2336 // order to compile LLVM with IBM xlC compiler.
2337 hash_code hash_value(const APInt &Arg);
2338 
2339 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2340 /// with the integer held in IntVal.
2341 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2342 
2343 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2344 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2345 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2346 
2347 /// Provide DenseMapInfo for APInt.
2348 template <> struct DenseMapInfo<APInt, void> {
2349   static inline APInt getEmptyKey() {
2350     APInt V(nullptr, 0);
2351     V.U.VAL = ~0ULL;
2352     return V;
2353   }
2354 
2355   static inline APInt getTombstoneKey() {
2356     APInt V(nullptr, 0);
2357     V.U.VAL = ~1ULL;
2358     return V;
2359   }
2360 
2361   static unsigned getHashValue(const APInt &Key);
2362 
2363   static bool isEqual(const APInt &LHS, const APInt &RHS) {
2364     return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2365   }
2366 };
2367 
2368 } // namespace llvm
2369 
2370 #endif
2371