1 //===-- SBValue.h -----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLDB_API_SBVALUE_H 10 #define LLDB_API_SBVALUE_H 11 12 #include "lldb/API/SBData.h" 13 #include "lldb/API/SBDefines.h" 14 #include "lldb/API/SBType.h" 15 16 class ValueImpl; 17 class ValueLocker; 18 19 namespace lldb_private { 20 namespace python { 21 class SWIGBridge; 22 } 23 } // namespace lldb_private 24 25 namespace lldb { 26 27 class LLDB_API SBValue { 28 public: 29 SBValue(); 30 31 SBValue(const lldb::SBValue &rhs); 32 33 lldb::SBValue &operator=(const lldb::SBValue &rhs); 34 35 ~SBValue(); 36 37 explicit operator bool() const; 38 39 bool IsValid(); 40 41 void Clear(); 42 43 SBError GetError(); 44 45 lldb::user_id_t GetID(); 46 47 const char *GetName(); 48 49 const char *GetTypeName(); 50 51 const char *GetDisplayTypeName(); 52 53 size_t GetByteSize(); 54 55 bool IsInScope(); 56 57 lldb::Format GetFormat(); 58 59 void SetFormat(lldb::Format format); 60 61 const char *GetValue(); 62 63 int64_t GetValueAsSigned(lldb::SBError &error, int64_t fail_value = 0); 64 65 uint64_t GetValueAsUnsigned(lldb::SBError &error, uint64_t fail_value = 0); 66 67 int64_t GetValueAsSigned(int64_t fail_value = 0); 68 69 uint64_t GetValueAsUnsigned(uint64_t fail_value = 0); 70 71 lldb::addr_t GetValueAsAddress(); 72 73 ValueType GetValueType(); 74 75 // If you call this on a newly created ValueObject, it will always return 76 // false. 77 bool GetValueDidChange(); 78 79 const char *GetSummary(); 80 81 const char *GetSummary(lldb::SBStream &stream, 82 lldb::SBTypeSummaryOptions &options); 83 84 const char *GetObjectDescription(); 85 86 lldb::SBValue GetDynamicValue(lldb::DynamicValueType use_dynamic); 87 88 lldb::SBValue GetStaticValue(); 89 90 lldb::SBValue GetNonSyntheticValue(); 91 92 lldb::DynamicValueType GetPreferDynamicValue(); 93 94 void SetPreferDynamicValue(lldb::DynamicValueType use_dynamic); 95 96 bool GetPreferSyntheticValue(); 97 98 void SetPreferSyntheticValue(bool use_synthetic); 99 100 bool IsDynamic(); 101 102 bool IsSynthetic(); 103 104 bool IsSyntheticChildrenGenerated(); 105 106 void SetSyntheticChildrenGenerated(bool); 107 108 const char *GetLocation(); 109 110 LLDB_DEPRECATED_FIXME("Use the variant that takes an SBError &", 111 "SetValueFromCString(const char *, SBError &)") 112 bool SetValueFromCString(const char *value_str); 113 114 bool SetValueFromCString(const char *value_str, lldb::SBError &error); 115 116 lldb::SBTypeFormat GetTypeFormat(); 117 118 lldb::SBTypeSummary GetTypeSummary(); 119 120 lldb::SBTypeFilter GetTypeFilter(); 121 122 lldb::SBTypeSynthetic GetTypeSynthetic(); 123 124 lldb::SBValue GetChildAtIndex(uint32_t idx); 125 126 lldb::SBValue CreateChildAtOffset(const char *name, uint32_t offset, 127 lldb::SBType type); 128 129 LLDB_DEPRECATED("Use the expression evaluator to perform type casting") 130 lldb::SBValue Cast(lldb::SBType type); 131 132 lldb::SBValue CreateValueFromExpression(const char *name, 133 const char *expression); 134 135 lldb::SBValue CreateValueFromExpression(const char *name, 136 const char *expression, 137 SBExpressionOptions &options); 138 139 lldb::SBValue CreateValueFromAddress(const char *name, lldb::addr_t address, 140 lldb::SBType type); 141 142 // this has no address! GetAddress() and GetLoadAddress() as well as 143 // AddressOf() on the return of this call all return invalid 144 lldb::SBValue CreateValueFromData(const char *name, lldb::SBData data, 145 lldb::SBType type); 146 147 /// Get a child value by index from a value. 148 /// 149 /// Structs, unions, classes, arrays and pointers have child 150 /// values that can be access by index. 151 /// 152 /// Structs and unions access child members using a zero based index 153 /// for each child member. For 154 /// 155 /// Classes reserve the first indexes for base classes that have 156 /// members (empty base classes are omitted), and all members of the 157 /// current class will then follow the base classes. 158 /// 159 /// Pointers differ depending on what they point to. If the pointer 160 /// points to a simple type, the child at index zero 161 /// is the only child value available, unless \a synthetic_allowed 162 /// is \b true, in which case the pointer will be used as an array 163 /// and can create 'synthetic' child values using positive or 164 /// negative indexes. If the pointer points to an aggregate type 165 /// (an array, class, union, struct), then the pointee is 166 /// transparently skipped and any children are going to be the indexes 167 /// of the child values within the aggregate type. For example if 168 /// we have a 'Point' type and we have a SBValue that contains a 169 /// pointer to a 'Point' type, then the child at index zero will be 170 /// the 'x' member, and the child at index 1 will be the 'y' member 171 /// (the child at index zero won't be a 'Point' instance). 172 /// 173 /// If you actually need an SBValue that represents the type pointed 174 /// to by a SBValue for which GetType().IsPointeeType() returns true, 175 /// regardless of the pointee type, you can do that with SBValue::Dereference. 176 /// 177 /// Arrays have a preset number of children that can be accessed by 178 /// index and will returns invalid child values for indexes that are 179 /// out of bounds unless the \a synthetic_allowed is \b true. In this 180 /// case the array can create 'synthetic' child values for indexes 181 /// that aren't in the array bounds using positive or negative 182 /// indexes. 183 /// 184 /// \param[in] idx 185 /// The index of the child value to get 186 /// 187 /// \param[in] use_dynamic 188 /// An enumeration that specifies whether to get dynamic values, 189 /// and also if the target can be run to figure out the dynamic 190 /// type of the child value. 191 /// 192 /// \param[in] can_create_synthetic 193 /// If \b true, then allow child values to be created by index 194 /// for pointers and arrays for indexes that normally wouldn't 195 /// be allowed. 196 /// 197 /// \return 198 /// A new SBValue object that represents the child member value. 199 lldb::SBValue GetChildAtIndex(uint32_t idx, 200 lldb::DynamicValueType use_dynamic, 201 bool can_create_synthetic); 202 203 // Matches children of this object only and will match base classes and 204 // member names if this is a clang typed object. 205 uint32_t GetIndexOfChildWithName(const char *name); 206 207 // Matches child members of this object and child members of any base 208 // classes. 209 lldb::SBValue GetChildMemberWithName(const char *name); 210 211 // Matches child members of this object and child members of any base 212 // classes. 213 lldb::SBValue GetChildMemberWithName(const char *name, 214 lldb::DynamicValueType use_dynamic); 215 216 // Expands nested expressions like .a->b[0].c[1]->d 217 lldb::SBValue GetValueForExpressionPath(const char *expr_path); 218 219 lldb::SBValue AddressOf(); 220 221 lldb::addr_t GetLoadAddress(); 222 223 lldb::SBAddress GetAddress(); 224 225 /// Get an SBData wrapping what this SBValue points to. 226 /// 227 /// This method will dereference the current SBValue, if its 228 /// data type is a T* or T[], and extract item_count elements 229 /// of type T from it, copying their contents in an SBData. 230 /// 231 /// \param[in] item_idx 232 /// The index of the first item to retrieve. For an array 233 /// this is equivalent to array[item_idx], for a pointer 234 /// to *(pointer + item_idx). In either case, the measurement 235 /// unit for item_idx is the sizeof(T) rather than the byte 236 /// 237 /// \param[in] item_count 238 /// How many items should be copied into the output. By default 239 /// only one item is copied, but more can be asked for. 240 /// 241 /// \return 242 /// An SBData with the contents of the copied items, on success. 243 /// An empty SBData otherwise. 244 lldb::SBData GetPointeeData(uint32_t item_idx = 0, uint32_t item_count = 1); 245 246 /// Get an SBData wrapping the contents of this SBValue. 247 /// 248 /// This method will read the contents of this object in memory 249 /// and copy them into an SBData for future use. 250 /// 251 /// \return 252 /// An SBData with the contents of this SBValue, on success. 253 /// An empty SBData otherwise. 254 lldb::SBData GetData(); 255 256 bool SetData(lldb::SBData &data, lldb::SBError &error); 257 258 /// Creates a copy of the SBValue with a new name and setting the current 259 /// SBValue as its parent. It should be used when we want to change the 260 /// name of a SBValue without modifying the actual SBValue itself 261 /// (e.g. sythetic child provider). 262 lldb::SBValue Clone(const char *new_name); 263 264 lldb::SBDeclaration GetDeclaration(); 265 266 /// Find out if a SBValue might have children. 267 /// 268 /// This call is much more efficient than GetNumChildren() as it 269 /// doesn't need to complete the underlying type. This is designed 270 /// to be used in a UI environment in order to detect if the 271 /// disclosure triangle should be displayed or not. 272 /// 273 /// This function returns true for class, union, structure, 274 /// pointers, references, arrays and more. Again, it does so without 275 /// doing any expensive type completion. 276 /// 277 /// \return 278 /// Returns \b true if the SBValue might have children, or \b 279 /// false otherwise. 280 bool MightHaveChildren(); 281 282 bool IsRuntimeSupportValue(); 283 284 uint32_t GetNumChildren(); 285 286 uint32_t GetNumChildren(uint32_t max); 287 288 LLDB_DEPRECATED("SBValue::GetOpaqueType() is deprecated.") 289 void *GetOpaqueType(); 290 291 lldb::SBTarget GetTarget(); 292 293 lldb::SBProcess GetProcess(); 294 295 lldb::SBThread GetThread(); 296 297 lldb::SBFrame GetFrame(); 298 299 lldb::SBValue Dereference(); 300 301 LLDB_DEPRECATED("Use GetType().IsPointerType() instead") 302 bool TypeIsPointerType(); 303 304 lldb::SBType GetType(); 305 306 lldb::SBValue Persist(); 307 308 bool GetDescription(lldb::SBStream &description); 309 310 bool GetExpressionPath(lldb::SBStream &description); 311 312 bool GetExpressionPath(lldb::SBStream &description, 313 bool qualify_cxx_base_classes); 314 315 lldb::SBValue EvaluateExpression(const char *expr) const; 316 lldb::SBValue EvaluateExpression(const char *expr, 317 const SBExpressionOptions &options) const; 318 lldb::SBValue EvaluateExpression(const char *expr, 319 const SBExpressionOptions &options, 320 const char *name) const; 321 322 /// Watch this value if it resides in memory. 323 /// 324 /// Sets a watchpoint on the value. 325 /// 326 /// \param[in] resolve_location 327 /// Resolve the location of this value once and watch its address. 328 /// This value must currently be set to \b true as watching all 329 /// locations of a variable or a variable path is not yet supported, 330 /// though we plan to support it in the future. 331 /// 332 /// \param[in] read 333 /// Stop when this value is accessed. 334 /// 335 /// \param[in] write 336 /// Stop when this value is modified 337 /// 338 /// \param[out] error 339 /// An error object. Contains the reason if there is some failure. 340 /// 341 /// \return 342 /// An SBWatchpoint object. This object might not be valid upon 343 /// return due to a value not being contained in memory, too 344 /// large, or watchpoint resources are not available or all in 345 /// use. 346 lldb::SBWatchpoint Watch(bool resolve_location, bool read, bool write, 347 SBError &error); 348 349 // Backward compatibility fix in the interim. 350 lldb::SBWatchpoint Watch(bool resolve_location, bool read, bool write); 351 352 /// Watch this value that this value points to in memory 353 /// 354 /// Sets a watchpoint on the value. 355 /// 356 /// \param[in] resolve_location 357 /// Resolve the location of this value once and watch its address. 358 /// This value must currently be set to \b true as watching all 359 /// locations of a variable or a variable path is not yet supported, 360 /// though we plan to support it in the future. 361 /// 362 /// \param[in] read 363 /// Stop when this value is accessed. 364 /// 365 /// \param[in] write 366 /// Stop when this value is modified 367 /// 368 /// \param[out] error 369 /// An error object. Contains the reason if there is some failure. 370 /// 371 /// \return 372 /// An SBWatchpoint object. This object might not be valid upon 373 /// return due to a value not being contained in memory, too 374 /// large, or watchpoint resources are not available or all in 375 /// use. 376 lldb::SBWatchpoint WatchPointee(bool resolve_location, bool read, bool write, 377 SBError &error); 378 379 /// If this value represents a C++ class that has a vtable, return an value 380 /// that represents the virtual function table. 381 /// 382 /// SBValue::GetError() will be in the success state if this value represents 383 /// a C++ class with a vtable, or an appropriate error describing that the 384 /// object isn't a C++ class with a vtable or not a C++ class. 385 /// 386 /// SBValue::GetName() will be the demangled symbol name for the virtual 387 /// function table like "vtable for <classname>". 388 /// 389 /// SBValue::GetValue() will be the address of the first vtable entry if the 390 /// current SBValue is a class with a vtable, or nothing the current SBValue 391 /// is not a C++ class or not a C++ class that has a vtable. 392 /// 393 /// SBValue::GetValueAtUnsigned(...) will return the address of the first 394 /// vtable entry. 395 /// 396 /// SBValue::GetLoadAddress() will return the address of the vtable pointer 397 /// found in the parent SBValue. 398 /// 399 /// SBValue::GetNumChildren() will return the number of virtual function 400 /// pointers in the vtable, or zero on error. 401 /// 402 /// SBValue::GetChildAtIndex(...) will return each virtual function pointer 403 /// as a SBValue object. 404 /// 405 /// The child SBValue objects will have the following values: 406 /// 407 /// SBValue::GetError() will indicate success if the vtable entry was 408 /// successfully read from memory, or an error if not. 409 /// 410 /// SBValue::GetName() will be the vtable function index in the form "[%u]" 411 /// where %u is the index. 412 /// 413 /// SBValue::GetValue() will be the virtual function pointer value as a 414 /// string. 415 /// 416 /// SBValue::GetValueAtUnsigned(...) will return the virtual function 417 /// pointer value. 418 /// 419 /// SBValue::GetLoadAddress() will return the address of the virtual function 420 /// pointer. 421 /// 422 /// SBValue::GetNumChildren() returns 0 423 lldb::SBValue GetVTable(); 424 425 protected: 426 friend class SBBlock; 427 friend class SBFrame; 428 friend class SBModule; 429 friend class SBTarget; 430 friend class SBThread; 431 friend class SBTypeStaticField; 432 friend class SBTypeSummary; 433 friend class SBValueList; 434 435 friend class lldb_private::python::SWIGBridge; 436 437 SBValue(const lldb::ValueObjectSP &value_sp); 438 439 /// Same as the protected version of GetSP that takes a locker, except that we 440 /// make the 441 /// locker locally in the function. Since the Target API mutex is recursive, 442 /// and the 443 /// StopLocker is a read lock, you can call this function even if you are 444 /// already 445 /// holding the two above-mentioned locks. 446 /// 447 /// \return 448 /// A ValueObjectSP of the best kind (static, dynamic or synthetic) we 449 /// can cons up, in accordance with the SBValue's settings. 450 lldb::ValueObjectSP GetSP() const; 451 452 /// Get the appropriate ValueObjectSP from this SBValue, consulting the 453 /// use_dynamic and use_synthetic options passed in to SetSP when the 454 /// SBValue's contents were set. Since this often requires examining memory, 455 /// and maybe even running code, it needs to acquire the Target API and 456 /// Process StopLock. 457 /// Those are held in an opaque class ValueLocker which is currently local to 458 /// SBValue.cpp. 459 /// So you don't have to get these yourself just default construct a 460 /// ValueLocker, and pass it into this. 461 /// If we need to make a ValueLocker and use it in some other .cpp file, we'll 462 /// have to move it to 463 /// ValueObject.h/cpp or somewhere else convenient. We haven't needed to so 464 /// far. 465 /// 466 /// \param[in] value_locker 467 /// An object that will hold the Target API, and Process RunLocks, and 468 /// auto-destroy them when it goes out of scope. Currently this is only 469 /// useful in 470 /// SBValue.cpp. 471 /// 472 /// \return 473 /// A ValueObjectSP of the best kind (static, dynamic or synthetic) we 474 /// can cons up, in accordance with the SBValue's settings. 475 lldb::ValueObjectSP GetSP(ValueLocker &value_locker) const; 476 477 // these calls do the right thing WRT adjusting their settings according to 478 // the target's preferences 479 void SetSP(const lldb::ValueObjectSP &sp); 480 481 void SetSP(const lldb::ValueObjectSP &sp, bool use_synthetic); 482 483 void SetSP(const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic); 484 485 void SetSP(const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic, 486 bool use_synthetic); 487 488 void SetSP(const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic, 489 bool use_synthetic, const char *name); 490 491 private: 492 typedef std::shared_ptr<ValueImpl> ValueImplSP; 493 ValueImplSP m_opaque_sp; 494 495 void SetSP(ValueImplSP impl_sp); 496 }; 497 498 } // namespace lldb 499 500 #endif // LLDB_API_SBVALUE_H 501