1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17class Predicate; // Forward def
18
19//===----------------------------------------------------------------------===//
20// Register file description - These classes are used to fill in the target
21// description classes.
22
23class HwMode<string FS, list<Predicate> Ps> {
24  // A string representing subtarget features that turn on this HW mode.
25  // For example, "+feat1,-feat2" will indicate that the mode is active
26  // when "feat1" is enabled and "feat2" is disabled at the same time.
27  // Any other features are not checked.
28  // When multiple modes are used, they should be mutually exclusive,
29  // otherwise the results are unpredictable.
30  string Features = FS;
31
32  // A list of predicates that turn on this HW mode.
33  list<Predicate> Predicates = Ps;
34}
35
36// A special mode recognized by tablegen. This mode is considered active
37// when no other mode is active. For targets that do not use specific hw
38// modes, this is the only mode.
39def DefaultMode : HwMode<"", []>;
40
41// A class used to associate objects with HW modes. It is only intended to
42// be used as a base class, where the derived class should contain a member
43// "Objects", which is a list of the same length as the list of modes.
44// The n-th element on the Objects list will be associated with the n-th
45// element on the Modes list.
46class HwModeSelect<list<HwMode> Ms> {
47  list<HwMode> Modes = Ms;
48}
49
50// A common class that implements a counterpart of ValueType, which is
51// dependent on a HW mode. This class inherits from ValueType itself,
52// which makes it possible to use objects of this class where ValueType
53// objects could be used. This is specifically applicable to selection
54// patterns.
55class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
56    : HwModeSelect<Ms>, ValueType<0, 0> {
57  // The length of this list must be the same as the length of Ms.
58  list<ValueType> Objects = Ts;
59}
60
61// A class that implements a counterpart of PtrValueType, which is
62// dependent on a HW mode. This class inherits from PtrValueType itself,
63// which makes it possible to use objects of this class where PtrValueType
64// or ValueType could be used. This is specifically applicable to selection
65// patterns.
66class PtrValueTypeByHwMode<ValueTypeByHwMode scalar, int addrspace>
67    : HwModeSelect<scalar.Modes>, PtrValueType<ValueType<0, 0>, addrspace> {
68  list<ValueType> Objects = scalar.Objects;
69}
70
71// A class representing the register size, spill size and spill alignment
72// in bits of a register.
73class RegInfo<int RS, int SS, int SA> {
74  int RegSize = RS;         // Register size in bits.
75  int SpillSize = SS;       // Spill slot size in bits.
76  int SpillAlignment = SA;  // Spill slot alignment in bits.
77}
78
79// The register size/alignment information, parameterized by a HW mode.
80class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
81    : HwModeSelect<Ms> {
82  // The length of this list must be the same as the length of Ms.
83  list<RegInfo> Objects = Ts;
84}
85
86// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
87class SubRegIndex<int size, int offset = 0> {
88  string Namespace = "";
89
90  // Size - Size (in bits) of the sub-registers represented by this index.
91  int Size = size;
92
93  // Offset - Offset of the first bit that is part of this sub-register index.
94  // Set it to -1 if the same index is used to represent sub-registers that can
95  // be at different offsets (for example when using an index to access an
96  // element in a register tuple).
97  int Offset = offset;
98
99  // ComposedOf - A list of two SubRegIndex instances, [A, B].
100  // This indicates that this SubRegIndex is the result of composing A and B.
101  // See ComposedSubRegIndex.
102  list<SubRegIndex> ComposedOf = [];
103
104  // CoveringSubRegIndices - A list of two or more sub-register indexes that
105  // cover this sub-register.
106  //
107  // This field should normally be left blank as TableGen can infer it.
108  //
109  // TableGen automatically detects sub-registers that straddle the registers
110  // in the SubRegs field of a Register definition. For example:
111  //
112  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
113  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
114  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
115  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
116  //
117  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
118  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
119  // CoveringSubRegIndices = [dsub_1, dsub_2].
120  list<SubRegIndex> CoveringSubRegIndices = [];
121}
122
123// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
124// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
125class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
126  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
127                              !eq(B.Offset, -1): -1,
128                              true:              !add(A.Offset, B.Offset))> {
129  // See SubRegIndex.
130  let ComposedOf = [A, B];
131}
132
133// RegAltNameIndex - The alternate name set to use for register operands of
134// this register class when printing.
135class RegAltNameIndex {
136  string Namespace = "";
137
138  // A set to be used if the name for a register is not defined in this set.
139  // This allows creating name sets with only a few alternative names.
140  RegAltNameIndex FallbackRegAltNameIndex = ?;
141}
142def NoRegAltName : RegAltNameIndex;
143
144// Register - You should define one instance of this class for each register
145// in the target machine.  String n will become the "name" of the register.
146class Register<string n, list<string> altNames = []> {
147  string Namespace = "";
148  string AsmName = n;
149  list<string> AltNames = altNames;
150
151  // Aliases - A list of registers that this register overlaps with.  A read or
152  // modification of this register can potentially read or modify the aliased
153  // registers.
154  list<Register> Aliases = [];
155
156  // SubRegs - A list of registers that are parts of this register. Note these
157  // are "immediate" sub-registers and the registers within the list do not
158  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
159  // not [AX, AH, AL].
160  list<Register> SubRegs = [];
161
162  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
163  // to address it. Sub-sub-register indices are automatically inherited from
164  // SubRegs.
165  list<SubRegIndex> SubRegIndices = [];
166
167  // RegAltNameIndices - The alternate name indices which are valid for this
168  // register.
169  list<RegAltNameIndex> RegAltNameIndices = [];
170
171  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
172  // These values can be determined by locating the <target>.h file in the
173  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
174  // order of these names correspond to the enumeration used by gcc.  A value of
175  // -1 indicates that the gcc number is undefined and -2 that register number
176  // is invalid for this mode/flavour.
177  list<int> DwarfNumbers = [];
178
179  // CostPerUse - Additional cost of instructions using this register compared
180  // to other registers in its class. The register allocator will try to
181  // minimize the number of instructions using a register with a CostPerUse.
182  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
183  // some registers require larger instruction encodings, by the RISC-V target,
184  // where some registers preclude using some C instructions. By making it a
185  // list, targets can have multiple cost models associated with each register
186  // and can choose one specific cost model per Machine Function by overriding
187  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
188  // finally have an equal number of cost values which is the max of costPerUse
189  // values specified. Any mismatch in the cost values for a register will be
190  // filled with zeros. Restricted the cost type to uint8_t in the
191  // generated table. It will considerably reduce the table size.
192  list<int> CostPerUse = [0];
193
194  // CoveredBySubRegs - When this bit is set, the value of this register is
195  // completely determined by the value of its sub-registers.  For example, the
196  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
197  // covered by its sub-register AX.
198  bit CoveredBySubRegs = false;
199
200  // HWEncoding - The target specific hardware encoding for this register.
201  bits<16> HWEncoding = 0;
202
203  bit isArtificial = false;
204
205  // isConstant - This register always holds a constant value (e.g. the zero
206  // register in architectures such as MIPS)
207  bit isConstant = false;
208
209  /// PositionOrder - Indicate tablegen to place the newly added register at a later
210  /// position to avoid iterations on them on unsupported target.
211  int PositionOrder = 0;
212}
213
214// RegisterWithSubRegs - This can be used to define instances of Register which
215// need to specify sub-registers.
216// List "subregs" specifies which registers are sub-registers to this one. This
217// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
218// This allows the code generator to be careful not to put two values with
219// overlapping live ranges into registers which alias.
220class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
221  let SubRegs = subregs;
222}
223
224// DAGOperand - An empty base class that unifies RegisterClass's and other forms
225// of Operand's that are legal as type qualifiers in DAG patterns.  This should
226// only ever be used for defining multiclasses that are polymorphic over both
227// RegisterClass's and other Operand's.
228class DAGOperand {
229  string OperandNamespace = "MCOI";
230  string DecoderMethod = "";
231}
232
233// RegisterClass - Now that all of the registers are defined, and aliases
234// between registers are defined, specify which registers belong to which
235// register classes.  This also defines the default allocation order of
236// registers by register allocators.
237//
238class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
239                    dag regList, RegAltNameIndex idx = NoRegAltName>
240  : DAGOperand {
241  string Namespace = namespace;
242
243  // The register size/alignment information, parameterized by a HW mode.
244  RegInfoByHwMode RegInfos;
245
246  // RegType - Specify the list ValueType of the registers in this register
247  // class.  Note that all registers in a register class must have the same
248  // ValueTypes.  This is a list because some targets permit storing different
249  // types in same register, for example vector values with 128-bit total size,
250  // but different count/size of items, like SSE on x86.
251  //
252  list<ValueType> RegTypes = regTypes;
253
254  // Size - Specify the spill size in bits of the registers.  A default value of
255  // zero lets tablegen pick an appropriate size.
256  int Size = 0;
257
258  // Alignment - Specify the alignment required of the registers when they are
259  // stored or loaded to memory.
260  //
261  int Alignment = alignment;
262
263  // CopyCost - This value is used to specify the cost of copying a value
264  // between two registers in this register class. The default value is one
265  // meaning it takes a single instruction to perform the copying. A negative
266  // value means copying is extremely expensive or impossible.
267  int CopyCost = 1;
268
269  // MemberList - Specify which registers are in this class.  If the
270  // allocation_order_* method are not specified, this also defines the order of
271  // allocation used by the register allocator.
272  //
273  dag MemberList = regList;
274
275  // AltNameIndex - The alternate register name to use when printing operands
276  // of this register class. Every register in the register class must have
277  // a valid alternate name for the given index.
278  RegAltNameIndex altNameIndex = idx;
279
280  // isAllocatable - Specify that the register class can be used for virtual
281  // registers and register allocation.  Some register classes are only used to
282  // model instruction operand constraints, and should have isAllocatable = 0.
283  bit isAllocatable = true;
284
285  // AltOrders - List of alternative allocation orders. The default order is
286  // MemberList itself, and that is good enough for most targets since the
287  // register allocators automatically remove reserved registers and move
288  // callee-saved registers to the end.
289  list<dag> AltOrders = [];
290
291  // AltOrderSelect - The body of a function that selects the allocation order
292  // to use in a given machine function. The code will be inserted in a
293  // function like this:
294  //
295  //   static inline unsigned f(const MachineFunction &MF) { ... }
296  //
297  // The function should return 0 to select the default order defined by
298  // MemberList, 1 to select the first AltOrders entry and so on.
299  code AltOrderSelect = [{}];
300
301  // Specify allocation priority for register allocators using a greedy
302  // heuristic. Classes with higher priority values are assigned first. This is
303  // useful as it is sometimes beneficial to assign registers to highly
304  // constrained classes first. The value has to be in the range [0,31].
305  int AllocationPriority = 0;
306
307  // Force register class to use greedy's global heuristic for all
308  // registers in this class. This should more aggressively try to
309  // avoid spilling in pathological cases.
310  bit GlobalPriority = false;
311
312  // Generate register pressure set for this register class and any class
313  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
314  bit GeneratePressureSet = true;
315
316  // Weight override for register pressure calculation. This is the value
317  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
318  // units of pressure for this register class. If unset tablegen will
319  // calculate a weight based on a number of register units in this register
320  // class registers. The weight is per register.
321  int Weight = ?;
322
323  // The diagnostic type to present when referencing this operand in a match
324  // failure error message. If this is empty, the default Match_InvalidOperand
325  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
326  // value will be generated and used for this operand type. The target
327  // assembly parser is responsible for converting this into a user-facing
328  // diagnostic message.
329  string DiagnosticType = "";
330
331  // A diagnostic message to emit when an invalid value is provided for this
332  // register class when it is being used as an assembly operand. If this is
333  // non-empty, an anonymous diagnostic type enum value will be generated, and
334  // the assembly matcher will provide a function to map from diagnostic types
335  // to message strings.
336  string DiagnosticString = "";
337
338  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
339  bits<8> TSFlags = 0;
340
341  // If set then consider this register class to be the base class for registers in
342  // its MemberList.  The base class for registers present in multiple base register
343  // classes will be resolved in the order defined by this value, with lower values
344  // taking precedence over higher ones.  Ties are resolved by enumeration order.
345  int BaseClassOrder = ?;
346}
347
348// The memberList in a RegisterClass is a dag of set operations. TableGen
349// evaluates these set operations and expand them into register lists. These
350// are the most common operation, see test/TableGen/SetTheory.td for more
351// examples of what is possible:
352//
353// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
354// register class, or a sub-expression. This is also the way to simply list
355// registers.
356//
357// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
358//
359// (and GPR, CSR) - Set intersection. All registers from the first set that are
360// also in the second set.
361//
362// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
363// numbered registers.  Takes an optional 4th operand which is a stride to use
364// when generating the sequence.
365//
366// (shl GPR, 4) - Remove the first N elements.
367//
368// (trunc GPR, 4) - Truncate after the first N elements.
369//
370// (rotl GPR, 1) - Rotate N places to the left.
371//
372// (rotr GPR, 1) - Rotate N places to the right.
373//
374// (decimate GPR, 2) - Pick every N'th element, starting with the first.
375//
376// (interleave A, B, ...) - Interleave the elements from each argument list.
377//
378// All of these operators work on ordered sets, not lists. That means
379// duplicates are removed from sub-expressions.
380
381// Set operators. The rest is defined in TargetSelectionDAG.td.
382def sequence;
383def decimate;
384def interleave;
385
386// RegisterTuples - Automatically generate super-registers by forming tuples of
387// sub-registers. This is useful for modeling register sequence constraints
388// with pseudo-registers that are larger than the architectural registers.
389//
390// The sub-register lists are zipped together:
391//
392//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
393//
394// Generates the same registers as:
395//
396//   let SubRegIndices = [sube, subo] in {
397//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
398//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
399//   }
400//
401// The generated pseudo-registers inherit super-classes and fields from their
402// first sub-register. Most fields from the Register class are inferred, and
403// the AsmName and Dwarf numbers are cleared.
404//
405// RegisterTuples instances can be used in other set operations to form
406// register classes and so on. This is the only way of using the generated
407// registers.
408//
409// RegNames may be specified to supply asm names for the generated tuples.
410// If used must have the same size as the list of produced registers.
411class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
412                     list<string> RegNames = []> {
413  // SubRegs - N lists of registers to be zipped up. Super-registers are
414  // synthesized from the first element of each SubRegs list, the second
415  // element and so on.
416  list<dag> SubRegs = Regs;
417
418  // SubRegIndices - N SubRegIndex instances. This provides the names of the
419  // sub-registers in the synthesized super-registers.
420  list<SubRegIndex> SubRegIndices = Indices;
421
422  // List of asm names for the generated tuple registers.
423  list<string> RegAsmNames = RegNames;
424
425  // PositionOrder - Indicate tablegen to place the newly added register at a later
426  // position to avoid iterations on them on unsupported target.
427  int PositionOrder = 0;
428}
429
430// RegisterCategory - This class is a list of RegisterClasses that belong to a
431// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
432// useful for identifying registers in a generic way instead of having
433// information about a specific target's registers.
434class RegisterCategory<list<RegisterClass> classes> {
435  // Classes - A list of register classes that fall within the category.
436  list<RegisterClass> Classes = classes;
437}
438
439//===----------------------------------------------------------------------===//
440// DwarfRegNum - This class provides a mapping of the llvm register enumeration
441// to the register numbering used by gcc and gdb.  These values are used by a
442// debug information writer to describe where values may be located during
443// execution.
444class DwarfRegNum<list<int> Numbers> {
445  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
446  // These values can be determined by locating the <target>.h file in the
447  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
448  // order of these names correspond to the enumeration used by gcc.  A value of
449  // -1 indicates that the gcc number is undefined and -2 that register number
450  // is invalid for this mode/flavour.
451  list<int> DwarfNumbers = Numbers;
452}
453
454// DwarfRegAlias - This class declares that a given register uses the same dwarf
455// numbers as another one. This is useful for making it clear that the two
456// registers do have the same number. It also lets us build a mapping
457// from dwarf register number to llvm register.
458class DwarfRegAlias<Register reg> {
459      Register DwarfAlias = reg;
460}
461
462//===----------------------------------------------------------------------===//
463// SubtargetFeature - A characteristic of the chip set.
464//
465class SubtargetFeature<string n, string f, string v, string d,
466                       list<SubtargetFeature> i = []> {
467  // Name - Feature name.  Used by command line (-mattr=) to determine the
468  // appropriate target chip.
469  //
470  string Name = n;
471
472  // FieldName - Field in XXXSubtarget to be set by feature.
473  //
474  string FieldName = f;
475
476  // Value - Value the XXXSubtarget field to be set to by feature.
477  //
478  // A value of "true" or "false" implies the field is a bool. Otherwise,
479  // it is assumed to be an integer. the integer value may be the name of an
480  // enum constant. If multiple features use the same integer field, the
481  // field will be set to the maximum value of all enabled features that
482  // share the field.
483  //
484  string Value = v;
485
486  // Desc - Feature description.  Used by command line (-mattr=) to display help
487  // information.
488  //
489  string Desc = d;
490
491  // Implies - Features that this feature implies are present. If one of those
492  // features isn't set, then this one shouldn't be set either.
493  //
494  list<SubtargetFeature> Implies = i;
495}
496
497/// Specifies a Subtarget feature that this instruction is deprecated on.
498class Deprecated<SubtargetFeature dep> {
499  SubtargetFeature DeprecatedFeatureMask = dep;
500}
501
502/// A custom predicate used to determine if an instruction is
503/// deprecated or not.
504class ComplexDeprecationPredicate<string dep> {
505  string ComplexDeprecationPredicate = dep;
506}
507
508//===----------------------------------------------------------------------===//
509// Pull in the common support for MCPredicate (portable scheduling predicates).
510//
511include "llvm/Target/TargetInstrPredicate.td"
512
513//===----------------------------------------------------------------------===//
514// Pull in the common support for scheduling
515//
516include "llvm/Target/TargetSchedule.td"
517
518class InstructionEncoding {
519  // Size of encoded instruction.
520  int Size;
521
522  // The "namespace" in which this instruction exists, on targets like ARM
523  // which multiple ISA namespaces exist.
524  string DecoderNamespace = "";
525
526  // List of predicates which will be turned into isel matching code.
527  list<Predicate> Predicates = [];
528
529  string DecoderMethod = "";
530
531  // Is the instruction decoder method able to completely determine if the
532  // given instruction is valid or not. If the TableGen definition of the
533  // instruction specifies bitpattern A??B where A and B are static bits, the
534  // hasCompleteDecoder flag says whether the decoder method fully handles the
535  // ?? space, i.e. if it is a final arbiter for the instruction validity.
536  // If not then the decoder attempts to continue decoding when the decoder
537  // method fails.
538  //
539  // This allows to handle situations where the encoding is not fully
540  // orthogonal. Example:
541  // * InstA with bitpattern 0b0000????,
542  // * InstB with bitpattern 0b000000?? but the associated decoder method
543  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
544  //
545  // The decoder tries to decode a bitpattern that matches both InstA and
546  // InstB bitpatterns first as InstB (because it is the most specific
547  // encoding). In the default case (hasCompleteDecoder = 1), when
548  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
549  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
550  // DecodeInstB() is not able to determine if all possible values of ?? are
551  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
552  // decode the bitpattern as InstA too.
553  bit hasCompleteDecoder = true;
554}
555
556// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
557// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
558// to encode and decode based on HwMode.
559class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
560    : HwModeSelect<Ms> {
561  // The length of this list must be the same as the length of Ms.
562  list<InstructionEncoding> Objects = Ts;
563}
564
565//===----------------------------------------------------------------------===//
566// Instruction set description - These classes correspond to the C++ classes in
567// the Target/TargetInstrInfo.h file.
568//
569class Instruction : InstructionEncoding {
570  string Namespace = "";
571
572  dag OutOperandList;       // An dag containing the MI def operand list.
573  dag InOperandList;        // An dag containing the MI use operand list.
574  string AsmString = "";    // The .s format to print the instruction with.
575
576  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
577  // the Inst member of this Instruction is ignored.
578  EncodingByHwMode EncodingInfos;
579
580  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
581  // otherwise, uninitialized.
582  list<dag> Pattern;
583
584  // The follow state will eventually be inferred automatically from the
585  // instruction pattern.
586
587  list<Register> Uses = []; // Default to using no non-operand registers
588  list<Register> Defs = []; // Default to modifying no non-operand registers
589
590  // Predicates - List of predicates which will be turned into isel matching
591  // code.
592  list<Predicate> Predicates = [];
593
594  // Size - Size of encoded instruction, or zero if the size cannot be determined
595  // from the opcode.
596  int Size = 0;
597
598  // Code size, for instruction selection.
599  // FIXME: What does this actually mean?
600  int CodeSize = 0;
601
602  // Added complexity passed onto matching pattern.
603  int AddedComplexity  = 0;
604
605  // Indicates if this is a pre-isel opcode that should be
606  // legalized/regbankselected/selected.
607  bit isPreISelOpcode = false;
608
609  // These bits capture information about the high-level semantics of the
610  // instruction.
611  bit isReturn     = false;     // Is this instruction a return instruction?
612  bit isBranch     = false;     // Is this instruction a branch instruction?
613  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
614  bit isIndirectBranch = false; // Is this instruction an indirect branch?
615  bit isCompare    = false;     // Is this instruction a comparison instruction?
616  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
617  bit isMoveReg    = false;     // Is this instruction a move register instruction?
618  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
619  bit isSelect     = false;     // Is this instruction a select instruction?
620  bit isBarrier    = false;     // Can control flow fall through this instruction?
621  bit isCall       = false;     // Is this instruction a call instruction?
622  bit isAdd        = false;     // Is this instruction an add instruction?
623  bit isTrap       = false;     // Is this instruction a trap instruction?
624  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
625  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
626  bit mayStore     = ?;         // Is it possible for this inst to write memory?
627  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
628  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
629  bit isCommutable = false;     // Is this 3 operand instruction commutable?
630  bit isTerminator = false;     // Is this part of the terminator for a basic block?
631  bit isReMaterializable = false; // Is this instruction re-materializable?
632  bit isPredicable = false;     // 1 means this instruction is predicable
633                                // even if it does not have any operand
634                                // tablegen can identify as a predicate
635  bit isUnpredicable = false;   // 1 means this instruction is not predicable
636                                // even if it _does_ have a predicate operand
637  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
638  bit usesCustomInserter = false; // Pseudo instr needing special help.
639  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
640  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
641  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
642  bit isConvergent = false;     // Is this instruction convergent?
643  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
644  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
645  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
646  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
647  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
648                                // If so, make sure to override
649                                // TargetInstrInfo::getRegSequenceLikeInputs.
650  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
651                                // If so, won't have encoding information for
652                                // the [MC]CodeEmitter stuff.
653  bit isMeta = false;           // Is this instruction a meta-instruction?
654                                // If so, won't produce any output in the form of
655                                // executable instructions
656  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
657                                // If so, make sure to override
658                                // TargetInstrInfo::getExtractSubregLikeInputs.
659  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
660                                // If so, make sure to override
661                                // TargetInstrInfo::getInsertSubregLikeInputs.
662  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
663
664  // Does the instruction have side effects that are not captured by any
665  // operands of the instruction or other flags?
666  bit hasSideEffects = ?;
667
668  // Is this instruction a "real" instruction (with a distinct machine
669  // encoding), or is it a pseudo instruction used for codegen modeling
670  // purposes.
671  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
672  // instructions can (and often do) still have encoding information
673  // associated with them. Once we've migrated all of them over to true
674  // pseudo-instructions that are lowered to real instructions prior to
675  // the printer/emitter, we can remove this attribute and just use isPseudo.
676  //
677  // The intended use is:
678  // isPseudo: Does not have encoding information and should be expanded,
679  //   at the latest, during lowering to MCInst.
680  //
681  // isCodeGenOnly: Does have encoding information and can go through to the
682  //   CodeEmitter unchanged, but duplicates a canonical instruction
683  //   definition's encoding and should be ignored when constructing the
684  //   assembler match tables.
685  bit isCodeGenOnly = false;
686
687  // Is this instruction a pseudo instruction for use by the assembler parser.
688  bit isAsmParserOnly = false;
689
690  // This instruction is not expected to be queried for scheduling latencies
691  // and therefore needs no scheduling information even for a complete
692  // scheduling model.
693  bit hasNoSchedulingInfo = false;
694
695  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
696
697  // Scheduling information from TargetSchedule.td.
698  list<SchedReadWrite> SchedRW;
699
700  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
701
702  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
703  /// be encoded into the output machineinstr.
704  string DisableEncoding = "";
705
706  string PostEncoderMethod = "";
707
708  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
709  bits<64> TSFlags = 0;
710
711  ///@name Assembler Parser Support
712  ///@{
713
714  string AsmMatchConverter = "";
715
716  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
717  /// two-operand matcher inst-alias for a three operand instruction.
718  /// For example, the arm instruction "add r3, r3, r5" can be written
719  /// as "add r3, r5". The constraint is of the same form as a tied-operand
720  /// constraint. For example, "$Rn = $Rd".
721  string TwoOperandAliasConstraint = "";
722
723  /// Assembler variant name to use for this instruction. If specified then
724  /// instruction will be presented only in MatchTable for this variant. If
725  /// not specified then assembler variants will be determined based on
726  /// AsmString
727  string AsmVariantName = "";
728
729  ///@}
730
731  /// UseNamedOperandTable - If set, the operand indices of this instruction
732  /// can be queried via the getNamedOperandIdx() function which is generated
733  /// by TableGen.
734  bit UseNamedOperandTable = false;
735
736  /// Should generate helper functions that help you to map a logical operand's
737  /// index to the underlying MIOperand's index.
738  /// In most architectures logical operand indicies are equal to
739  /// MIOperand indicies, but for some CISC architectures, a logical operand
740  /// might be consist of multiple MIOperand (e.g. a logical operand that
741  /// uses complex address mode).
742  bit UseLogicalOperandMappings = false;
743
744  /// Should FastISel ignore this instruction. For certain ISAs, they have
745  /// instructions which map to the same ISD Opcode, value type operands and
746  /// instruction selection predicates. FastISel cannot handle such cases, but
747  /// SelectionDAG can.
748  bit FastISelShouldIgnore = false;
749
750  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
751  /// ID, so that instruction that is defined earlier can be sorted earlier
752  /// in the assembly matching table.
753  bit HasPositionOrder = false;
754}
755
756/// Defines a Pat match between compressed and uncompressed instruction.
757/// The relationship and helper function generation are handled by
758/// CompressInstEmitter backend.
759class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
760  /// Uncompressed instruction description.
761  dag Input = input;
762  /// Compressed instruction description.
763  dag Output = output;
764  /// Predicates that must be true for this to match.
765  list<Predicate> Predicates = predicates;
766  /// Duplicate match when tied operand is just different.
767  bit isCompressOnly = false;
768}
769
770/// Defines an additional encoding that disassembles to the given instruction
771/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
772// to specify their size.
773class AdditionalEncoding<Instruction I> : InstructionEncoding {
774  Instruction AliasOf = I;
775}
776
777/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
778/// Which instruction it expands to and how the operands map from the
779/// pseudo.
780class PseudoInstExpansion<dag Result> {
781  dag ResultInst = Result;     // The instruction to generate.
782  bit isPseudo = true;
783}
784
785/// Predicates - These are extra conditionals which are turned into instruction
786/// selector matching code. Currently each predicate is just a string.
787class Predicate<string cond> {
788  string CondString = cond;
789
790  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
791  /// matcher, this is true.  Targets should set this by inheriting their
792  /// feature from the AssemblerPredicate class in addition to Predicate.
793  bit AssemblerMatcherPredicate = false;
794
795  /// AssemblerCondDag - Set of subtarget features being tested used
796  /// as alternative condition string used for assembler matcher. Must be used
797  /// with (all_of) to indicate that all features must be present, or (any_of)
798  /// to indicate that at least one must be. The required lack of presence of
799  /// a feature can be tested using a (not) node including the feature.
800  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
801  ///      "(all_of (not ModeThumb))" is translated to
802  ///      "(Bits & ModeThumb) == 0".
803  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
804  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
805  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
806  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
807  /// all_of and any_of cannot be combined in a single dag, instead multiple
808  /// predicates can be placed onto Instruction definitions.
809  dag AssemblerCondDag;
810
811  /// PredicateName - User-level name to use for the predicate. Mainly for use
812  /// in diagnostics such as missing feature errors in the asm matcher.
813  string PredicateName = "";
814
815  /// Setting this to '1' indicates that the predicate must be recomputed on
816  /// every function change. Most predicates can leave this at '0'.
817  ///
818  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
819  bit RecomputePerFunction = false;
820}
821
822/// NoHonorSignDependentRounding - This predicate is true if support for
823/// sign-dependent-rounding is not enabled.
824def NoHonorSignDependentRounding
825 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
826
827class Requires<list<Predicate> preds> {
828  list<Predicate> Predicates = preds;
829}
830
831/// ops definition - This is just a simple marker used to identify the operand
832/// list for an instruction. outs and ins are identical both syntactically and
833/// semantically; they are used to define def operands and use operands to
834/// improve readability. This should be used like this:
835///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
836def ops;
837def outs;
838def ins;
839
840/// variable_ops definition - Mark this instruction as taking a variable number
841/// of operands.
842def variable_ops;
843
844/// variable-length instruction encoding utilities.
845/// The `ascend` operator should be used like this:
846///     (ascend 0b0010, 0b1101)
847/// Which represent a seqence of encoding fragments placing from LSB to MSB.
848/// Thus, in this case the final encoding will be 0b1101_0010.
849/// The arguments for `ascend` can either be `bits` or another DAG.
850def ascend;
851/// In addition, we can use `descend` to describe an encoding that places
852/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
853///     (descend 0b0010, 0b1101)
854/// This results in an encoding of 0b0010_1101.
855def descend;
856/// The `operand` operator should be used like this:
857///     (operand "$src", 4)
858/// Which represents a 4-bit encoding for an instruction operand named `$src`.
859def operand;
860/// Similar to `operand`, we can reference only part of the operand's encoding:
861///     (slice "$src", 6, 8)
862///     (slice "$src", 8, 6)
863/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
864/// `$src`.
865def slice;
866/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
867/// function for a specific `operand` or `slice` directive. For example:
868///     (operand "$src", 4, (encoder "encodeMyImm"))
869///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
870///     (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
871/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
872/// doesn't matter.
873/// Note that currently we cannot assign different decoders in the same
874/// (instruction) operand.
875def encoder;
876def decoder;
877
878/// PointerLikeRegClass - Values that are designed to have pointer width are
879/// derived from this.  TableGen treats the register class as having a symbolic
880/// type that it doesn't know, and resolves the actual regclass to use by using
881/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
882class PointerLikeRegClass<int Kind> {
883  int RegClassKind = Kind;
884}
885
886
887/// ptr_rc definition - Mark this operand as being a pointer value whose
888/// register class is resolved dynamically via a callback to TargetInstrInfo.
889/// FIXME: We should probably change this to a class which contain a list of
890/// flags. But currently we have but one flag.
891def ptr_rc : PointerLikeRegClass<0>;
892
893/// unknown definition - Mark this operand as being of unknown type, causing
894/// it to be resolved by inference in the context it is used.
895class unknown_class;
896def unknown : unknown_class;
897
898/// AsmOperandClass - Representation for the kinds of operands which the target
899/// specific parser can create and the assembly matcher may need to distinguish.
900///
901/// Operand classes are used to define the order in which instructions are
902/// matched, to ensure that the instruction which gets matched for any
903/// particular list of operands is deterministic.
904///
905/// The target specific parser must be able to classify a parsed operand into a
906/// unique class which does not partially overlap with any other classes. It can
907/// match a subset of some other class, in which case the super class field
908/// should be defined.
909class AsmOperandClass {
910  /// The name to use for this class, which should be usable as an enum value.
911  string Name = ?;
912
913  /// The super classes of this operand.
914  list<AsmOperandClass> SuperClasses = [];
915
916  /// The name of the method on the target specific operand to call to test
917  /// whether the operand is an instance of this class. If not set, this will
918  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
919  /// signature should be:
920  ///   bool isFoo() const;
921  string PredicateMethod = ?;
922
923  /// The name of the method on the target specific operand to call to add the
924  /// target specific operand to an MCInst. If not set, this will default to
925  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
926  /// signature should be:
927  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
928  string RenderMethod = ?;
929
930  /// The name of the method on the target specific operand to call to custom
931  /// handle the operand parsing. This is useful when the operands do not relate
932  /// to immediates or registers and are very instruction specific (as flags to
933  /// set in a processor register, coprocessor number, ...).
934  string ParserMethod = ?;
935
936  // The diagnostic type to present when referencing this operand in a
937  // match failure error message. By default, use a generic "invalid operand"
938  // diagnostic. The target AsmParser maps these codes to text.
939  string DiagnosticType = "";
940
941  /// A diagnostic message to emit when an invalid value is provided for this
942  /// operand.
943  string DiagnosticString = "";
944
945  /// Set to 1 if this operand is optional and not always required. Typically,
946  /// the AsmParser will emit an error when it finishes parsing an
947  /// instruction if it hasn't matched all the operands yet.  However, this
948  /// error will be suppressed if all of the remaining unmatched operands are
949  /// marked as IsOptional.
950  ///
951  /// Optional arguments must be at the end of the operand list.
952  bit IsOptional = false;
953
954  /// The name of the method on the target specific asm parser that returns the
955  /// default operand for this optional operand. This method is only used if
956  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
957  /// where Foo is the AsmOperandClass name. The method signature should be:
958  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
959  string DefaultMethod = ?;
960}
961
962def ImmAsmOperand : AsmOperandClass {
963  let Name = "Imm";
964}
965
966/// Operand Types - These provide the built-in operand types that may be used
967/// by a target.  Targets can optionally provide their own operand types as
968/// needed, though this should not be needed for RISC targets.
969class Operand<ValueType ty> : DAGOperand {
970  ValueType Type = ty;
971  string PrintMethod = "printOperand";
972  string EncoderMethod = "";
973  bit hasCompleteDecoder = true;
974  string OperandType = "OPERAND_UNKNOWN";
975  dag MIOperandInfo = (ops);
976
977  // MCOperandPredicate - Optionally, a code fragment operating on
978  // const MCOperand &MCOp, and returning a bool, to indicate if
979  // the value of MCOp is valid for the specific subclass of Operand
980  code MCOperandPredicate;
981
982  // ParserMatchClass - The "match class" that operands of this type fit
983  // in. Match classes are used to define the order in which instructions are
984  // match, to ensure that which instructions gets matched is deterministic.
985  //
986  // The target specific parser must be able to classify an parsed operand into
987  // a unique class, which does not partially overlap with any other classes. It
988  // can match a subset of some other class, in which case the AsmOperandClass
989  // should declare the other operand as one of its super classes.
990  AsmOperandClass ParserMatchClass = ImmAsmOperand;
991}
992
993class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
994  : DAGOperand {
995  // RegClass - The register class of the operand.
996  RegisterClass RegClass = regclass;
997  // PrintMethod - The target method to call to print register operands of
998  // this type. The method normally will just use an alt-name index to look
999  // up the name to print. Default to the generic printOperand().
1000  string PrintMethod = pm;
1001
1002  // EncoderMethod - The target method name to call to encode this register
1003  // operand.
1004  string EncoderMethod = "";
1005
1006  // ParserMatchClass - The "match class" that operands of this type fit
1007  // in. Match classes are used to define the order in which instructions are
1008  // match, to ensure that which instructions gets matched is deterministic.
1009  //
1010  // The target specific parser must be able to classify an parsed operand into
1011  // a unique class, which does not partially overlap with any other classes. It
1012  // can match a subset of some other class, in which case the AsmOperandClass
1013  // should declare the other operand as one of its super classes.
1014  AsmOperandClass ParserMatchClass;
1015
1016  string OperandType = "OPERAND_REGISTER";
1017
1018  // When referenced in the result of a CodeGen pattern, GlobalISel will
1019  // normally copy the matched operand to the result. When this is set, it will
1020  // emit a special copy that will replace zero-immediates with the specified
1021  // zero-register.
1022  Register GIZeroRegister = ?;
1023}
1024
1025let OperandType = "OPERAND_IMMEDIATE" in {
1026def i1imm  : Operand<i1>;
1027def i8imm  : Operand<i8>;
1028def i16imm : Operand<i16>;
1029def i32imm : Operand<i32>;
1030def i64imm : Operand<i64>;
1031
1032def f32imm : Operand<f32>;
1033def f64imm : Operand<f64>;
1034}
1035
1036// Register operands for generic instructions don't have an MVT, but do have
1037// constraints linking the operands (e.g. all operands of a G_ADD must
1038// have the same LLT).
1039class TypedOperand<string Ty> : Operand<untyped> {
1040  let OperandType = Ty;
1041  bit IsPointer = false;
1042  bit IsImmediate = false;
1043}
1044
1045def type0 : TypedOperand<"OPERAND_GENERIC_0">;
1046def type1 : TypedOperand<"OPERAND_GENERIC_1">;
1047def type2 : TypedOperand<"OPERAND_GENERIC_2">;
1048def type3 : TypedOperand<"OPERAND_GENERIC_3">;
1049def type4 : TypedOperand<"OPERAND_GENERIC_4">;
1050def type5 : TypedOperand<"OPERAND_GENERIC_5">;
1051
1052let IsPointer = true in {
1053  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
1054  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
1055  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
1056  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
1057  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
1058  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
1059}
1060
1061// untyped_imm is for operands where isImm() will be true. It currently has no
1062// special behaviour and is only used for clarity.
1063def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
1064  let IsImmediate = true;
1065}
1066
1067/// zero_reg definition - Special node to stand for the zero register.
1068///
1069def zero_reg;
1070
1071/// undef_tied_input - Special node to indicate an input register tied
1072/// to an output which defaults to IMPLICIT_DEF.
1073def undef_tied_input;
1074
1075/// All operands which the MC layer classifies as predicates should inherit from
1076/// this class in some manner. This is already handled for the most commonly
1077/// used PredicateOperand, but may be useful in other circumstances.
1078class PredicateOp;
1079
1080/// OperandWithDefaultOps - This Operand class can be used as the parent class
1081/// for an Operand that needs to be initialized with a default value if
1082/// no value is supplied in a pattern.  This class can be used to simplify the
1083/// pattern definitions for instructions that have target specific flags
1084/// encoded as immediate operands.
1085class OperandWithDefaultOps<ValueType ty, dag defaultops>
1086  : Operand<ty> {
1087  dag DefaultOps = defaultops;
1088}
1089
1090/// PredicateOperand - This can be used to define a predicate operand for an
1091/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
1092/// AlwaysVal specifies the value of this predicate when set to "always
1093/// execute".
1094class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1095  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
1096  let MIOperandInfo = OpTypes;
1097}
1098
1099/// OptionalDefOperand - This is used to define a optional definition operand
1100/// for an instruction. DefaultOps is the register the operand represents if
1101/// none is supplied, e.g. zero_reg.
1102class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
1103  : OperandWithDefaultOps<ty, defaultops> {
1104  let MIOperandInfo = OpTypes;
1105}
1106
1107
1108// InstrInfo - This class should only be instantiated once to provide parameters
1109// which are global to the target machine.
1110//
1111class InstrInfo {
1112  // Target can specify its instructions in either big or little-endian formats.
1113  // For instance, while both Sparc and PowerPC are big-endian platforms, the
1114  // Sparc manual specifies its instructions in the format [31..0] (big), while
1115  // PowerPC specifies them using the format [0..31] (little).
1116  bit isLittleEndianEncoding = false;
1117
1118  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
1119  // by default, and TableGen will infer their value from the instruction
1120  // pattern when possible.
1121  //
1122  // Normally, TableGen will issue an error if it can't infer the value of a
1123  // property that hasn't been set explicitly. When guessInstructionProperties
1124  // is set, it will guess a safe value instead.
1125  //
1126  // This option is a temporary migration help. It will go away.
1127  bit guessInstructionProperties = true;
1128}
1129
1130// Standard Pseudo Instructions.
1131// This list must match TargetOpcodes.def.
1132// Only these instructions are allowed in the TargetOpcode namespace.
1133// Ensure mayLoad and mayStore have a default value, so as not to break
1134// targets that set guessInstructionProperties=0. Any local definition of
1135// mayLoad/mayStore takes precedence over these default values.
1136class StandardPseudoInstruction : Instruction {
1137  let mayLoad = false;
1138  let mayStore = false;
1139  let isCodeGenOnly = true;
1140  let isPseudo = true;
1141  let hasNoSchedulingInfo = true;
1142  let Namespace = "TargetOpcode";
1143}
1144def PHI : StandardPseudoInstruction {
1145  let OutOperandList = (outs unknown:$dst);
1146  let InOperandList = (ins variable_ops);
1147  let AsmString = "PHINODE";
1148  let hasSideEffects = false;
1149}
1150def INLINEASM : StandardPseudoInstruction {
1151  let OutOperandList = (outs);
1152  let InOperandList = (ins variable_ops);
1153  let AsmString = "";
1154  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1155}
1156def INLINEASM_BR : StandardPseudoInstruction {
1157  let OutOperandList = (outs);
1158  let InOperandList = (ins variable_ops);
1159  let AsmString = "";
1160  // Unlike INLINEASM, this is always treated as having side-effects.
1161  let hasSideEffects = true;
1162  // Despite potentially branching, this instruction is intentionally _not_
1163  // marked as a terminator or a branch.
1164}
1165def CFI_INSTRUCTION : StandardPseudoInstruction {
1166  let OutOperandList = (outs);
1167  let InOperandList = (ins i32imm:$id);
1168  let AsmString = "";
1169  let hasCtrlDep = true;
1170  let hasSideEffects = false;
1171  let isNotDuplicable = true;
1172  let isMeta = true;
1173}
1174def EH_LABEL : StandardPseudoInstruction {
1175  let OutOperandList = (outs);
1176  let InOperandList = (ins i32imm:$id);
1177  let AsmString = "";
1178  let hasCtrlDep = true;
1179  let hasSideEffects = false;
1180  let isNotDuplicable = true;
1181  let isMeta = true;
1182}
1183def GC_LABEL : StandardPseudoInstruction {
1184  let OutOperandList = (outs);
1185  let InOperandList = (ins i32imm:$id);
1186  let AsmString = "";
1187  let hasCtrlDep = true;
1188  let hasSideEffects = false;
1189  let isNotDuplicable = true;
1190  let isMeta = true;
1191}
1192def ANNOTATION_LABEL : StandardPseudoInstruction {
1193  let OutOperandList = (outs);
1194  let InOperandList = (ins i32imm:$id);
1195  let AsmString = "";
1196  let hasCtrlDep = true;
1197  let hasSideEffects = false;
1198  let isNotDuplicable = true;
1199}
1200def KILL : StandardPseudoInstruction {
1201  let OutOperandList = (outs);
1202  let InOperandList = (ins variable_ops);
1203  let AsmString = "";
1204  let hasSideEffects = false;
1205  let isMeta = true;
1206}
1207def EXTRACT_SUBREG : StandardPseudoInstruction {
1208  let OutOperandList = (outs unknown:$dst);
1209  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1210  let AsmString = "";
1211  let hasSideEffects = false;
1212}
1213def INSERT_SUBREG : StandardPseudoInstruction {
1214  let OutOperandList = (outs unknown:$dst);
1215  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1216  let AsmString = "";
1217  let hasSideEffects = false;
1218  let Constraints = "$supersrc = $dst";
1219}
1220def IMPLICIT_DEF : StandardPseudoInstruction {
1221  let OutOperandList = (outs unknown:$dst);
1222  let InOperandList = (ins);
1223  let AsmString = "";
1224  let hasSideEffects = false;
1225  let isReMaterializable = true;
1226  let isAsCheapAsAMove = true;
1227  let isMeta = true;
1228}
1229def SUBREG_TO_REG : StandardPseudoInstruction {
1230  let OutOperandList = (outs unknown:$dst);
1231  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1232  let AsmString = "";
1233  let hasSideEffects = false;
1234}
1235def COPY_TO_REGCLASS : StandardPseudoInstruction {
1236  let OutOperandList = (outs unknown:$dst);
1237  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1238  let AsmString = "";
1239  let hasSideEffects = false;
1240  let isAsCheapAsAMove = true;
1241}
1242def DBG_VALUE : StandardPseudoInstruction {
1243  let OutOperandList = (outs);
1244  let InOperandList = (ins variable_ops);
1245  let AsmString = "DBG_VALUE";
1246  let hasSideEffects = false;
1247  let isMeta = true;
1248}
1249def DBG_VALUE_LIST : StandardPseudoInstruction {
1250  let OutOperandList = (outs);
1251  let InOperandList = (ins variable_ops);
1252  let AsmString = "DBG_VALUE_LIST";
1253  let hasSideEffects = 0;
1254  let isMeta = true;
1255}
1256def DBG_INSTR_REF : StandardPseudoInstruction {
1257  let OutOperandList = (outs);
1258  let InOperandList = (ins variable_ops);
1259  let AsmString = "DBG_INSTR_REF";
1260  let hasSideEffects = false;
1261  let isMeta = true;
1262}
1263def DBG_PHI : StandardPseudoInstruction {
1264  let OutOperandList = (outs);
1265  let InOperandList = (ins variable_ops);
1266  let AsmString = "DBG_PHI";
1267  let hasSideEffects = 0;
1268  let isMeta = true;
1269}
1270def DBG_LABEL : StandardPseudoInstruction {
1271  let OutOperandList = (outs);
1272  let InOperandList = (ins unknown:$label);
1273  let AsmString = "DBG_LABEL";
1274  let hasSideEffects = false;
1275  let isMeta = true;
1276}
1277def REG_SEQUENCE : StandardPseudoInstruction {
1278  let OutOperandList = (outs unknown:$dst);
1279  let InOperandList = (ins unknown:$supersrc, variable_ops);
1280  let AsmString = "";
1281  let hasSideEffects = false;
1282  let isAsCheapAsAMove = true;
1283}
1284def COPY : StandardPseudoInstruction {
1285  let OutOperandList = (outs unknown:$dst);
1286  let InOperandList = (ins unknown:$src);
1287  let AsmString = "";
1288  let hasSideEffects = false;
1289  let isAsCheapAsAMove = true;
1290  let hasNoSchedulingInfo = false;
1291}
1292def BUNDLE : StandardPseudoInstruction {
1293  let OutOperandList = (outs);
1294  let InOperandList = (ins variable_ops);
1295  let AsmString = "BUNDLE";
1296  let hasSideEffects = false;
1297}
1298def LIFETIME_START : StandardPseudoInstruction {
1299  let OutOperandList = (outs);
1300  let InOperandList = (ins i32imm:$id);
1301  let AsmString = "LIFETIME_START";
1302  let hasSideEffects = false;
1303  let isMeta = true;
1304}
1305def LIFETIME_END : StandardPseudoInstruction {
1306  let OutOperandList = (outs);
1307  let InOperandList = (ins i32imm:$id);
1308  let AsmString = "LIFETIME_END";
1309  let hasSideEffects = false;
1310  let isMeta = true;
1311}
1312def PSEUDO_PROBE : StandardPseudoInstruction {
1313  let OutOperandList = (outs);
1314  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1315  let AsmString = "PSEUDO_PROBE";
1316  let hasSideEffects = 1;
1317  let isMeta = true;
1318}
1319def ARITH_FENCE : StandardPseudoInstruction {
1320  let OutOperandList = (outs unknown:$dst);
1321  let InOperandList = (ins unknown:$src);
1322  let AsmString = "";
1323  let hasSideEffects = false;
1324  let Constraints = "$src = $dst";
1325  let isMeta = true;
1326}
1327
1328def STACKMAP : StandardPseudoInstruction {
1329  let OutOperandList = (outs);
1330  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1331  let hasSideEffects = true;
1332  let isCall = true;
1333  let mayLoad = true;
1334  let usesCustomInserter = true;
1335}
1336def PATCHPOINT : StandardPseudoInstruction {
1337  let OutOperandList = (outs unknown:$dst);
1338  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1339                       i32imm:$nargs, i32imm:$cc, variable_ops);
1340  let hasSideEffects = true;
1341  let isCall = true;
1342  let mayLoad = true;
1343  let usesCustomInserter = true;
1344}
1345def STATEPOINT : StandardPseudoInstruction {
1346  let OutOperandList = (outs variable_ops);
1347  let InOperandList = (ins variable_ops);
1348  let usesCustomInserter = true;
1349  let mayLoad = true;
1350  let mayStore = true;
1351  let hasSideEffects = true;
1352  let isCall = true;
1353}
1354def LOAD_STACK_GUARD : StandardPseudoInstruction {
1355  let OutOperandList = (outs ptr_rc:$dst);
1356  let InOperandList = (ins);
1357  let mayLoad = true;
1358  bit isReMaterializable = true;
1359  let hasSideEffects = false;
1360  bit isPseudo = true;
1361}
1362def PREALLOCATED_SETUP : StandardPseudoInstruction {
1363  let OutOperandList = (outs);
1364  let InOperandList = (ins i32imm:$a);
1365  let usesCustomInserter = true;
1366  let hasSideEffects = true;
1367}
1368def PREALLOCATED_ARG : StandardPseudoInstruction {
1369  let OutOperandList = (outs ptr_rc:$loc);
1370  let InOperandList = (ins i32imm:$a, i32imm:$b);
1371  let usesCustomInserter = true;
1372  let hasSideEffects = true;
1373}
1374def LOCAL_ESCAPE : StandardPseudoInstruction {
1375  // This instruction is really just a label. It has to be part of the chain so
1376  // that it doesn't get dropped from the DAG, but it produces nothing and has
1377  // no side effects.
1378  let OutOperandList = (outs);
1379  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1380  let hasSideEffects = false;
1381  let hasCtrlDep = true;
1382}
1383def FAULTING_OP : StandardPseudoInstruction {
1384  let OutOperandList = (outs unknown:$dst);
1385  let InOperandList = (ins variable_ops);
1386  let usesCustomInserter = true;
1387  let hasSideEffects = true;
1388  let mayLoad = true;
1389  let mayStore = true;
1390  let isTerminator = true;
1391  let isBranch = true;
1392}
1393def PATCHABLE_OP : StandardPseudoInstruction {
1394  let OutOperandList = (outs);
1395  let InOperandList = (ins variable_ops);
1396  let usesCustomInserter = true;
1397  let mayLoad = true;
1398  let mayStore = true;
1399  let hasSideEffects = true;
1400}
1401def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1402  let OutOperandList = (outs);
1403  let InOperandList = (ins);
1404  let AsmString = "# XRay Function Enter.";
1405  let usesCustomInserter = true;
1406  let hasSideEffects = true;
1407}
1408def PATCHABLE_RET : StandardPseudoInstruction {
1409  let OutOperandList = (outs);
1410  let InOperandList = (ins variable_ops);
1411  let AsmString = "# XRay Function Patchable RET.";
1412  let usesCustomInserter = true;
1413  let hasSideEffects = true;
1414  let isTerminator = true;
1415  let isReturn = true;
1416}
1417def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1418  let OutOperandList = (outs);
1419  let InOperandList = (ins);
1420  let AsmString = "# XRay Function Exit.";
1421  let usesCustomInserter = true;
1422  let hasSideEffects = true;
1423  let isReturn = false; // Original return instruction will follow
1424}
1425def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1426  let OutOperandList = (outs);
1427  let InOperandList = (ins variable_ops);
1428  let AsmString = "# XRay Tail Call Exit.";
1429  let usesCustomInserter = true;
1430  let hasSideEffects = true;
1431  let isReturn = true;
1432}
1433def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1434  let OutOperandList = (outs);
1435  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1436  let AsmString = "# XRay Custom Event Log.";
1437  let usesCustomInserter = true;
1438  let isCall = true;
1439  let mayLoad = true;
1440  let mayStore = true;
1441  let hasSideEffects = true;
1442}
1443def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1444  let OutOperandList = (outs);
1445  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1446  let AsmString = "# XRay Typed Event Log.";
1447  let usesCustomInserter = true;
1448  let isCall = true;
1449  let mayLoad = true;
1450  let mayStore = true;
1451  let hasSideEffects = true;
1452}
1453def FENTRY_CALL : StandardPseudoInstruction {
1454  let OutOperandList = (outs);
1455  let InOperandList = (ins);
1456  let AsmString = "# FEntry call";
1457  let usesCustomInserter = true;
1458  let isCall = true;
1459  let mayLoad = true;
1460  let mayStore = true;
1461  let hasSideEffects = true;
1462}
1463def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1464  let OutOperandList = (outs);
1465  let InOperandList = (ins variable_ops);
1466  let AsmString = "";
1467  let hasSideEffects = true;
1468}
1469def MEMBARRIER : StandardPseudoInstruction {
1470  let OutOperandList = (outs);
1471  let InOperandList = (ins);
1472  let AsmString = "";
1473  let hasSideEffects = true;
1474  let Size = 0;
1475  let isMeta = true;
1476}
1477def JUMP_TABLE_DEBUG_INFO : StandardPseudoInstruction {
1478  let OutOperandList = (outs);
1479  let InOperandList = (ins i64imm:$jti);
1480  let AsmString = "";
1481  let hasSideEffects = false;
1482  let Size = 0;
1483  let isMeta = true;
1484}
1485
1486let hasSideEffects = false, isMeta = true, isConvergent = true in {
1487def CONVERGENCECTRL_ANCHOR : StandardPseudoInstruction {
1488  let OutOperandList = (outs unknown:$dst);
1489  let InOperandList = (ins);
1490}
1491def CONVERGENCECTRL_ENTRY : StandardPseudoInstruction {
1492  let OutOperandList = (outs unknown:$dst);
1493  let InOperandList = (ins);
1494}
1495def CONVERGENCECTRL_LOOP : StandardPseudoInstruction {
1496  let OutOperandList = (outs unknown:$dst);
1497  let InOperandList = (ins unknown:$src);
1498}
1499def CONVERGENCECTRL_GLUE : StandardPseudoInstruction {
1500  let OutOperandList = (outs);
1501  let InOperandList = (ins unknown:$src);
1502}
1503}
1504
1505// Generic opcodes used in GlobalISel.
1506include "llvm/Target/GenericOpcodes.td"
1507
1508//===----------------------------------------------------------------------===//
1509// AsmParser - This class can be implemented by targets that wish to implement
1510// .s file parsing.
1511//
1512// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1513// syntax on X86 for example).
1514//
1515class AsmParser {
1516  // AsmParserClassName - This specifies the suffix to use for the asmparser
1517  // class.  Generated AsmParser classes are always prefixed with the target
1518  // name.
1519  string AsmParserClassName  = "AsmParser";
1520
1521  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1522  // function of the AsmParser class to call on every matched instruction.
1523  // This can be used to perform target specific instruction post-processing.
1524  string AsmParserInstCleanup  = "";
1525
1526  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1527  // written register name matcher
1528  bit ShouldEmitMatchRegisterName = true;
1529
1530  // Set to true if the target needs a generated 'alternative register name'
1531  // matcher.
1532  //
1533  // This generates a function which can be used to lookup registers from
1534  // their aliases. This function will fail when called on targets where
1535  // several registers share the same alias (i.e. not a 1:1 mapping).
1536  bit ShouldEmitMatchRegisterAltName = false;
1537
1538  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1539  // should be generated even if there are duplicate register names. The
1540  // target is responsible for coercing aliased registers as necessary
1541  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1542  // which numeric register identifier will be returned in the case of
1543  // multiple matches.
1544  bit AllowDuplicateRegisterNames = false;
1545
1546  // HasMnemonicFirst - Set to false if target instructions don't always
1547  // start with a mnemonic as the first token.
1548  bit HasMnemonicFirst = true;
1549
1550  // ReportMultipleNearMisses -
1551  // When 0, the assembly matcher reports an error for one encoding or operand
1552  // that did not match the parsed instruction.
1553  // When 1, the assembly matcher returns a list of encodings that were close
1554  // to matching the parsed instruction, so to allow more detailed error
1555  // messages.
1556  bit ReportMultipleNearMisses = false;
1557
1558  // OperandParserMethod - If non-empty, this is the name of a custom
1559  // member function of the AsmParser class to call for every instruction
1560  // operand to be parsed.
1561  string OperandParserMethod = "";
1562
1563  // CallCustomParserForAllOperands - Set to true if the custom parser
1564  // method shall be called for all operands as opposed to only those
1565  // that have their own specified custom parsers.
1566  bit CallCustomParserForAllOperands = false;
1567}
1568def DefaultAsmParser : AsmParser;
1569
1570//===----------------------------------------------------------------------===//
1571// AsmParserVariant - Subtargets can have multiple different assembly parsers
1572// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1573// implemented by targets to describe such variants.
1574//
1575class AsmParserVariant {
1576  // Variant - AsmParsers can be of multiple different variants.  Variants are
1577  // used to support targets that need to parse multiple formats for the
1578  // assembly language.
1579  int Variant = 0;
1580
1581  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1582  string Name = "";
1583
1584  // CommentDelimiter - If given, the delimiter string used to recognize
1585  // comments which are hard coded in the .td assembler strings for individual
1586  // instructions.
1587  string CommentDelimiter = "";
1588
1589  // RegisterPrefix - If given, the token prefix which indicates a register
1590  // token. This is used by the matcher to automatically recognize hard coded
1591  // register tokens as constrained registers, instead of tokens, for the
1592  // purposes of matching.
1593  string RegisterPrefix = "";
1594
1595  // TokenizingCharacters - Characters that are standalone tokens
1596  string TokenizingCharacters = "[]*!";
1597
1598  // SeparatorCharacters - Characters that are not tokens
1599  string SeparatorCharacters = " \t,";
1600
1601  // BreakCharacters - Characters that start new identifiers
1602  string BreakCharacters = "";
1603}
1604def DefaultAsmParserVariant : AsmParserVariant;
1605
1606// Operators for combining SubtargetFeatures in AssemblerPredicates
1607def any_of;
1608def all_of;
1609
1610/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1611/// matches instructions and aliases.
1612class AssemblerPredicate<dag cond, string name = ""> {
1613  bit AssemblerMatcherPredicate = true;
1614  dag AssemblerCondDag = cond;
1615  string PredicateName = name;
1616}
1617
1618/// TokenAlias - This class allows targets to define assembler token
1619/// operand aliases. That is, a token literal operand which is equivalent
1620/// to another, canonical, token literal. For example, ARM allows:
1621///   vmov.u32 s4, #0  -> vmov.i32, #0
1622/// 'u32' is a more specific designator for the 32-bit integer type specifier
1623/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1624///   def : TokenAlias<".u32", ".i32">;
1625///
1626/// This works by marking the match class of 'From' as a subclass of the
1627/// match class of 'To'.
1628class TokenAlias<string From, string To> {
1629  string FromToken = From;
1630  string ToToken = To;
1631}
1632
1633/// MnemonicAlias - This class allows targets to define assembler mnemonic
1634/// aliases.  This should be used when all forms of one mnemonic are accepted
1635/// with a different mnemonic.  For example, X86 allows:
1636///   sal %al, 1    -> shl %al, 1
1637///   sal %ax, %cl  -> shl %ax, %cl
1638///   sal %eax, %cl -> shl %eax, %cl
1639/// etc.  Though "sal" is accepted with many forms, all of them are directly
1640/// translated to a shl, so it can be handled with (in the case of X86, it
1641/// actually has one for each suffix as well):
1642///   def : MnemonicAlias<"sal", "shl">;
1643///
1644/// Mnemonic aliases are mapped before any other translation in the match phase,
1645/// and do allow Requires predicates, e.g.:
1646///
1647///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1648///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1649///
1650/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1651///
1652///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1653///
1654/// If no variant (e.g., "att" or "intel") is specified then the alias is
1655/// applied unconditionally.
1656class MnemonicAlias<string From, string To, string VariantName = ""> {
1657  string FromMnemonic = From;
1658  string ToMnemonic = To;
1659  string AsmVariantName = VariantName;
1660
1661  // Predicates - Predicates that must be true for this remapping to happen.
1662  list<Predicate> Predicates = [];
1663}
1664
1665/// InstAlias - This defines an alternate assembly syntax that is allowed to
1666/// match an instruction that has a different (more canonical) assembly
1667/// representation.
1668class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1669  string AsmString = Asm;      // The .s format to match the instruction with.
1670  dag ResultInst = Result;     // The MCInst to generate.
1671
1672  // This determines which order the InstPrinter detects aliases for
1673  // printing. A larger value makes the alias more likely to be
1674  // emitted. The Instruction's own definition is notionally 0.5, so 0
1675  // disables printing and 1 enables it if there are no conflicting aliases.
1676  int EmitPriority = Emit;
1677
1678  // Predicates - Predicates that must be true for this to match.
1679  list<Predicate> Predicates = [];
1680
1681  // If the instruction specified in Result has defined an AsmMatchConverter
1682  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1683  // function when converting the OperandVector into an MCInst instead of the
1684  // function that is generated by the dag Result.
1685  // Setting this to 0 will cause the alias to ignore the Result instruction's
1686  // defined AsmMatchConverter and instead use the function generated by the
1687  // dag Result.
1688  bit UseInstAsmMatchConverter = true;
1689
1690  // Assembler variant name to use for this alias. If not specified then
1691  // assembler variants will be determined based on AsmString
1692  string AsmVariantName = VariantName;
1693}
1694
1695//===----------------------------------------------------------------------===//
1696// AsmWriter - This class can be implemented by targets that need to customize
1697// the format of the .s file writer.
1698//
1699// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1700// on X86 for example).
1701//
1702class AsmWriter {
1703  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1704  // class.  Generated AsmWriter classes are always prefixed with the target
1705  // name.
1706  string AsmWriterClassName  = "InstPrinter";
1707
1708  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1709  // the various print methods.
1710  // FIXME: Remove after all ports are updated.
1711  int PassSubtarget = 0;
1712
1713  // Variant - AsmWriters can be of multiple different variants.  Variants are
1714  // used to support targets that need to emit assembly code in ways that are
1715  // mostly the same for different targets, but have minor differences in
1716  // syntax.  If the asmstring contains {|} characters in them, this integer
1717  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1718  // == 1, will expand to "y".
1719  int Variant = 0;
1720}
1721def DefaultAsmWriter : AsmWriter;
1722
1723
1724//===----------------------------------------------------------------------===//
1725// Target - This class contains the "global" target information
1726//
1727class Target {
1728  // InstructionSet - Instruction set description for this target.
1729  InstrInfo InstructionSet;
1730
1731  // AssemblyParsers - The AsmParser instances available for this target.
1732  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1733
1734  /// AssemblyParserVariants - The AsmParserVariant instances available for
1735  /// this target.
1736  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1737
1738  // AssemblyWriters - The AsmWriter instances available for this target.
1739  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1740
1741  // AllowRegisterRenaming - Controls whether this target allows
1742  // post-register-allocation renaming of registers.  This is done by
1743  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1744  // for all opcodes if this flag is set to 0.
1745  int AllowRegisterRenaming = 0;
1746}
1747
1748//===----------------------------------------------------------------------===//
1749// Processor chip sets - These values represent each of the chip sets supported
1750// by the scheduler.  Each Processor definition requires corresponding
1751// instruction itineraries.
1752//
1753class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1754                list<SubtargetFeature> tunef = []> {
1755  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1756  // appropriate target chip.
1757  //
1758  string Name = n;
1759
1760  // SchedModel - The machine model for scheduling and instruction cost.
1761  //
1762  SchedMachineModel SchedModel = NoSchedModel;
1763
1764  // ProcItin - The scheduling information for the target processor.
1765  //
1766  ProcessorItineraries ProcItin = pi;
1767
1768  // Features - list of
1769  list<SubtargetFeature> Features = f;
1770
1771  // TuneFeatures - list of features for tuning for this CPU. If the target
1772  // supports -mtune, this should contain the list of features used to make
1773  // microarchitectural optimization decisions for a given processor.  While
1774  // Features should contain the architectural features for the processor.
1775  list<SubtargetFeature> TuneFeatures = tunef;
1776}
1777
1778// ProcessorModel allows subtargets to specify the more general
1779// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1780// gradually move to this newer form.
1781//
1782// Although this class always passes NoItineraries to the Processor
1783// class, the SchedMachineModel may still define valid Itineraries.
1784class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1785                     list<SubtargetFeature> tunef = []>
1786  : Processor<n, NoItineraries, f, tunef> {
1787  let SchedModel = m;
1788}
1789
1790//===----------------------------------------------------------------------===//
1791// InstrMapping - This class is used to create mapping tables to relate
1792// instructions with each other based on the values specified in RowFields,
1793// ColFields, KeyCol and ValueCols.
1794//
1795class InstrMapping {
1796  // FilterClass - Used to limit search space only to the instructions that
1797  // define the relationship modeled by this InstrMapping record.
1798  string FilterClass;
1799
1800  // RowFields - List of fields/attributes that should be same for all the
1801  // instructions in a row of the relation table. Think of this as a set of
1802  // properties shared by all the instructions related by this relationship
1803  // model and is used to categorize instructions into subgroups. For instance,
1804  // if we want to define a relation that maps 'Add' instruction to its
1805  // predicated forms, we can define RowFields like this:
1806  //
1807  // let RowFields = BaseOp
1808  // All add instruction predicated/non-predicated will have to set their BaseOp
1809  // to the same value.
1810  //
1811  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1812  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1813  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1814  list<string> RowFields = [];
1815
1816  // List of fields/attributes that are same for all the instructions
1817  // in a column of the relation table.
1818  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1819  // based on the 'predSense' values. All the instruction in a specific
1820  // column have the same value and it is fixed for the column according
1821  // to the values set in 'ValueCols'.
1822  list<string> ColFields = [];
1823
1824  // Values for the fields/attributes listed in 'ColFields'.
1825  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1826  // that models this relation) should be non-predicated.
1827  // In the example above, 'Add' is the key instruction.
1828  list<string> KeyCol = [];
1829
1830  // List of values for the fields/attributes listed in 'ColFields', one for
1831  // each column in the relation table.
1832  //
1833  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1834  // table. First column requires all the instructions to have predSense
1835  // set to 'true' and second column requires it to be 'false'.
1836  list<list<string> > ValueCols = [];
1837}
1838
1839//===----------------------------------------------------------------------===//
1840// Pull in the common support for calling conventions.
1841//
1842include "llvm/Target/TargetCallingConv.td"
1843
1844//===----------------------------------------------------------------------===//
1845// Pull in the common support for DAG isel generation.
1846//
1847include "llvm/Target/TargetSelectionDAG.td"
1848
1849//===----------------------------------------------------------------------===//
1850// Pull in the common support for Global ISel register bank info generation.
1851//
1852include "llvm/Target/GlobalISel/RegisterBank.td"
1853
1854//===----------------------------------------------------------------------===//
1855// Pull in the common support for DAG isel generation.
1856//
1857include "llvm/Target/GlobalISel/Target.td"
1858
1859//===----------------------------------------------------------------------===//
1860// Pull in the common support for the Global ISel DAG-based selector generation.
1861//
1862include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1863
1864//===----------------------------------------------------------------------===//
1865// Pull in the common support for Pfm Counters generation.
1866//
1867include "llvm/Target/TargetPfmCounters.td"
1868