1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45
46 namespace llvm {
47 namespace PatternMatch {
48
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51 }
52
match(ArrayRef<int> Mask,const Pattern & P)53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55 }
56
57 template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
OneUse_matchOneUse_match60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
matchOneUse_match62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65 };
66
m_OneUse(const T & SubPattern)67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69 }
70
71 template <typename Class> struct class_match {
matchclass_match72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74
75 /// Match an arbitrary value and ignore it.
m_Value()76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78 /// Match an arbitrary unary operation and ignore it.
m_UnOp()79 inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81 }
82
83 /// Match an arbitrary binary operation and ignore it.
m_BinOp()84 inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86 }
87
88 /// Matches any compare instruction and ignore it.
m_Cmp()89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91 struct undef_match {
checkundef_match92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
matchundef_match130 template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
m_Undef()136 inline auto m_Undef() { return undef_match(); }
137
138 /// Match an arbitrary poison constant.
m_Poison()139 inline class_match<PoisonValue> m_Poison() {
140 return class_match<PoisonValue>();
141 }
142
143 /// Match an arbitrary Constant and ignore it.
m_Constant()144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145
146 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()147 inline class_match<ConstantInt> m_ConstantInt() {
148 return class_match<ConstantInt>();
149 }
150
151 /// Match an arbitrary ConstantFP and ignore it.
m_ConstantFP()152 inline class_match<ConstantFP> m_ConstantFP() {
153 return class_match<ConstantFP>();
154 }
155
156 struct constantexpr_match {
matchconstantexpr_match157 template <typename ITy> bool match(ITy *V) {
158 auto *C = dyn_cast<Constant>(V);
159 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160 }
161 };
162
163 /// Match a constant expression or a constant that contains a constant
164 /// expression.
m_ConstantExpr()165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166
167 /// Match an arbitrary basic block value and ignore it.
m_BasicBlock()168 inline class_match<BasicBlock> m_BasicBlock() {
169 return class_match<BasicBlock>();
170 }
171
172 /// Inverting matcher
173 template <typename Ty> struct match_unless {
174 Ty M;
175
match_unlessmatch_unless176 match_unless(const Ty &Matcher) : M(Matcher) {}
177
matchmatch_unless178 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179 };
180
181 /// Match if the inner matcher does *NOT* match.
m_Unless(const Ty & M)182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183 return match_unless<Ty>(M);
184 }
185
186 /// Matching combinators
187 template <typename LTy, typename RTy> struct match_combine_or {
188 LTy L;
189 RTy R;
190
match_combine_ormatch_combine_or191 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192
matchmatch_combine_or193 template <typename ITy> bool match(ITy *V) {
194 if (L.match(V))
195 return true;
196 if (R.match(V))
197 return true;
198 return false;
199 }
200 };
201
202 template <typename LTy, typename RTy> struct match_combine_and {
203 LTy L;
204 RTy R;
205
match_combine_andmatch_combine_and206 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207
matchmatch_combine_and208 template <typename ITy> bool match(ITy *V) {
209 if (L.match(V))
210 if (R.match(V))
211 return true;
212 return false;
213 }
214 };
215
216 /// Combine two pattern matchers matching L || R
217 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219 return match_combine_or<LTy, RTy>(L, R);
220 }
221
222 /// Combine two pattern matchers matching L && R
223 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225 return match_combine_and<LTy, RTy>(L, R);
226 }
227
228 struct apint_match {
229 const APInt *&Res;
230 bool AllowUndef;
231
apint_matchapint_match232 apint_match(const APInt *&Res, bool AllowUndef)
233 : Res(Res), AllowUndef(AllowUndef) {}
234
matchapint_match235 template <typename ITy> bool match(ITy *V) {
236 if (auto *CI = dyn_cast<ConstantInt>(V)) {
237 Res = &CI->getValue();
238 return true;
239 }
240 if (V->getType()->isVectorTy())
241 if (const auto *C = dyn_cast<Constant>(V))
242 if (auto *CI =
243 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244 Res = &CI->getValue();
245 return true;
246 }
247 return false;
248 }
249 };
250 // Either constexpr if or renaming ConstantFP::getValueAPF to
251 // ConstantFP::getValue is needed to do it via single template
252 // function for both apint/apfloat.
253 struct apfloat_match {
254 const APFloat *&Res;
255 bool AllowUndef;
256
apfloat_matchapfloat_match257 apfloat_match(const APFloat *&Res, bool AllowUndef)
258 : Res(Res), AllowUndef(AllowUndef) {}
259
matchapfloat_match260 template <typename ITy> bool match(ITy *V) {
261 if (auto *CI = dyn_cast<ConstantFP>(V)) {
262 Res = &CI->getValueAPF();
263 return true;
264 }
265 if (V->getType()->isVectorTy())
266 if (const auto *C = dyn_cast<Constant>(V))
267 if (auto *CI =
268 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269 Res = &CI->getValueAPF();
270 return true;
271 }
272 return false;
273 }
274 };
275
276 /// Match a ConstantInt or splatted ConstantVector, binding the
277 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)278 inline apint_match m_APInt(const APInt *&Res) {
279 // Forbid undefs by default to maintain previous behavior.
280 return apint_match(Res, /* AllowUndef */ false);
281 }
282
283 /// Match APInt while allowing undefs in splat vector constants.
m_APIntAllowUndef(const APInt * & Res)284 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285 return apint_match(Res, /* AllowUndef */ true);
286 }
287
288 /// Match APInt while forbidding undefs in splat vector constants.
m_APIntForbidUndef(const APInt * & Res)289 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290 return apint_match(Res, /* AllowUndef */ false);
291 }
292
293 /// Match a ConstantFP or splatted ConstantVector, binding the
294 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)295 inline apfloat_match m_APFloat(const APFloat *&Res) {
296 // Forbid undefs by default to maintain previous behavior.
297 return apfloat_match(Res, /* AllowUndef */ false);
298 }
299
300 /// Match APFloat while allowing undefs in splat vector constants.
m_APFloatAllowUndef(const APFloat * & Res)301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302 return apfloat_match(Res, /* AllowUndef */ true);
303 }
304
305 /// Match APFloat while forbidding undefs in splat vector constants.
m_APFloatForbidUndef(const APFloat * & Res)306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307 return apfloat_match(Res, /* AllowUndef */ false);
308 }
309
310 template <int64_t Val> struct constantint_match {
matchconstantint_match311 template <typename ITy> bool match(ITy *V) {
312 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313 const APInt &CIV = CI->getValue();
314 if (Val >= 0)
315 return CIV == static_cast<uint64_t>(Val);
316 // If Val is negative, and CI is shorter than it, truncate to the right
317 // number of bits. If it is larger, then we have to sign extend. Just
318 // compare their negated values.
319 return -CIV == -Val;
320 }
321 return false;
322 }
323 };
324
325 /// Match a ConstantInt with a specific value.
m_ConstantInt()326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327 return constantint_match<Val>();
328 }
329
330 /// This helper class is used to match constant scalars, vector splats,
331 /// and fixed width vectors that satisfy a specified predicate.
332 /// For fixed width vector constants, undefined elements are ignored.
333 template <typename Predicate, typename ConstantVal>
334 struct cstval_pred_ty : public Predicate {
matchcstval_pred_ty335 template <typename ITy> bool match(ITy *V) {
336 if (const auto *CV = dyn_cast<ConstantVal>(V))
337 return this->isValue(CV->getValue());
338 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339 if (const auto *C = dyn_cast<Constant>(V)) {
340 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341 return this->isValue(CV->getValue());
342
343 // Number of elements of a scalable vector unknown at compile time
344 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345 if (!FVTy)
346 return false;
347
348 // Non-splat vector constant: check each element for a match.
349 unsigned NumElts = FVTy->getNumElements();
350 assert(NumElts != 0 && "Constant vector with no elements?");
351 bool HasNonUndefElements = false;
352 for (unsigned i = 0; i != NumElts; ++i) {
353 Constant *Elt = C->getAggregateElement(i);
354 if (!Elt)
355 return false;
356 if (isa<UndefValue>(Elt))
357 continue;
358 auto *CV = dyn_cast<ConstantVal>(Elt);
359 if (!CV || !this->isValue(CV->getValue()))
360 return false;
361 HasNonUndefElements = true;
362 }
363 return HasNonUndefElements;
364 }
365 }
366 return false;
367 }
368 };
369
370 /// specialization of cstval_pred_ty for ConstantInt
371 template <typename Predicate>
372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373
374 /// specialization of cstval_pred_ty for ConstantFP
375 template <typename Predicate>
376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377
378 /// This helper class is used to match scalar and vector constants that
379 /// satisfy a specified predicate, and bind them to an APInt.
380 template <typename Predicate> struct api_pred_ty : public Predicate {
381 const APInt *&Res;
382
api_pred_tyapi_pred_ty383 api_pred_ty(const APInt *&R) : Res(R) {}
384
matchapi_pred_ty385 template <typename ITy> bool match(ITy *V) {
386 if (const auto *CI = dyn_cast<ConstantInt>(V))
387 if (this->isValue(CI->getValue())) {
388 Res = &CI->getValue();
389 return true;
390 }
391 if (V->getType()->isVectorTy())
392 if (const auto *C = dyn_cast<Constant>(V))
393 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394 if (this->isValue(CI->getValue())) {
395 Res = &CI->getValue();
396 return true;
397 }
398
399 return false;
400 }
401 };
402
403 /// This helper class is used to match scalar and vector constants that
404 /// satisfy a specified predicate, and bind them to an APFloat.
405 /// Undefs are allowed in splat vector constants.
406 template <typename Predicate> struct apf_pred_ty : public Predicate {
407 const APFloat *&Res;
408
apf_pred_tyapf_pred_ty409 apf_pred_ty(const APFloat *&R) : Res(R) {}
410
matchapf_pred_ty411 template <typename ITy> bool match(ITy *V) {
412 if (const auto *CI = dyn_cast<ConstantFP>(V))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417 if (V->getType()->isVectorTy())
418 if (const auto *C = dyn_cast<Constant>(V))
419 if (auto *CI = dyn_cast_or_null<ConstantFP>(
420 C->getSplatValue(/* AllowUndef */ true)))
421 if (this->isValue(CI->getValue())) {
422 Res = &CI->getValue();
423 return true;
424 }
425
426 return false;
427 }
428 };
429
430 ///////////////////////////////////////////////////////////////////////////////
431 //
432 // Encapsulate constant value queries for use in templated predicate matchers.
433 // This allows checking if constants match using compound predicates and works
434 // with vector constants, possibly with relaxed constraints. For example, ignore
435 // undef values.
436 //
437 ///////////////////////////////////////////////////////////////////////////////
438
439 struct is_any_apint {
isValueis_any_apint440 bool isValue(const APInt &C) { return true; }
441 };
442 /// Match an integer or vector with any integral constant.
443 /// For vectors, this includes constants with undefined elements.
m_AnyIntegralConstant()444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445 return cst_pred_ty<is_any_apint>();
446 }
447
448 struct is_shifted_mask {
isValueis_shifted_mask449 bool isValue(const APInt &C) { return C.isShiftedMask(); }
450 };
451
m_ShiftedMask()452 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() {
453 return cst_pred_ty<is_shifted_mask>();
454 }
455
456 struct is_all_ones {
isValueis_all_ones457 bool isValue(const APInt &C) { return C.isAllOnes(); }
458 };
459 /// Match an integer or vector with all bits set.
460 /// For vectors, this includes constants with undefined elements.
m_AllOnes()461 inline cst_pred_ty<is_all_ones> m_AllOnes() {
462 return cst_pred_ty<is_all_ones>();
463 }
464
465 struct is_maxsignedvalue {
isValueis_maxsignedvalue466 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
467 };
468 /// Match an integer or vector with values having all bits except for the high
469 /// bit set (0x7f...).
470 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()471 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
472 return cst_pred_ty<is_maxsignedvalue>();
473 }
m_MaxSignedValue(const APInt * & V)474 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
475 return V;
476 }
477
478 struct is_negative {
isValueis_negative479 bool isValue(const APInt &C) { return C.isNegative(); }
480 };
481 /// Match an integer or vector of negative values.
482 /// For vectors, this includes constants with undefined elements.
m_Negative()483 inline cst_pred_ty<is_negative> m_Negative() {
484 return cst_pred_ty<is_negative>();
485 }
m_Negative(const APInt * & V)486 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
487
488 struct is_nonnegative {
isValueis_nonnegative489 bool isValue(const APInt &C) { return C.isNonNegative(); }
490 };
491 /// Match an integer or vector of non-negative values.
492 /// For vectors, this includes constants with undefined elements.
m_NonNegative()493 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
494 return cst_pred_ty<is_nonnegative>();
495 }
m_NonNegative(const APInt * & V)496 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
497
498 struct is_strictlypositive {
isValueis_strictlypositive499 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
500 };
501 /// Match an integer or vector of strictly positive values.
502 /// For vectors, this includes constants with undefined elements.
m_StrictlyPositive()503 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
504 return cst_pred_ty<is_strictlypositive>();
505 }
m_StrictlyPositive(const APInt * & V)506 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
507 return V;
508 }
509
510 struct is_nonpositive {
isValueis_nonpositive511 bool isValue(const APInt &C) { return C.isNonPositive(); }
512 };
513 /// Match an integer or vector of non-positive values.
514 /// For vectors, this includes constants with undefined elements.
m_NonPositive()515 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
516 return cst_pred_ty<is_nonpositive>();
517 }
m_NonPositive(const APInt * & V)518 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
519
520 struct is_one {
isValueis_one521 bool isValue(const APInt &C) { return C.isOne(); }
522 };
523 /// Match an integer 1 or a vector with all elements equal to 1.
524 /// For vectors, this includes constants with undefined elements.
m_One()525 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
526
527 struct is_zero_int {
isValueis_zero_int528 bool isValue(const APInt &C) { return C.isZero(); }
529 };
530 /// Match an integer 0 or a vector with all elements equal to 0.
531 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()532 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
533 return cst_pred_ty<is_zero_int>();
534 }
535
536 struct is_zero {
matchis_zero537 template <typename ITy> bool match(ITy *V) {
538 auto *C = dyn_cast<Constant>(V);
539 // FIXME: this should be able to do something for scalable vectors
540 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
541 }
542 };
543 /// Match any null constant or a vector with all elements equal to 0.
544 /// For vectors, this includes constants with undefined elements.
m_Zero()545 inline is_zero m_Zero() { return is_zero(); }
546
547 struct is_power2 {
isValueis_power2548 bool isValue(const APInt &C) { return C.isPowerOf2(); }
549 };
550 /// Match an integer or vector power-of-2.
551 /// For vectors, this includes constants with undefined elements.
m_Power2()552 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)553 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
554
555 struct is_negated_power2 {
isValueis_negated_power2556 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
557 };
558 /// Match a integer or vector negated power-of-2.
559 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2()560 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
561 return cst_pred_ty<is_negated_power2>();
562 }
m_NegatedPower2(const APInt * & V)563 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
564 return V;
565 }
566
567 struct is_negated_power2_or_zero {
isValueis_negated_power2_or_zero568 bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); }
569 };
570 /// Match a integer or vector negated power-of-2.
571 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2OrZero()572 inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() {
573 return cst_pred_ty<is_negated_power2_or_zero>();
574 }
575 inline api_pred_ty<is_negated_power2_or_zero>
m_NegatedPower2OrZero(const APInt * & V)576 m_NegatedPower2OrZero(const APInt *&V) {
577 return V;
578 }
579
580 struct is_power2_or_zero {
isValueis_power2_or_zero581 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
582 };
583 /// Match an integer or vector of 0 or power-of-2 values.
584 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()585 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
586 return cst_pred_ty<is_power2_or_zero>();
587 }
m_Power2OrZero(const APInt * & V)588 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
589 return V;
590 }
591
592 struct is_sign_mask {
isValueis_sign_mask593 bool isValue(const APInt &C) { return C.isSignMask(); }
594 };
595 /// Match an integer or vector with only the sign bit(s) set.
596 /// For vectors, this includes constants with undefined elements.
m_SignMask()597 inline cst_pred_ty<is_sign_mask> m_SignMask() {
598 return cst_pred_ty<is_sign_mask>();
599 }
600
601 struct is_lowbit_mask {
isValueis_lowbit_mask602 bool isValue(const APInt &C) { return C.isMask(); }
603 };
604 /// Match an integer or vector with only the low bit(s) set.
605 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()606 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
607 return cst_pred_ty<is_lowbit_mask>();
608 }
m_LowBitMask(const APInt * & V)609 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
610
611 struct is_lowbit_mask_or_zero {
isValueis_lowbit_mask_or_zero612 bool isValue(const APInt &C) { return !C || C.isMask(); }
613 };
614 /// Match an integer or vector with only the low bit(s) set.
615 /// For vectors, this includes constants with undefined elements.
m_LowBitMaskOrZero()616 inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() {
617 return cst_pred_ty<is_lowbit_mask_or_zero>();
618 }
m_LowBitMaskOrZero(const APInt * & V)619 inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) {
620 return V;
621 }
622
623 struct icmp_pred_with_threshold {
624 ICmpInst::Predicate Pred;
625 const APInt *Thr;
isValueicmp_pred_with_threshold626 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
627 };
628 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
629 /// to Threshold. For vectors, this includes constants with undefined elements.
630 inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate,const APInt & Threshold)631 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
632 cst_pred_ty<icmp_pred_with_threshold> P;
633 P.Pred = Predicate;
634 P.Thr = &Threshold;
635 return P;
636 }
637
638 struct is_nan {
isValueis_nan639 bool isValue(const APFloat &C) { return C.isNaN(); }
640 };
641 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
642 /// For vectors, this includes constants with undefined elements.
m_NaN()643 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
644
645 struct is_nonnan {
isValueis_nonnan646 bool isValue(const APFloat &C) { return !C.isNaN(); }
647 };
648 /// Match a non-NaN FP constant.
649 /// For vectors, this includes constants with undefined elements.
m_NonNaN()650 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
651 return cstfp_pred_ty<is_nonnan>();
652 }
653
654 struct is_inf {
isValueis_inf655 bool isValue(const APFloat &C) { return C.isInfinity(); }
656 };
657 /// Match a positive or negative infinity FP constant.
658 /// For vectors, this includes constants with undefined elements.
m_Inf()659 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
660
661 struct is_noninf {
isValueis_noninf662 bool isValue(const APFloat &C) { return !C.isInfinity(); }
663 };
664 /// Match a non-infinity FP constant, i.e. finite or NaN.
665 /// For vectors, this includes constants with undefined elements.
m_NonInf()666 inline cstfp_pred_ty<is_noninf> m_NonInf() {
667 return cstfp_pred_ty<is_noninf>();
668 }
669
670 struct is_finite {
isValueis_finite671 bool isValue(const APFloat &C) { return C.isFinite(); }
672 };
673 /// Match a finite FP constant, i.e. not infinity or NaN.
674 /// For vectors, this includes constants with undefined elements.
m_Finite()675 inline cstfp_pred_ty<is_finite> m_Finite() {
676 return cstfp_pred_ty<is_finite>();
677 }
m_Finite(const APFloat * & V)678 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
679
680 struct is_finitenonzero {
isValueis_finitenonzero681 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
682 };
683 /// Match a finite non-zero FP constant.
684 /// For vectors, this includes constants with undefined elements.
m_FiniteNonZero()685 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
686 return cstfp_pred_ty<is_finitenonzero>();
687 }
m_FiniteNonZero(const APFloat * & V)688 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
689 return V;
690 }
691
692 struct is_any_zero_fp {
isValueis_any_zero_fp693 bool isValue(const APFloat &C) { return C.isZero(); }
694 };
695 /// Match a floating-point negative zero or positive zero.
696 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()697 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
698 return cstfp_pred_ty<is_any_zero_fp>();
699 }
700
701 struct is_pos_zero_fp {
isValueis_pos_zero_fp702 bool isValue(const APFloat &C) { return C.isPosZero(); }
703 };
704 /// Match a floating-point positive zero.
705 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()706 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
707 return cstfp_pred_ty<is_pos_zero_fp>();
708 }
709
710 struct is_neg_zero_fp {
isValueis_neg_zero_fp711 bool isValue(const APFloat &C) { return C.isNegZero(); }
712 };
713 /// Match a floating-point negative zero.
714 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()715 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
716 return cstfp_pred_ty<is_neg_zero_fp>();
717 }
718
719 struct is_non_zero_fp {
isValueis_non_zero_fp720 bool isValue(const APFloat &C) { return C.isNonZero(); }
721 };
722 /// Match a floating-point non-zero.
723 /// For vectors, this includes constants with undefined elements.
m_NonZeroFP()724 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
725 return cstfp_pred_ty<is_non_zero_fp>();
726 }
727
728 ///////////////////////////////////////////////////////////////////////////////
729
730 template <typename Class> struct bind_ty {
731 Class *&VR;
732
bind_tybind_ty733 bind_ty(Class *&V) : VR(V) {}
734
matchbind_ty735 template <typename ITy> bool match(ITy *V) {
736 if (auto *CV = dyn_cast<Class>(V)) {
737 VR = CV;
738 return true;
739 }
740 return false;
741 }
742 };
743
744 /// Match a value, capturing it if we match.
m_Value(Value * & V)745 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)746 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
747
748 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)749 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
750 /// Match a unary operator, capturing it if we match.
m_UnOp(UnaryOperator * & I)751 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
752 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)753 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
754 /// Match a with overflow intrinsic, capturing it if we match.
m_WithOverflowInst(WithOverflowInst * & I)755 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
756 return I;
757 }
758 inline bind_ty<const WithOverflowInst>
m_WithOverflowInst(const WithOverflowInst * & I)759 m_WithOverflowInst(const WithOverflowInst *&I) {
760 return I;
761 }
762
763 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)764 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
765
766 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)767 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
768
769 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)770 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
771
772 /// Match a ConstantExpr, capturing the value if we match.
m_ConstantExpr(ConstantExpr * & C)773 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
774
775 /// Match a basic block value, capturing it if we match.
m_BasicBlock(BasicBlock * & V)776 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
m_BasicBlock(const BasicBlock * & V)777 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
778 return V;
779 }
780
781 /// Match an arbitrary immediate Constant and ignore it.
782 inline match_combine_and<class_match<Constant>,
783 match_unless<constantexpr_match>>
m_ImmConstant()784 m_ImmConstant() {
785 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
786 }
787
788 /// Match an immediate Constant, capturing the value if we match.
789 inline match_combine_and<bind_ty<Constant>,
790 match_unless<constantexpr_match>>
m_ImmConstant(Constant * & C)791 m_ImmConstant(Constant *&C) {
792 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
793 }
794
795 /// Match a specified Value*.
796 struct specificval_ty {
797 const Value *Val;
798
specificval_tyspecificval_ty799 specificval_ty(const Value *V) : Val(V) {}
800
matchspecificval_ty801 template <typename ITy> bool match(ITy *V) { return V == Val; }
802 };
803
804 /// Match if we have a specific specified value.
m_Specific(const Value * V)805 inline specificval_ty m_Specific(const Value *V) { return V; }
806
807 /// Stores a reference to the Value *, not the Value * itself,
808 /// thus can be used in commutative matchers.
809 template <typename Class> struct deferredval_ty {
810 Class *const &Val;
811
deferredval_tydeferredval_ty812 deferredval_ty(Class *const &V) : Val(V) {}
813
matchdeferredval_ty814 template <typename ITy> bool match(ITy *const V) { return V == Val; }
815 };
816
817 /// Like m_Specific(), but works if the specific value to match is determined
818 /// as part of the same match() expression. For example:
819 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
820 /// bind X before the pattern match starts.
821 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
822 /// whichever value m_Value(X) populated.
m_Deferred(Value * const & V)823 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)824 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
825 return V;
826 }
827
828 /// Match a specified floating point value or vector of all elements of
829 /// that value.
830 struct specific_fpval {
831 double Val;
832
specific_fpvalspecific_fpval833 specific_fpval(double V) : Val(V) {}
834
matchspecific_fpval835 template <typename ITy> bool match(ITy *V) {
836 if (const auto *CFP = dyn_cast<ConstantFP>(V))
837 return CFP->isExactlyValue(Val);
838 if (V->getType()->isVectorTy())
839 if (const auto *C = dyn_cast<Constant>(V))
840 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
841 return CFP->isExactlyValue(Val);
842 return false;
843 }
844 };
845
846 /// Match a specific floating point value or vector with all elements
847 /// equal to the value.
m_SpecificFP(double V)848 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
849
850 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()851 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
852
853 struct bind_const_intval_ty {
854 uint64_t &VR;
855
bind_const_intval_tybind_const_intval_ty856 bind_const_intval_ty(uint64_t &V) : VR(V) {}
857
matchbind_const_intval_ty858 template <typename ITy> bool match(ITy *V) {
859 if (const auto *CV = dyn_cast<ConstantInt>(V))
860 if (CV->getValue().ule(UINT64_MAX)) {
861 VR = CV->getZExtValue();
862 return true;
863 }
864 return false;
865 }
866 };
867
868 /// Match a specified integer value or vector of all elements of that
869 /// value.
870 template <bool AllowUndefs> struct specific_intval {
871 APInt Val;
872
specific_intvalspecific_intval873 specific_intval(APInt V) : Val(std::move(V)) {}
874
matchspecific_intval875 template <typename ITy> bool match(ITy *V) {
876 const auto *CI = dyn_cast<ConstantInt>(V);
877 if (!CI && V->getType()->isVectorTy())
878 if (const auto *C = dyn_cast<Constant>(V))
879 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
880
881 return CI && APInt::isSameValue(CI->getValue(), Val);
882 }
883 };
884
885 /// Match a specific integer value or vector with all elements equal to
886 /// the value.
m_SpecificInt(APInt V)887 inline specific_intval<false> m_SpecificInt(APInt V) {
888 return specific_intval<false>(std::move(V));
889 }
890
m_SpecificInt(uint64_t V)891 inline specific_intval<false> m_SpecificInt(uint64_t V) {
892 return m_SpecificInt(APInt(64, V));
893 }
894
m_SpecificIntAllowUndef(APInt V)895 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
896 return specific_intval<true>(std::move(V));
897 }
898
m_SpecificIntAllowUndef(uint64_t V)899 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
900 return m_SpecificIntAllowUndef(APInt(64, V));
901 }
902
903 /// Match a ConstantInt and bind to its value. This does not match
904 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)905 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
906
907 /// Match a specified basic block value.
908 struct specific_bbval {
909 BasicBlock *Val;
910
specific_bbvalspecific_bbval911 specific_bbval(BasicBlock *Val) : Val(Val) {}
912
matchspecific_bbval913 template <typename ITy> bool match(ITy *V) {
914 const auto *BB = dyn_cast<BasicBlock>(V);
915 return BB && BB == Val;
916 }
917 };
918
919 /// Match a specific basic block value.
m_SpecificBB(BasicBlock * BB)920 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
921 return specific_bbval(BB);
922 }
923
924 /// A commutative-friendly version of m_Specific().
m_Deferred(BasicBlock * const & BB)925 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
926 return BB;
927 }
928 inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock * const & BB)929 m_Deferred(const BasicBlock *const &BB) {
930 return BB;
931 }
932
933 //===----------------------------------------------------------------------===//
934 // Matcher for any binary operator.
935 //
936 template <typename LHS_t, typename RHS_t, bool Commutable = false>
937 struct AnyBinaryOp_match {
938 LHS_t L;
939 RHS_t R;
940
941 // The evaluation order is always stable, regardless of Commutability.
942 // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match943 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
944
matchAnyBinaryOp_match945 template <typename OpTy> bool match(OpTy *V) {
946 if (auto *I = dyn_cast<BinaryOperator>(V))
947 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
948 (Commutable && L.match(I->getOperand(1)) &&
949 R.match(I->getOperand(0)));
950 return false;
951 }
952 };
953
954 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)955 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
956 return AnyBinaryOp_match<LHS, RHS>(L, R);
957 }
958
959 //===----------------------------------------------------------------------===//
960 // Matcher for any unary operator.
961 // TODO fuse unary, binary matcher into n-ary matcher
962 //
963 template <typename OP_t> struct AnyUnaryOp_match {
964 OP_t X;
965
AnyUnaryOp_matchAnyUnaryOp_match966 AnyUnaryOp_match(const OP_t &X) : X(X) {}
967
matchAnyUnaryOp_match968 template <typename OpTy> bool match(OpTy *V) {
969 if (auto *I = dyn_cast<UnaryOperator>(V))
970 return X.match(I->getOperand(0));
971 return false;
972 }
973 };
974
m_UnOp(const OP_t & X)975 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
976 return AnyUnaryOp_match<OP_t>(X);
977 }
978
979 //===----------------------------------------------------------------------===//
980 // Matchers for specific binary operators.
981 //
982
983 template <typename LHS_t, typename RHS_t, unsigned Opcode,
984 bool Commutable = false>
985 struct BinaryOp_match {
986 LHS_t L;
987 RHS_t R;
988
989 // The evaluation order is always stable, regardless of Commutability.
990 // The LHS is always matched first.
BinaryOp_matchBinaryOp_match991 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
992
matchBinaryOp_match993 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
994 if (V->getValueID() == Value::InstructionVal + Opc) {
995 auto *I = cast<BinaryOperator>(V);
996 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
997 (Commutable && L.match(I->getOperand(1)) &&
998 R.match(I->getOperand(0)));
999 }
1000 return false;
1001 }
1002
matchBinaryOp_match1003 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
1004 };
1005
1006 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)1007 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
1008 const RHS &R) {
1009 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
1010 }
1011
1012 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)1013 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
1014 const RHS &R) {
1015 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
1016 }
1017
1018 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)1019 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1020 const RHS &R) {
1021 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1022 }
1023
1024 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)1025 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1026 const RHS &R) {
1027 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1028 }
1029
1030 template <typename Op_t> struct FNeg_match {
1031 Op_t X;
1032
FNeg_matchFNeg_match1033 FNeg_match(const Op_t &Op) : X(Op) {}
matchFNeg_match1034 template <typename OpTy> bool match(OpTy *V) {
1035 auto *FPMO = dyn_cast<FPMathOperator>(V);
1036 if (!FPMO)
1037 return false;
1038
1039 if (FPMO->getOpcode() == Instruction::FNeg)
1040 return X.match(FPMO->getOperand(0));
1041
1042 if (FPMO->getOpcode() == Instruction::FSub) {
1043 if (FPMO->hasNoSignedZeros()) {
1044 // With 'nsz', any zero goes.
1045 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1046 return false;
1047 } else {
1048 // Without 'nsz', we need fsub -0.0, X exactly.
1049 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1050 return false;
1051 }
1052
1053 return X.match(FPMO->getOperand(1));
1054 }
1055
1056 return false;
1057 }
1058 };
1059
1060 /// Match 'fneg X' as 'fsub -0.0, X'.
m_FNeg(const OpTy & X)1061 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1062 return FNeg_match<OpTy>(X);
1063 }
1064
1065 /// Match 'fneg X' as 'fsub +-0.0, X'.
1066 template <typename RHS>
1067 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS & X)1068 m_FNegNSZ(const RHS &X) {
1069 return m_FSub(m_AnyZeroFP(), X);
1070 }
1071
1072 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)1073 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1074 const RHS &R) {
1075 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1076 }
1077
1078 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)1079 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1080 const RHS &R) {
1081 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1082 }
1083
1084 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)1085 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1086 const RHS &R) {
1087 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1088 }
1089
1090 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)1091 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1092 const RHS &R) {
1093 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1094 }
1095
1096 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)1097 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1098 const RHS &R) {
1099 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1100 }
1101
1102 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)1103 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1104 const RHS &R) {
1105 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1106 }
1107
1108 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)1109 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1110 const RHS &R) {
1111 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1112 }
1113
1114 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)1115 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1116 const RHS &R) {
1117 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1118 }
1119
1120 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)1121 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1122 const RHS &R) {
1123 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1124 }
1125
1126 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)1127 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1128 const RHS &R) {
1129 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1130 }
1131
1132 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)1133 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1134 const RHS &R) {
1135 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1136 }
1137
1138 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)1139 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1140 const RHS &R) {
1141 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1142 }
1143
1144 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)1145 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1146 const RHS &R) {
1147 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1148 }
1149
1150 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)1151 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1152 const RHS &R) {
1153 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1154 }
1155
1156 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1157 unsigned WrapFlags = 0>
1158 struct OverflowingBinaryOp_match {
1159 LHS_t L;
1160 RHS_t R;
1161
OverflowingBinaryOp_matchOverflowingBinaryOp_match1162 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1163 : L(LHS), R(RHS) {}
1164
matchOverflowingBinaryOp_match1165 template <typename OpTy> bool match(OpTy *V) {
1166 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1167 if (Op->getOpcode() != Opcode)
1168 return false;
1169 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1170 !Op->hasNoUnsignedWrap())
1171 return false;
1172 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1173 !Op->hasNoSignedWrap())
1174 return false;
1175 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1176 }
1177 return false;
1178 }
1179 };
1180
1181 template <typename LHS, typename RHS>
1182 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1183 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)1184 m_NSWAdd(const LHS &L, const RHS &R) {
1185 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1186 OverflowingBinaryOperator::NoSignedWrap>(L,
1187 R);
1188 }
1189 template <typename LHS, typename RHS>
1190 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1191 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)1192 m_NSWSub(const LHS &L, const RHS &R) {
1193 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1194 OverflowingBinaryOperator::NoSignedWrap>(L,
1195 R);
1196 }
1197 template <typename LHS, typename RHS>
1198 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1199 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)1200 m_NSWMul(const LHS &L, const RHS &R) {
1201 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1202 OverflowingBinaryOperator::NoSignedWrap>(L,
1203 R);
1204 }
1205 template <typename LHS, typename RHS>
1206 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1207 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)1208 m_NSWShl(const LHS &L, const RHS &R) {
1209 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1210 OverflowingBinaryOperator::NoSignedWrap>(L,
1211 R);
1212 }
1213
1214 template <typename LHS, typename RHS>
1215 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1216 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)1217 m_NUWAdd(const LHS &L, const RHS &R) {
1218 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1219 OverflowingBinaryOperator::NoUnsignedWrap>(
1220 L, R);
1221 }
1222 template <typename LHS, typename RHS>
1223 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1224 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)1225 m_NUWSub(const LHS &L, const RHS &R) {
1226 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1227 OverflowingBinaryOperator::NoUnsignedWrap>(
1228 L, R);
1229 }
1230 template <typename LHS, typename RHS>
1231 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1232 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)1233 m_NUWMul(const LHS &L, const RHS &R) {
1234 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1235 OverflowingBinaryOperator::NoUnsignedWrap>(
1236 L, R);
1237 }
1238 template <typename LHS, typename RHS>
1239 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1240 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)1241 m_NUWShl(const LHS &L, const RHS &R) {
1242 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1243 OverflowingBinaryOperator::NoUnsignedWrap>(
1244 L, R);
1245 }
1246
1247 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1248 struct SpecificBinaryOp_match
1249 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1250 unsigned Opcode;
1251
SpecificBinaryOp_matchSpecificBinaryOp_match1252 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1253 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1254
matchSpecificBinaryOp_match1255 template <typename OpTy> bool match(OpTy *V) {
1256 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1257 }
1258 };
1259
1260 /// Matches a specific opcode.
1261 template <typename LHS, typename RHS>
m_BinOp(unsigned Opcode,const LHS & L,const RHS & R)1262 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1263 const RHS &R) {
1264 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1265 }
1266
1267 template <typename LHS, typename RHS, bool Commutable = false>
1268 struct DisjointOr_match {
1269 LHS L;
1270 RHS R;
1271
DisjointOr_matchDisjointOr_match1272 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1273
matchDisjointOr_match1274 template <typename OpTy> bool match(OpTy *V) {
1275 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1276 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1277 if (!PDI->isDisjoint())
1278 return false;
1279 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1280 (Commutable && L.match(PDI->getOperand(1)) &&
1281 R.match(PDI->getOperand(0)));
1282 }
1283 return false;
1284 }
1285 };
1286
1287 template <typename LHS, typename RHS>
m_DisjointOr(const LHS & L,const RHS & R)1288 inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) {
1289 return DisjointOr_match<LHS, RHS>(L, R);
1290 }
1291
1292 template <typename LHS, typename RHS>
m_c_DisjointOr(const LHS & L,const RHS & R)1293 inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L,
1294 const RHS &R) {
1295 return DisjointOr_match<LHS, RHS, true>(L, R);
1296 }
1297
1298 /// Match either "add" or "or disjoint".
1299 template <typename LHS, typename RHS>
1300 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>,
1301 DisjointOr_match<LHS, RHS>>
m_AddLike(const LHS & L,const RHS & R)1302 m_AddLike(const LHS &L, const RHS &R) {
1303 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1304 }
1305
1306 //===----------------------------------------------------------------------===//
1307 // Class that matches a group of binary opcodes.
1308 //
1309 template <typename LHS_t, typename RHS_t, typename Predicate>
1310 struct BinOpPred_match : Predicate {
1311 LHS_t L;
1312 RHS_t R;
1313
BinOpPred_matchBinOpPred_match1314 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1315
matchBinOpPred_match1316 template <typename OpTy> bool match(OpTy *V) {
1317 if (auto *I = dyn_cast<Instruction>(V))
1318 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1319 R.match(I->getOperand(1));
1320 return false;
1321 }
1322 };
1323
1324 struct is_shift_op {
isOpTypeis_shift_op1325 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1326 };
1327
1328 struct is_right_shift_op {
isOpTypeis_right_shift_op1329 bool isOpType(unsigned Opcode) {
1330 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1331 }
1332 };
1333
1334 struct is_logical_shift_op {
isOpTypeis_logical_shift_op1335 bool isOpType(unsigned Opcode) {
1336 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1337 }
1338 };
1339
1340 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op1341 bool isOpType(unsigned Opcode) {
1342 return Instruction::isBitwiseLogicOp(Opcode);
1343 }
1344 };
1345
1346 struct is_idiv_op {
isOpTypeis_idiv_op1347 bool isOpType(unsigned Opcode) {
1348 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1349 }
1350 };
1351
1352 struct is_irem_op {
isOpTypeis_irem_op1353 bool isOpType(unsigned Opcode) {
1354 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1355 }
1356 };
1357
1358 /// Matches shift operations.
1359 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)1360 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1361 const RHS &R) {
1362 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1363 }
1364
1365 /// Matches logical shift operations.
1366 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)1367 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1368 const RHS &R) {
1369 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1370 }
1371
1372 /// Matches logical shift operations.
1373 template <typename LHS, typename RHS>
1374 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)1375 m_LogicalShift(const LHS &L, const RHS &R) {
1376 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1377 }
1378
1379 /// Matches bitwise logic operations.
1380 template <typename LHS, typename RHS>
1381 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)1382 m_BitwiseLogic(const LHS &L, const RHS &R) {
1383 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1384 }
1385
1386 /// Matches integer division operations.
1387 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)1388 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1389 const RHS &R) {
1390 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1391 }
1392
1393 /// Matches integer remainder operations.
1394 template <typename LHS, typename RHS>
m_IRem(const LHS & L,const RHS & R)1395 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1396 const RHS &R) {
1397 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1398 }
1399
1400 //===----------------------------------------------------------------------===//
1401 // Class that matches exact binary ops.
1402 //
1403 template <typename SubPattern_t> struct Exact_match {
1404 SubPattern_t SubPattern;
1405
Exact_matchExact_match1406 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1407
matchExact_match1408 template <typename OpTy> bool match(OpTy *V) {
1409 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1410 return PEO->isExact() && SubPattern.match(V);
1411 return false;
1412 }
1413 };
1414
m_Exact(const T & SubPattern)1415 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1416 return SubPattern;
1417 }
1418
1419 //===----------------------------------------------------------------------===//
1420 // Matchers for CmpInst classes
1421 //
1422
1423 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1424 bool Commutable = false>
1425 struct CmpClass_match {
1426 PredicateTy &Predicate;
1427 LHS_t L;
1428 RHS_t R;
1429
1430 // The evaluation order is always stable, regardless of Commutability.
1431 // The LHS is always matched first.
CmpClass_matchCmpClass_match1432 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1433 : Predicate(Pred), L(LHS), R(RHS) {}
1434
matchCmpClass_match1435 template <typename OpTy> bool match(OpTy *V) {
1436 if (auto *I = dyn_cast<Class>(V)) {
1437 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1438 Predicate = I->getPredicate();
1439 return true;
1440 } else if (Commutable && L.match(I->getOperand(1)) &&
1441 R.match(I->getOperand(0))) {
1442 Predicate = I->getSwappedPredicate();
1443 return true;
1444 }
1445 }
1446 return false;
1447 }
1448 };
1449
1450 template <typename LHS, typename RHS>
1451 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)1452 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1453 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1454 }
1455
1456 template <typename LHS, typename RHS>
1457 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)1458 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1459 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1460 }
1461
1462 template <typename LHS, typename RHS>
1463 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)1464 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1465 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1466 }
1467
1468 //===----------------------------------------------------------------------===//
1469 // Matchers for instructions with a given opcode and number of operands.
1470 //
1471
1472 /// Matches instructions with Opcode and three operands.
1473 template <typename T0, unsigned Opcode> struct OneOps_match {
1474 T0 Op1;
1475
OneOps_matchOneOps_match1476 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1477
matchOneOps_match1478 template <typename OpTy> bool match(OpTy *V) {
1479 if (V->getValueID() == Value::InstructionVal + Opcode) {
1480 auto *I = cast<Instruction>(V);
1481 return Op1.match(I->getOperand(0));
1482 }
1483 return false;
1484 }
1485 };
1486
1487 /// Matches instructions with Opcode and three operands.
1488 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1489 T0 Op1;
1490 T1 Op2;
1491
TwoOps_matchTwoOps_match1492 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1493
matchTwoOps_match1494 template <typename OpTy> bool match(OpTy *V) {
1495 if (V->getValueID() == Value::InstructionVal + Opcode) {
1496 auto *I = cast<Instruction>(V);
1497 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1498 }
1499 return false;
1500 }
1501 };
1502
1503 /// Matches instructions with Opcode and three operands.
1504 template <typename T0, typename T1, typename T2, unsigned Opcode>
1505 struct ThreeOps_match {
1506 T0 Op1;
1507 T1 Op2;
1508 T2 Op3;
1509
ThreeOps_matchThreeOps_match1510 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1511 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1512
matchThreeOps_match1513 template <typename OpTy> bool match(OpTy *V) {
1514 if (V->getValueID() == Value::InstructionVal + Opcode) {
1515 auto *I = cast<Instruction>(V);
1516 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1517 Op3.match(I->getOperand(2));
1518 }
1519 return false;
1520 }
1521 };
1522
1523 /// Matches instructions with Opcode and any number of operands
1524 template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match {
1525 std::tuple<OperandTypes...> Operands;
1526
AnyOps_matchAnyOps_match1527 AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {}
1528
1529 // Operand matching works by recursively calling match_operands, matching the
1530 // operands left to right. The first version is called for each operand but
1531 // the last, for which the second version is called. The second version of
1532 // match_operands is also used to match each individual operand.
1533 template <int Idx, int Last>
match_operandsAnyOps_match1534 std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) {
1535 return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I);
1536 }
1537
1538 template <int Idx, int Last>
match_operandsAnyOps_match1539 std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) {
1540 return std::get<Idx>(Operands).match(I->getOperand(Idx));
1541 }
1542
matchAnyOps_match1543 template <typename OpTy> bool match(OpTy *V) {
1544 if (V->getValueID() == Value::InstructionVal + Opcode) {
1545 auto *I = cast<Instruction>(V);
1546 return I->getNumOperands() == sizeof...(OperandTypes) &&
1547 match_operands<0, sizeof...(OperandTypes) - 1>(I);
1548 }
1549 return false;
1550 }
1551 };
1552
1553 /// Matches SelectInst.
1554 template <typename Cond, typename LHS, typename RHS>
1555 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond & C,const LHS & L,const RHS & R)1556 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1557 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1558 }
1559
1560 /// This matches a select of two constants, e.g.:
1561 /// m_SelectCst<-1, 0>(m_Value(V))
1562 template <int64_t L, int64_t R, typename Cond>
1563 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1564 Instruction::Select>
m_SelectCst(const Cond & C)1565 m_SelectCst(const Cond &C) {
1566 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1567 }
1568
1569 /// Matches FreezeInst.
1570 template <typename OpTy>
m_Freeze(const OpTy & Op)1571 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1572 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1573 }
1574
1575 /// Matches InsertElementInst.
1576 template <typename Val_t, typename Elt_t, typename Idx_t>
1577 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1578 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1579 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1580 Val, Elt, Idx);
1581 }
1582
1583 /// Matches ExtractElementInst.
1584 template <typename Val_t, typename Idx_t>
1585 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t & Val,const Idx_t & Idx)1586 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1587 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1588 }
1589
1590 /// Matches shuffle.
1591 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1592 T0 Op1;
1593 T1 Op2;
1594 T2 Mask;
1595
Shuffle_matchShuffle_match1596 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1597 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1598
matchShuffle_match1599 template <typename OpTy> bool match(OpTy *V) {
1600 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1601 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1602 Mask.match(I->getShuffleMask());
1603 }
1604 return false;
1605 }
1606 };
1607
1608 struct m_Mask {
1609 ArrayRef<int> &MaskRef;
m_Maskm_Mask1610 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_Mask1611 bool match(ArrayRef<int> Mask) {
1612 MaskRef = Mask;
1613 return true;
1614 }
1615 };
1616
1617 struct m_ZeroMask {
matchm_ZeroMask1618 bool match(ArrayRef<int> Mask) {
1619 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1620 }
1621 };
1622
1623 struct m_SpecificMask {
1624 ArrayRef<int> &MaskRef;
m_SpecificMaskm_SpecificMask1625 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_SpecificMask1626 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1627 };
1628
1629 struct m_SplatOrUndefMask {
1630 int &SplatIndex;
m_SplatOrUndefMaskm_SplatOrUndefMask1631 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
matchm_SplatOrUndefMask1632 bool match(ArrayRef<int> Mask) {
1633 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; });
1634 if (First == Mask.end())
1635 return false;
1636 SplatIndex = *First;
1637 return all_of(Mask,
1638 [First](int Elem) { return Elem == *First || Elem == -1; });
1639 }
1640 };
1641
1642 template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match {
1643 PointerOpTy PointerOp;
1644 OffsetOpTy OffsetOp;
1645
PtrAdd_matchPtrAdd_match1646 PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
1647 : PointerOp(PointerOp), OffsetOp(OffsetOp) {}
1648
matchPtrAdd_match1649 template <typename OpTy> bool match(OpTy *V) {
1650 auto *GEP = dyn_cast<GEPOperator>(V);
1651 return GEP && GEP->getSourceElementType()->isIntegerTy(8) &&
1652 PointerOp.match(GEP->getPointerOperand()) &&
1653 OffsetOp.match(GEP->idx_begin()->get());
1654 }
1655 };
1656
1657 /// Matches ShuffleVectorInst independently of mask value.
1658 template <typename V1_t, typename V2_t>
1659 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t & v1,const V2_t & v2)1660 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1661 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1662 }
1663
1664 template <typename V1_t, typename V2_t, typename Mask_t>
1665 inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t & v1,const V2_t & v2,const Mask_t & mask)1666 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1667 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1668 }
1669
1670 /// Matches LoadInst.
1671 template <typename OpTy>
m_Load(const OpTy & Op)1672 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1673 return OneOps_match<OpTy, Instruction::Load>(Op);
1674 }
1675
1676 /// Matches StoreInst.
1677 template <typename ValueOpTy, typename PointerOpTy>
1678 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1679 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1680 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1681 PointerOp);
1682 }
1683
1684 /// Matches GetElementPtrInst.
1685 template <typename... OperandTypes>
m_GEP(const OperandTypes &...Ops)1686 inline auto m_GEP(const OperandTypes &...Ops) {
1687 return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...);
1688 }
1689
1690 /// Matches GEP with i8 source element type
1691 template <typename PointerOpTy, typename OffsetOpTy>
1692 inline PtrAdd_match<PointerOpTy, OffsetOpTy>
m_PtrAdd(const PointerOpTy & PointerOp,const OffsetOpTy & OffsetOp)1693 m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) {
1694 return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp);
1695 }
1696
1697 //===----------------------------------------------------------------------===//
1698 // Matchers for CastInst classes
1699 //
1700
1701 template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1702 Op_t Op;
1703
CastOperator_matchCastOperator_match1704 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1705
matchCastOperator_match1706 template <typename OpTy> bool match(OpTy *V) {
1707 if (auto *O = dyn_cast<Operator>(V))
1708 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1709 return false;
1710 }
1711 };
1712
1713 template <typename Op_t, typename Class> struct CastInst_match {
1714 Op_t Op;
1715
CastInst_matchCastInst_match1716 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1717
matchCastInst_match1718 template <typename OpTy> bool match(OpTy *V) {
1719 if (auto *I = dyn_cast<Class>(V))
1720 return Op.match(I->getOperand(0));
1721 return false;
1722 }
1723 };
1724
1725 template <typename Op_t> struct PtrToIntSameSize_match {
1726 const DataLayout &DL;
1727 Op_t Op;
1728
PtrToIntSameSize_matchPtrToIntSameSize_match1729 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1730 : DL(DL), Op(OpMatch) {}
1731
matchPtrToIntSameSize_match1732 template <typename OpTy> bool match(OpTy *V) {
1733 if (auto *O = dyn_cast<Operator>(V))
1734 return O->getOpcode() == Instruction::PtrToInt &&
1735 DL.getTypeSizeInBits(O->getType()) ==
1736 DL.getTypeSizeInBits(O->getOperand(0)->getType()) &&
1737 Op.match(O->getOperand(0));
1738 return false;
1739 }
1740 };
1741
1742 template <typename Op_t> struct NNegZExt_match {
1743 Op_t Op;
1744
NNegZExt_matchNNegZExt_match1745 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
1746
matchNNegZExt_match1747 template <typename OpTy> bool match(OpTy *V) {
1748 if (auto *I = dyn_cast<ZExtInst>(V))
1749 return I->hasNonNeg() && Op.match(I->getOperand(0));
1750 return false;
1751 }
1752 };
1753
1754 /// Matches BitCast.
1755 template <typename OpTy>
1756 inline CastOperator_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy & Op)1757 m_BitCast(const OpTy &Op) {
1758 return CastOperator_match<OpTy, Instruction::BitCast>(Op);
1759 }
1760
1761 template <typename Op_t> struct ElementWiseBitCast_match {
1762 Op_t Op;
1763
ElementWiseBitCast_matchElementWiseBitCast_match1764 ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {}
1765
matchElementWiseBitCast_match1766 template <typename OpTy> bool match(OpTy *V) {
1767 BitCastInst *I = dyn_cast<BitCastInst>(V);
1768 if (!I)
1769 return false;
1770 Type *SrcType = I->getSrcTy();
1771 Type *DstType = I->getType();
1772 // Make sure the bitcast doesn't change between scalar and vector and
1773 // doesn't change the number of vector elements.
1774 if (SrcType->isVectorTy() != DstType->isVectorTy())
1775 return false;
1776 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcType);
1777 SrcVecTy && SrcVecTy->getElementCount() !=
1778 cast<VectorType>(DstType)->getElementCount())
1779 return false;
1780 return Op.match(I->getOperand(0));
1781 }
1782 };
1783
1784 template <typename OpTy>
m_ElementWiseBitCast(const OpTy & Op)1785 inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) {
1786 return ElementWiseBitCast_match<OpTy>(Op);
1787 }
1788
1789 /// Matches PtrToInt.
1790 template <typename OpTy>
1791 inline CastOperator_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy & Op)1792 m_PtrToInt(const OpTy &Op) {
1793 return CastOperator_match<OpTy, Instruction::PtrToInt>(Op);
1794 }
1795
1796 template <typename OpTy>
m_PtrToIntSameSize(const DataLayout & DL,const OpTy & Op)1797 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL,
1798 const OpTy &Op) {
1799 return PtrToIntSameSize_match<OpTy>(DL, Op);
1800 }
1801
1802 /// Matches IntToPtr.
1803 template <typename OpTy>
1804 inline CastOperator_match<OpTy, Instruction::IntToPtr>
m_IntToPtr(const OpTy & Op)1805 m_IntToPtr(const OpTy &Op) {
1806 return CastOperator_match<OpTy, Instruction::IntToPtr>(Op);
1807 }
1808
1809 /// Matches Trunc.
1810 template <typename OpTy>
m_Trunc(const OpTy & Op)1811 inline CastOperator_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1812 return CastOperator_match<OpTy, Instruction::Trunc>(Op);
1813 }
1814
1815 template <typename OpTy>
1816 inline match_combine_or<CastOperator_match<OpTy, Instruction::Trunc>, OpTy>
m_TruncOrSelf(const OpTy & Op)1817 m_TruncOrSelf(const OpTy &Op) {
1818 return m_CombineOr(m_Trunc(Op), Op);
1819 }
1820
1821 /// Matches SExt.
1822 template <typename OpTy>
m_SExt(const OpTy & Op)1823 inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) {
1824 return CastInst_match<OpTy, SExtInst>(Op);
1825 }
1826
1827 /// Matches ZExt.
1828 template <typename OpTy>
m_ZExt(const OpTy & Op)1829 inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) {
1830 return CastInst_match<OpTy, ZExtInst>(Op);
1831 }
1832
1833 template <typename OpTy>
m_NNegZExt(const OpTy & Op)1834 inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) {
1835 return NNegZExt_match<OpTy>(Op);
1836 }
1837
1838 template <typename OpTy>
1839 inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy>
m_ZExtOrSelf(const OpTy & Op)1840 m_ZExtOrSelf(const OpTy &Op) {
1841 return m_CombineOr(m_ZExt(Op), Op);
1842 }
1843
1844 template <typename OpTy>
1845 inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy>
m_SExtOrSelf(const OpTy & Op)1846 m_SExtOrSelf(const OpTy &Op) {
1847 return m_CombineOr(m_SExt(Op), Op);
1848 }
1849
1850 /// Match either "sext" or "zext nneg".
1851 template <typename OpTy>
1852 inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>>
m_SExtLike(const OpTy & Op)1853 m_SExtLike(const OpTy &Op) {
1854 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op));
1855 }
1856
1857 template <typename OpTy>
1858 inline match_combine_or<CastInst_match<OpTy, ZExtInst>,
1859 CastInst_match<OpTy, SExtInst>>
m_ZExtOrSExt(const OpTy & Op)1860 m_ZExtOrSExt(const OpTy &Op) {
1861 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1862 }
1863
1864 template <typename OpTy>
1865 inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>,
1866 CastInst_match<OpTy, SExtInst>>,
1867 OpTy>
m_ZExtOrSExtOrSelf(const OpTy & Op)1868 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1869 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1870 }
1871
1872 template <typename OpTy>
m_UIToFP(const OpTy & Op)1873 inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) {
1874 return CastInst_match<OpTy, UIToFPInst>(Op);
1875 }
1876
1877 template <typename OpTy>
m_SIToFP(const OpTy & Op)1878 inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) {
1879 return CastInst_match<OpTy, SIToFPInst>(Op);
1880 }
1881
1882 template <typename OpTy>
m_FPToUI(const OpTy & Op)1883 inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) {
1884 return CastInst_match<OpTy, FPToUIInst>(Op);
1885 }
1886
1887 template <typename OpTy>
m_FPToSI(const OpTy & Op)1888 inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) {
1889 return CastInst_match<OpTy, FPToSIInst>(Op);
1890 }
1891
1892 template <typename OpTy>
m_FPTrunc(const OpTy & Op)1893 inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) {
1894 return CastInst_match<OpTy, FPTruncInst>(Op);
1895 }
1896
1897 template <typename OpTy>
m_FPExt(const OpTy & Op)1898 inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) {
1899 return CastInst_match<OpTy, FPExtInst>(Op);
1900 }
1901
1902 //===----------------------------------------------------------------------===//
1903 // Matchers for control flow.
1904 //
1905
1906 struct br_match {
1907 BasicBlock *&Succ;
1908
br_matchbr_match1909 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1910
matchbr_match1911 template <typename OpTy> bool match(OpTy *V) {
1912 if (auto *BI = dyn_cast<BranchInst>(V))
1913 if (BI->isUnconditional()) {
1914 Succ = BI->getSuccessor(0);
1915 return true;
1916 }
1917 return false;
1918 }
1919 };
1920
m_UnconditionalBr(BasicBlock * & Succ)1921 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1922
1923 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1924 struct brc_match {
1925 Cond_t Cond;
1926 TrueBlock_t T;
1927 FalseBlock_t F;
1928
brc_matchbrc_match1929 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1930 : Cond(C), T(t), F(f) {}
1931
matchbrc_match1932 template <typename OpTy> bool match(OpTy *V) {
1933 if (auto *BI = dyn_cast<BranchInst>(V))
1934 if (BI->isConditional() && Cond.match(BI->getCondition()))
1935 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1936 return false;
1937 }
1938 };
1939
1940 template <typename Cond_t>
1941 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1942 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1943 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1944 C, m_BasicBlock(T), m_BasicBlock(F));
1945 }
1946
1947 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1948 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t & C,const TrueBlock_t & T,const FalseBlock_t & F)1949 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1950 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1951 }
1952
1953 //===----------------------------------------------------------------------===//
1954 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1955 //
1956
1957 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1958 bool Commutable = false>
1959 struct MaxMin_match {
1960 using PredType = Pred_t;
1961 LHS_t L;
1962 RHS_t R;
1963
1964 // The evaluation order is always stable, regardless of Commutability.
1965 // The LHS is always matched first.
MaxMin_matchMaxMin_match1966 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1967
matchMaxMin_match1968 template <typename OpTy> bool match(OpTy *V) {
1969 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1970 Intrinsic::ID IID = II->getIntrinsicID();
1971 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1972 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1973 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1974 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1975 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1976 return (L.match(LHS) && R.match(RHS)) ||
1977 (Commutable && L.match(RHS) && R.match(LHS));
1978 }
1979 }
1980 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1981 auto *SI = dyn_cast<SelectInst>(V);
1982 if (!SI)
1983 return false;
1984 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1985 if (!Cmp)
1986 return false;
1987 // At this point we have a select conditioned on a comparison. Check that
1988 // it is the values returned by the select that are being compared.
1989 auto *TrueVal = SI->getTrueValue();
1990 auto *FalseVal = SI->getFalseValue();
1991 auto *LHS = Cmp->getOperand(0);
1992 auto *RHS = Cmp->getOperand(1);
1993 if ((TrueVal != LHS || FalseVal != RHS) &&
1994 (TrueVal != RHS || FalseVal != LHS))
1995 return false;
1996 typename CmpInst_t::Predicate Pred =
1997 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1998 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1999 if (!Pred_t::match(Pred))
2000 return false;
2001 // It does! Bind the operands.
2002 return (L.match(LHS) && R.match(RHS)) ||
2003 (Commutable && L.match(RHS) && R.match(LHS));
2004 }
2005 };
2006
2007 /// Helper class for identifying signed max predicates.
2008 struct smax_pred_ty {
matchsmax_pred_ty2009 static bool match(ICmpInst::Predicate Pred) {
2010 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
2011 }
2012 };
2013
2014 /// Helper class for identifying signed min predicates.
2015 struct smin_pred_ty {
matchsmin_pred_ty2016 static bool match(ICmpInst::Predicate Pred) {
2017 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
2018 }
2019 };
2020
2021 /// Helper class for identifying unsigned max predicates.
2022 struct umax_pred_ty {
matchumax_pred_ty2023 static bool match(ICmpInst::Predicate Pred) {
2024 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
2025 }
2026 };
2027
2028 /// Helper class for identifying unsigned min predicates.
2029 struct umin_pred_ty {
matchumin_pred_ty2030 static bool match(ICmpInst::Predicate Pred) {
2031 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
2032 }
2033 };
2034
2035 /// Helper class for identifying ordered max predicates.
2036 struct ofmax_pred_ty {
matchofmax_pred_ty2037 static bool match(FCmpInst::Predicate Pred) {
2038 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
2039 }
2040 };
2041
2042 /// Helper class for identifying ordered min predicates.
2043 struct ofmin_pred_ty {
matchofmin_pred_ty2044 static bool match(FCmpInst::Predicate Pred) {
2045 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
2046 }
2047 };
2048
2049 /// Helper class for identifying unordered max predicates.
2050 struct ufmax_pred_ty {
matchufmax_pred_ty2051 static bool match(FCmpInst::Predicate Pred) {
2052 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
2053 }
2054 };
2055
2056 /// Helper class for identifying unordered min predicates.
2057 struct ufmin_pred_ty {
matchufmin_pred_ty2058 static bool match(FCmpInst::Predicate Pred) {
2059 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
2060 }
2061 };
2062
2063 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)2064 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
2065 const RHS &R) {
2066 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
2067 }
2068
2069 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)2070 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
2071 const RHS &R) {
2072 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
2073 }
2074
2075 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)2076 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
2077 const RHS &R) {
2078 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
2079 }
2080
2081 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)2082 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
2083 const RHS &R) {
2084 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
2085 }
2086
2087 template <typename LHS, typename RHS>
2088 inline match_combine_or<
2089 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
2090 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
2091 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
2092 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS & L,const RHS & R)2093 m_MaxOrMin(const LHS &L, const RHS &R) {
2094 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
2095 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
2096 }
2097
2098 /// Match an 'ordered' floating point maximum function.
2099 /// Floating point has one special value 'NaN'. Therefore, there is no total
2100 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2101 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2102 /// semantics. In the presence of 'NaN' we have to preserve the original
2103 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
2104 ///
2105 /// max(L, R) iff L and R are not NaN
2106 /// m_OrdFMax(L, R) = R iff L or R are NaN
2107 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)2108 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
2109 const RHS &R) {
2110 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
2111 }
2112
2113 /// Match an 'ordered' floating point minimum function.
2114 /// Floating point has one special value 'NaN'. Therefore, there is no total
2115 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2116 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2117 /// semantics. In the presence of 'NaN' we have to preserve the original
2118 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
2119 ///
2120 /// min(L, R) iff L and R are not NaN
2121 /// m_OrdFMin(L, R) = R iff L or R are NaN
2122 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)2123 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
2124 const RHS &R) {
2125 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
2126 }
2127
2128 /// Match an 'unordered' floating point maximum function.
2129 /// Floating point has one special value 'NaN'. Therefore, there is no total
2130 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2131 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2132 /// semantics. In the presence of 'NaN' we have to preserve the original
2133 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2134 ///
2135 /// max(L, R) iff L and R are not NaN
2136 /// m_UnordFMax(L, R) = L iff L or R are NaN
2137 template <typename LHS, typename RHS>
2138 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)2139 m_UnordFMax(const LHS &L, const RHS &R) {
2140 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
2141 }
2142
2143 /// Match an 'unordered' floating point minimum function.
2144 /// Floating point has one special value 'NaN'. Therefore, there is no total
2145 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2146 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2147 /// semantics. In the presence of 'NaN' we have to preserve the original
2148 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2149 ///
2150 /// min(L, R) iff L and R are not NaN
2151 /// m_UnordFMin(L, R) = L iff L or R are NaN
2152 template <typename LHS, typename RHS>
2153 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)2154 m_UnordFMin(const LHS &L, const RHS &R) {
2155 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
2156 }
2157
2158 //===----------------------------------------------------------------------===//
2159 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2160 // Note that S might be matched to other instructions than AddInst.
2161 //
2162
2163 template <typename LHS_t, typename RHS_t, typename Sum_t>
2164 struct UAddWithOverflow_match {
2165 LHS_t L;
2166 RHS_t R;
2167 Sum_t S;
2168
UAddWithOverflow_matchUAddWithOverflow_match2169 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2170 : L(L), R(R), S(S) {}
2171
matchUAddWithOverflow_match2172 template <typename OpTy> bool match(OpTy *V) {
2173 Value *ICmpLHS, *ICmpRHS;
2174 ICmpInst::Predicate Pred;
2175 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
2176 return false;
2177
2178 Value *AddLHS, *AddRHS;
2179 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
2180
2181 // (a + b) u< a, (a + b) u< b
2182 if (Pred == ICmpInst::ICMP_ULT)
2183 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2184 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2185
2186 // a >u (a + b), b >u (a + b)
2187 if (Pred == ICmpInst::ICMP_UGT)
2188 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2189 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2190
2191 Value *Op1;
2192 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
2193 // (a ^ -1) <u b
2194 if (Pred == ICmpInst::ICMP_ULT) {
2195 if (XorExpr.match(ICmpLHS))
2196 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2197 }
2198 // b > u (a ^ -1)
2199 if (Pred == ICmpInst::ICMP_UGT) {
2200 if (XorExpr.match(ICmpRHS))
2201 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2202 }
2203
2204 // Match special-case for increment-by-1.
2205 if (Pred == ICmpInst::ICMP_EQ) {
2206 // (a + 1) == 0
2207 // (1 + a) == 0
2208 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2209 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2210 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2211 // 0 == (a + 1)
2212 // 0 == (1 + a)
2213 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2214 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2215 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2216 }
2217
2218 return false;
2219 }
2220 };
2221
2222 /// Match an icmp instruction checking for unsigned overflow on addition.
2223 ///
2224 /// S is matched to the addition whose result is being checked for overflow, and
2225 /// L and R are matched to the LHS and RHS of S.
2226 template <typename LHS_t, typename RHS_t, typename Sum_t>
2227 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)2228 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2229 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2230 }
2231
2232 template <typename Opnd_t> struct Argument_match {
2233 unsigned OpI;
2234 Opnd_t Val;
2235
Argument_matchArgument_match2236 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2237
matchArgument_match2238 template <typename OpTy> bool match(OpTy *V) {
2239 // FIXME: Should likely be switched to use `CallBase`.
2240 if (const auto *CI = dyn_cast<CallInst>(V))
2241 return Val.match(CI->getArgOperand(OpI));
2242 return false;
2243 }
2244 };
2245
2246 /// Match an argument.
2247 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)2248 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2249 return Argument_match<Opnd_t>(OpI, Op);
2250 }
2251
2252 /// Intrinsic matchers.
2253 struct IntrinsicID_match {
2254 unsigned ID;
2255
IntrinsicID_matchIntrinsicID_match2256 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2257
matchIntrinsicID_match2258 template <typename OpTy> bool match(OpTy *V) {
2259 if (const auto *CI = dyn_cast<CallInst>(V))
2260 if (const auto *F = CI->getCalledFunction())
2261 return F->getIntrinsicID() == ID;
2262 return false;
2263 }
2264 };
2265
2266 /// Intrinsic matches are combinations of ID matchers, and argument
2267 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2268 /// them with lower arity matchers. Here's some convenient typedefs for up to
2269 /// several arguments, and more can be added as needed
2270 template <typename T0 = void, typename T1 = void, typename T2 = void,
2271 typename T3 = void, typename T4 = void, typename T5 = void,
2272 typename T6 = void, typename T7 = void, typename T8 = void,
2273 typename T9 = void, typename T10 = void>
2274 struct m_Intrinsic_Ty;
2275 template <typename T0> struct m_Intrinsic_Ty<T0> {
2276 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2277 };
2278 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2279 using Ty =
2280 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2281 };
2282 template <typename T0, typename T1, typename T2>
2283 struct m_Intrinsic_Ty<T0, T1, T2> {
2284 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2285 Argument_match<T2>>;
2286 };
2287 template <typename T0, typename T1, typename T2, typename T3>
2288 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2289 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2290 Argument_match<T3>>;
2291 };
2292
2293 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2294 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2295 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2296 Argument_match<T4>>;
2297 };
2298
2299 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2300 typename T5>
2301 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2302 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2303 Argument_match<T5>>;
2304 };
2305
2306 /// Match intrinsic calls like this:
2307 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2308 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2309 return IntrinsicID_match(IntrID);
2310 }
2311
2312 /// Matches MaskedLoad Intrinsic.
2313 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2314 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2315 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2316 const Opnd3 &Op3) {
2317 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2318 }
2319
2320 /// Matches MaskedGather Intrinsic.
2321 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2322 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2323 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2324 const Opnd3 &Op3) {
2325 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2326 }
2327
2328 template <Intrinsic::ID IntrID, typename T0>
2329 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2330 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2331 }
2332
2333 template <Intrinsic::ID IntrID, typename T0, typename T1>
2334 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2335 const T1 &Op1) {
2336 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2337 }
2338
2339 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2340 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2341 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2342 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2343 }
2344
2345 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2346 typename T3>
2347 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2348 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2349 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2350 }
2351
2352 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2353 typename T3, typename T4>
2354 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2355 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2356 const T4 &Op4) {
2357 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2358 m_Argument<4>(Op4));
2359 }
2360
2361 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2362 typename T3, typename T4, typename T5>
2363 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2364 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2365 const T4 &Op4, const T5 &Op5) {
2366 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2367 m_Argument<5>(Op5));
2368 }
2369
2370 // Helper intrinsic matching specializations.
2371 template <typename Opnd0>
2372 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2373 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2374 }
2375
2376 template <typename Opnd0>
2377 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2378 return m_Intrinsic<Intrinsic::bswap>(Op0);
2379 }
2380
2381 template <typename Opnd0>
2382 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2383 return m_Intrinsic<Intrinsic::fabs>(Op0);
2384 }
2385
2386 template <typename Opnd0>
2387 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2388 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2389 }
2390
2391 template <typename Opnd0, typename Opnd1>
2392 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2393 const Opnd1 &Op1) {
2394 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2395 }
2396
2397 template <typename Opnd0, typename Opnd1>
2398 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2399 const Opnd1 &Op1) {
2400 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2401 }
2402
2403 template <typename Opnd0, typename Opnd1, typename Opnd2>
2404 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2405 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2406 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2407 }
2408
2409 template <typename Opnd0, typename Opnd1, typename Opnd2>
2410 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2411 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2412 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2413 }
2414
2415 template <typename Opnd0>
2416 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2417 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2418 }
2419
2420 template <typename Opnd0, typename Opnd1>
2421 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2422 const Opnd1 &Op1) {
2423 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2424 }
2425
2426 template <typename Opnd0>
2427 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2428 return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2429 }
2430
2431 //===----------------------------------------------------------------------===//
2432 // Matchers for two-operands operators with the operators in either order
2433 //
2434
2435 /// Matches a BinaryOperator with LHS and RHS in either order.
2436 template <typename LHS, typename RHS>
2437 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2438 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2439 }
2440
2441 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2442 /// Swaps the predicate if operands are commuted.
2443 template <typename LHS, typename RHS>
2444 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2445 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2446 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2447 R);
2448 }
2449
2450 /// Matches a specific opcode with LHS and RHS in either order.
2451 template <typename LHS, typename RHS>
2452 inline SpecificBinaryOp_match<LHS, RHS, true>
2453 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2454 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2455 }
2456
2457 /// Matches a Add with LHS and RHS in either order.
2458 template <typename LHS, typename RHS>
2459 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2460 const RHS &R) {
2461 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2462 }
2463
2464 /// Matches a Mul with LHS and RHS in either order.
2465 template <typename LHS, typename RHS>
2466 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2467 const RHS &R) {
2468 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2469 }
2470
2471 /// Matches an And with LHS and RHS in either order.
2472 template <typename LHS, typename RHS>
2473 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2474 const RHS &R) {
2475 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2476 }
2477
2478 /// Matches an Or with LHS and RHS in either order.
2479 template <typename LHS, typename RHS>
2480 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2481 const RHS &R) {
2482 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2483 }
2484
2485 /// Matches an Xor with LHS and RHS in either order.
2486 template <typename LHS, typename RHS>
2487 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2488 const RHS &R) {
2489 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2490 }
2491
2492 /// Matches a 'Neg' as 'sub 0, V'.
2493 template <typename ValTy>
2494 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2495 m_Neg(const ValTy &V) {
2496 return m_Sub(m_ZeroInt(), V);
2497 }
2498
2499 /// Matches a 'Neg' as 'sub nsw 0, V'.
2500 template <typename ValTy>
2501 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2502 Instruction::Sub,
2503 OverflowingBinaryOperator::NoSignedWrap>
2504 m_NSWNeg(const ValTy &V) {
2505 return m_NSWSub(m_ZeroInt(), V);
2506 }
2507
2508 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2509 /// NOTE: we first match the 'Not' (by matching '-1'),
2510 /// and only then match the inner matcher!
2511 template <typename ValTy>
2512 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2513 m_Not(const ValTy &V) {
2514 return m_c_Xor(m_AllOnes(), V);
2515 }
2516
2517 template <typename ValTy> struct NotForbidUndef_match {
2518 ValTy Val;
2519 NotForbidUndef_match(const ValTy &V) : Val(V) {}
2520
2521 template <typename OpTy> bool match(OpTy *V) {
2522 // We do not use m_c_Xor because that could match an arbitrary APInt that is
2523 // not -1 as C and then fail to match the other operand if it is -1.
2524 // This code should still work even when both operands are constants.
2525 Value *X;
2526 const APInt *C;
2527 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2528 return Val.match(X);
2529 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2530 return Val.match(X);
2531 return false;
2532 }
2533 };
2534
2535 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2536 /// constant value must be composed of only -1 scalar elements.
2537 template <typename ValTy>
2538 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2539 return NotForbidUndef_match<ValTy>(V);
2540 }
2541
2542 /// Matches an SMin with LHS and RHS in either order.
2543 template <typename LHS, typename RHS>
2544 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2545 m_c_SMin(const LHS &L, const RHS &R) {
2546 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2547 }
2548 /// Matches an SMax with LHS and RHS in either order.
2549 template <typename LHS, typename RHS>
2550 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2551 m_c_SMax(const LHS &L, const RHS &R) {
2552 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2553 }
2554 /// Matches a UMin with LHS and RHS in either order.
2555 template <typename LHS, typename RHS>
2556 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2557 m_c_UMin(const LHS &L, const RHS &R) {
2558 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2559 }
2560 /// Matches a UMax with LHS and RHS in either order.
2561 template <typename LHS, typename RHS>
2562 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2563 m_c_UMax(const LHS &L, const RHS &R) {
2564 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2565 }
2566
2567 template <typename LHS, typename RHS>
2568 inline match_combine_or<
2569 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2570 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2571 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2572 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2573 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2574 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2575 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2576 }
2577
2578 template <Intrinsic::ID IntrID, typename T0, typename T1>
2579 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty,
2580 typename m_Intrinsic_Ty<T1, T0>::Ty>
2581 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2582 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2583 m_Intrinsic<IntrID>(Op1, Op0));
2584 }
2585
2586 /// Matches FAdd with LHS and RHS in either order.
2587 template <typename LHS, typename RHS>
2588 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2589 m_c_FAdd(const LHS &L, const RHS &R) {
2590 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2591 }
2592
2593 /// Matches FMul with LHS and RHS in either order.
2594 template <typename LHS, typename RHS>
2595 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2596 m_c_FMul(const LHS &L, const RHS &R) {
2597 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2598 }
2599
2600 template <typename Opnd_t> struct Signum_match {
2601 Opnd_t Val;
2602 Signum_match(const Opnd_t &V) : Val(V) {}
2603
2604 template <typename OpTy> bool match(OpTy *V) {
2605 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2606 if (TypeSize == 0)
2607 return false;
2608
2609 unsigned ShiftWidth = TypeSize - 1;
2610 Value *OpL = nullptr, *OpR = nullptr;
2611
2612 // This is the representation of signum we match:
2613 //
2614 // signum(x) == (x >> 63) | (-x >>u 63)
2615 //
2616 // An i1 value is its own signum, so it's correct to match
2617 //
2618 // signum(x) == (x >> 0) | (-x >>u 0)
2619 //
2620 // for i1 values.
2621
2622 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2623 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2624 auto Signum = m_Or(LHS, RHS);
2625
2626 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2627 }
2628 };
2629
2630 /// Matches a signum pattern.
2631 ///
2632 /// signum(x) =
2633 /// x > 0 -> 1
2634 /// x == 0 -> 0
2635 /// x < 0 -> -1
2636 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2637 return Signum_match<Val_t>(V);
2638 }
2639
2640 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2641 Opnd_t Val;
2642 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2643
2644 template <typename OpTy> bool match(OpTy *V) {
2645 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2646 // If Ind is -1, don't inspect indices
2647 if (Ind != -1 &&
2648 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2649 return false;
2650 return Val.match(I->getAggregateOperand());
2651 }
2652 return false;
2653 }
2654 };
2655
2656 /// Match a single index ExtractValue instruction.
2657 /// For example m_ExtractValue<1>(...)
2658 template <int Ind, typename Val_t>
2659 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2660 return ExtractValue_match<Ind, Val_t>(V);
2661 }
2662
2663 /// Match an ExtractValue instruction with any index.
2664 /// For example m_ExtractValue(...)
2665 template <typename Val_t>
2666 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2667 return ExtractValue_match<-1, Val_t>(V);
2668 }
2669
2670 /// Matcher for a single index InsertValue instruction.
2671 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2672 T0 Op0;
2673 T1 Op1;
2674
2675 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2676
2677 template <typename OpTy> bool match(OpTy *V) {
2678 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2679 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2680 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2681 }
2682 return false;
2683 }
2684 };
2685
2686 /// Matches a single index InsertValue instruction.
2687 template <int Ind, typename Val_t, typename Elt_t>
2688 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2689 const Elt_t &Elt) {
2690 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2691 }
2692
2693 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2694 /// the constant expression
2695 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2696 /// under the right conditions determined by DataLayout.
2697 struct VScaleVal_match {
2698 template <typename ITy> bool match(ITy *V) {
2699 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2700 return true;
2701
2702 Value *Ptr;
2703 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2704 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2705 auto *DerefTy =
2706 dyn_cast<ScalableVectorType>(GEP->getSourceElementType());
2707 if (GEP->getNumIndices() == 1 && DerefTy &&
2708 DerefTy->getElementType()->isIntegerTy(8) &&
2709 m_Zero().match(GEP->getPointerOperand()) &&
2710 m_SpecificInt(1).match(GEP->idx_begin()->get()))
2711 return true;
2712 }
2713 }
2714
2715 return false;
2716 }
2717 };
2718
2719 inline VScaleVal_match m_VScale() {
2720 return VScaleVal_match();
2721 }
2722
2723 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2724 struct LogicalOp_match {
2725 LHS L;
2726 RHS R;
2727
2728 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2729
2730 template <typename T> bool match(T *V) {
2731 auto *I = dyn_cast<Instruction>(V);
2732 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2733 return false;
2734
2735 if (I->getOpcode() == Opcode) {
2736 auto *Op0 = I->getOperand(0);
2737 auto *Op1 = I->getOperand(1);
2738 return (L.match(Op0) && R.match(Op1)) ||
2739 (Commutable && L.match(Op1) && R.match(Op0));
2740 }
2741
2742 if (auto *Select = dyn_cast<SelectInst>(I)) {
2743 auto *Cond = Select->getCondition();
2744 auto *TVal = Select->getTrueValue();
2745 auto *FVal = Select->getFalseValue();
2746
2747 // Don't match a scalar select of bool vectors.
2748 // Transforms expect a single type for operands if this matches.
2749 if (Cond->getType() != Select->getType())
2750 return false;
2751
2752 if (Opcode == Instruction::And) {
2753 auto *C = dyn_cast<Constant>(FVal);
2754 if (C && C->isNullValue())
2755 return (L.match(Cond) && R.match(TVal)) ||
2756 (Commutable && L.match(TVal) && R.match(Cond));
2757 } else {
2758 assert(Opcode == Instruction::Or);
2759 auto *C = dyn_cast<Constant>(TVal);
2760 if (C && C->isOneValue())
2761 return (L.match(Cond) && R.match(FVal)) ||
2762 (Commutable && L.match(FVal) && R.match(Cond));
2763 }
2764 }
2765
2766 return false;
2767 }
2768 };
2769
2770 /// Matches L && R either in the form of L & R or L ? R : false.
2771 /// Note that the latter form is poison-blocking.
2772 template <typename LHS, typename RHS>
2773 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2774 const RHS &R) {
2775 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2776 }
2777
2778 /// Matches L && R where L and R are arbitrary values.
2779 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2780
2781 /// Matches L && R with LHS and RHS in either order.
2782 template <typename LHS, typename RHS>
2783 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2784 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2785 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2786 }
2787
2788 /// Matches L || R either in the form of L | R or L ? true : R.
2789 /// Note that the latter form is poison-blocking.
2790 template <typename LHS, typename RHS>
2791 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2792 const RHS &R) {
2793 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2794 }
2795
2796 /// Matches L || R where L and R are arbitrary values.
2797 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2798
2799 /// Matches L || R with LHS and RHS in either order.
2800 template <typename LHS, typename RHS>
2801 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2802 m_c_LogicalOr(const LHS &L, const RHS &R) {
2803 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2804 }
2805
2806 /// Matches either L && R or L || R,
2807 /// either one being in the either binary or logical form.
2808 /// Note that the latter form is poison-blocking.
2809 template <typename LHS, typename RHS, bool Commutable = false>
2810 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2811 return m_CombineOr(
2812 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2813 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2814 }
2815
2816 /// Matches either L && R or L || R where L and R are arbitrary values.
2817 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2818
2819 /// Matches either L && R or L || R with LHS and RHS in either order.
2820 template <typename LHS, typename RHS>
2821 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2822 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2823 }
2824
2825 } // end namespace PatternMatch
2826 } // end namespace llvm
2827
2828 #endif // LLVM_IR_PATTERNMATCH_H
2829