1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Analysis.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassInstrumentation.h"
49 #include "llvm/IR/PassManagerInternal.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/TimeProfiler.h"
52 #include "llvm/Support/TypeName.h"
53 #include <cassert>
54 #include <cstring>
55 #include <iterator>
56 #include <list>
57 #include <memory>
58 #include <tuple>
59 #include <type_traits>
60 #include <utility>
61 #include <vector>
62 
63 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
64 
65 namespace llvm {
66 
67 // RemoveDIs: Provide facilities for converting debug-info from one form to
68 // another, which are no-ops for everything but modules.
shouldConvertDbgInfo(IRUnitT & IR)69 template <class IRUnitT> inline bool shouldConvertDbgInfo(IRUnitT &IR) {
70   return false;
71 }
shouldConvertDbgInfo(Module & IR)72 template <> inline bool shouldConvertDbgInfo(Module &IR) {
73   return !IR.IsNewDbgInfoFormat && UseNewDbgInfoFormat;
74 }
doConvertDbgInfoToNew(IRUnitT & IR)75 template <class IRUnitT> inline void doConvertDbgInfoToNew(IRUnitT &IR) {}
doConvertDbgInfoToNew(Module & IR)76 template <> inline void doConvertDbgInfoToNew(Module &IR) {
77   IR.convertToNewDbgValues();
78 }
doConvertDebugInfoToOld(IRUnitT & IR)79 template <class IRUnitT> inline void doConvertDebugInfoToOld(IRUnitT &IR) {}
doConvertDebugInfoToOld(Module & IR)80 template <> inline void doConvertDebugInfoToOld(Module &IR) {
81   IR.convertFromNewDbgValues();
82 }
83 
84 // Forward declare the analysis manager template.
85 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
86 
87 /// A CRTP mix-in to automatically provide informational APIs needed for
88 /// passes.
89 ///
90 /// This provides some boilerplate for types that are passes.
91 template <typename DerivedT> struct PassInfoMixin {
92   /// Gets the name of the pass we are mixed into.
namePassInfoMixin93   static StringRef name() {
94     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
95                   "Must pass the derived type as the template argument!");
96     StringRef Name = getTypeName<DerivedT>();
97     Name.consume_front("llvm::");
98     return Name;
99   }
100 
printPipelinePassInfoMixin101   void printPipeline(raw_ostream &OS,
102                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
103     StringRef ClassName = DerivedT::name();
104     auto PassName = MapClassName2PassName(ClassName);
105     OS << PassName;
106   }
107 };
108 
109 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
110 ///
111 /// This provides some boilerplate for types that are analysis passes. It
112 /// automatically mixes in \c PassInfoMixin.
113 template <typename DerivedT>
114 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
115   /// Returns an opaque, unique ID for this analysis type.
116   ///
117   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
118   /// suitable for use in sets, maps, and other data structures that use the low
119   /// bits of pointers.
120   ///
121   /// Note that this requires the derived type provide a static \c AnalysisKey
122   /// member called \c Key.
123   ///
124   /// FIXME: The only reason the mixin type itself can't declare the Key value
125   /// is that some compilers cannot correctly unique a templated static variable
126   /// so it has the same addresses in each instantiation. The only currently
127   /// known platform with this limitation is Windows DLL builds, specifically
128   /// building each part of LLVM as a DLL. If we ever remove that build
129   /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin130   static AnalysisKey *ID() {
131     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
132                   "Must pass the derived type as the template argument!");
133     return &DerivedT::Key;
134   }
135 };
136 
137 namespace detail {
138 
139 /// Actual unpacker of extra arguments in getAnalysisResult,
140 /// passes only those tuple arguments that are mentioned in index_sequence.
141 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
142           typename... ArgTs, size_t... Ns>
143 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)144 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
145                              std::tuple<ArgTs...> Args,
146                              std::index_sequence<Ns...>) {
147   (void)Args;
148   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
149 }
150 
151 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
152 ///
153 /// Arguments passed in tuple come from PassManager, so they might have extra
154 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
155 /// pass to getResult.
156 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
157           typename... MainArgTs>
158 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)159 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
160                   std::tuple<MainArgTs...> Args) {
161   return (getAnalysisResultUnpackTuple<
162           PassT, IRUnitT>)(AM, IR, Args,
163                            std::index_sequence_for<AnalysisArgTs...>{});
164 }
165 
166 } // namespace detail
167 
168 // Forward declare the pass instrumentation analysis explicitly queried in
169 // generic PassManager code.
170 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
171 // header.
172 class PassInstrumentationAnalysis;
173 
174 /// Manages a sequence of passes over a particular unit of IR.
175 ///
176 /// A pass manager contains a sequence of passes to run over a particular unit
177 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
178 /// IR, and when run over some given IR will run each of its contained passes in
179 /// sequence. Pass managers are the primary and most basic building block of a
180 /// pass pipeline.
181 ///
182 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
183 /// argument. The pass manager will propagate that analysis manager to each
184 /// pass it runs, and will call the analysis manager's invalidation routine with
185 /// the PreservedAnalyses of each pass it runs.
186 template <typename IRUnitT,
187           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
188           typename... ExtraArgTs>
189 class PassManager : public PassInfoMixin<
190                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
191 public:
192   /// Construct a pass manager.
193   explicit PassManager() = default;
194 
195   // FIXME: These are equivalent to the default move constructor/move
196   // assignment. However, using = default triggers linker errors due to the
197   // explicit instantiations below. Find away to use the default and remove the
198   // duplicated code here.
PassManager(PassManager && Arg)199   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
200 
201   PassManager &operator=(PassManager &&RHS) {
202     Passes = std::move(RHS.Passes);
203     return *this;
204   }
205 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)206   void printPipeline(raw_ostream &OS,
207                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
208     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
209       auto *P = Passes[Idx].get();
210       P->printPipeline(OS, MapClassName2PassName);
211       if (Idx + 1 < Size)
212         OS << ',';
213     }
214   }
215 
216   /// Run all of the passes in this manager over the given unit of IR.
217   /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)218   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
219                         ExtraArgTs... ExtraArgs) {
220     PreservedAnalyses PA = PreservedAnalyses::all();
221 
222     // Request PassInstrumentation from analysis manager, will use it to run
223     // instrumenting callbacks for the passes later.
224     // Here we use std::tuple wrapper over getResult which helps to extract
225     // AnalysisManager's arguments out of the whole ExtraArgs set.
226     PassInstrumentation PI =
227         detail::getAnalysisResult<PassInstrumentationAnalysis>(
228             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
229 
230     // RemoveDIs: if requested, convert debug-info to DbgRecord representation
231     // for duration of these passes.
232     bool ShouldConvertDbgInfo = shouldConvertDbgInfo(IR);
233     if (ShouldConvertDbgInfo)
234       doConvertDbgInfoToNew(IR);
235 
236     for (auto &Pass : Passes) {
237       // Check the PassInstrumentation's BeforePass callbacks before running the
238       // pass, skip its execution completely if asked to (callback returns
239       // false).
240       if (!PI.runBeforePass<IRUnitT>(*Pass, IR))
241         continue;
242 
243       PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...);
244 
245       // Update the analysis manager as each pass runs and potentially
246       // invalidates analyses.
247       AM.invalidate(IR, PassPA);
248 
249       // Call onto PassInstrumentation's AfterPass callbacks immediately after
250       // running the pass.
251       PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA);
252 
253       // Finally, intersect the preserved analyses to compute the aggregate
254       // preserved set for this pass manager.
255       PA.intersect(std::move(PassPA));
256     }
257 
258     if (ShouldConvertDbgInfo)
259       doConvertDebugInfoToOld(IR);
260 
261     // Invalidation was handled after each pass in the above loop for the
262     // current unit of IR. Therefore, the remaining analysis results in the
263     // AnalysisManager are preserved. We mark this with a set so that we don't
264     // need to inspect each one individually.
265     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
266 
267     return PA;
268   }
269 
270   template <typename PassT>
271   LLVM_ATTRIBUTE_MINSIZE
272       std::enable_if_t<!std::is_same<PassT, PassManager>::value>
addPass(PassT && Pass)273       addPass(PassT &&Pass) {
274     using PassModelT =
275         detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>;
276     // Do not use make_unique or emplace_back, they cause too many template
277     // instantiations, causing terrible compile times.
278     Passes.push_back(std::unique_ptr<PassConceptT>(
279         new PassModelT(std::forward<PassT>(Pass))));
280   }
281 
282   /// When adding a pass manager pass that has the same type as this pass
283   /// manager, simply move the passes over. This is because we don't have use
284   /// cases rely on executing nested pass managers. Doing this could reduce
285   /// implementation complexity and avoid potential invalidation issues that may
286   /// happen with nested pass managers of the same type.
287   template <typename PassT>
288   LLVM_ATTRIBUTE_MINSIZE
289       std::enable_if_t<std::is_same<PassT, PassManager>::value>
addPass(PassT && Pass)290       addPass(PassT &&Pass) {
291     for (auto &P : Pass.Passes)
292       Passes.push_back(std::move(P));
293   }
294 
295   /// Returns if the pass manager contains any passes.
isEmpty()296   bool isEmpty() const { return Passes.empty(); }
297 
isRequired()298   static bool isRequired() { return true; }
299 
300 protected:
301   using PassConceptT =
302       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
303 
304   std::vector<std::unique_ptr<PassConceptT>> Passes;
305 };
306 
307 extern template class PassManager<Module>;
308 
309 /// Convenience typedef for a pass manager over modules.
310 using ModulePassManager = PassManager<Module>;
311 
312 extern template class PassManager<Function>;
313 
314 /// Convenience typedef for a pass manager over functions.
315 using FunctionPassManager = PassManager<Function>;
316 
317 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
318 /// managers. Goes before AnalysisManager definition to provide its
319 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
320 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
321 /// header.
322 class PassInstrumentationAnalysis
323     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
324   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
325   static AnalysisKey Key;
326 
327   PassInstrumentationCallbacks *Callbacks;
328 
329 public:
330   /// PassInstrumentationCallbacks object is shared, owned by something else,
331   /// not this analysis.
332   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
Callbacks(Callbacks)333       : Callbacks(Callbacks) {}
334 
335   using Result = PassInstrumentation;
336 
337   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
run(IRUnitT &,AnalysisManagerT &,ExtraArgTs &&...)338   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
339     return PassInstrumentation(Callbacks);
340   }
341 };
342 
343 /// A container for analyses that lazily runs them and caches their
344 /// results.
345 ///
346 /// This class can manage analyses for any IR unit where the address of the IR
347 /// unit sufficies as its identity.
348 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
349 public:
350   class Invalidator;
351 
352 private:
353   // Now that we've defined our invalidator, we can define the concept types.
354   using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>;
355   using PassConceptT =
356       detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>;
357 
358   /// List of analysis pass IDs and associated concept pointers.
359   ///
360   /// Requires iterators to be valid across appending new entries and arbitrary
361   /// erases. Provides the analysis ID to enable finding iterators to a given
362   /// entry in maps below, and provides the storage for the actual result
363   /// concept.
364   using AnalysisResultListT =
365       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
366 
367   /// Map type from IRUnitT pointer to our custom list type.
368   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
369 
370   /// Map type from a pair of analysis ID and IRUnitT pointer to an
371   /// iterator into a particular result list (which is where the actual analysis
372   /// result is stored).
373   using AnalysisResultMapT =
374       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
375                typename AnalysisResultListT::iterator>;
376 
377 public:
378   /// API to communicate dependencies between analyses during invalidation.
379   ///
380   /// When an analysis result embeds handles to other analysis results, it
381   /// needs to be invalidated both when its own information isn't preserved and
382   /// when any of its embedded analysis results end up invalidated. We pass an
383   /// \c Invalidator object as an argument to \c invalidate() in order to let
384   /// the analysis results themselves define the dependency graph on the fly.
385   /// This lets us avoid building an explicit representation of the
386   /// dependencies between analysis results.
387   class Invalidator {
388   public:
389     /// Trigger the invalidation of some other analysis pass if not already
390     /// handled and return whether it was in fact invalidated.
391     ///
392     /// This is expected to be called from within a given analysis result's \c
393     /// invalidate method to trigger a depth-first walk of all inter-analysis
394     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
395     /// invalidate method should in turn be provided to this routine.
396     ///
397     /// The first time this is called for a given analysis pass, it will call
398     /// the corresponding result's \c invalidate method.  Subsequent calls will
399     /// use a cache of the results of that initial call.  It is an error to form
400     /// cyclic dependencies between analysis results.
401     ///
402     /// This returns true if the given analysis's result is invalid. Any
403     /// dependecies on it will become invalid as a result.
404     template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)405     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
406       using ResultModelT =
407           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
408                                       Invalidator>;
409 
410       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
411     }
412 
413     /// A type-erased variant of the above invalidate method with the same core
414     /// API other than passing an analysis ID rather than an analysis type
415     /// parameter.
416     ///
417     /// This is sadly less efficient than the above routine, which leverages
418     /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)419     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
420       return invalidateImpl<>(ID, IR, PA);
421     }
422 
423   private:
424     friend class AnalysisManager;
425 
426     template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)427     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
428                         const PreservedAnalyses &PA) {
429       // If we've already visited this pass, return true if it was invalidated
430       // and false otherwise.
431       auto IMapI = IsResultInvalidated.find(ID);
432       if (IMapI != IsResultInvalidated.end())
433         return IMapI->second;
434 
435       // Otherwise look up the result object.
436       auto RI = Results.find({ID, &IR});
437       assert(RI != Results.end() &&
438              "Trying to invalidate a dependent result that isn't in the "
439              "manager's cache is always an error, likely due to a stale result "
440              "handle!");
441 
442       auto &Result = static_cast<ResultT &>(*RI->second->second);
443 
444       // Insert into the map whether the result should be invalidated and return
445       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
446       // as calling invalidate could (recursively) insert things into the map,
447       // making any iterator or reference invalid.
448       bool Inserted;
449       std::tie(IMapI, Inserted) =
450           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
451       (void)Inserted;
452       assert(Inserted && "Should not have already inserted this ID, likely "
453                          "indicates a dependency cycle!");
454       return IMapI->second;
455     }
456 
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)457     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
458                 const AnalysisResultMapT &Results)
459         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
460 
461     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
462     const AnalysisResultMapT &Results;
463   };
464 
465   /// Construct an empty analysis manager.
466   AnalysisManager();
467   AnalysisManager(AnalysisManager &&);
468   AnalysisManager &operator=(AnalysisManager &&);
469 
470   /// Returns true if the analysis manager has an empty results cache.
empty()471   bool empty() const {
472     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
473            "The storage and index of analysis results disagree on how many "
474            "there are!");
475     return AnalysisResults.empty();
476   }
477 
478   /// Clear any cached analysis results for a single unit of IR.
479   ///
480   /// This doesn't invalidate, but instead simply deletes, the relevant results.
481   /// It is useful when the IR is being removed and we want to clear out all the
482   /// memory pinned for it.
483   void clear(IRUnitT &IR, llvm::StringRef Name);
484 
485   /// Clear all analysis results cached by this AnalysisManager.
486   ///
487   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
488   /// deletes them.  This lets you clean up the AnalysisManager when the set of
489   /// IR units itself has potentially changed, and thus we can't even look up a
490   /// a result and invalidate/clear it directly.
clear()491   void clear() {
492     AnalysisResults.clear();
493     AnalysisResultLists.clear();
494   }
495 
496   /// Get the result of an analysis pass for a given IR unit.
497   ///
498   /// Runs the analysis if a cached result is not available.
499   template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)500   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
501     assert(AnalysisPasses.count(PassT::ID()) &&
502            "This analysis pass was not registered prior to being queried");
503     ResultConceptT &ResultConcept =
504         getResultImpl(PassT::ID(), IR, ExtraArgs...);
505 
506     using ResultModelT =
507         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
508                                     Invalidator>;
509 
510     return static_cast<ResultModelT &>(ResultConcept).Result;
511   }
512 
513   /// Get the cached result of an analysis pass for a given IR unit.
514   ///
515   /// This method never runs the analysis.
516   ///
517   /// \returns null if there is no cached result.
518   template <typename PassT>
getCachedResult(IRUnitT & IR)519   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
520     assert(AnalysisPasses.count(PassT::ID()) &&
521            "This analysis pass was not registered prior to being queried");
522 
523     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
524     if (!ResultConcept)
525       return nullptr;
526 
527     using ResultModelT =
528         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
529                                     Invalidator>;
530 
531     return &static_cast<ResultModelT *>(ResultConcept)->Result;
532   }
533 
534   /// Verify that the given Result cannot be invalidated, assert otherwise.
535   template <typename PassT>
verifyNotInvalidated(IRUnitT & IR,typename PassT::Result * Result)536   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
537     PreservedAnalyses PA = PreservedAnalyses::none();
538     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
539     Invalidator Inv(IsResultInvalidated, AnalysisResults);
540     assert(!Result->invalidate(IR, PA, Inv) &&
541            "Cached result cannot be invalidated");
542   }
543 
544   /// Register an analysis pass with the manager.
545   ///
546   /// The parameter is a callable whose result is an analysis pass. This allows
547   /// passing in a lambda to construct the analysis.
548   ///
549   /// The analysis type to register is the type returned by calling the \c
550   /// PassBuilder argument. If that type has already been registered, then the
551   /// argument will not be called and this function will return false.
552   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
553   /// and this function returns true.
554   ///
555   /// (Note: Although the return value of this function indicates whether or not
556   /// an analysis was previously registered, there intentionally isn't a way to
557   /// query this directly.  Instead, you should just register all the analyses
558   /// you might want and let this class run them lazily.  This idiom lets us
559   /// minimize the number of times we have to look up analyses in our
560   /// hashtable.)
561   template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)562   bool registerPass(PassBuilderT &&PassBuilder) {
563     using PassT = decltype(PassBuilder());
564     using PassModelT =
565         detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>;
566 
567     auto &PassPtr = AnalysisPasses[PassT::ID()];
568     if (PassPtr)
569       // Already registered this pass type!
570       return false;
571 
572     // Construct a new model around the instance returned by the builder.
573     PassPtr.reset(new PassModelT(PassBuilder()));
574     return true;
575   }
576 
577   /// Invalidate cached analyses for an IR unit.
578   ///
579   /// Walk through all of the analyses pertaining to this unit of IR and
580   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
581   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
582 
583 private:
584   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)585   PassConceptT &lookUpPass(AnalysisKey *ID) {
586     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
587     assert(PI != AnalysisPasses.end() &&
588            "Analysis passes must be registered prior to being queried!");
589     return *PI->second;
590   }
591 
592   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)593   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
594     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
595     assert(PI != AnalysisPasses.end() &&
596            "Analysis passes must be registered prior to being queried!");
597     return *PI->second;
598   }
599 
600   /// Get an analysis result, running the pass if necessary.
601   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
602                                 ExtraArgTs... ExtraArgs);
603 
604   /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)605   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
606     typename AnalysisResultMapT::const_iterator RI =
607         AnalysisResults.find({ID, &IR});
608     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
609   }
610 
611   /// Map type from analysis pass ID to pass concept pointer.
612   using AnalysisPassMapT =
613       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
614 
615   /// Collection of analysis passes, indexed by ID.
616   AnalysisPassMapT AnalysisPasses;
617 
618   /// Map from IR unit to a list of analysis results.
619   ///
620   /// Provides linear time removal of all analysis results for a IR unit and
621   /// the ultimate storage for a particular cached analysis result.
622   AnalysisResultListMapT AnalysisResultLists;
623 
624   /// Map from an analysis ID and IR unit to a particular cached
625   /// analysis result.
626   AnalysisResultMapT AnalysisResults;
627 };
628 
629 extern template class AnalysisManager<Module>;
630 
631 /// Convenience typedef for the Module analysis manager.
632 using ModuleAnalysisManager = AnalysisManager<Module>;
633 
634 extern template class AnalysisManager<Function>;
635 
636 /// Convenience typedef for the Function analysis manager.
637 using FunctionAnalysisManager = AnalysisManager<Function>;
638 
639 /// An analysis over an "outer" IR unit that provides access to an
640 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
641 /// in the outer unit.
642 ///
643 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
644 /// an analysis over Modules (the "outer" unit) that provides access to a
645 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
646 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
647 /// relationship is valid because each Function is contained in one Module.
648 ///
649 /// If you're (transitively) within a pass manager for an IR unit U that
650 /// contains IR unit V, you should never use an analysis manager over V, except
651 /// via one of these proxies.
652 ///
653 /// Note that the proxy's result is a move-only RAII object.  The validity of
654 /// the analyses in the inner analysis manager is tied to its lifetime.
655 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
656 class InnerAnalysisManagerProxy
657     : public AnalysisInfoMixin<
658           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
659 public:
660   class Result {
661   public:
Result(AnalysisManagerT & InnerAM)662     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
663 
Result(Result && Arg)664     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
665       // We have to null out the analysis manager in the moved-from state
666       // because we are taking ownership of the responsibilty to clear the
667       // analysis state.
668       Arg.InnerAM = nullptr;
669     }
670 
~Result()671     ~Result() {
672       // InnerAM is cleared in a moved from state where there is nothing to do.
673       if (!InnerAM)
674         return;
675 
676       // Clear out the analysis manager if we're being destroyed -- it means we
677       // didn't even see an invalidate call when we got invalidated.
678       InnerAM->clear();
679     }
680 
681     Result &operator=(Result &&RHS) {
682       InnerAM = RHS.InnerAM;
683       // We have to null out the analysis manager in the moved-from state
684       // because we are taking ownership of the responsibilty to clear the
685       // analysis state.
686       RHS.InnerAM = nullptr;
687       return *this;
688     }
689 
690     /// Accessor for the analysis manager.
getManager()691     AnalysisManagerT &getManager() { return *InnerAM; }
692 
693     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
694     ///
695     /// If the proxy analysis itself is not preserved, we assume that the set of
696     /// inner IR objects contained in IRUnit may have changed.  In this case,
697     /// we have to call \c clear() on the inner analysis manager, as it may now
698     /// have stale pointers to its inner IR objects.
699     ///
700     /// Regardless of whether the proxy analysis is marked as preserved, all of
701     /// the analyses in the inner analysis manager are potentially invalidated
702     /// based on the set of preserved analyses.
703     bool invalidate(
704         IRUnitT &IR, const PreservedAnalyses &PA,
705         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
706 
707   private:
708     AnalysisManagerT *InnerAM;
709   };
710 
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)711   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
712       : InnerAM(&InnerAM) {}
713 
714   /// Run the analysis pass and create our proxy result object.
715   ///
716   /// This doesn't do any interesting work; it is primarily used to insert our
717   /// proxy result object into the outer analysis cache so that we can proxy
718   /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)719   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
720              ExtraArgTs...) {
721     return Result(*InnerAM);
722   }
723 
724 private:
725   friend AnalysisInfoMixin<
726       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
727 
728   static AnalysisKey Key;
729 
730   AnalysisManagerT *InnerAM;
731 };
732 
733 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
734 AnalysisKey
735     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
736 
737 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
738 using FunctionAnalysisManagerModuleProxy =
739     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
740 
741 /// Specialization of the invalidate method for the \c
742 /// FunctionAnalysisManagerModuleProxy's result.
743 template <>
744 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
745     Module &M, const PreservedAnalyses &PA,
746     ModuleAnalysisManager::Invalidator &Inv);
747 
748 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
749 // template.
750 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
751                                                 Module>;
752 
753 /// An analysis over an "inner" IR unit that provides access to an
754 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
755 /// in the outer unit.
756 ///
757 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
758 /// analysis over Functions (the "inner" unit) which provides access to a Module
759 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
760 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
761 /// is valid because each Function is contained in one Module.
762 ///
763 /// This proxy only exposes the const interface of the outer analysis manager,
764 /// to indicate that you cannot cause an outer analysis to run from within an
765 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
766 /// due to keeping potential future concurrency in mind. To give an example,
767 /// running a module analysis before any function passes may give a different
768 /// result than running it in a function pass. Both may be valid, but it would
769 /// produce non-deterministic results. GlobalsAA is a good analysis example,
770 /// because the cached information has the mod/ref info for all memory for each
771 /// function at the time the analysis was computed. The information is still
772 /// valid after a function transformation, but it may be *different* if
773 /// recomputed after that transform. GlobalsAA is never invalidated.
774 
775 ///
776 /// This proxy doesn't manage invalidation in any way -- that is handled by the
777 /// recursive return path of each layer of the pass manager.  A consequence of
778 /// this is the outer analyses may be stale.  We invalidate the outer analyses
779 /// only when we're done running passes over the inner IR units.
780 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
781 class OuterAnalysisManagerProxy
782     : public AnalysisInfoMixin<
783           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
784 public:
785   /// Result proxy object for \c OuterAnalysisManagerProxy.
786   class Result {
787   public:
Result(const AnalysisManagerT & OuterAM)788     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
789 
790     /// Get a cached analysis. If the analysis can be invalidated, this will
791     /// assert.
792     template <typename PassT, typename IRUnitTParam>
getCachedResult(IRUnitTParam & IR)793     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
794       typename PassT::Result *Res =
795           OuterAM->template getCachedResult<PassT>(IR);
796       if (Res)
797         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
798       return Res;
799     }
800 
801     /// Method provided for unit testing, not intended for general use.
802     template <typename PassT, typename IRUnitTParam>
cachedResultExists(IRUnitTParam & IR)803     bool cachedResultExists(IRUnitTParam &IR) const {
804       typename PassT::Result *Res =
805           OuterAM->template getCachedResult<PassT>(IR);
806       return Res != nullptr;
807     }
808 
809     /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)810     bool invalidate(
811         IRUnitT &IRUnit, const PreservedAnalyses &PA,
812         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
813       // Loop over the set of registered outer invalidation mappings and if any
814       // of them map to an analysis that is now invalid, clear it out.
815       SmallVector<AnalysisKey *, 4> DeadKeys;
816       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
817         AnalysisKey *OuterID = KeyValuePair.first;
818         auto &InnerIDs = KeyValuePair.second;
819         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
820           return Inv.invalidate(InnerID, IRUnit, PA);
821         });
822         if (InnerIDs.empty())
823           DeadKeys.push_back(OuterID);
824       }
825 
826       for (auto *OuterID : DeadKeys)
827         OuterAnalysisInvalidationMap.erase(OuterID);
828 
829       // The proxy itself remains valid regardless of anything else.
830       return false;
831     }
832 
833     /// Register a deferred invalidation event for when the outer analysis
834     /// manager processes its invalidations.
835     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()836     void registerOuterAnalysisInvalidation() {
837       AnalysisKey *OuterID = OuterAnalysisT::ID();
838       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
839 
840       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
841       // Note, this is a linear scan. If we end up with large numbers of
842       // analyses that all trigger invalidation on the same outer analysis,
843       // this entire system should be changed to some other deterministic
844       // data structure such as a `SetVector` of a pair of pointers.
845       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
846         InvalidatedIDList.push_back(InvalidatedID);
847     }
848 
849     /// Access the map from outer analyses to deferred invalidation requiring
850     /// analyses.
851     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()852     getOuterInvalidations() const {
853       return OuterAnalysisInvalidationMap;
854     }
855 
856   private:
857     const AnalysisManagerT *OuterAM;
858 
859     /// A map from an outer analysis ID to the set of this IR-unit's analyses
860     /// which need to be invalidated.
861     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
862         OuterAnalysisInvalidationMap;
863   };
864 
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)865   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
866       : OuterAM(&OuterAM) {}
867 
868   /// Run the analysis pass and create our proxy result object.
869   /// Nothing to see here, it just forwards the \c OuterAM reference into the
870   /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)871   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
872              ExtraArgTs...) {
873     return Result(*OuterAM);
874   }
875 
876 private:
877   friend AnalysisInfoMixin<
878       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
879 
880   static AnalysisKey Key;
881 
882   const AnalysisManagerT *OuterAM;
883 };
884 
885 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
886 AnalysisKey
887     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
888 
889 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
890                                                 Function>;
891 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
892 using ModuleAnalysisManagerFunctionProxy =
893     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
894 
895 /// Trivial adaptor that maps from a module to its functions.
896 ///
897 /// Designed to allow composition of a FunctionPass(Manager) and
898 /// a ModulePassManager, by running the FunctionPass(Manager) over every
899 /// function in the module.
900 ///
901 /// Function passes run within this adaptor can rely on having exclusive access
902 /// to the function they are run over. They should not read or modify any other
903 /// functions! Other threads or systems may be manipulating other functions in
904 /// the module, and so their state should never be relied on.
905 /// FIXME: Make the above true for all of LLVM's actual passes, some still
906 /// violate this principle.
907 ///
908 /// Function passes can also read the module containing the function, but they
909 /// should not modify that module outside of the use lists of various globals.
910 /// For example, a function pass is not permitted to add functions to the
911 /// module.
912 /// FIXME: Make the above true for all of LLVM's actual passes, some still
913 /// violate this principle.
914 ///
915 /// Note that although function passes can access module analyses, module
916 /// analyses are not invalidated while the function passes are running, so they
917 /// may be stale.  Function analyses will not be stale.
918 class ModuleToFunctionPassAdaptor
919     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
920 public:
921   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
922 
ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,bool EagerlyInvalidate)923   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
924                                        bool EagerlyInvalidate)
925       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
926 
927   /// Runs the function pass across every function in the module.
928   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
929   void printPipeline(raw_ostream &OS,
930                      function_ref<StringRef(StringRef)> MapClassName2PassName);
931 
isRequired()932   static bool isRequired() { return true; }
933 
934 private:
935   std::unique_ptr<PassConceptT> Pass;
936   bool EagerlyInvalidate;
937 };
938 
939 /// A function to deduce a function pass type and wrap it in the
940 /// templated adaptor.
941 template <typename FunctionPassT>
942 ModuleToFunctionPassAdaptor
943 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
944                                   bool EagerlyInvalidate = false) {
945   using PassModelT =
946       detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
947   // Do not use make_unique, it causes too many template instantiations,
948   // causing terrible compile times.
949   return ModuleToFunctionPassAdaptor(
950       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
951           new PassModelT(std::forward<FunctionPassT>(Pass))),
952       EagerlyInvalidate);
953 }
954 
955 /// A utility pass template to force an analysis result to be available.
956 ///
957 /// If there are extra arguments at the pass's run level there may also be
958 /// extra arguments to the analysis manager's \c getResult routine. We can't
959 /// guess how to effectively map the arguments from one to the other, and so
960 /// this specialization just ignores them.
961 ///
962 /// Specific patterns of run-method extra arguments and analysis manager extra
963 /// arguments will have to be defined as appropriate specializations.
964 template <typename AnalysisT, typename IRUnitT,
965           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
966           typename... ExtraArgTs>
967 struct RequireAnalysisPass
968     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
969                                         ExtraArgTs...>> {
970   /// Run this pass over some unit of IR.
971   ///
972   /// This pass can be run over any unit of IR and use any analysis manager
973   /// provided they satisfy the basic API requirements. When this pass is
974   /// created, these methods can be instantiated to satisfy whatever the
975   /// context requires.
runRequireAnalysisPass976   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
977                         ExtraArgTs &&... Args) {
978     (void)AM.template getResult<AnalysisT>(Arg,
979                                            std::forward<ExtraArgTs>(Args)...);
980 
981     return PreservedAnalyses::all();
982   }
printPipelineRequireAnalysisPass983   void printPipeline(raw_ostream &OS,
984                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
985     auto ClassName = AnalysisT::name();
986     auto PassName = MapClassName2PassName(ClassName);
987     OS << "require<" << PassName << '>';
988   }
isRequiredRequireAnalysisPass989   static bool isRequired() { return true; }
990 };
991 
992 /// A no-op pass template which simply forces a specific analysis result
993 /// to be invalidated.
994 template <typename AnalysisT>
995 struct InvalidateAnalysisPass
996     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
997   /// Run this pass over some unit of IR.
998   ///
999   /// This pass can be run over any unit of IR and use any analysis manager,
1000   /// provided they satisfy the basic API requirements. When this pass is
1001   /// created, these methods can be instantiated to satisfy whatever the
1002   /// context requires.
1003   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass1004   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1005     auto PA = PreservedAnalyses::all();
1006     PA.abandon<AnalysisT>();
1007     return PA;
1008   }
printPipelineInvalidateAnalysisPass1009   void printPipeline(raw_ostream &OS,
1010                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1011     auto ClassName = AnalysisT::name();
1012     auto PassName = MapClassName2PassName(ClassName);
1013     OS << "invalidate<" << PassName << '>';
1014   }
1015 };
1016 
1017 /// A utility pass that does nothing, but preserves no analyses.
1018 ///
1019 /// Because this preserves no analyses, any analysis passes queried after this
1020 /// pass runs will recompute fresh results.
1021 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1022   /// Run this pass over some unit of IR.
1023   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass1024   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1025     return PreservedAnalyses::none();
1026   }
1027 };
1028 
1029 /// A utility pass template that simply runs another pass multiple times.
1030 ///
1031 /// This can be useful when debugging or testing passes. It also serves as an
1032 /// example of how to extend the pass manager in ways beyond composition.
1033 template <typename PassT>
1034 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1035 public:
RepeatedPass(int Count,PassT && P)1036   RepeatedPass(int Count, PassT &&P)
1037       : Count(Count), P(std::forward<PassT>(P)) {}
1038 
1039   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & IR,AnalysisManagerT & AM,Ts &&...Args)1040   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1041 
1042     // Request PassInstrumentation from analysis manager, will use it to run
1043     // instrumenting callbacks for the passes later.
1044     // Here we use std::tuple wrapper over getResult which helps to extract
1045     // AnalysisManager's arguments out of the whole Args set.
1046     PassInstrumentation PI =
1047         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1048             AM, IR, std::tuple<Ts...>(Args...));
1049 
1050     auto PA = PreservedAnalyses::all();
1051     for (int i = 0; i < Count; ++i) {
1052       // Check the PassInstrumentation's BeforePass callbacks before running the
1053       // pass, skip its execution completely if asked to (callback returns
1054       // false).
1055       if (!PI.runBeforePass<IRUnitT>(P, IR))
1056         continue;
1057       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
1058       PA.intersect(IterPA);
1059       PI.runAfterPass(P, IR, IterPA);
1060     }
1061     return PA;
1062   }
1063 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)1064   void printPipeline(raw_ostream &OS,
1065                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1066     OS << "repeat<" << Count << ">(";
1067     P.printPipeline(OS, MapClassName2PassName);
1068     OS << ')';
1069   }
1070 
1071 private:
1072   int Count;
1073   PassT P;
1074 };
1075 
1076 template <typename PassT>
createRepeatedPass(int Count,PassT && P)1077 RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
1078   return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
1079 }
1080 
1081 } // end namespace llvm
1082 
1083 #endif // LLVM_IR_PASSMANAGER_H
1084