1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/TrailingObjects.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <utility> 38 39 namespace llvm { 40 41 class DILabel; 42 class Instruction; 43 class MDNode; 44 class AAResults; 45 template <typename T> class ArrayRef; 46 class DIExpression; 47 class DILocalVariable; 48 class MachineBasicBlock; 49 class MachineFunction; 50 class MachineRegisterInfo; 51 class ModuleSlotTracker; 52 class raw_ostream; 53 template <typename T> class SmallVectorImpl; 54 class SmallBitVector; 55 class StringRef; 56 class TargetInstrInfo; 57 class TargetRegisterClass; 58 class TargetRegisterInfo; 59 60 //===----------------------------------------------------------------------===// 61 /// Representation of each machine instruction. 62 /// 63 /// This class isn't a POD type, but it must have a trivial destructor. When a 64 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 65 /// without having their destructor called. 66 /// 67 class MachineInstr 68 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 69 ilist_sentinel_tracking<true>> { 70 public: 71 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 72 73 /// Flags to specify different kinds of comments to output in 74 /// assembly code. These flags carry semantic information not 75 /// otherwise easily derivable from the IR text. 76 /// 77 enum CommentFlag { 78 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 79 NoSchedComment = 0x2, 80 TAsmComments = 0x4 // Target Asm comments should start from this value. 81 }; 82 83 enum MIFlag { 84 NoFlags = 0, 85 FrameSetup = 1 << 0, // Instruction is used as a part of 86 // function frame setup code. 87 FrameDestroy = 1 << 1, // Instruction is used as a part of 88 // function frame destruction code. 89 BundledPred = 1 << 2, // Instruction has bundled predecessors. 90 BundledSucc = 1 << 3, // Instruction has bundled successors. 91 FmNoNans = 1 << 4, // Instruction does not support Fast 92 // math nan values. 93 FmNoInfs = 1 << 5, // Instruction does not support Fast 94 // math infinity values. 95 FmNsz = 1 << 6, // Instruction is not required to retain 96 // signed zero values. 97 FmArcp = 1 << 7, // Instruction supports Fast math 98 // reciprocal approximations. 99 FmContract = 1 << 8, // Instruction supports Fast math 100 // contraction operations like fma. 101 FmAfn = 1 << 9, // Instruction may map to Fast math 102 // intrinsic approximation. 103 FmReassoc = 1 << 10, // Instruction supports Fast math 104 // reassociation of operand order. 105 NoUWrap = 1 << 11, // Instruction supports binary operator 106 // no unsigned wrap. 107 NoSWrap = 1 << 12, // Instruction supports binary operator 108 // no signed wrap. 109 IsExact = 1 << 13, // Instruction supports division is 110 // known to be exact. 111 NoFPExcept = 1 << 14, // Instruction does not raise 112 // floatint-point exceptions. 113 NoMerge = 1 << 15, // Passes that drop source location info 114 // (e.g. branch folding) should skip 115 // this instruction. 116 Unpredictable = 1 << 16, // Instruction with unpredictable condition. 117 NoConvergent = 1 << 17, // Call does not require convergence guarantees. 118 }; 119 120 private: 121 const MCInstrDesc *MCID; // Instruction descriptor. 122 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 123 124 // Operands are allocated by an ArrayRecycler. 125 MachineOperand *Operands = nullptr; // Pointer to the first operand. 126 127 #define LLVM_MI_NUMOPERANDS_BITS 24 128 #define LLVM_MI_FLAGS_BITS 24 129 #define LLVM_MI_ASMPRINTERFLAGS_BITS 8 130 131 /// Number of operands on instruction. 132 uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS; 133 134 // OperandCapacity has uint8_t size, so it should be next to NumOperands 135 // to properly pack. 136 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 137 OperandCapacity CapOperands; // Capacity of the Operands array. 138 139 /// Various bits of additional information about the machine instruction. 140 uint32_t Flags : LLVM_MI_FLAGS_BITS; 141 142 /// Various bits of information used by the AsmPrinter to emit helpful 143 /// comments. This is *not* semantic information. Do not use this for 144 /// anything other than to convey comment information to AsmPrinter. 145 uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS; 146 147 /// Internal implementation detail class that provides out-of-line storage for 148 /// extra info used by the machine instruction when this info cannot be stored 149 /// in-line within the instruction itself. 150 /// 151 /// This has to be defined eagerly due to the implementation constraints of 152 /// `PointerSumType` where it is used. 153 class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, 154 MCSymbol *, MDNode *, uint32_t> { 155 public: 156 static ExtraInfo *create(BumpPtrAllocator &Allocator, 157 ArrayRef<MachineMemOperand *> MMOs, 158 MCSymbol *PreInstrSymbol = nullptr, 159 MCSymbol *PostInstrSymbol = nullptr, 160 MDNode *HeapAllocMarker = nullptr, 161 MDNode *PCSections = nullptr, 162 uint32_t CFIType = 0) { 163 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 164 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 165 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 166 bool HasCFIType = CFIType != 0; 167 bool HasPCSections = PCSections != nullptr; 168 auto *Result = new (Allocator.Allocate( 169 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( 170 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 171 HasHeapAllocMarker + HasPCSections, HasCFIType), 172 alignof(ExtraInfo))) 173 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 174 HasHeapAllocMarker, HasPCSections, HasCFIType); 175 176 // Copy the actual data into the trailing objects. 177 std::copy(MMOs.begin(), MMOs.end(), 178 Result->getTrailingObjects<MachineMemOperand *>()); 179 180 if (HasPreInstrSymbol) 181 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 182 if (HasPostInstrSymbol) 183 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 184 PostInstrSymbol; 185 if (HasHeapAllocMarker) 186 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; 187 if (HasPCSections) 188 Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] = 189 PCSections; 190 if (HasCFIType) 191 Result->getTrailingObjects<uint32_t>()[0] = CFIType; 192 193 return Result; 194 } 195 getMMOs()196 ArrayRef<MachineMemOperand *> getMMOs() const { 197 return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 198 } 199 getPreInstrSymbol()200 MCSymbol *getPreInstrSymbol() const { 201 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 202 } 203 getPostInstrSymbol()204 MCSymbol *getPostInstrSymbol() const { 205 return HasPostInstrSymbol 206 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 207 : nullptr; 208 } 209 getHeapAllocMarker()210 MDNode *getHeapAllocMarker() const { 211 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 212 } 213 getPCSections()214 MDNode *getPCSections() const { 215 return HasPCSections 216 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] 217 : nullptr; 218 } 219 getCFIType()220 uint32_t getCFIType() const { 221 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; 222 } 223 224 private: 225 friend TrailingObjects; 226 227 // Description of the extra info, used to interpret the actual optional 228 // data appended. 229 // 230 // Note that this is not terribly space optimized. This leaves a great deal 231 // of flexibility to fit more in here later. 232 const int NumMMOs; 233 const bool HasPreInstrSymbol; 234 const bool HasPostInstrSymbol; 235 const bool HasHeapAllocMarker; 236 const bool HasPCSections; 237 const bool HasCFIType; 238 239 // Implement the `TrailingObjects` internal API. numTrailingObjects(OverloadToken<MachineMemOperand * >)240 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 241 return NumMMOs; 242 } numTrailingObjects(OverloadToken<MCSymbol * >)243 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 244 return HasPreInstrSymbol + HasPostInstrSymbol; 245 } numTrailingObjects(OverloadToken<MDNode * >)246 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 247 return HasHeapAllocMarker + HasPCSections; 248 } numTrailingObjects(OverloadToken<uint32_t>)249 size_t numTrailingObjects(OverloadToken<uint32_t>) const { 250 return HasCFIType; 251 } 252 253 // Just a boring constructor to allow us to initialize the sizes. Always use 254 // the `create` routine above. ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker,bool HasPCSections,bool HasCFIType)255 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 256 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType) 257 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 258 HasPostInstrSymbol(HasPostInstrSymbol), 259 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), 260 HasCFIType(HasCFIType) {} 261 }; 262 263 /// Enumeration of the kinds of inline extra info available. It is important 264 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 265 /// it accessible as an `ArrayRef`. 266 enum ExtraInfoInlineKinds { 267 EIIK_MMO = 0, 268 EIIK_PreInstrSymbol, 269 EIIK_PostInstrSymbol, 270 EIIK_OutOfLine 271 }; 272 273 // We store extra information about the instruction here. The common case is 274 // expected to be nothing or a single pointer (typically a MMO or a symbol). 275 // We work to optimize this common case by storing it inline here rather than 276 // requiring a separate allocation, but we fall back to an allocation when 277 // multiple pointers are needed. 278 PointerSumType<ExtraInfoInlineKinds, 279 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 280 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 281 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 282 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 283 Info; 284 285 DebugLoc DbgLoc; // Source line information. 286 287 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 288 /// defined by this instruction. 289 unsigned DebugInstrNum; 290 291 // Intrusive list support 292 friend struct ilist_traits<MachineInstr>; 293 friend struct ilist_callback_traits<MachineBasicBlock>; 294 void setParent(MachineBasicBlock *P) { Parent = P; } 295 296 /// This constructor creates a copy of the given 297 /// MachineInstr in the given MachineFunction. 298 MachineInstr(MachineFunction &, const MachineInstr &); 299 300 /// This constructor create a MachineInstr and add the implicit operands. 301 /// It reserves space for number of operands specified by 302 /// MCInstrDesc. An explicit DebugLoc is supplied. 303 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, 304 bool NoImp = false); 305 306 // MachineInstrs are pool-allocated and owned by MachineFunction. 307 friend class MachineFunction; 308 309 void 310 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 311 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 312 313 static bool opIsRegDef(const MachineOperand &Op) { 314 return Op.isReg() && Op.isDef(); 315 } 316 317 static bool opIsRegUse(const MachineOperand &Op) { 318 return Op.isReg() && Op.isUse(); 319 } 320 321 public: 322 MachineInstr(const MachineInstr &) = delete; 323 MachineInstr &operator=(const MachineInstr &) = delete; 324 // Use MachineFunction::DeleteMachineInstr() instead. 325 ~MachineInstr() = delete; 326 327 const MachineBasicBlock* getParent() const { return Parent; } 328 MachineBasicBlock* getParent() { return Parent; } 329 330 /// Move the instruction before \p MovePos. 331 void moveBefore(MachineInstr *MovePos); 332 333 /// Return the function that contains the basic block that this instruction 334 /// belongs to. 335 /// 336 /// Note: this is undefined behaviour if the instruction does not have a 337 /// parent. 338 const MachineFunction *getMF() const; 339 MachineFunction *getMF() { 340 return const_cast<MachineFunction *>( 341 static_cast<const MachineInstr *>(this)->getMF()); 342 } 343 344 /// Return the asm printer flags bitvector. 345 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 346 347 /// Clear the AsmPrinter bitvector. 348 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 349 350 /// Return whether an AsmPrinter flag is set. 351 bool getAsmPrinterFlag(CommentFlag Flag) const { 352 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 353 "Flag is out of range for the AsmPrinterFlags field"); 354 return AsmPrinterFlags & Flag; 355 } 356 357 /// Set a flag for the AsmPrinter. 358 void setAsmPrinterFlag(uint8_t Flag) { 359 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 360 "Flag is out of range for the AsmPrinterFlags field"); 361 AsmPrinterFlags |= Flag; 362 } 363 364 /// Clear specific AsmPrinter flags. 365 void clearAsmPrinterFlag(CommentFlag Flag) { 366 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 367 "Flag is out of range for the AsmPrinterFlags field"); 368 AsmPrinterFlags &= ~Flag; 369 } 370 371 /// Return the MI flags bitvector. 372 uint32_t getFlags() const { 373 return Flags; 374 } 375 376 /// Return whether an MI flag is set. 377 bool getFlag(MIFlag Flag) const { 378 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 379 "Flag is out of range for the Flags field"); 380 return Flags & Flag; 381 } 382 383 /// Set a MI flag. 384 void setFlag(MIFlag Flag) { 385 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 386 "Flag is out of range for the Flags field"); 387 Flags |= (uint32_t)Flag; 388 } 389 390 void setFlags(unsigned flags) { 391 assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && 392 "flags to be set are out of range for the Flags field"); 393 // Filter out the automatically maintained flags. 394 unsigned Mask = BundledPred | BundledSucc; 395 Flags = (Flags & Mask) | (flags & ~Mask); 396 } 397 398 /// clearFlag - Clear a MI flag. 399 void clearFlag(MIFlag Flag) { 400 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 401 "Flag to clear is out of range for the Flags field"); 402 Flags &= ~((uint32_t)Flag); 403 } 404 405 /// Return true if MI is in a bundle (but not the first MI in a bundle). 406 /// 407 /// A bundle looks like this before it's finalized: 408 /// ---------------- 409 /// | MI | 410 /// ---------------- 411 /// | 412 /// ---------------- 413 /// | MI * | 414 /// ---------------- 415 /// | 416 /// ---------------- 417 /// | MI * | 418 /// ---------------- 419 /// In this case, the first MI starts a bundle but is not inside a bundle, the 420 /// next 2 MIs are considered "inside" the bundle. 421 /// 422 /// After a bundle is finalized, it looks like this: 423 /// ---------------- 424 /// | Bundle | 425 /// ---------------- 426 /// | 427 /// ---------------- 428 /// | MI * | 429 /// ---------------- 430 /// | 431 /// ---------------- 432 /// | MI * | 433 /// ---------------- 434 /// | 435 /// ---------------- 436 /// | MI * | 437 /// ---------------- 438 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 439 /// a bundle, but the next three MIs are. 440 bool isInsideBundle() const { 441 return getFlag(BundledPred); 442 } 443 444 /// Return true if this instruction part of a bundle. This is true 445 /// if either itself or its following instruction is marked "InsideBundle". 446 bool isBundled() const { 447 return isBundledWithPred() || isBundledWithSucc(); 448 } 449 450 /// Return true if this instruction is part of a bundle, and it is not the 451 /// first instruction in the bundle. 452 bool isBundledWithPred() const { return getFlag(BundledPred); } 453 454 /// Return true if this instruction is part of a bundle, and it is not the 455 /// last instruction in the bundle. 456 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 457 458 /// Bundle this instruction with its predecessor. This can be an unbundled 459 /// instruction, or it can be the first instruction in a bundle. 460 void bundleWithPred(); 461 462 /// Bundle this instruction with its successor. This can be an unbundled 463 /// instruction, or it can be the last instruction in a bundle. 464 void bundleWithSucc(); 465 466 /// Break bundle above this instruction. 467 void unbundleFromPred(); 468 469 /// Break bundle below this instruction. 470 void unbundleFromSucc(); 471 472 /// Returns the debug location id of this MachineInstr. 473 const DebugLoc &getDebugLoc() const { return DbgLoc; } 474 475 /// Return the operand containing the offset to be used if this DBG_VALUE 476 /// instruction is indirect; will be an invalid register if this value is 477 /// not indirect, and an immediate with value 0 otherwise. 478 const MachineOperand &getDebugOffset() const { 479 assert(isNonListDebugValue() && "not a DBG_VALUE"); 480 return getOperand(1); 481 } 482 MachineOperand &getDebugOffset() { 483 assert(isNonListDebugValue() && "not a DBG_VALUE"); 484 return getOperand(1); 485 } 486 487 /// Return the operand for the debug variable referenced by 488 /// this DBG_VALUE instruction. 489 const MachineOperand &getDebugVariableOp() const; 490 MachineOperand &getDebugVariableOp(); 491 492 /// Return the debug variable referenced by 493 /// this DBG_VALUE instruction. 494 const DILocalVariable *getDebugVariable() const; 495 496 /// Return the operand for the complex address expression referenced by 497 /// this DBG_VALUE instruction. 498 const MachineOperand &getDebugExpressionOp() const; 499 MachineOperand &getDebugExpressionOp(); 500 501 /// Return the complex address expression referenced by 502 /// this DBG_VALUE instruction. 503 const DIExpression *getDebugExpression() const; 504 505 /// Return the debug label referenced by 506 /// this DBG_LABEL instruction. 507 const DILabel *getDebugLabel() const; 508 509 /// Fetch the instruction number of this MachineInstr. If it does not have 510 /// one already, a new and unique number will be assigned. 511 unsigned getDebugInstrNum(); 512 513 /// Fetch instruction number of this MachineInstr -- but before it's inserted 514 /// into \p MF. Needed for transformations that create an instruction but 515 /// don't immediately insert them. 516 unsigned getDebugInstrNum(MachineFunction &MF); 517 518 /// Examine the instruction number of this MachineInstr. May be zero if 519 /// it hasn't been assigned a number yet. 520 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 521 522 /// Set instruction number of this MachineInstr. Avoid using unless you're 523 /// deserializing this information. 524 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 525 526 /// Drop any variable location debugging information associated with this 527 /// instruction. Use when an instruction is modified in such a way that it no 528 /// longer defines the value it used to. Variable locations using that value 529 /// will be dropped. 530 void dropDebugNumber() { DebugInstrNum = 0; } 531 532 /// Emit an error referring to the source location of this instruction. 533 /// This should only be used for inline assembly that is somehow 534 /// impossible to compile. Other errors should have been handled much 535 /// earlier. 536 /// 537 /// If this method returns, the caller should try to recover from the error. 538 void emitError(StringRef Msg) const; 539 540 /// Returns the target instruction descriptor of this MachineInstr. 541 const MCInstrDesc &getDesc() const { return *MCID; } 542 543 /// Returns the opcode of this MachineInstr. 544 unsigned getOpcode() const { return MCID->Opcode; } 545 546 /// Retuns the total number of operands. 547 unsigned getNumOperands() const { return NumOperands; } 548 549 /// Returns the total number of operands which are debug locations. 550 unsigned getNumDebugOperands() const { 551 return std::distance(debug_operands().begin(), debug_operands().end()); 552 } 553 554 const MachineOperand& getOperand(unsigned i) const { 555 assert(i < getNumOperands() && "getOperand() out of range!"); 556 return Operands[i]; 557 } 558 MachineOperand& getOperand(unsigned i) { 559 assert(i < getNumOperands() && "getOperand() out of range!"); 560 return Operands[i]; 561 } 562 563 MachineOperand &getDebugOperand(unsigned Index) { 564 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 565 return *(debug_operands().begin() + Index); 566 } 567 const MachineOperand &getDebugOperand(unsigned Index) const { 568 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 569 return *(debug_operands().begin() + Index); 570 } 571 572 /// Returns whether this debug value has at least one debug operand with the 573 /// register \p Reg. 574 bool hasDebugOperandForReg(Register Reg) const { 575 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 576 return Op.isReg() && Op.getReg() == Reg; 577 }); 578 } 579 580 /// Returns a range of all of the operands that correspond to a debug use of 581 /// \p Reg. 582 template <typename Operand, typename Instruction> 583 static iterator_range< 584 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 585 getDebugOperandsForReg(Instruction *MI, Register Reg) { 586 std::function<bool(Operand & Op)> OpUsesReg( 587 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 588 return make_filter_range(MI->debug_operands(), OpUsesReg); 589 } 590 iterator_range<filter_iterator<const MachineOperand *, 591 std::function<bool(const MachineOperand &Op)>>> 592 getDebugOperandsForReg(Register Reg) const { 593 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 594 const MachineInstr>(this, Reg); 595 } 596 iterator_range<filter_iterator<MachineOperand *, 597 std::function<bool(MachineOperand &Op)>>> 598 getDebugOperandsForReg(Register Reg) { 599 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 600 this, Reg); 601 } 602 603 bool isDebugOperand(const MachineOperand *Op) const { 604 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 605 } 606 607 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 608 assert(isDebugOperand(Op) && "Expected a debug operand."); 609 return std::distance(adl_begin(debug_operands()), Op); 610 } 611 612 /// Returns the total number of definitions. 613 unsigned getNumDefs() const { 614 return getNumExplicitDefs() + MCID->implicit_defs().size(); 615 } 616 617 /// Returns true if the instruction has implicit definition. 618 bool hasImplicitDef() const { 619 for (const MachineOperand &MO : implicit_operands()) 620 if (MO.isDef() && MO.isImplicit()) 621 return true; 622 return false; 623 } 624 625 /// Returns the implicit operands number. 626 unsigned getNumImplicitOperands() const { 627 return getNumOperands() - getNumExplicitOperands(); 628 } 629 630 /// Return true if operand \p OpIdx is a subregister index. 631 bool isOperandSubregIdx(unsigned OpIdx) const { 632 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); 633 if (isExtractSubreg() && OpIdx == 2) 634 return true; 635 if (isInsertSubreg() && OpIdx == 3) 636 return true; 637 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 638 return true; 639 if (isSubregToReg() && OpIdx == 3) 640 return true; 641 return false; 642 } 643 644 /// Returns the number of non-implicit operands. 645 unsigned getNumExplicitOperands() const; 646 647 /// Returns the number of non-implicit definitions. 648 unsigned getNumExplicitDefs() const; 649 650 /// iterator/begin/end - Iterate over all operands of a machine instruction. 651 using mop_iterator = MachineOperand *; 652 using const_mop_iterator = const MachineOperand *; 653 654 mop_iterator operands_begin() { return Operands; } 655 mop_iterator operands_end() { return Operands + NumOperands; } 656 657 const_mop_iterator operands_begin() const { return Operands; } 658 const_mop_iterator operands_end() const { return Operands + NumOperands; } 659 660 iterator_range<mop_iterator> operands() { 661 return make_range(operands_begin(), operands_end()); 662 } 663 iterator_range<const_mop_iterator> operands() const { 664 return make_range(operands_begin(), operands_end()); 665 } 666 iterator_range<mop_iterator> explicit_operands() { 667 return make_range(operands_begin(), 668 operands_begin() + getNumExplicitOperands()); 669 } 670 iterator_range<const_mop_iterator> explicit_operands() const { 671 return make_range(operands_begin(), 672 operands_begin() + getNumExplicitOperands()); 673 } 674 iterator_range<mop_iterator> implicit_operands() { 675 return make_range(explicit_operands().end(), operands_end()); 676 } 677 iterator_range<const_mop_iterator> implicit_operands() const { 678 return make_range(explicit_operands().end(), operands_end()); 679 } 680 /// Returns a range over all operands that are used to determine the variable 681 /// location for this DBG_VALUE instruction. 682 iterator_range<mop_iterator> debug_operands() { 683 assert((isDebugValueLike()) && "Must be a debug value instruction."); 684 return isNonListDebugValue() 685 ? make_range(operands_begin(), operands_begin() + 1) 686 : make_range(operands_begin() + 2, operands_end()); 687 } 688 /// \copydoc debug_operands() 689 iterator_range<const_mop_iterator> debug_operands() const { 690 assert((isDebugValueLike()) && "Must be a debug value instruction."); 691 return isNonListDebugValue() 692 ? make_range(operands_begin(), operands_begin() + 1) 693 : make_range(operands_begin() + 2, operands_end()); 694 } 695 /// Returns a range over all explicit operands that are register definitions. 696 /// Implicit definition are not included! 697 iterator_range<mop_iterator> defs() { 698 return make_range(operands_begin(), 699 operands_begin() + getNumExplicitDefs()); 700 } 701 /// \copydoc defs() 702 iterator_range<const_mop_iterator> defs() const { 703 return make_range(operands_begin(), 704 operands_begin() + getNumExplicitDefs()); 705 } 706 /// Returns a range that includes all operands that are register uses. 707 /// This may include unrelated operands which are not register uses. 708 iterator_range<mop_iterator> uses() { 709 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 710 } 711 /// \copydoc uses() 712 iterator_range<const_mop_iterator> uses() const { 713 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 714 } 715 iterator_range<mop_iterator> explicit_uses() { 716 return make_range(operands_begin() + getNumExplicitDefs(), 717 operands_begin() + getNumExplicitOperands()); 718 } 719 iterator_range<const_mop_iterator> explicit_uses() const { 720 return make_range(operands_begin() + getNumExplicitDefs(), 721 operands_begin() + getNumExplicitOperands()); 722 } 723 724 using filtered_mop_iterator = 725 filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>; 726 using filtered_const_mop_iterator = 727 filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>; 728 729 /// Returns an iterator range over all operands that are (explicit or 730 /// implicit) register defs. 731 iterator_range<filtered_mop_iterator> all_defs() { 732 return make_filter_range(operands(), opIsRegDef); 733 } 734 /// \copydoc all_defs() 735 iterator_range<filtered_const_mop_iterator> all_defs() const { 736 return make_filter_range(operands(), opIsRegDef); 737 } 738 739 /// Returns an iterator range over all operands that are (explicit or 740 /// implicit) register uses. 741 iterator_range<filtered_mop_iterator> all_uses() { 742 return make_filter_range(uses(), opIsRegUse); 743 } 744 /// \copydoc all_uses() 745 iterator_range<filtered_const_mop_iterator> all_uses() const { 746 return make_filter_range(uses(), opIsRegUse); 747 } 748 749 /// Returns the number of the operand iterator \p I points to. 750 unsigned getOperandNo(const_mop_iterator I) const { 751 return I - operands_begin(); 752 } 753 754 /// Access to memory operands of the instruction. If there are none, that does 755 /// not imply anything about whether the function accesses memory. Instead, 756 /// the caller must behave conservatively. 757 ArrayRef<MachineMemOperand *> memoperands() const { 758 if (!Info) 759 return {}; 760 761 if (Info.is<EIIK_MMO>()) 762 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1); 763 764 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 765 return EI->getMMOs(); 766 767 return {}; 768 } 769 770 /// Access to memory operands of the instruction. 771 /// 772 /// If `memoperands_begin() == memoperands_end()`, that does not imply 773 /// anything about whether the function accesses memory. Instead, the caller 774 /// must behave conservatively. 775 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 776 777 /// Access to memory operands of the instruction. 778 /// 779 /// If `memoperands_begin() == memoperands_end()`, that does not imply 780 /// anything about whether the function accesses memory. Instead, the caller 781 /// must behave conservatively. 782 mmo_iterator memoperands_end() const { return memoperands().end(); } 783 784 /// Return true if we don't have any memory operands which described the 785 /// memory access done by this instruction. If this is true, calling code 786 /// must be conservative. 787 bool memoperands_empty() const { return memoperands().empty(); } 788 789 /// Return true if this instruction has exactly one MachineMemOperand. 790 bool hasOneMemOperand() const { return memoperands().size() == 1; } 791 792 /// Return the number of memory operands. 793 unsigned getNumMemOperands() const { return memoperands().size(); } 794 795 /// Helper to extract a pre-instruction symbol if one has been added. 796 MCSymbol *getPreInstrSymbol() const { 797 if (!Info) 798 return nullptr; 799 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 800 return S; 801 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 802 return EI->getPreInstrSymbol(); 803 804 return nullptr; 805 } 806 807 /// Helper to extract a post-instruction symbol if one has been added. 808 MCSymbol *getPostInstrSymbol() const { 809 if (!Info) 810 return nullptr; 811 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 812 return S; 813 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 814 return EI->getPostInstrSymbol(); 815 816 return nullptr; 817 } 818 819 /// Helper to extract a heap alloc marker if one has been added. 820 MDNode *getHeapAllocMarker() const { 821 if (!Info) 822 return nullptr; 823 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 824 return EI->getHeapAllocMarker(); 825 826 return nullptr; 827 } 828 829 /// Helper to extract PCSections metadata target sections. 830 MDNode *getPCSections() const { 831 if (!Info) 832 return nullptr; 833 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 834 return EI->getPCSections(); 835 836 return nullptr; 837 } 838 839 /// Helper to extract a CFI type hash if one has been added. 840 uint32_t getCFIType() const { 841 if (!Info) 842 return 0; 843 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 844 return EI->getCFIType(); 845 846 return 0; 847 } 848 849 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 850 /// queries but they are bundle aware. 851 852 enum QueryType { 853 IgnoreBundle, // Ignore bundles 854 AnyInBundle, // Return true if any instruction in bundle has property 855 AllInBundle // Return true if all instructions in bundle have property 856 }; 857 858 /// Return true if the instruction (or in the case of a bundle, 859 /// the instructions inside the bundle) has the specified property. 860 /// The first argument is the property being queried. 861 /// The second argument indicates whether the query should look inside 862 /// instruction bundles. 863 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 864 assert(MCFlag < 64 && 865 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 866 // Inline the fast path for unbundled or bundle-internal instructions. 867 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 868 return getDesc().getFlags() & (1ULL << MCFlag); 869 870 // If this is the first instruction in a bundle, take the slow path. 871 return hasPropertyInBundle(1ULL << MCFlag, Type); 872 } 873 874 /// Return true if this is an instruction that should go through the usual 875 /// legalization steps. 876 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 877 return hasProperty(MCID::PreISelOpcode, Type); 878 } 879 880 /// Return true if this instruction can have a variable number of operands. 881 /// In this case, the variable operands will be after the normal 882 /// operands but before the implicit definitions and uses (if any are 883 /// present). 884 bool isVariadic(QueryType Type = IgnoreBundle) const { 885 return hasProperty(MCID::Variadic, Type); 886 } 887 888 /// Set if this instruction has an optional definition, e.g. 889 /// ARM instructions which can set condition code if 's' bit is set. 890 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 891 return hasProperty(MCID::HasOptionalDef, Type); 892 } 893 894 /// Return true if this is a pseudo instruction that doesn't 895 /// correspond to a real machine instruction. 896 bool isPseudo(QueryType Type = IgnoreBundle) const { 897 return hasProperty(MCID::Pseudo, Type); 898 } 899 900 /// Return true if this instruction doesn't produce any output in the form of 901 /// executable instructions. 902 bool isMetaInstruction(QueryType Type = IgnoreBundle) const { 903 return hasProperty(MCID::Meta, Type); 904 } 905 906 bool isReturn(QueryType Type = AnyInBundle) const { 907 return hasProperty(MCID::Return, Type); 908 } 909 910 /// Return true if this is an instruction that marks the end of an EH scope, 911 /// i.e., a catchpad or a cleanuppad instruction. 912 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 913 return hasProperty(MCID::EHScopeReturn, Type); 914 } 915 916 bool isCall(QueryType Type = AnyInBundle) const { 917 return hasProperty(MCID::Call, Type); 918 } 919 920 /// Return true if this is a call instruction that may have an associated 921 /// call site entry in the debug info. 922 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 923 /// Return true if copying, moving, or erasing this instruction requires 924 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 925 /// \ref eraseCallSiteInfo). 926 bool shouldUpdateCallSiteInfo() const; 927 928 /// Returns true if the specified instruction stops control flow 929 /// from executing the instruction immediately following it. Examples include 930 /// unconditional branches and return instructions. 931 bool isBarrier(QueryType Type = AnyInBundle) const { 932 return hasProperty(MCID::Barrier, Type); 933 } 934 935 /// Returns true if this instruction part of the terminator for a basic block. 936 /// Typically this is things like return and branch instructions. 937 /// 938 /// Various passes use this to insert code into the bottom of a basic block, 939 /// but before control flow occurs. 940 bool isTerminator(QueryType Type = AnyInBundle) const { 941 return hasProperty(MCID::Terminator, Type); 942 } 943 944 /// Returns true if this is a conditional, unconditional, or indirect branch. 945 /// Predicates below can be used to discriminate between 946 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 947 /// get more information. 948 bool isBranch(QueryType Type = AnyInBundle) const { 949 return hasProperty(MCID::Branch, Type); 950 } 951 952 /// Return true if this is an indirect branch, such as a 953 /// branch through a register. 954 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 955 return hasProperty(MCID::IndirectBranch, Type); 956 } 957 958 /// Return true if this is a branch which may fall 959 /// through to the next instruction or may transfer control flow to some other 960 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 961 /// information about this branch. 962 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 963 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 964 } 965 966 /// Return true if this is a branch which always 967 /// transfers control flow to some other block. The 968 /// TargetInstrInfo::analyzeBranch method can be used to get more information 969 /// about this branch. 970 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 971 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 972 } 973 974 /// Return true if this instruction has a predicate operand that 975 /// controls execution. It may be set to 'always', or may be set to other 976 /// values. There are various methods in TargetInstrInfo that can be used to 977 /// control and modify the predicate in this instruction. 978 bool isPredicable(QueryType Type = AllInBundle) const { 979 // If it's a bundle than all bundled instructions must be predicable for this 980 // to return true. 981 return hasProperty(MCID::Predicable, Type); 982 } 983 984 /// Return true if this instruction is a comparison. 985 bool isCompare(QueryType Type = IgnoreBundle) const { 986 return hasProperty(MCID::Compare, Type); 987 } 988 989 /// Return true if this instruction is a move immediate 990 /// (including conditional moves) instruction. 991 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 992 return hasProperty(MCID::MoveImm, Type); 993 } 994 995 /// Return true if this instruction is a register move. 996 /// (including moving values from subreg to reg) 997 bool isMoveReg(QueryType Type = IgnoreBundle) const { 998 return hasProperty(MCID::MoveReg, Type); 999 } 1000 1001 /// Return true if this instruction is a bitcast instruction. 1002 bool isBitcast(QueryType Type = IgnoreBundle) const { 1003 return hasProperty(MCID::Bitcast, Type); 1004 } 1005 1006 /// Return true if this instruction is a select instruction. 1007 bool isSelect(QueryType Type = IgnoreBundle) const { 1008 return hasProperty(MCID::Select, Type); 1009 } 1010 1011 /// Return true if this instruction cannot be safely duplicated. 1012 /// For example, if the instruction has a unique labels attached 1013 /// to it, duplicating it would cause multiple definition errors. 1014 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 1015 if (getPreInstrSymbol() || getPostInstrSymbol()) 1016 return true; 1017 return hasProperty(MCID::NotDuplicable, Type); 1018 } 1019 1020 /// Return true if this instruction is convergent. 1021 /// Convergent instructions can not be made control-dependent on any 1022 /// additional values. 1023 bool isConvergent(QueryType Type = AnyInBundle) const { 1024 if (isInlineAsm()) { 1025 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1026 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1027 return true; 1028 } 1029 if (getFlag(NoConvergent)) 1030 return false; 1031 return hasProperty(MCID::Convergent, Type); 1032 } 1033 1034 /// Returns true if the specified instruction has a delay slot 1035 /// which must be filled by the code generator. 1036 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 1037 return hasProperty(MCID::DelaySlot, Type); 1038 } 1039 1040 /// Return true for instructions that can be folded as 1041 /// memory operands in other instructions. The most common use for this 1042 /// is instructions that are simple loads from memory that don't modify 1043 /// the loaded value in any way, but it can also be used for instructions 1044 /// that can be expressed as constant-pool loads, such as V_SETALLONES 1045 /// on x86, to allow them to be folded when it is beneficial. 1046 /// This should only be set on instructions that return a value in their 1047 /// only virtual register definition. 1048 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 1049 return hasProperty(MCID::FoldableAsLoad, Type); 1050 } 1051 1052 /// Return true if this instruction behaves 1053 /// the same way as the generic REG_SEQUENCE instructions. 1054 /// E.g., on ARM, 1055 /// dX VMOVDRR rY, rZ 1056 /// is equivalent to 1057 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 1058 /// 1059 /// Note that for the optimizers to be able to take advantage of 1060 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 1061 /// override accordingly. 1062 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 1063 return hasProperty(MCID::RegSequence, Type); 1064 } 1065 1066 /// Return true if this instruction behaves 1067 /// the same way as the generic EXTRACT_SUBREG instructions. 1068 /// E.g., on ARM, 1069 /// rX, rY VMOVRRD dZ 1070 /// is equivalent to two EXTRACT_SUBREG: 1071 /// rX = EXTRACT_SUBREG dZ, ssub_0 1072 /// rY = EXTRACT_SUBREG dZ, ssub_1 1073 /// 1074 /// Note that for the optimizers to be able to take advantage of 1075 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 1076 /// override accordingly. 1077 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 1078 return hasProperty(MCID::ExtractSubreg, Type); 1079 } 1080 1081 /// Return true if this instruction behaves 1082 /// the same way as the generic INSERT_SUBREG instructions. 1083 /// E.g., on ARM, 1084 /// dX = VSETLNi32 dY, rZ, Imm 1085 /// is equivalent to a INSERT_SUBREG: 1086 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 1087 /// 1088 /// Note that for the optimizers to be able to take advantage of 1089 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 1090 /// override accordingly. 1091 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 1092 return hasProperty(MCID::InsertSubreg, Type); 1093 } 1094 1095 //===--------------------------------------------------------------------===// 1096 // Side Effect Analysis 1097 //===--------------------------------------------------------------------===// 1098 1099 /// Return true if this instruction could possibly read memory. 1100 /// Instructions with this flag set are not necessarily simple load 1101 /// instructions, they may load a value and modify it, for example. 1102 bool mayLoad(QueryType Type = AnyInBundle) const { 1103 if (isInlineAsm()) { 1104 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1105 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1106 return true; 1107 } 1108 return hasProperty(MCID::MayLoad, Type); 1109 } 1110 1111 /// Return true if this instruction could possibly modify memory. 1112 /// Instructions with this flag set are not necessarily simple store 1113 /// instructions, they may store a modified value based on their operands, or 1114 /// may not actually modify anything, for example. 1115 bool mayStore(QueryType Type = AnyInBundle) const { 1116 if (isInlineAsm()) { 1117 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1118 if (ExtraInfo & InlineAsm::Extra_MayStore) 1119 return true; 1120 } 1121 return hasProperty(MCID::MayStore, Type); 1122 } 1123 1124 /// Return true if this instruction could possibly read or modify memory. 1125 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1126 return mayLoad(Type) || mayStore(Type); 1127 } 1128 1129 /// Return true if this instruction could possibly raise a floating-point 1130 /// exception. This is the case if the instruction is a floating-point 1131 /// instruction that can in principle raise an exception, as indicated 1132 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1133 /// the instruction is used in a context where we expect floating-point 1134 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1135 bool mayRaiseFPException() const { 1136 return hasProperty(MCID::MayRaiseFPException) && 1137 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1138 } 1139 1140 //===--------------------------------------------------------------------===// 1141 // Flags that indicate whether an instruction can be modified by a method. 1142 //===--------------------------------------------------------------------===// 1143 1144 /// Return true if this may be a 2- or 3-address 1145 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1146 /// result if Y and Z are exchanged. If this flag is set, then the 1147 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1148 /// instruction. 1149 /// 1150 /// Note that this flag may be set on instructions that are only commutable 1151 /// sometimes. In these cases, the call to commuteInstruction will fail. 1152 /// Also note that some instructions require non-trivial modification to 1153 /// commute them. 1154 bool isCommutable(QueryType Type = IgnoreBundle) const { 1155 return hasProperty(MCID::Commutable, Type); 1156 } 1157 1158 /// Return true if this is a 2-address instruction 1159 /// which can be changed into a 3-address instruction if needed. Doing this 1160 /// transformation can be profitable in the register allocator, because it 1161 /// means that the instruction can use a 2-address form if possible, but 1162 /// degrade into a less efficient form if the source and dest register cannot 1163 /// be assigned to the same register. For example, this allows the x86 1164 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1165 /// is the same speed as the shift but has bigger code size. 1166 /// 1167 /// If this returns true, then the target must implement the 1168 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1169 /// is allowed to fail if the transformation isn't valid for this specific 1170 /// instruction (e.g. shl reg, 4 on x86). 1171 /// 1172 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1173 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1174 } 1175 1176 /// Return true if this instruction requires 1177 /// custom insertion support when the DAG scheduler is inserting it into a 1178 /// machine basic block. If this is true for the instruction, it basically 1179 /// means that it is a pseudo instruction used at SelectionDAG time that is 1180 /// expanded out into magic code by the target when MachineInstrs are formed. 1181 /// 1182 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1183 /// is used to insert this into the MachineBasicBlock. 1184 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1185 return hasProperty(MCID::UsesCustomInserter, Type); 1186 } 1187 1188 /// Return true if this instruction requires *adjustment* 1189 /// after instruction selection by calling a target hook. For example, this 1190 /// can be used to fill in ARM 's' optional operand depending on whether 1191 /// the conditional flag register is used. 1192 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1193 return hasProperty(MCID::HasPostISelHook, Type); 1194 } 1195 1196 /// Returns true if this instruction is a candidate for remat. 1197 /// This flag is deprecated, please don't use it anymore. If this 1198 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1199 /// verify the instruction is really rematerializable. 1200 bool isRematerializable(QueryType Type = AllInBundle) const { 1201 // It's only possible to re-mat a bundle if all bundled instructions are 1202 // re-materializable. 1203 return hasProperty(MCID::Rematerializable, Type); 1204 } 1205 1206 /// Returns true if this instruction has the same cost (or less) than a move 1207 /// instruction. This is useful during certain types of optimizations 1208 /// (e.g., remat during two-address conversion or machine licm) 1209 /// where we would like to remat or hoist the instruction, but not if it costs 1210 /// more than moving the instruction into the appropriate register. Note, we 1211 /// are not marking copies from and to the same register class with this flag. 1212 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1213 // Only returns true for a bundle if all bundled instructions are cheap. 1214 return hasProperty(MCID::CheapAsAMove, Type); 1215 } 1216 1217 /// Returns true if this instruction source operands 1218 /// have special register allocation requirements that are not captured by the 1219 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1220 /// even / odd pair, ARM::STM registers have to be in ascending order. 1221 /// Post-register allocation passes should not attempt to change allocations 1222 /// for sources of instructions with this flag. 1223 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1224 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1225 } 1226 1227 /// Returns true if this instruction def operands 1228 /// have special register allocation requirements that are not captured by the 1229 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1230 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1231 /// Post-register allocation passes should not attempt to change allocations 1232 /// for definitions of instructions with this flag. 1233 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1234 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1235 } 1236 1237 enum MICheckType { 1238 CheckDefs, // Check all operands for equality 1239 CheckKillDead, // Check all operands including kill / dead markers 1240 IgnoreDefs, // Ignore all definitions 1241 IgnoreVRegDefs // Ignore virtual register definitions 1242 }; 1243 1244 /// Return true if this instruction is identical to \p Other. 1245 /// Two instructions are identical if they have the same opcode and all their 1246 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1247 /// Note that this means liveness related flags (dead, undef, kill) do not 1248 /// affect the notion of identical. 1249 bool isIdenticalTo(const MachineInstr &Other, 1250 MICheckType Check = CheckDefs) const; 1251 1252 /// Returns true if this instruction is a debug instruction that represents an 1253 /// identical debug value to \p Other. 1254 /// This function considers these debug instructions equivalent if they have 1255 /// identical variables, debug locations, and debug operands, and if the 1256 /// DIExpressions combined with the directness flags are equivalent. 1257 bool isEquivalentDbgInstr(const MachineInstr &Other) const; 1258 1259 /// Unlink 'this' from the containing basic block, and return it without 1260 /// deleting it. 1261 /// 1262 /// This function can not be used on bundled instructions, use 1263 /// removeFromBundle() to remove individual instructions from a bundle. 1264 MachineInstr *removeFromParent(); 1265 1266 /// Unlink this instruction from its basic block and return it without 1267 /// deleting it. 1268 /// 1269 /// If the instruction is part of a bundle, the other instructions in the 1270 /// bundle remain bundled. 1271 MachineInstr *removeFromBundle(); 1272 1273 /// Unlink 'this' from the containing basic block and delete it. 1274 /// 1275 /// If this instruction is the header of a bundle, the whole bundle is erased. 1276 /// This function can not be used for instructions inside a bundle, use 1277 /// eraseFromBundle() to erase individual bundled instructions. 1278 void eraseFromParent(); 1279 1280 /// Unlink 'this' from its basic block and delete it. 1281 /// 1282 /// If the instruction is part of a bundle, the other instructions in the 1283 /// bundle remain bundled. 1284 void eraseFromBundle(); 1285 1286 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1287 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1288 bool isAnnotationLabel() const { 1289 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1290 } 1291 1292 /// Returns true if the MachineInstr represents a label. 1293 bool isLabel() const { 1294 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1295 } 1296 1297 bool isCFIInstruction() const { 1298 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1299 } 1300 1301 bool isPseudoProbe() const { 1302 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1303 } 1304 1305 // True if the instruction represents a position in the function. 1306 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1307 1308 bool isNonListDebugValue() const { 1309 return getOpcode() == TargetOpcode::DBG_VALUE; 1310 } 1311 bool isDebugValueList() const { 1312 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1313 } 1314 bool isDebugValue() const { 1315 return isNonListDebugValue() || isDebugValueList(); 1316 } 1317 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1318 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1319 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } 1320 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1321 bool isDebugInstr() const { 1322 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1323 } 1324 bool isDebugOrPseudoInstr() const { 1325 return isDebugInstr() || isPseudoProbe(); 1326 } 1327 1328 bool isDebugOffsetImm() const { 1329 return isNonListDebugValue() && getDebugOffset().isImm(); 1330 } 1331 1332 /// A DBG_VALUE is indirect iff the location operand is a register and 1333 /// the offset operand is an immediate. 1334 bool isIndirectDebugValue() const { 1335 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1336 } 1337 1338 /// A DBG_VALUE is an entry value iff its debug expression contains the 1339 /// DW_OP_LLVM_entry_value operation. 1340 bool isDebugEntryValue() const; 1341 1342 /// Return true if the instruction is a debug value which describes a part of 1343 /// a variable as unavailable. 1344 bool isUndefDebugValue() const { 1345 if (!isDebugValue()) 1346 return false; 1347 // If any $noreg locations are given, this DV is undef. 1348 for (const MachineOperand &Op : debug_operands()) 1349 if (Op.isReg() && !Op.getReg().isValid()) 1350 return true; 1351 return false; 1352 } 1353 1354 bool isJumpTableDebugInfo() const { 1355 return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO; 1356 } 1357 1358 bool isPHI() const { 1359 return getOpcode() == TargetOpcode::PHI || 1360 getOpcode() == TargetOpcode::G_PHI; 1361 } 1362 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1363 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1364 bool isInlineAsm() const { 1365 return getOpcode() == TargetOpcode::INLINEASM || 1366 getOpcode() == TargetOpcode::INLINEASM_BR; 1367 } 1368 /// Returns true if the register operand can be folded with a load or store 1369 /// into a frame index. Does so by checking the InlineAsm::Flag immediate 1370 /// operand at OpId - 1. 1371 bool mayFoldInlineAsmRegOp(unsigned OpId) const; 1372 1373 bool isStackAligningInlineAsm() const; 1374 InlineAsm::AsmDialect getInlineAsmDialect() const; 1375 1376 bool isInsertSubreg() const { 1377 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1378 } 1379 1380 bool isSubregToReg() const { 1381 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1382 } 1383 1384 bool isRegSequence() const { 1385 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1386 } 1387 1388 bool isBundle() const { 1389 return getOpcode() == TargetOpcode::BUNDLE; 1390 } 1391 1392 bool isCopy() const { 1393 return getOpcode() == TargetOpcode::COPY; 1394 } 1395 1396 bool isFullCopy() const { 1397 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1398 } 1399 1400 bool isExtractSubreg() const { 1401 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1402 } 1403 1404 /// Return true if the instruction behaves like a copy. 1405 /// This does not include native copy instructions. 1406 bool isCopyLike() const { 1407 return isCopy() || isSubregToReg(); 1408 } 1409 1410 /// Return true is the instruction is an identity copy. 1411 bool isIdentityCopy() const { 1412 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1413 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1414 } 1415 1416 /// Return true if this is a transient instruction that is either very likely 1417 /// to be eliminated during register allocation (such as copy-like 1418 /// instructions), or if this instruction doesn't have an execution-time cost. 1419 bool isTransient() const { 1420 switch (getOpcode()) { 1421 default: 1422 return isMetaInstruction(); 1423 // Copy-like instructions are usually eliminated during register allocation. 1424 case TargetOpcode::PHI: 1425 case TargetOpcode::G_PHI: 1426 case TargetOpcode::COPY: 1427 case TargetOpcode::INSERT_SUBREG: 1428 case TargetOpcode::SUBREG_TO_REG: 1429 case TargetOpcode::REG_SEQUENCE: 1430 return true; 1431 } 1432 } 1433 1434 /// Return the number of instructions inside the MI bundle, excluding the 1435 /// bundle header. 1436 /// 1437 /// This is the number of instructions that MachineBasicBlock::iterator 1438 /// skips, 0 for unbundled instructions. 1439 unsigned getBundleSize() const; 1440 1441 /// Return true if the MachineInstr reads the specified register. 1442 /// If TargetRegisterInfo is non-null, then it also checks if there 1443 /// is a read of a super-register. 1444 /// This does not count partial redefines of virtual registers as reads: 1445 /// %reg1024:6 = OP. 1446 bool readsRegister(Register Reg, 1447 const TargetRegisterInfo *TRI = nullptr) const { 1448 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1449 } 1450 1451 /// Return true if the MachineInstr reads the specified virtual register. 1452 /// Take into account that a partial define is a 1453 /// read-modify-write operation. 1454 bool readsVirtualRegister(Register Reg) const { 1455 return readsWritesVirtualRegister(Reg).first; 1456 } 1457 1458 /// Return a pair of bools (reads, writes) indicating if this instruction 1459 /// reads or writes Reg. This also considers partial defines. 1460 /// If Ops is not null, all operand indices for Reg are added. 1461 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1462 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1463 1464 /// Return true if the MachineInstr kills the specified register. 1465 /// If TargetRegisterInfo is non-null, then it also checks if there is 1466 /// a kill of a super-register. 1467 bool killsRegister(Register Reg, 1468 const TargetRegisterInfo *TRI = nullptr) const { 1469 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1470 } 1471 1472 /// Return true if the MachineInstr fully defines the specified register. 1473 /// If TargetRegisterInfo is non-null, then it also checks 1474 /// if there is a def of a super-register. 1475 /// NOTE: It's ignoring subreg indices on virtual registers. 1476 bool definesRegister(Register Reg, 1477 const TargetRegisterInfo *TRI = nullptr) const { 1478 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1479 } 1480 1481 /// Return true if the MachineInstr modifies (fully define or partially 1482 /// define) the specified register. 1483 /// NOTE: It's ignoring subreg indices on virtual registers. 1484 bool modifiesRegister(Register Reg, 1485 const TargetRegisterInfo *TRI = nullptr) const { 1486 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1487 } 1488 1489 /// Returns true if the register is dead in this machine instruction. 1490 /// If TargetRegisterInfo is non-null, then it also checks 1491 /// if there is a dead def of a super-register. 1492 bool registerDefIsDead(Register Reg, 1493 const TargetRegisterInfo *TRI = nullptr) const { 1494 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1495 } 1496 1497 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1498 /// the given register (not considering sub/super-registers). 1499 bool hasRegisterImplicitUseOperand(Register Reg) const; 1500 1501 /// Returns the operand index that is a use of the specific register or -1 1502 /// if it is not found. It further tightens the search criteria to a use 1503 /// that kills the register if isKill is true. 1504 int findRegisterUseOperandIdx(Register Reg, bool isKill = false, 1505 const TargetRegisterInfo *TRI = nullptr) const; 1506 1507 /// Wrapper for findRegisterUseOperandIdx, it returns 1508 /// a pointer to the MachineOperand rather than an index. 1509 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, 1510 const TargetRegisterInfo *TRI = nullptr) { 1511 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1512 return (Idx == -1) ? nullptr : &getOperand(Idx); 1513 } 1514 1515 const MachineOperand *findRegisterUseOperand( 1516 Register Reg, bool isKill = false, 1517 const TargetRegisterInfo *TRI = nullptr) const { 1518 return const_cast<MachineInstr *>(this)-> 1519 findRegisterUseOperand(Reg, isKill, TRI); 1520 } 1521 1522 /// Returns the operand index that is a def of the specified register or 1523 /// -1 if it is not found. If isDead is true, defs that are not dead are 1524 /// skipped. If Overlap is true, then it also looks for defs that merely 1525 /// overlap the specified register. If TargetRegisterInfo is non-null, 1526 /// then it also checks if there is a def of a super-register. 1527 /// This may also return a register mask operand when Overlap is true. 1528 int findRegisterDefOperandIdx(Register Reg, 1529 bool isDead = false, bool Overlap = false, 1530 const TargetRegisterInfo *TRI = nullptr) const; 1531 1532 /// Wrapper for findRegisterDefOperandIdx, it returns 1533 /// a pointer to the MachineOperand rather than an index. 1534 MachineOperand * 1535 findRegisterDefOperand(Register Reg, bool isDead = false, 1536 bool Overlap = false, 1537 const TargetRegisterInfo *TRI = nullptr) { 1538 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); 1539 return (Idx == -1) ? nullptr : &getOperand(Idx); 1540 } 1541 1542 const MachineOperand * 1543 findRegisterDefOperand(Register Reg, bool isDead = false, 1544 bool Overlap = false, 1545 const TargetRegisterInfo *TRI = nullptr) const { 1546 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1547 Reg, isDead, Overlap, TRI); 1548 } 1549 1550 /// Find the index of the first operand in the 1551 /// operand list that is used to represent the predicate. It returns -1 if 1552 /// none is found. 1553 int findFirstPredOperandIdx() const; 1554 1555 /// Find the index of the flag word operand that 1556 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1557 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1558 /// 1559 /// If GroupNo is not NULL, it will receive the number of the operand group 1560 /// containing OpIdx. 1561 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1562 1563 /// Compute the static register class constraint for operand OpIdx. 1564 /// For normal instructions, this is derived from the MCInstrDesc. 1565 /// For inline assembly it is derived from the flag words. 1566 /// 1567 /// Returns NULL if the static register class constraint cannot be 1568 /// determined. 1569 const TargetRegisterClass* 1570 getRegClassConstraint(unsigned OpIdx, 1571 const TargetInstrInfo *TII, 1572 const TargetRegisterInfo *TRI) const; 1573 1574 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1575 /// the given \p CurRC. 1576 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1577 /// instructions inside the bundle will be taken into account. In other words, 1578 /// this method accumulates all the constraints of the operand of this MI and 1579 /// the related bundle if MI is a bundle or inside a bundle. 1580 /// 1581 /// Returns the register class that satisfies both \p CurRC and the 1582 /// constraints set by MI. Returns NULL if such a register class does not 1583 /// exist. 1584 /// 1585 /// \pre CurRC must not be NULL. 1586 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1587 Register Reg, const TargetRegisterClass *CurRC, 1588 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1589 bool ExploreBundle = false) const; 1590 1591 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1592 /// to the given \p CurRC. 1593 /// 1594 /// Returns the register class that satisfies both \p CurRC and the 1595 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1596 /// does not exist. 1597 /// 1598 /// \pre CurRC must not be NULL. 1599 /// \pre The operand at \p OpIdx must be a register. 1600 const TargetRegisterClass * 1601 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1602 const TargetInstrInfo *TII, 1603 const TargetRegisterInfo *TRI) const; 1604 1605 /// Add a tie between the register operands at DefIdx and UseIdx. 1606 /// The tie will cause the register allocator to ensure that the two 1607 /// operands are assigned the same physical register. 1608 /// 1609 /// Tied operands are managed automatically for explicit operands in the 1610 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1611 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1612 1613 /// Given the index of a tied register operand, find the 1614 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1615 /// index of the tied operand which must exist. 1616 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1617 1618 /// Given the index of a register def operand, 1619 /// check if the register def is tied to a source operand, due to either 1620 /// two-address elimination or inline assembly constraints. Returns the 1621 /// first tied use operand index by reference if UseOpIdx is not null. 1622 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1623 unsigned *UseOpIdx = nullptr) const { 1624 const MachineOperand &MO = getOperand(DefOpIdx); 1625 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1626 return false; 1627 if (UseOpIdx) 1628 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1629 return true; 1630 } 1631 1632 /// Return true if the use operand of the specified index is tied to a def 1633 /// operand. It also returns the def operand index by reference if DefOpIdx 1634 /// is not null. 1635 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1636 unsigned *DefOpIdx = nullptr) const { 1637 const MachineOperand &MO = getOperand(UseOpIdx); 1638 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1639 return false; 1640 if (DefOpIdx) 1641 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1642 return true; 1643 } 1644 1645 /// Clears kill flags on all operands. 1646 void clearKillInfo(); 1647 1648 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1649 /// properly composing subreg indices where necessary. 1650 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1651 const TargetRegisterInfo &RegInfo); 1652 1653 /// We have determined MI kills a register. Look for the 1654 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1655 /// add a implicit operand if it's not found. Returns true if the operand 1656 /// exists / is added. 1657 bool addRegisterKilled(Register IncomingReg, 1658 const TargetRegisterInfo *RegInfo, 1659 bool AddIfNotFound = false); 1660 1661 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1662 /// all aliasing registers. 1663 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1664 1665 /// We have determined MI defined a register without a use. 1666 /// Look for the operand that defines it and mark it as IsDead. If 1667 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1668 /// true if the operand exists / is added. 1669 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1670 bool AddIfNotFound = false); 1671 1672 /// Clear all dead flags on operands defining register @p Reg. 1673 void clearRegisterDeads(Register Reg); 1674 1675 /// Mark all subregister defs of register @p Reg with the undef flag. 1676 /// This function is used when we determined to have a subregister def in an 1677 /// otherwise undefined super register. 1678 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1679 1680 /// We have determined MI defines a register. Make sure there is an operand 1681 /// defining Reg. 1682 void addRegisterDefined(Register Reg, 1683 const TargetRegisterInfo *RegInfo = nullptr); 1684 1685 /// Mark every physreg used by this instruction as 1686 /// dead except those in the UsedRegs list. 1687 /// 1688 /// On instructions with register mask operands, also add implicit-def 1689 /// operands for all registers in UsedRegs. 1690 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1691 const TargetRegisterInfo &TRI); 1692 1693 /// Return true if it is safe to move this instruction. If 1694 /// SawStore is set to true, it means that there is a store (or call) between 1695 /// the instruction's location and its intended destination. 1696 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1697 1698 /// Returns true if this instruction's memory access aliases the memory 1699 /// access of Other. 1700 // 1701 /// Assumes any physical registers used to compute addresses 1702 /// have the same value for both instructions. Returns false if neither 1703 /// instruction writes to memory. 1704 /// 1705 /// @param AA Optional alias analysis, used to compare memory operands. 1706 /// @param Other MachineInstr to check aliasing against. 1707 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1708 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1709 1710 /// Return true if this instruction may have an ordered 1711 /// or volatile memory reference, or if the information describing the memory 1712 /// reference is not available. Return false if it is known to have no 1713 /// ordered or volatile memory references. 1714 bool hasOrderedMemoryRef() const; 1715 1716 /// Return true if this load instruction never traps and points to a memory 1717 /// location whose value doesn't change during the execution of this function. 1718 /// 1719 /// Examples include loading a value from the constant pool or from the 1720 /// argument area of a function (if it does not change). If the instruction 1721 /// does multiple loads, this returns true only if all of the loads are 1722 /// dereferenceable and invariant. 1723 bool isDereferenceableInvariantLoad() const; 1724 1725 /// If the specified instruction is a PHI that always merges together the 1726 /// same virtual register, return the register, otherwise return 0. 1727 unsigned isConstantValuePHI() const; 1728 1729 /// Return true if this instruction has side effects that are not modeled 1730 /// by mayLoad / mayStore, etc. 1731 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1732 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1733 /// INLINEASM instruction, in which case the side effect property is encoded 1734 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1735 /// 1736 bool hasUnmodeledSideEffects() const; 1737 1738 /// Returns true if it is illegal to fold a load across this instruction. 1739 bool isLoadFoldBarrier() const; 1740 1741 /// Return true if all the defs of this instruction are dead. 1742 bool allDefsAreDead() const; 1743 1744 /// Return true if all the implicit defs of this instruction are dead. 1745 bool allImplicitDefsAreDead() const; 1746 1747 /// Return a valid size if the instruction is a spill instruction. 1748 std::optional<LocationSize> getSpillSize(const TargetInstrInfo *TII) const; 1749 1750 /// Return a valid size if the instruction is a folded spill instruction. 1751 std::optional<LocationSize> 1752 getFoldedSpillSize(const TargetInstrInfo *TII) const; 1753 1754 /// Return a valid size if the instruction is a restore instruction. 1755 std::optional<LocationSize> getRestoreSize(const TargetInstrInfo *TII) const; 1756 1757 /// Return a valid size if the instruction is a folded restore instruction. 1758 std::optional<LocationSize> 1759 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1760 1761 /// Copy implicit register operands from specified 1762 /// instruction to this instruction. 1763 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1764 1765 /// Debugging support 1766 /// @{ 1767 /// Determine the generic type to be printed (if needed) on uses and defs. 1768 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1769 const MachineRegisterInfo &MRI) const; 1770 1771 /// Return true when an instruction has tied register that can't be determined 1772 /// by the instruction's descriptor. This is useful for MIR printing, to 1773 /// determine whether we need to print the ties or not. 1774 bool hasComplexRegisterTies() const; 1775 1776 /// Print this MI to \p OS. 1777 /// Don't print information that can be inferred from other instructions if 1778 /// \p IsStandalone is false. It is usually true when only a fragment of the 1779 /// function is printed. 1780 /// Only print the defs and the opcode if \p SkipOpers is true. 1781 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1782 /// Otherwise, also print the debug loc, with a terminating newline. 1783 /// \p TII is used to print the opcode name. If it's not present, but the 1784 /// MI is in a function, the opcode will be printed using the function's TII. 1785 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1786 bool SkipDebugLoc = false, bool AddNewLine = true, 1787 const TargetInstrInfo *TII = nullptr) const; 1788 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1789 bool SkipOpers = false, bool SkipDebugLoc = false, 1790 bool AddNewLine = true, 1791 const TargetInstrInfo *TII = nullptr) const; 1792 void dump() const; 1793 /// Print on dbgs() the current instruction and the instructions defining its 1794 /// operands and so on until we reach \p MaxDepth. 1795 void dumpr(const MachineRegisterInfo &MRI, 1796 unsigned MaxDepth = UINT_MAX) const; 1797 /// @} 1798 1799 //===--------------------------------------------------------------------===// 1800 // Accessors used to build up machine instructions. 1801 1802 /// Add the specified operand to the instruction. If it is an implicit 1803 /// operand, it is added to the end of the operand list. If it is an 1804 /// explicit operand it is added at the end of the explicit operand list 1805 /// (before the first implicit operand). 1806 /// 1807 /// MF must be the machine function that was used to allocate this 1808 /// instruction. 1809 /// 1810 /// MachineInstrBuilder provides a more convenient interface for creating 1811 /// instructions and adding operands. 1812 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1813 1814 /// Add an operand without providing an MF reference. This only works for 1815 /// instructions that are inserted in a basic block. 1816 /// 1817 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1818 /// preferred. 1819 void addOperand(const MachineOperand &Op); 1820 1821 /// Inserts Ops BEFORE It. Can untie/retie tied operands. 1822 void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops); 1823 1824 /// Replace the instruction descriptor (thus opcode) of 1825 /// the current instruction with a new one. 1826 void setDesc(const MCInstrDesc &TID); 1827 1828 /// Replace current source information with new such. 1829 /// Avoid using this, the constructor argument is preferable. 1830 void setDebugLoc(DebugLoc DL) { 1831 DbgLoc = std::move(DL); 1832 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1833 } 1834 1835 /// Erase an operand from an instruction, leaving it with one 1836 /// fewer operand than it started with. 1837 void removeOperand(unsigned OpNo); 1838 1839 /// Clear this MachineInstr's memory reference descriptor list. This resets 1840 /// the memrefs to their most conservative state. This should be used only 1841 /// as a last resort since it greatly pessimizes our knowledge of the memory 1842 /// access performed by the instruction. 1843 void dropMemRefs(MachineFunction &MF); 1844 1845 /// Assign this MachineInstr's memory reference descriptor list. 1846 /// 1847 /// Unlike other methods, this *will* allocate them into a new array 1848 /// associated with the provided `MachineFunction`. 1849 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1850 1851 /// Add a MachineMemOperand to the machine instruction. 1852 /// This function should be used only occasionally. The setMemRefs function 1853 /// is the primary method for setting up a MachineInstr's MemRefs list. 1854 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1855 1856 /// Clone another MachineInstr's memory reference descriptor list and replace 1857 /// ours with it. 1858 /// 1859 /// Note that `*this` may be the incoming MI! 1860 /// 1861 /// Prefer this API whenever possible as it can avoid allocations in common 1862 /// cases. 1863 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1864 1865 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1866 /// list and replace ours with it. 1867 /// 1868 /// Note that `*this` may be one of the incoming MIs! 1869 /// 1870 /// Prefer this API whenever possible as it can avoid allocations in common 1871 /// cases. 1872 void cloneMergedMemRefs(MachineFunction &MF, 1873 ArrayRef<const MachineInstr *> MIs); 1874 1875 /// Set a symbol that will be emitted just prior to the instruction itself. 1876 /// 1877 /// Setting this to a null pointer will remove any such symbol. 1878 /// 1879 /// FIXME: This is not fully implemented yet. 1880 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1881 1882 /// Set a symbol that will be emitted just after the instruction itself. 1883 /// 1884 /// Setting this to a null pointer will remove any such symbol. 1885 /// 1886 /// FIXME: This is not fully implemented yet. 1887 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1888 1889 /// Clone another MachineInstr's pre- and post- instruction symbols and 1890 /// replace ours with it. 1891 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1892 1893 /// Set a marker on instructions that denotes where we should create and emit 1894 /// heap alloc site labels. This waits until after instruction selection and 1895 /// optimizations to create the label, so it should still work if the 1896 /// instruction is removed or duplicated. 1897 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1898 1899 // Set metadata on instructions that say which sections to emit instruction 1900 // addresses into. 1901 void setPCSections(MachineFunction &MF, MDNode *MD); 1902 1903 /// Set the CFI type for the instruction. 1904 void setCFIType(MachineFunction &MF, uint32_t Type); 1905 1906 /// Return the MIFlags which represent both MachineInstrs. This 1907 /// should be used when merging two MachineInstrs into one. This routine does 1908 /// not modify the MIFlags of this MachineInstr. 1909 uint32_t mergeFlagsWith(const MachineInstr& Other) const; 1910 1911 static uint32_t copyFlagsFromInstruction(const Instruction &I); 1912 1913 /// Copy all flags to MachineInst MIFlags 1914 void copyIRFlags(const Instruction &I); 1915 1916 /// Break any tie involving OpIdx. 1917 void untieRegOperand(unsigned OpIdx) { 1918 MachineOperand &MO = getOperand(OpIdx); 1919 if (MO.isReg() && MO.isTied()) { 1920 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1921 MO.TiedTo = 0; 1922 } 1923 } 1924 1925 /// Add all implicit def and use operands to this instruction. 1926 void addImplicitDefUseOperands(MachineFunction &MF); 1927 1928 /// Scan instructions immediately following MI and collect any matching 1929 /// DBG_VALUEs. 1930 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1931 1932 /// Find all DBG_VALUEs that point to the register def in this instruction 1933 /// and point them to \p Reg instead. 1934 void changeDebugValuesDefReg(Register Reg); 1935 1936 /// Sets all register debug operands in this debug value instruction to be 1937 /// undef. 1938 void setDebugValueUndef() { 1939 assert(isDebugValue() && "Must be a debug value instruction."); 1940 for (MachineOperand &MO : debug_operands()) { 1941 if (MO.isReg()) { 1942 MO.setReg(0); 1943 MO.setSubReg(0); 1944 } 1945 } 1946 } 1947 1948 std::tuple<Register, Register> getFirst2Regs() const { 1949 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg()); 1950 } 1951 1952 std::tuple<Register, Register, Register> getFirst3Regs() const { 1953 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1954 getOperand(2).getReg()); 1955 } 1956 1957 std::tuple<Register, Register, Register, Register> getFirst4Regs() const { 1958 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1959 getOperand(2).getReg(), getOperand(3).getReg()); 1960 } 1961 1962 std::tuple<Register, Register, Register, Register, Register> 1963 getFirst5Regs() const { 1964 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1965 getOperand(2).getReg(), getOperand(3).getReg(), 1966 getOperand(4).getReg()); 1967 } 1968 1969 std::tuple<LLT, LLT> getFirst2LLTs() const; 1970 std::tuple<LLT, LLT, LLT> getFirst3LLTs() const; 1971 std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const; 1972 std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const; 1973 1974 std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const; 1975 std::tuple<Register, LLT, Register, LLT, Register, LLT> 1976 getFirst3RegLLTs() const; 1977 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 1978 getFirst4RegLLTs() const; 1979 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, 1980 Register, LLT> 1981 getFirst5RegLLTs() const; 1982 1983 private: 1984 /// If this instruction is embedded into a MachineFunction, return the 1985 /// MachineRegisterInfo object for the current function, otherwise 1986 /// return null. 1987 MachineRegisterInfo *getRegInfo(); 1988 const MachineRegisterInfo *getRegInfo() const; 1989 1990 /// Unlink all of the register operands in this instruction from their 1991 /// respective use lists. This requires that the operands already be on their 1992 /// use lists. 1993 void removeRegOperandsFromUseLists(MachineRegisterInfo&); 1994 1995 /// Add all of the register operands in this instruction from their 1996 /// respective use lists. This requires that the operands not be on their 1997 /// use lists yet. 1998 void addRegOperandsToUseLists(MachineRegisterInfo&); 1999 2000 /// Slow path for hasProperty when we're dealing with a bundle. 2001 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 2002 2003 /// Implements the logic of getRegClassConstraintEffectForVReg for the 2004 /// this MI and the given operand index \p OpIdx. 2005 /// If the related operand does not constrained Reg, this returns CurRC. 2006 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 2007 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 2008 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 2009 2010 /// Stores extra instruction information inline or allocates as ExtraInfo 2011 /// based on the number of pointers. 2012 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 2013 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 2014 MDNode *HeapAllocMarker, MDNode *PCSections, 2015 uint32_t CFIType); 2016 }; 2017 2018 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 2019 /// instruction rather than by pointer value. 2020 /// The hashing and equality testing functions ignore definitions so this is 2021 /// useful for CSE, etc. 2022 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 2023 static inline MachineInstr *getEmptyKey() { 2024 return nullptr; 2025 } 2026 2027 static inline MachineInstr *getTombstoneKey() { 2028 return reinterpret_cast<MachineInstr*>(-1); 2029 } 2030 2031 static unsigned getHashValue(const MachineInstr* const &MI); 2032 2033 static bool isEqual(const MachineInstr* const &LHS, 2034 const MachineInstr* const &RHS) { 2035 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 2036 LHS == getEmptyKey() || LHS == getTombstoneKey()) 2037 return LHS == RHS; 2038 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 2039 } 2040 }; 2041 2042 //===----------------------------------------------------------------------===// 2043 // Debugging Support 2044 2045 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 2046 MI.print(OS); 2047 return OS; 2048 } 2049 2050 } // end namespace llvm 2051 2052 #endif // LLVM_CODEGEN_MACHINEINSTR_H 2053