1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code for a function. This class contains a list of 10 // MachineBasicBlock instances that make up the current compiled function. 11 // 12 // This class also contains pointers to various classes which hold 13 // target-specific information about the generated code. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H 18 #define LLVM_CODEGEN_MACHINEFUNCTION_H 19 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/GraphTraits.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/ilist.h" 26 #include "llvm/ADT/iterator.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/IR/EHPersonalities.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Support/AtomicOrdering.h" 34 #include "llvm/Support/Compiler.h" 35 #include "llvm/Support/Recycler.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <memory> 40 #include <utility> 41 #include <variant> 42 #include <vector> 43 44 namespace llvm { 45 46 class BasicBlock; 47 class BlockAddress; 48 class DataLayout; 49 class DebugLoc; 50 struct DenormalMode; 51 class DIExpression; 52 class DILocalVariable; 53 class DILocation; 54 class Function; 55 class GISelChangeObserver; 56 class GlobalValue; 57 class LLVMTargetMachine; 58 class MachineConstantPool; 59 class MachineFrameInfo; 60 class MachineFunction; 61 class MachineJumpTableInfo; 62 class MachineModuleInfo; 63 class MachineRegisterInfo; 64 class MCContext; 65 class MCInstrDesc; 66 class MCSymbol; 67 class MCSection; 68 class Pass; 69 class PseudoSourceValueManager; 70 class raw_ostream; 71 class SlotIndexes; 72 class StringRef; 73 class TargetRegisterClass; 74 class TargetSubtargetInfo; 75 struct WasmEHFuncInfo; 76 struct WinEHFuncInfo; 77 78 template <> struct ilist_alloc_traits<MachineBasicBlock> { 79 void deleteNode(MachineBasicBlock *MBB); 80 }; 81 82 template <> struct ilist_callback_traits<MachineBasicBlock> { 83 void addNodeToList(MachineBasicBlock* N); 84 void removeNodeFromList(MachineBasicBlock* N); 85 86 template <class Iterator> 87 void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) { 88 assert(this == &OldList && "never transfer MBBs between functions"); 89 } 90 }; 91 92 /// MachineFunctionInfo - This class can be derived from and used by targets to 93 /// hold private target-specific information for each MachineFunction. Objects 94 /// of type are accessed/created with MF::getInfo and destroyed when the 95 /// MachineFunction is destroyed. 96 struct MachineFunctionInfo { 97 virtual ~MachineFunctionInfo(); 98 99 /// Factory function: default behavior is to call new using the 100 /// supplied allocator. 101 /// 102 /// This function can be overridden in a derive class. 103 template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo> 104 static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F, 105 const SubtargetTy *STI) { 106 return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI); 107 } 108 109 template <typename Ty> 110 static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) { 111 return new (Allocator.Allocate<Ty>()) Ty(MFI); 112 } 113 114 /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF. 115 /// This requires remapping MachineBasicBlock references from the original 116 /// parent to values in the new function. Targets may assume that virtual 117 /// register and frame index values are preserved in the new function. 118 virtual MachineFunctionInfo * 119 clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF, 120 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) 121 const { 122 return nullptr; 123 } 124 }; 125 126 /// Properties which a MachineFunction may have at a given point in time. 127 /// Each of these has checking code in the MachineVerifier, and passes can 128 /// require that a property be set. 129 class MachineFunctionProperties { 130 // Possible TODO: Allow targets to extend this (perhaps by allowing the 131 // constructor to specify the size of the bit vector) 132 // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be 133 // stated as the negative of "has vregs" 134 135 public: 136 // The properties are stated in "positive" form; i.e. a pass could require 137 // that the property hold, but not that it does not hold. 138 139 // Property descriptions: 140 // IsSSA: True when the machine function is in SSA form and virtual registers 141 // have a single def. 142 // NoPHIs: The machine function does not contain any PHI instruction. 143 // TracksLiveness: True when tracking register liveness accurately. 144 // While this property is set, register liveness information in basic block 145 // live-in lists and machine instruction operands (e.g. implicit defs) is 146 // accurate, kill flags are conservatively accurate (kill flag correctly 147 // indicates the last use of a register, an operand without kill flag may or 148 // may not be the last use of a register). This means it can be used to 149 // change the code in ways that affect the values in registers, for example 150 // by the register scavenger. 151 // When this property is cleared at a very late time, liveness is no longer 152 // reliable. 153 // NoVRegs: The machine function does not use any virtual registers. 154 // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic 155 // instructions have been legalized; i.e., all instructions are now one of: 156 // - generic and always legal (e.g., COPY) 157 // - target-specific 158 // - legal pre-isel generic instructions. 159 // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic 160 // virtual registers have been assigned to a register bank. 161 // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel 162 // generic instructions have been eliminated; i.e., all instructions are now 163 // target-specific or non-pre-isel generic instructions (e.g., COPY). 164 // Since only pre-isel generic instructions can have generic virtual register 165 // operands, this also means that all generic virtual registers have been 166 // constrained to virtual registers (assigned to register classes) and that 167 // all sizes attached to them have been eliminated. 168 // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it 169 // means that tied-def have been rewritten to meet the RegConstraint. 170 // FailsVerification: Means that the function is not expected to pass machine 171 // verification. This can be set by passes that introduce known problems that 172 // have not been fixed yet. 173 // TracksDebugUserValues: Without this property enabled, debug instructions 174 // such as DBG_VALUE are allowed to reference virtual registers even if those 175 // registers do not have a definition. With the property enabled virtual 176 // registers must only be used if they have a definition. This property 177 // allows earlier passes in the pipeline to skip updates of `DBG_VALUE` 178 // instructions to save compile time. 179 enum class Property : unsigned { 180 IsSSA, 181 NoPHIs, 182 TracksLiveness, 183 NoVRegs, 184 FailedISel, 185 Legalized, 186 RegBankSelected, 187 Selected, 188 TiedOpsRewritten, 189 FailsVerification, 190 TracksDebugUserValues, 191 LastProperty = TracksDebugUserValues, 192 }; 193 194 bool hasProperty(Property P) const { 195 return Properties[static_cast<unsigned>(P)]; 196 } 197 198 MachineFunctionProperties &set(Property P) { 199 Properties.set(static_cast<unsigned>(P)); 200 return *this; 201 } 202 203 MachineFunctionProperties &reset(Property P) { 204 Properties.reset(static_cast<unsigned>(P)); 205 return *this; 206 } 207 208 /// Reset all the properties. 209 MachineFunctionProperties &reset() { 210 Properties.reset(); 211 return *this; 212 } 213 214 MachineFunctionProperties &set(const MachineFunctionProperties &MFP) { 215 Properties |= MFP.Properties; 216 return *this; 217 } 218 219 MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) { 220 Properties.reset(MFP.Properties); 221 return *this; 222 } 223 224 // Returns true if all properties set in V (i.e. required by a pass) are set 225 // in this. 226 bool verifyRequiredProperties(const MachineFunctionProperties &V) const { 227 return !V.Properties.test(Properties); 228 } 229 230 /// Print the MachineFunctionProperties in human-readable form. 231 void print(raw_ostream &OS) const; 232 233 private: 234 BitVector Properties = 235 BitVector(static_cast<unsigned>(Property::LastProperty)+1); 236 }; 237 238 struct SEHHandler { 239 /// Filter or finally function. Null indicates a catch-all. 240 const Function *FilterOrFinally; 241 242 /// Address of block to recover at. Null for a finally handler. 243 const BlockAddress *RecoverBA; 244 }; 245 246 /// This structure is used to retain landing pad info for the current function. 247 struct LandingPadInfo { 248 MachineBasicBlock *LandingPadBlock; // Landing pad block. 249 SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke. 250 SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke. 251 SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad. 252 MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad. 253 std::vector<int> TypeIds; // List of type ids (filters negative). 254 255 explicit LandingPadInfo(MachineBasicBlock *MBB) 256 : LandingPadBlock(MBB) {} 257 }; 258 259 class LLVM_EXTERNAL_VISIBILITY MachineFunction { 260 Function &F; 261 const LLVMTargetMachine &Target; 262 const TargetSubtargetInfo *STI; 263 MCContext &Ctx; 264 MachineModuleInfo &MMI; 265 266 // RegInfo - Information about each register in use in the function. 267 MachineRegisterInfo *RegInfo; 268 269 // Used to keep track of target-specific per-machine-function information for 270 // the target implementation. 271 MachineFunctionInfo *MFInfo; 272 273 // Keep track of objects allocated on the stack. 274 MachineFrameInfo *FrameInfo; 275 276 // Keep track of constants which are spilled to memory 277 MachineConstantPool *ConstantPool; 278 279 // Keep track of jump tables for switch instructions 280 MachineJumpTableInfo *JumpTableInfo; 281 282 // Keep track of the function section. 283 MCSection *Section = nullptr; 284 285 // Catchpad unwind destination info for wasm EH. 286 // Keeps track of Wasm exception handling related data. This will be null for 287 // functions that aren't using a wasm EH personality. 288 WasmEHFuncInfo *WasmEHInfo = nullptr; 289 290 // Keeps track of Windows exception handling related data. This will be null 291 // for functions that aren't using a funclet-based EH personality. 292 WinEHFuncInfo *WinEHInfo = nullptr; 293 294 // Function-level unique numbering for MachineBasicBlocks. When a 295 // MachineBasicBlock is inserted into a MachineFunction is it automatically 296 // numbered and this vector keeps track of the mapping from ID's to MBB's. 297 std::vector<MachineBasicBlock*> MBBNumbering; 298 299 // Pool-allocate MachineFunction-lifetime and IR objects. 300 BumpPtrAllocator Allocator; 301 302 // Allocation management for instructions in function. 303 Recycler<MachineInstr> InstructionRecycler; 304 305 // Allocation management for operand arrays on instructions. 306 ArrayRecycler<MachineOperand> OperandRecycler; 307 308 // Allocation management for basic blocks in function. 309 Recycler<MachineBasicBlock> BasicBlockRecycler; 310 311 // List of machine basic blocks in function 312 using BasicBlockListType = ilist<MachineBasicBlock>; 313 BasicBlockListType BasicBlocks; 314 315 /// FunctionNumber - This provides a unique ID for each function emitted in 316 /// this translation unit. 317 /// 318 unsigned FunctionNumber; 319 320 /// Alignment - The alignment of the function. 321 Align Alignment; 322 323 /// ExposesReturnsTwice - True if the function calls setjmp or related 324 /// functions with attribute "returns twice", but doesn't have 325 /// the attribute itself. 326 /// This is used to limit optimizations which cannot reason 327 /// about the control flow of such functions. 328 bool ExposesReturnsTwice = false; 329 330 /// True if the function includes any inline assembly. 331 bool HasInlineAsm = false; 332 333 /// True if any WinCFI instruction have been emitted in this function. 334 bool HasWinCFI = false; 335 336 /// Current high-level properties of the IR of the function (e.g. is in SSA 337 /// form or whether registers have been allocated) 338 MachineFunctionProperties Properties; 339 340 // Allocation management for pseudo source values. 341 std::unique_ptr<PseudoSourceValueManager> PSVManager; 342 343 /// List of moves done by a function's prolog. Used to construct frame maps 344 /// by debug and exception handling consumers. 345 std::vector<MCCFIInstruction> FrameInstructions; 346 347 /// List of basic blocks immediately following calls to _setjmp. Used to 348 /// construct a table of valid longjmp targets for Windows Control Flow Guard. 349 std::vector<MCSymbol *> LongjmpTargets; 350 351 /// List of basic blocks that are the target of catchrets. Used to construct 352 /// a table of valid targets for Windows EHCont Guard. 353 std::vector<MCSymbol *> CatchretTargets; 354 355 /// \name Exception Handling 356 /// \{ 357 358 /// List of LandingPadInfo describing the landing pad information. 359 std::vector<LandingPadInfo> LandingPads; 360 361 /// Map a landing pad's EH symbol to the call site indexes. 362 DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap; 363 364 /// Map a landing pad to its index. 365 DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap; 366 367 /// Map of invoke call site index values to associated begin EH_LABEL. 368 DenseMap<MCSymbol*, unsigned> CallSiteMap; 369 370 /// CodeView label annotations. 371 std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations; 372 373 bool CallsEHReturn = false; 374 bool CallsUnwindInit = false; 375 bool HasEHCatchret = false; 376 bool HasEHScopes = false; 377 bool HasEHFunclets = false; 378 bool IsOutlined = false; 379 380 /// BBID to assign to the next basic block of this function. 381 unsigned NextBBID = 0; 382 383 /// Section Type for basic blocks, only relevant with basic block sections. 384 BasicBlockSection BBSectionsType = BasicBlockSection::None; 385 386 /// List of C++ TypeInfo used. 387 std::vector<const GlobalValue *> TypeInfos; 388 389 /// List of typeids encoding filters used. 390 std::vector<unsigned> FilterIds; 391 392 /// List of the indices in FilterIds corresponding to filter terminators. 393 std::vector<unsigned> FilterEnds; 394 395 EHPersonality PersonalityTypeCache = EHPersonality::Unknown; 396 397 /// \} 398 399 /// Clear all the members of this MachineFunction, but the ones used 400 /// to initialize again the MachineFunction. 401 /// More specifically, this deallocates all the dynamically allocated 402 /// objects and get rid of all the XXXInfo data structure, but keep 403 /// unchanged the references to Fn, Target, MMI, and FunctionNumber. 404 void clear(); 405 /// Allocate and initialize the different members. 406 /// In particular, the XXXInfo data structure. 407 /// \pre Fn, Target, MMI, and FunctionNumber are properly set. 408 void init(); 409 410 public: 411 /// Description of the location of a variable whose Address is valid and 412 /// unchanging during function execution. The Address may be: 413 /// * A stack index, which can be negative for fixed stack objects. 414 /// * A MCRegister, whose entry value contains the address of the variable. 415 class VariableDbgInfo { 416 std::variant<int, MCRegister> Address; 417 418 public: 419 const DILocalVariable *Var; 420 const DIExpression *Expr; 421 const DILocation *Loc; 422 423 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 424 int Slot, const DILocation *Loc) 425 : Address(Slot), Var(Var), Expr(Expr), Loc(Loc) {} 426 427 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 428 MCRegister EntryValReg, const DILocation *Loc) 429 : Address(EntryValReg), Var(Var), Expr(Expr), Loc(Loc) {} 430 431 /// Return true if this variable is in a stack slot. 432 bool inStackSlot() const { return std::holds_alternative<int>(Address); } 433 434 /// Return true if this variable is in the entry value of a register. 435 bool inEntryValueRegister() const { 436 return std::holds_alternative<MCRegister>(Address); 437 } 438 439 /// Returns the stack slot of this variable, assuming `inStackSlot()` is 440 /// true. 441 int getStackSlot() const { return std::get<int>(Address); } 442 443 /// Returns the MCRegister of this variable, assuming 444 /// `inEntryValueRegister()` is true. 445 MCRegister getEntryValueRegister() const { 446 return std::get<MCRegister>(Address); 447 } 448 449 /// Updates the stack slot of this variable, assuming `inStackSlot()` is 450 /// true. 451 void updateStackSlot(int NewSlot) { 452 assert(inStackSlot()); 453 Address = NewSlot; 454 } 455 }; 456 457 class Delegate { 458 virtual void anchor(); 459 460 public: 461 virtual ~Delegate() = default; 462 /// Callback after an insertion. This should not modify the MI directly. 463 virtual void MF_HandleInsertion(MachineInstr &MI) = 0; 464 /// Callback before a removal. This should not modify the MI directly. 465 virtual void MF_HandleRemoval(MachineInstr &MI) = 0; 466 /// Callback before changing MCInstrDesc. This should not modify the MI 467 /// directly. 468 virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) { 469 return; 470 } 471 }; 472 473 /// Structure used to represent pair of argument number after call lowering 474 /// and register used to transfer that argument. 475 /// For now we support only cases when argument is transferred through one 476 /// register. 477 struct ArgRegPair { 478 Register Reg; 479 uint16_t ArgNo; 480 ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) { 481 assert(Arg < (1 << 16) && "Arg out of range"); 482 } 483 }; 484 /// Vector of call argument and its forwarding register. 485 using CallSiteInfo = SmallVector<ArgRegPair, 1>; 486 using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>; 487 488 private: 489 Delegate *TheDelegate = nullptr; 490 GISelChangeObserver *Observer = nullptr; 491 492 using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>; 493 /// Map a call instruction to call site arguments forwarding info. 494 CallSiteInfoMap CallSitesInfo; 495 496 /// A helper function that returns call site info for a give call 497 /// instruction if debug entry value support is enabled. 498 CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI); 499 500 // Callbacks for insertion and removal. 501 void handleInsertion(MachineInstr &MI); 502 void handleRemoval(MachineInstr &MI); 503 friend struct ilist_traits<MachineInstr>; 504 505 public: 506 // Need to be accessed from MachineInstr::setDesc. 507 void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID); 508 509 using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>; 510 VariableDbgInfoMapTy VariableDbgInfos; 511 512 /// A count of how many instructions in the function have had numbers 513 /// assigned to them. Used for debug value tracking, to determine the 514 /// next instruction number. 515 unsigned DebugInstrNumberingCount = 0; 516 517 /// Set value of DebugInstrNumberingCount field. Avoid using this unless 518 /// you're deserializing this data. 519 void setDebugInstrNumberingCount(unsigned Num); 520 521 /// Pair of instruction number and operand number. 522 using DebugInstrOperandPair = std::pair<unsigned, unsigned>; 523 524 /// Replacement definition for a debug instruction reference. Made up of a 525 /// source instruction / operand pair, destination pair, and a qualifying 526 /// subregister indicating what bits in the operand make up the substitution. 527 // For example, a debug user 528 /// of %1: 529 /// %0:gr32 = someinst, debug-instr-number 1 530 /// %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2 531 /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is 532 /// the subregister number for some_16_bit_subreg. 533 class DebugSubstitution { 534 public: 535 DebugInstrOperandPair Src; ///< Source instruction / operand pair. 536 DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair. 537 unsigned Subreg; ///< Qualifier for which part of Dest is read. 538 539 DebugSubstitution(const DebugInstrOperandPair &Src, 540 const DebugInstrOperandPair &Dest, unsigned Subreg) 541 : Src(Src), Dest(Dest), Subreg(Subreg) {} 542 543 /// Order only by source instruction / operand pair: there should never 544 /// be duplicate entries for the same source in any collection. 545 bool operator<(const DebugSubstitution &Other) const { 546 return Src < Other.Src; 547 } 548 }; 549 550 /// Debug value substitutions: a collection of DebugSubstitution objects, 551 /// recording changes in where a value is defined. For example, when one 552 /// instruction is substituted for another. Keeping a record allows recovery 553 /// of variable locations after compilation finishes. 554 SmallVector<DebugSubstitution, 8> DebugValueSubstitutions; 555 556 /// Location of a PHI instruction that is also a debug-info variable value, 557 /// for the duration of register allocation. Loaded by the PHI-elimination 558 /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with 559 /// maintenance applied by intermediate passes that edit registers (such as 560 /// coalescing and the allocator passes). 561 class DebugPHIRegallocPos { 562 public: 563 MachineBasicBlock *MBB; ///< Block where this PHI was originally located. 564 Register Reg; ///< VReg where the control-flow-merge happens. 565 unsigned SubReg; ///< Optional subreg qualifier within Reg. 566 DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg) 567 : MBB(MBB), Reg(Reg), SubReg(SubReg) {} 568 }; 569 570 /// Map of debug instruction numbers to the position of their PHI instructions 571 /// during register allocation. See DebugPHIRegallocPos. 572 DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions; 573 574 /// Flag for whether this function contains DBG_VALUEs (false) or 575 /// DBG_INSTR_REF (true). 576 bool UseDebugInstrRef = false; 577 578 /// Create a substitution between one <instr,operand> value to a different, 579 /// new value. 580 void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, 581 unsigned SubReg = 0); 582 583 /// Create substitutions for any tracked values in \p Old, to point at 584 /// \p New. Needed when we re-create an instruction during optimization, 585 /// which has the same signature (i.e., def operands in the same place) but 586 /// a modified instruction type, flags, or otherwise. An example: X86 moves 587 /// are sometimes transformed into equivalent LEAs. 588 /// If the two instructions are not the same opcode, limit which operands to 589 /// examine for substitutions to the first N operands by setting 590 /// \p MaxOperand. 591 void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, 592 unsigned MaxOperand = UINT_MAX); 593 594 /// Find the underlying defining instruction / operand for a COPY instruction 595 /// while in SSA form. Copies do not actually define values -- they move them 596 /// between registers. Labelling a COPY-like instruction with an instruction 597 /// number is to be avoided as it makes value numbers non-unique later in 598 /// compilation. This method follows the definition chain for any sequence of 599 /// COPY-like instructions to find whatever non-COPY-like instruction defines 600 /// the copied value; or for parameters, creates a DBG_PHI on entry. 601 /// May insert instructions into the entry block! 602 /// \p MI The copy-like instruction to salvage. 603 /// \p DbgPHICache A container to cache already-solved COPYs. 604 /// \returns An instruction/operand pair identifying the defining value. 605 DebugInstrOperandPair 606 salvageCopySSA(MachineInstr &MI, 607 DenseMap<Register, DebugInstrOperandPair> &DbgPHICache); 608 609 DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI); 610 611 /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF 612 /// instructions where we only knew the vreg of the value they use, not the 613 /// instruction that defines that vreg. Once isel finishes, we should have 614 /// enough information for every DBG_INSTR_REF to point at an instruction 615 /// (or DBG_PHI). 616 void finalizeDebugInstrRefs(); 617 618 /// Determine whether, in the current machine configuration, we should use 619 /// instruction referencing or not. 620 bool shouldUseDebugInstrRef() const; 621 622 /// Returns true if the function's variable locations are tracked with 623 /// instruction referencing. 624 bool useDebugInstrRef() const; 625 626 /// Set whether this function will use instruction referencing or not. 627 void setUseDebugInstrRef(bool UseInstrRef); 628 629 /// A reserved operand number representing the instructions memory operand, 630 /// for instructions that have a stack spill fused into them. 631 const static unsigned int DebugOperandMemNumber; 632 633 MachineFunction(Function &F, const LLVMTargetMachine &Target, 634 const TargetSubtargetInfo &STI, unsigned FunctionNum, 635 MachineModuleInfo &MMI); 636 MachineFunction(const MachineFunction &) = delete; 637 MachineFunction &operator=(const MachineFunction &) = delete; 638 ~MachineFunction(); 639 640 /// Reset the instance as if it was just created. 641 void reset() { 642 clear(); 643 init(); 644 } 645 646 /// Reset the currently registered delegate - otherwise assert. 647 void resetDelegate(Delegate *delegate) { 648 assert(TheDelegate == delegate && 649 "Only the current delegate can perform reset!"); 650 TheDelegate = nullptr; 651 } 652 653 /// Set the delegate. resetDelegate must be called before attempting 654 /// to set. 655 void setDelegate(Delegate *delegate) { 656 assert(delegate && !TheDelegate && 657 "Attempted to set delegate to null, or to change it without " 658 "first resetting it!"); 659 660 TheDelegate = delegate; 661 } 662 663 void setObserver(GISelChangeObserver *O) { Observer = O; } 664 665 GISelChangeObserver *getObserver() const { return Observer; } 666 667 MachineModuleInfo &getMMI() const { return MMI; } 668 MCContext &getContext() const { return Ctx; } 669 670 /// Returns the Section this function belongs to. 671 MCSection *getSection() const { return Section; } 672 673 /// Indicates the Section this function belongs to. 674 void setSection(MCSection *S) { Section = S; } 675 676 PseudoSourceValueManager &getPSVManager() const { return *PSVManager; } 677 678 /// Return the DataLayout attached to the Module associated to this MF. 679 const DataLayout &getDataLayout() const; 680 681 /// Return the LLVM function that this machine code represents 682 Function &getFunction() { return F; } 683 684 /// Return the LLVM function that this machine code represents 685 const Function &getFunction() const { return F; } 686 687 /// getName - Return the name of the corresponding LLVM function. 688 StringRef getName() const; 689 690 /// getFunctionNumber - Return a unique ID for the current function. 691 unsigned getFunctionNumber() const { return FunctionNumber; } 692 693 /// Returns true if this function has basic block sections enabled. 694 bool hasBBSections() const { 695 return (BBSectionsType == BasicBlockSection::All || 696 BBSectionsType == BasicBlockSection::List || 697 BBSectionsType == BasicBlockSection::Preset); 698 } 699 700 /// Returns true if basic block labels are to be generated for this function. 701 bool hasBBLabels() const { 702 return BBSectionsType == BasicBlockSection::Labels; 703 } 704 705 void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; } 706 707 /// Assign IsBeginSection IsEndSection fields for basic blocks in this 708 /// function. 709 void assignBeginEndSections(); 710 711 /// getTarget - Return the target machine this machine code is compiled with 712 const LLVMTargetMachine &getTarget() const { return Target; } 713 714 /// getSubtarget - Return the subtarget for which this machine code is being 715 /// compiled. 716 const TargetSubtargetInfo &getSubtarget() const { return *STI; } 717 718 /// getSubtarget - This method returns a pointer to the specified type of 719 /// TargetSubtargetInfo. In debug builds, it verifies that the object being 720 /// returned is of the correct type. 721 template<typename STC> const STC &getSubtarget() const { 722 return *static_cast<const STC *>(STI); 723 } 724 725 /// getRegInfo - Return information about the registers currently in use. 726 MachineRegisterInfo &getRegInfo() { return *RegInfo; } 727 const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } 728 729 /// getFrameInfo - Return the frame info object for the current function. 730 /// This object contains information about objects allocated on the stack 731 /// frame of the current function in an abstract way. 732 MachineFrameInfo &getFrameInfo() { return *FrameInfo; } 733 const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; } 734 735 /// getJumpTableInfo - Return the jump table info object for the current 736 /// function. This object contains information about jump tables in the 737 /// current function. If the current function has no jump tables, this will 738 /// return null. 739 const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } 740 MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } 741 742 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 743 /// does already exist, allocate one. 744 MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); 745 746 /// getConstantPool - Return the constant pool object for the current 747 /// function. 748 MachineConstantPool *getConstantPool() { return ConstantPool; } 749 const MachineConstantPool *getConstantPool() const { return ConstantPool; } 750 751 /// getWasmEHFuncInfo - Return information about how the current function uses 752 /// Wasm exception handling. Returns null for functions that don't use wasm 753 /// exception handling. 754 const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; } 755 WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; } 756 757 /// getWinEHFuncInfo - Return information about how the current function uses 758 /// Windows exception handling. Returns null for functions that don't use 759 /// funclets for exception handling. 760 const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; } 761 WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; } 762 763 /// getAlignment - Return the alignment of the function. 764 Align getAlignment() const { return Alignment; } 765 766 /// setAlignment - Set the alignment of the function. 767 void setAlignment(Align A) { Alignment = A; } 768 769 /// ensureAlignment - Make sure the function is at least A bytes aligned. 770 void ensureAlignment(Align A) { 771 if (Alignment < A) 772 Alignment = A; 773 } 774 775 /// exposesReturnsTwice - Returns true if the function calls setjmp or 776 /// any other similar functions with attribute "returns twice" without 777 /// having the attribute itself. 778 bool exposesReturnsTwice() const { 779 return ExposesReturnsTwice; 780 } 781 782 /// setCallsSetJmp - Set a flag that indicates if there's a call to 783 /// a "returns twice" function. 784 void setExposesReturnsTwice(bool B) { 785 ExposesReturnsTwice = B; 786 } 787 788 /// Returns true if the function contains any inline assembly. 789 bool hasInlineAsm() const { 790 return HasInlineAsm; 791 } 792 793 /// Set a flag that indicates that the function contains inline assembly. 794 void setHasInlineAsm(bool B) { 795 HasInlineAsm = B; 796 } 797 798 bool hasWinCFI() const { 799 return HasWinCFI; 800 } 801 void setHasWinCFI(bool v) { HasWinCFI = v; } 802 803 /// True if this function needs frame moves for debug or exceptions. 804 bool needsFrameMoves() const; 805 806 /// Get the function properties 807 const MachineFunctionProperties &getProperties() const { return Properties; } 808 MachineFunctionProperties &getProperties() { return Properties; } 809 810 /// getInfo - Keep track of various per-function pieces of information for 811 /// backends that would like to do so. 812 /// 813 template<typename Ty> 814 Ty *getInfo() { 815 return static_cast<Ty*>(MFInfo); 816 } 817 818 template<typename Ty> 819 const Ty *getInfo() const { 820 return static_cast<const Ty *>(MFInfo); 821 } 822 823 template <typename Ty> Ty *cloneInfo(const Ty &Old) { 824 assert(!MFInfo); 825 MFInfo = Ty::template create<Ty>(Allocator, Old); 826 return static_cast<Ty *>(MFInfo); 827 } 828 829 /// Initialize the target specific MachineFunctionInfo 830 void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI); 831 832 MachineFunctionInfo *cloneInfoFrom( 833 const MachineFunction &OrigMF, 834 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) { 835 assert(!MFInfo && "new function already has MachineFunctionInfo"); 836 if (!OrigMF.MFInfo) 837 return nullptr; 838 return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB); 839 } 840 841 /// Returns the denormal handling type for the default rounding mode of the 842 /// function. 843 DenormalMode getDenormalMode(const fltSemantics &FPType) const; 844 845 /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they 846 /// are inserted into the machine function. The block number for a machine 847 /// basic block can be found by using the MBB::getNumber method, this method 848 /// provides the inverse mapping. 849 MachineBasicBlock *getBlockNumbered(unsigned N) const { 850 assert(N < MBBNumbering.size() && "Illegal block number"); 851 assert(MBBNumbering[N] && "Block was removed from the machine function!"); 852 return MBBNumbering[N]; 853 } 854 855 /// Should we be emitting segmented stack stuff for the function 856 bool shouldSplitStack() const; 857 858 /// getNumBlockIDs - Return the number of MBB ID's allocated. 859 unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } 860 861 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 862 /// recomputes them. This guarantees that the MBB numbers are sequential, 863 /// dense, and match the ordering of the blocks within the function. If a 864 /// specific MachineBasicBlock is specified, only that block and those after 865 /// it are renumbered. 866 void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr); 867 868 /// print - Print out the MachineFunction in a format suitable for debugging 869 /// to the specified stream. 870 void print(raw_ostream &OS, const SlotIndexes* = nullptr) const; 871 872 /// viewCFG - This function is meant for use from the debugger. You can just 873 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 874 /// program, displaying the CFG of the current function with the code for each 875 /// basic block inside. This depends on there being a 'dot' and 'gv' program 876 /// in your path. 877 void viewCFG() const; 878 879 /// viewCFGOnly - This function is meant for use from the debugger. It works 880 /// just like viewCFG, but it does not include the contents of basic blocks 881 /// into the nodes, just the label. If you are only interested in the CFG 882 /// this can make the graph smaller. 883 /// 884 void viewCFGOnly() const; 885 886 /// dump - Print the current MachineFunction to cerr, useful for debugger use. 887 void dump() const; 888 889 /// Run the current MachineFunction through the machine code verifier, useful 890 /// for debugger use. 891 /// \returns true if no problems were found. 892 bool verify(Pass *p = nullptr, const char *Banner = nullptr, 893 bool AbortOnError = true) const; 894 895 /// Run the current MachineFunction through the machine code verifier, useful 896 /// for debugger use. 897 /// \returns true if no problems were found. 898 bool verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 899 const char *Banner = nullptr, bool AbortOnError = true) const; 900 901 // Provide accessors for the MachineBasicBlock list... 902 using iterator = BasicBlockListType::iterator; 903 using const_iterator = BasicBlockListType::const_iterator; 904 using const_reverse_iterator = BasicBlockListType::const_reverse_iterator; 905 using reverse_iterator = BasicBlockListType::reverse_iterator; 906 907 /// Support for MachineBasicBlock::getNextNode(). 908 static BasicBlockListType MachineFunction::* 909 getSublistAccess(MachineBasicBlock *) { 910 return &MachineFunction::BasicBlocks; 911 } 912 913 /// addLiveIn - Add the specified physical register as a live-in value and 914 /// create a corresponding virtual register for it. 915 Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC); 916 917 //===--------------------------------------------------------------------===// 918 // BasicBlock accessor functions. 919 // 920 iterator begin() { return BasicBlocks.begin(); } 921 const_iterator begin() const { return BasicBlocks.begin(); } 922 iterator end () { return BasicBlocks.end(); } 923 const_iterator end () const { return BasicBlocks.end(); } 924 925 reverse_iterator rbegin() { return BasicBlocks.rbegin(); } 926 const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } 927 reverse_iterator rend () { return BasicBlocks.rend(); } 928 const_reverse_iterator rend () const { return BasicBlocks.rend(); } 929 930 unsigned size() const { return (unsigned)BasicBlocks.size();} 931 bool empty() const { return BasicBlocks.empty(); } 932 const MachineBasicBlock &front() const { return BasicBlocks.front(); } 933 MachineBasicBlock &front() { return BasicBlocks.front(); } 934 const MachineBasicBlock & back() const { return BasicBlocks.back(); } 935 MachineBasicBlock & back() { return BasicBlocks.back(); } 936 937 void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } 938 void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } 939 void insert(iterator MBBI, MachineBasicBlock *MBB) { 940 BasicBlocks.insert(MBBI, MBB); 941 } 942 void splice(iterator InsertPt, iterator MBBI) { 943 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); 944 } 945 void splice(iterator InsertPt, MachineBasicBlock *MBB) { 946 BasicBlocks.splice(InsertPt, BasicBlocks, MBB); 947 } 948 void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { 949 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); 950 } 951 952 void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } 953 void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); } 954 void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } 955 void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); } 956 957 template <typename Comp> 958 void sort(Comp comp) { 959 BasicBlocks.sort(comp); 960 } 961 962 /// Return the number of \p MachineInstrs in this \p MachineFunction. 963 unsigned getInstructionCount() const { 964 unsigned InstrCount = 0; 965 for (const MachineBasicBlock &MBB : BasicBlocks) 966 InstrCount += MBB.size(); 967 return InstrCount; 968 } 969 970 //===--------------------------------------------------------------------===// 971 // Internal functions used to automatically number MachineBasicBlocks 972 973 /// Adds the MBB to the internal numbering. Returns the unique number 974 /// assigned to the MBB. 975 unsigned addToMBBNumbering(MachineBasicBlock *MBB) { 976 MBBNumbering.push_back(MBB); 977 return (unsigned)MBBNumbering.size()-1; 978 } 979 980 /// removeFromMBBNumbering - Remove the specific machine basic block from our 981 /// tracker, this is only really to be used by the MachineBasicBlock 982 /// implementation. 983 void removeFromMBBNumbering(unsigned N) { 984 assert(N < MBBNumbering.size() && "Illegal basic block #"); 985 MBBNumbering[N] = nullptr; 986 } 987 988 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 989 /// of `new MachineInstr'. 990 MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, 991 bool NoImplicit = false); 992 993 /// Create a new MachineInstr which is a copy of \p Orig, identical in all 994 /// ways except the instruction has no parent, prev, or next. Bundling flags 995 /// are reset. 996 /// 997 /// Note: Clones a single instruction, not whole instruction bundles. 998 /// Does not perform target specific adjustments; consider using 999 /// TargetInstrInfo::duplicate() instead. 1000 MachineInstr *CloneMachineInstr(const MachineInstr *Orig); 1001 1002 /// Clones instruction or the whole instruction bundle \p Orig and insert 1003 /// into \p MBB before \p InsertBefore. 1004 /// 1005 /// Note: Does not perform target specific adjustments; consider using 1006 /// TargetInstrInfo::duplicate() intead. 1007 MachineInstr & 1008 cloneMachineInstrBundle(MachineBasicBlock &MBB, 1009 MachineBasicBlock::iterator InsertBefore, 1010 const MachineInstr &Orig); 1011 1012 /// DeleteMachineInstr - Delete the given MachineInstr. 1013 void deleteMachineInstr(MachineInstr *MI); 1014 1015 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 1016 /// instead of `new MachineBasicBlock'. Sets `MachineBasicBlock::BBID` if 1017 /// basic-block-sections is enabled for the function. 1018 MachineBasicBlock * 1019 CreateMachineBasicBlock(const BasicBlock *BB = nullptr, 1020 std::optional<UniqueBBID> BBID = std::nullopt); 1021 1022 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 1023 void deleteMachineBasicBlock(MachineBasicBlock *MBB); 1024 1025 /// getMachineMemOperand - Allocate a new MachineMemOperand. 1026 /// MachineMemOperands are owned by the MachineFunction and need not be 1027 /// explicitly deallocated. 1028 MachineMemOperand *getMachineMemOperand( 1029 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 1030 Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), 1031 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1032 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1033 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1034 1035 MachineMemOperand *getMachineMemOperand( 1036 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 1037 Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), 1038 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1039 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1040 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1041 1042 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1043 /// an existing one, adjusting by an offset and using the given size. 1044 /// MachineMemOperands are owned by the MachineFunction and need not be 1045 /// explicitly deallocated. 1046 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1047 int64_t Offset, LLT Ty); 1048 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1049 int64_t Offset, uint64_t Size) { 1050 return getMachineMemOperand( 1051 MMO, Offset, Size == ~UINT64_C(0) ? LLT() : LLT::scalar(8 * Size)); 1052 } 1053 1054 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1055 /// an existing one, replacing only the MachinePointerInfo and size. 1056 /// MachineMemOperands are owned by the MachineFunction and need not be 1057 /// explicitly deallocated. 1058 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1059 const MachinePointerInfo &PtrInfo, 1060 uint64_t Size); 1061 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1062 const MachinePointerInfo &PtrInfo, 1063 LLT Ty); 1064 1065 /// Allocate a new MachineMemOperand by copying an existing one, 1066 /// replacing only AliasAnalysis information. MachineMemOperands are owned 1067 /// by the MachineFunction and need not be explicitly deallocated. 1068 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1069 const AAMDNodes &AAInfo); 1070 1071 /// Allocate a new MachineMemOperand by copying an existing one, 1072 /// replacing the flags. MachineMemOperands are owned 1073 /// by the MachineFunction and need not be explicitly deallocated. 1074 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1075 MachineMemOperand::Flags Flags); 1076 1077 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 1078 1079 /// Allocate an array of MachineOperands. This is only intended for use by 1080 /// internal MachineInstr functions. 1081 MachineOperand *allocateOperandArray(OperandCapacity Cap) { 1082 return OperandRecycler.allocate(Cap, Allocator); 1083 } 1084 1085 /// Dellocate an array of MachineOperands and recycle the memory. This is 1086 /// only intended for use by internal MachineInstr functions. 1087 /// Cap must be the same capacity that was used to allocate the array. 1088 void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { 1089 OperandRecycler.deallocate(Cap, Array); 1090 } 1091 1092 /// Allocate and initialize a register mask with @p NumRegister bits. 1093 uint32_t *allocateRegMask(); 1094 1095 ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask); 1096 1097 /// Allocate and construct an extra info structure for a `MachineInstr`. 1098 /// 1099 /// This is allocated on the function's allocator and so lives the life of 1100 /// the function. 1101 MachineInstr::ExtraInfo *createMIExtraInfo( 1102 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr, 1103 MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr, 1104 MDNode *PCSections = nullptr, uint32_t CFIType = 0); 1105 1106 /// Allocate a string and populate it with the given external symbol name. 1107 const char *createExternalSymbolName(StringRef Name); 1108 1109 //===--------------------------------------------------------------------===// 1110 // Label Manipulation. 1111 1112 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 1113 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 1114 /// normal 'L' label is returned. 1115 MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, 1116 bool isLinkerPrivate = false) const; 1117 1118 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 1119 /// base. 1120 MCSymbol *getPICBaseSymbol() const; 1121 1122 /// Returns a reference to a list of cfi instructions in the function's 1123 /// prologue. Used to construct frame maps for debug and exception handling 1124 /// comsumers. 1125 const std::vector<MCCFIInstruction> &getFrameInstructions() const { 1126 return FrameInstructions; 1127 } 1128 1129 [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst); 1130 1131 /// Returns a reference to a list of symbols immediately following calls to 1132 /// _setjmp in the function. Used to construct the longjmp target table used 1133 /// by Windows Control Flow Guard. 1134 const std::vector<MCSymbol *> &getLongjmpTargets() const { 1135 return LongjmpTargets; 1136 } 1137 1138 /// Add the specified symbol to the list of valid longjmp targets for Windows 1139 /// Control Flow Guard. 1140 void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); } 1141 1142 /// Returns a reference to a list of symbols that we have catchrets. 1143 /// Used to construct the catchret target table used by Windows EHCont Guard. 1144 const std::vector<MCSymbol *> &getCatchretTargets() const { 1145 return CatchretTargets; 1146 } 1147 1148 /// Add the specified symbol to the list of valid catchret targets for Windows 1149 /// EHCont Guard. 1150 void addCatchretTarget(MCSymbol *Target) { 1151 CatchretTargets.push_back(Target); 1152 } 1153 1154 /// \name Exception Handling 1155 /// \{ 1156 1157 bool callsEHReturn() const { return CallsEHReturn; } 1158 void setCallsEHReturn(bool b) { CallsEHReturn = b; } 1159 1160 bool callsUnwindInit() const { return CallsUnwindInit; } 1161 void setCallsUnwindInit(bool b) { CallsUnwindInit = b; } 1162 1163 bool hasEHCatchret() const { return HasEHCatchret; } 1164 void setHasEHCatchret(bool V) { HasEHCatchret = V; } 1165 1166 bool hasEHScopes() const { return HasEHScopes; } 1167 void setHasEHScopes(bool V) { HasEHScopes = V; } 1168 1169 bool hasEHFunclets() const { return HasEHFunclets; } 1170 void setHasEHFunclets(bool V) { HasEHFunclets = V; } 1171 1172 bool isOutlined() const { return IsOutlined; } 1173 void setIsOutlined(bool V) { IsOutlined = V; } 1174 1175 /// Find or create an LandingPadInfo for the specified MachineBasicBlock. 1176 LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad); 1177 1178 /// Return a reference to the landing pad info for the current function. 1179 const std::vector<LandingPadInfo> &getLandingPads() const { 1180 return LandingPads; 1181 } 1182 1183 /// Provide the begin and end labels of an invoke style call and associate it 1184 /// with a try landing pad block. 1185 void addInvoke(MachineBasicBlock *LandingPad, 1186 MCSymbol *BeginLabel, MCSymbol *EndLabel); 1187 1188 /// Add a new panding pad, and extract the exception handling information from 1189 /// the landingpad instruction. Returns the label ID for the landing pad 1190 /// entry. 1191 MCSymbol *addLandingPad(MachineBasicBlock *LandingPad); 1192 1193 /// Return the type id for the specified typeinfo. This is function wide. 1194 unsigned getTypeIDFor(const GlobalValue *TI); 1195 1196 /// Return the id of the filter encoded by TyIds. This is function wide. 1197 int getFilterIDFor(ArrayRef<unsigned> TyIds); 1198 1199 /// Map the landing pad's EH symbol to the call site indexes. 1200 void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites); 1201 1202 /// Return if there is any wasm exception handling. 1203 bool hasAnyWasmLandingPadIndex() const { 1204 return !WasmLPadToIndexMap.empty(); 1205 } 1206 1207 /// Map the landing pad to its index. Used for Wasm exception handling. 1208 void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) { 1209 WasmLPadToIndexMap[LPad] = Index; 1210 } 1211 1212 /// Returns true if the landing pad has an associate index in wasm EH. 1213 bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1214 return WasmLPadToIndexMap.count(LPad); 1215 } 1216 1217 /// Get the index in wasm EH for a given landing pad. 1218 unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1219 assert(hasWasmLandingPadIndex(LPad)); 1220 return WasmLPadToIndexMap.lookup(LPad); 1221 } 1222 1223 bool hasAnyCallSiteLandingPad() const { 1224 return !LPadToCallSiteMap.empty(); 1225 } 1226 1227 /// Get the call site indexes for a landing pad EH symbol. 1228 SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) { 1229 assert(hasCallSiteLandingPad(Sym) && 1230 "missing call site number for landing pad!"); 1231 return LPadToCallSiteMap[Sym]; 1232 } 1233 1234 /// Return true if the landing pad Eh symbol has an associated call site. 1235 bool hasCallSiteLandingPad(MCSymbol *Sym) { 1236 return !LPadToCallSiteMap[Sym].empty(); 1237 } 1238 1239 bool hasAnyCallSiteLabel() const { 1240 return !CallSiteMap.empty(); 1241 } 1242 1243 /// Map the begin label for a call site. 1244 void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) { 1245 CallSiteMap[BeginLabel] = Site; 1246 } 1247 1248 /// Get the call site number for a begin label. 1249 unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1250 assert(hasCallSiteBeginLabel(BeginLabel) && 1251 "Missing call site number for EH_LABEL!"); 1252 return CallSiteMap.lookup(BeginLabel); 1253 } 1254 1255 /// Return true if the begin label has a call site number associated with it. 1256 bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1257 return CallSiteMap.count(BeginLabel); 1258 } 1259 1260 /// Record annotations associated with a particular label. 1261 void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) { 1262 CodeViewAnnotations.push_back({Label, MD}); 1263 } 1264 1265 ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const { 1266 return CodeViewAnnotations; 1267 } 1268 1269 /// Return a reference to the C++ typeinfo for the current function. 1270 const std::vector<const GlobalValue *> &getTypeInfos() const { 1271 return TypeInfos; 1272 } 1273 1274 /// Return a reference to the typeids encoding filters used in the current 1275 /// function. 1276 const std::vector<unsigned> &getFilterIds() const { 1277 return FilterIds; 1278 } 1279 1280 /// \} 1281 1282 /// Collect information used to emit debugging information of a variable in a 1283 /// stack slot. 1284 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1285 int Slot, const DILocation *Loc) { 1286 VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc); 1287 } 1288 1289 /// Collect information used to emit debugging information of a variable in 1290 /// the entry value of a register. 1291 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1292 MCRegister Reg, const DILocation *Loc) { 1293 VariableDbgInfos.emplace_back(Var, Expr, Reg, Loc); 1294 } 1295 1296 VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; } 1297 const VariableDbgInfoMapTy &getVariableDbgInfo() const { 1298 return VariableDbgInfos; 1299 } 1300 1301 /// Returns the collection of variables for which we have debug info and that 1302 /// have been assigned a stack slot. 1303 auto getInStackSlotVariableDbgInfo() { 1304 return make_filter_range(getVariableDbgInfo(), [](auto &VarInfo) { 1305 return VarInfo.inStackSlot(); 1306 }); 1307 } 1308 1309 /// Returns the collection of variables for which we have debug info and that 1310 /// have been assigned a stack slot. 1311 auto getInStackSlotVariableDbgInfo() const { 1312 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1313 return VarInfo.inStackSlot(); 1314 }); 1315 } 1316 1317 /// Returns the collection of variables for which we have debug info and that 1318 /// have been assigned an entry value register. 1319 auto getEntryValueVariableDbgInfo() const { 1320 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1321 return VarInfo.inEntryValueRegister(); 1322 }); 1323 } 1324 1325 /// Start tracking the arguments passed to the call \p CallI. 1326 void addCallArgsForwardingRegs(const MachineInstr *CallI, 1327 CallSiteInfoImpl &&CallInfo) { 1328 assert(CallI->isCandidateForCallSiteEntry()); 1329 bool Inserted = 1330 CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second; 1331 (void)Inserted; 1332 assert(Inserted && "Call site info not unique"); 1333 } 1334 1335 const CallSiteInfoMap &getCallSitesInfo() const { 1336 return CallSitesInfo; 1337 } 1338 1339 /// Following functions update call site info. They should be called before 1340 /// removing, replacing or copying call instruction. 1341 1342 /// Erase the call site info for \p MI. It is used to remove a call 1343 /// instruction from the instruction stream. 1344 void eraseCallSiteInfo(const MachineInstr *MI); 1345 /// Copy the call site info from \p Old to \ New. Its usage is when we are 1346 /// making a copy of the instruction that will be inserted at different point 1347 /// of the instruction stream. 1348 void copyCallSiteInfo(const MachineInstr *Old, 1349 const MachineInstr *New); 1350 1351 /// Move the call site info from \p Old to \New call site info. This function 1352 /// is used when we are replacing one call instruction with another one to 1353 /// the same callee. 1354 void moveCallSiteInfo(const MachineInstr *Old, 1355 const MachineInstr *New); 1356 1357 unsigned getNewDebugInstrNum() { 1358 return ++DebugInstrNumberingCount; 1359 } 1360 }; 1361 1362 //===--------------------------------------------------------------------===// 1363 // GraphTraits specializations for function basic block graphs (CFGs) 1364 //===--------------------------------------------------------------------===// 1365 1366 // Provide specializations of GraphTraits to be able to treat a 1367 // machine function as a graph of machine basic blocks... these are 1368 // the same as the machine basic block iterators, except that the root 1369 // node is implicitly the first node of the function. 1370 // 1371 template <> struct GraphTraits<MachineFunction*> : 1372 public GraphTraits<MachineBasicBlock*> { 1373 static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); } 1374 1375 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1376 using nodes_iterator = pointer_iterator<MachineFunction::iterator>; 1377 1378 static nodes_iterator nodes_begin(MachineFunction *F) { 1379 return nodes_iterator(F->begin()); 1380 } 1381 1382 static nodes_iterator nodes_end(MachineFunction *F) { 1383 return nodes_iterator(F->end()); 1384 } 1385 1386 static unsigned size (MachineFunction *F) { return F->size(); } 1387 }; 1388 template <> struct GraphTraits<const MachineFunction*> : 1389 public GraphTraits<const MachineBasicBlock*> { 1390 static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); } 1391 1392 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1393 using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>; 1394 1395 static nodes_iterator nodes_begin(const MachineFunction *F) { 1396 return nodes_iterator(F->begin()); 1397 } 1398 1399 static nodes_iterator nodes_end (const MachineFunction *F) { 1400 return nodes_iterator(F->end()); 1401 } 1402 1403 static unsigned size (const MachineFunction *F) { 1404 return F->size(); 1405 } 1406 }; 1407 1408 // Provide specializations of GraphTraits to be able to treat a function as a 1409 // graph of basic blocks... and to walk it in inverse order. Inverse order for 1410 // a function is considered to be when traversing the predecessor edges of a BB 1411 // instead of the successor edges. 1412 // 1413 template <> struct GraphTraits<Inverse<MachineFunction*>> : 1414 public GraphTraits<Inverse<MachineBasicBlock*>> { 1415 static NodeRef getEntryNode(Inverse<MachineFunction *> G) { 1416 return &G.Graph->front(); 1417 } 1418 }; 1419 template <> struct GraphTraits<Inverse<const MachineFunction*>> : 1420 public GraphTraits<Inverse<const MachineBasicBlock*>> { 1421 static NodeRef getEntryNode(Inverse<const MachineFunction *> G) { 1422 return &G.Graph->front(); 1423 } 1424 }; 1425 1426 void verifyMachineFunction(const std::string &Banner, 1427 const MachineFunction &MF); 1428 1429 } // end namespace llvm 1430 1431 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H 1432