1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The file defines the MachineFrameInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H 14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H 15 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/Register.h" 18 #include "llvm/CodeGen/TargetFrameLowering.h" 19 #include "llvm/Support/Alignment.h" 20 #include <cassert> 21 #include <vector> 22 23 namespace llvm { 24 class raw_ostream; 25 class MachineFunction; 26 class MachineBasicBlock; 27 class BitVector; 28 class AllocaInst; 29 30 /// The CalleeSavedInfo class tracks the information need to locate where a 31 /// callee saved register is in the current frame. 32 /// Callee saved reg can also be saved to a different register rather than 33 /// on the stack by setting DstReg instead of FrameIdx. 34 class CalleeSavedInfo { 35 Register Reg; 36 union { 37 int FrameIdx; 38 unsigned DstReg; 39 }; 40 /// Flag indicating whether the register is actually restored in the epilog. 41 /// In most cases, if a register is saved, it is also restored. There are 42 /// some situations, though, when this is not the case. For example, the 43 /// LR register on ARM is usually saved, but on exit from the function its 44 /// saved value may be loaded directly into PC. Since liveness tracking of 45 /// physical registers treats callee-saved registers are live outside of 46 /// the function, LR would be treated as live-on-exit, even though in these 47 /// scenarios it is not. This flag is added to indicate that the saved 48 /// register described by this object is not restored in the epilog. 49 /// The long-term solution is to model the liveness of callee-saved registers 50 /// by implicit uses on the return instructions, however, the required 51 /// changes in the ARM backend would be quite extensive. 52 bool Restored = true; 53 /// Flag indicating whether the register is spilled to stack or another 54 /// register. 55 bool SpilledToReg = false; 56 57 public: Reg(R)58 explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {} 59 60 // Accessors. getReg()61 Register getReg() const { return Reg; } getFrameIdx()62 int getFrameIdx() const { return FrameIdx; } getDstReg()63 unsigned getDstReg() const { return DstReg; } setFrameIdx(int FI)64 void setFrameIdx(int FI) { 65 FrameIdx = FI; 66 SpilledToReg = false; 67 } setDstReg(Register SpillReg)68 void setDstReg(Register SpillReg) { 69 DstReg = SpillReg; 70 SpilledToReg = true; 71 } isRestored()72 bool isRestored() const { return Restored; } setRestored(bool R)73 void setRestored(bool R) { Restored = R; } isSpilledToReg()74 bool isSpilledToReg() const { return SpilledToReg; } 75 }; 76 77 /// The MachineFrameInfo class represents an abstract stack frame until 78 /// prolog/epilog code is inserted. This class is key to allowing stack frame 79 /// representation optimizations, such as frame pointer elimination. It also 80 /// allows more mundane (but still important) optimizations, such as reordering 81 /// of abstract objects on the stack frame. 82 /// 83 /// To support this, the class assigns unique integer identifiers to stack 84 /// objects requested clients. These identifiers are negative integers for 85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative 86 /// for objects that may be reordered. Instructions which refer to stack 87 /// objects use a special MO_FrameIndex operand to represent these frame 88 /// indexes. 89 /// 90 /// Because this class keeps track of all references to the stack frame, it 91 /// knows when a variable sized object is allocated on the stack. This is the 92 /// sole condition which prevents frame pointer elimination, which is an 93 /// important optimization on register-poor architectures. Because original 94 /// variable sized alloca's in the source program are the only source of 95 /// variable sized stack objects, it is safe to decide whether there will be 96 /// any variable sized objects before all stack objects are known (for 97 /// example, register allocator spill code never needs variable sized 98 /// objects). 99 /// 100 /// When prolog/epilog code emission is performed, the final stack frame is 101 /// built and the machine instructions are modified to refer to the actual 102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from 103 /// the program. 104 /// 105 /// Abstract Stack Frame Information 106 class MachineFrameInfo { 107 public: 108 /// Stack Smashing Protection (SSP) rules require that vulnerable stack 109 /// allocations are located close the stack protector. 110 enum SSPLayoutKind { 111 SSPLK_None, ///< Did not trigger a stack protector. No effect on data 112 ///< layout. 113 SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest 114 ///< to the stack protector. 115 SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest 116 ///< to the stack protector. 117 SSPLK_AddrOf ///< The address of this allocation is exposed and 118 ///< triggered protection. 3rd closest to the protector. 119 }; 120 121 private: 122 // Represent a single object allocated on the stack. 123 struct StackObject { 124 // The offset of this object from the stack pointer on entry to 125 // the function. This field has no meaning for a variable sized element. 126 int64_t SPOffset; 127 128 // The size of this object on the stack. 0 means a variable sized object, 129 // ~0ULL means a dead object. 130 uint64_t Size; 131 132 // The required alignment of this stack slot. 133 Align Alignment; 134 135 // If true, the value of the stack object is set before 136 // entering the function and is not modified inside the function. By 137 // default, fixed objects are immutable unless marked otherwise. 138 bool isImmutable; 139 140 // If true the stack object is used as spill slot. It 141 // cannot alias any other memory objects. 142 bool isSpillSlot; 143 144 /// If true, this stack slot is used to spill a value (could be deopt 145 /// and/or GC related) over a statepoint. We know that the address of the 146 /// slot can't alias any LLVM IR value. This is very similar to a Spill 147 /// Slot, but is created by statepoint lowering is SelectionDAG, not the 148 /// register allocator. 149 bool isStatepointSpillSlot = false; 150 151 /// Identifier for stack memory type analagous to address space. If this is 152 /// non-0, the meaning is target defined. Offsets cannot be directly 153 /// compared between objects with different stack IDs. The object may not 154 /// necessarily reside in the same contiguous memory block as other stack 155 /// objects. Objects with differing stack IDs should not be merged or 156 /// replaced substituted for each other. 157 // 158 /// It is assumed a target uses consecutive, increasing stack IDs starting 159 /// from 1. 160 uint8_t StackID; 161 162 /// If this stack object is originated from an Alloca instruction 163 /// this value saves the original IR allocation. Can be NULL. 164 const AllocaInst *Alloca; 165 166 // If true, the object was mapped into the local frame 167 // block and doesn't need additional handling for allocation beyond that. 168 bool PreAllocated = false; 169 170 // If true, an LLVM IR value might point to this object. 171 // Normally, spill slots and fixed-offset objects don't alias IR-accessible 172 // objects, but there are exceptions (on PowerPC, for example, some byval 173 // arguments have ABI-prescribed offsets). 174 bool isAliased; 175 176 /// If true, the object has been zero-extended. 177 bool isZExt = false; 178 179 /// If true, the object has been sign-extended. 180 bool isSExt = false; 181 182 uint8_t SSPLayout = SSPLK_None; 183 184 StackObject(uint64_t Size, Align Alignment, int64_t SPOffset, 185 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, 186 bool IsAliased, uint8_t StackID = 0) SPOffsetStackObject187 : SPOffset(SPOffset), Size(Size), Alignment(Alignment), 188 isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID), 189 Alloca(Alloca), isAliased(IsAliased) {} 190 }; 191 192 /// The alignment of the stack. 193 Align StackAlignment; 194 195 /// Can the stack be realigned. This can be false if the target does not 196 /// support stack realignment, or if the user asks us not to realign the 197 /// stack. In this situation, overaligned allocas are all treated as dynamic 198 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC 199 /// lowering. All non-alloca stack objects have their alignment clamped to the 200 /// base ABI stack alignment. 201 /// FIXME: There is room for improvement in this case, in terms of 202 /// grouping overaligned allocas into a "secondary stack frame" and 203 /// then only use a single alloca to allocate this frame and only a 204 /// single virtual register to access it. Currently, without such an 205 /// optimization, each such alloca gets its own dynamic realignment. 206 bool StackRealignable; 207 208 /// Whether the function has the \c alignstack attribute. 209 bool ForcedRealign; 210 211 /// The list of stack objects allocated. 212 std::vector<StackObject> Objects; 213 214 /// This contains the number of fixed objects contained on 215 /// the stack. Because fixed objects are stored at a negative index in the 216 /// Objects list, this is also the index to the 0th object in the list. 217 unsigned NumFixedObjects = 0; 218 219 /// This boolean keeps track of whether any variable 220 /// sized objects have been allocated yet. 221 bool HasVarSizedObjects = false; 222 223 /// This boolean keeps track of whether there is a call 224 /// to builtin \@llvm.frameaddress. 225 bool FrameAddressTaken = false; 226 227 /// This boolean keeps track of whether there is a call 228 /// to builtin \@llvm.returnaddress. 229 bool ReturnAddressTaken = false; 230 231 /// This boolean keeps track of whether there is a call 232 /// to builtin \@llvm.experimental.stackmap. 233 bool HasStackMap = false; 234 235 /// This boolean keeps track of whether there is a call 236 /// to builtin \@llvm.experimental.patchpoint. 237 bool HasPatchPoint = false; 238 239 /// The prolog/epilog code inserter calculates the final stack 240 /// offsets for all of the fixed size objects, updating the Objects list 241 /// above. It then updates StackSize to contain the number of bytes that need 242 /// to be allocated on entry to the function. 243 uint64_t StackSize = 0; 244 245 /// The amount that a frame offset needs to be adjusted to 246 /// have the actual offset from the stack/frame pointer. The exact usage of 247 /// this is target-dependent, but it is typically used to adjust between 248 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via 249 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set 250 /// to the distance between the initial SP and the value in FP. For many 251 /// targets, this value is only used when generating debug info (via 252 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the 253 /// corresponding adjustments are performed directly. 254 int OffsetAdjustment = 0; 255 256 /// The prolog/epilog code inserter may process objects that require greater 257 /// alignment than the default alignment the target provides. 258 /// To handle this, MaxAlignment is set to the maximum alignment 259 /// needed by the objects on the current frame. If this is greater than the 260 /// native alignment maintained by the compiler, dynamic alignment code will 261 /// be needed. 262 /// 263 Align MaxAlignment; 264 265 /// Set to true if this function adjusts the stack -- e.g., 266 /// when calling another function. This is only valid during and after 267 /// prolog/epilog code insertion. 268 bool AdjustsStack = false; 269 270 /// Set to true if this function has any function calls. 271 bool HasCalls = false; 272 273 /// The frame index for the stack protector. 274 int StackProtectorIdx = -1; 275 276 /// The frame index for the function context. Used for SjLj exceptions. 277 int FunctionContextIdx = -1; 278 279 /// This contains the size of the largest call frame if the target uses frame 280 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo 281 /// class). This information is important for frame pointer elimination. 282 /// It is only valid during and after prolog/epilog code insertion. 283 unsigned MaxCallFrameSize = ~0u; 284 285 /// The number of bytes of callee saved registers that the target wants to 286 /// report for the current function in the CodeView S_FRAMEPROC record. 287 unsigned CVBytesOfCalleeSavedRegisters = 0; 288 289 /// The prolog/epilog code inserter fills in this vector with each 290 /// callee saved register saved in either the frame or a different 291 /// register. Beyond its use by the prolog/ epilog code inserter, 292 /// this data is used for debug info and exception handling. 293 std::vector<CalleeSavedInfo> CSInfo; 294 295 /// Has CSInfo been set yet? 296 bool CSIValid = false; 297 298 /// References to frame indices which are mapped 299 /// into the local frame allocation block. <FrameIdx, LocalOffset> 300 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; 301 302 /// Size of the pre-allocated local frame block. 303 int64_t LocalFrameSize = 0; 304 305 /// Required alignment of the local object blob, which is the strictest 306 /// alignment of any object in it. 307 Align LocalFrameMaxAlign; 308 309 /// Whether the local object blob needs to be allocated together. If not, 310 /// PEI should ignore the isPreAllocated flags on the stack objects and 311 /// just allocate them normally. 312 bool UseLocalStackAllocationBlock = false; 313 314 /// True if the function dynamically adjusts the stack pointer through some 315 /// opaque mechanism like inline assembly or Win32 EH. 316 bool HasOpaqueSPAdjustment = false; 317 318 /// True if the function contains operations which will lower down to 319 /// instructions which manipulate the stack pointer. 320 bool HasCopyImplyingStackAdjustment = false; 321 322 /// True if the function contains a call to the llvm.vastart intrinsic. 323 bool HasVAStart = false; 324 325 /// True if this is a varargs function that contains a musttail call. 326 bool HasMustTailInVarArgFunc = false; 327 328 /// True if this function contains a tail call. If so immutable objects like 329 /// function arguments are no longer so. A tail call *can* override fixed 330 /// stack objects like arguments so we can't treat them as immutable. 331 bool HasTailCall = false; 332 333 /// Not null, if shrink-wrapping found a better place for the prologue. 334 MachineBasicBlock *Save = nullptr; 335 /// Not null, if shrink-wrapping found a better place for the epilogue. 336 MachineBasicBlock *Restore = nullptr; 337 338 /// Size of the UnsafeStack Frame 339 uint64_t UnsafeStackSize = 0; 340 341 public: MachineFrameInfo(Align StackAlignment,bool StackRealignable,bool ForcedRealign)342 explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable, 343 bool ForcedRealign) 344 : StackAlignment(StackAlignment), 345 StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {} 346 347 MachineFrameInfo(const MachineFrameInfo &) = delete; 348 349 /// Return true if there are any stack objects in this function. hasStackObjects()350 bool hasStackObjects() const { return !Objects.empty(); } 351 352 /// This method may be called any time after instruction 353 /// selection is complete to determine if the stack frame for this function 354 /// contains any variable sized objects. hasVarSizedObjects()355 bool hasVarSizedObjects() const { return HasVarSizedObjects; } 356 357 /// Return the index for the stack protector object. getStackProtectorIndex()358 int getStackProtectorIndex() const { return StackProtectorIdx; } setStackProtectorIndex(int I)359 void setStackProtectorIndex(int I) { StackProtectorIdx = I; } hasStackProtectorIndex()360 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } 361 362 /// Return the index for the function context object. 363 /// This object is used for SjLj exceptions. getFunctionContextIndex()364 int getFunctionContextIndex() const { return FunctionContextIdx; } setFunctionContextIndex(int I)365 void setFunctionContextIndex(int I) { FunctionContextIdx = I; } hasFunctionContextIndex()366 bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; } 367 368 /// This method may be called any time after instruction 369 /// selection is complete to determine if there is a call to 370 /// \@llvm.frameaddress in this function. isFrameAddressTaken()371 bool isFrameAddressTaken() const { return FrameAddressTaken; } setFrameAddressIsTaken(bool T)372 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } 373 374 /// This method may be called any time after 375 /// instruction selection is complete to determine if there is a call to 376 /// \@llvm.returnaddress in this function. isReturnAddressTaken()377 bool isReturnAddressTaken() const { return ReturnAddressTaken; } setReturnAddressIsTaken(bool s)378 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } 379 380 /// This method may be called any time after instruction 381 /// selection is complete to determine if there is a call to builtin 382 /// \@llvm.experimental.stackmap. hasStackMap()383 bool hasStackMap() const { return HasStackMap; } 384 void setHasStackMap(bool s = true) { HasStackMap = s; } 385 386 /// This method may be called any time after instruction 387 /// selection is complete to determine if there is a call to builtin 388 /// \@llvm.experimental.patchpoint. hasPatchPoint()389 bool hasPatchPoint() const { return HasPatchPoint; } 390 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } 391 392 /// Return true if this function requires a split stack prolog, even if it 393 /// uses no stack space. This is only meaningful for functions where 394 /// MachineFunction::shouldSplitStack() returns true. 395 // 396 // For non-leaf functions we have to allow for the possibility that the call 397 // is to a non-split function, as in PR37807. This function could also take 398 // the address of a non-split function. When the linker tries to adjust its 399 // non-existent prologue, it would fail with an error. Mark the object file so 400 // that such failures are not errors. See this Go language bug-report 401 // https://go-review.googlesource.com/c/go/+/148819/ needsSplitStackProlog()402 bool needsSplitStackProlog() const { 403 return getStackSize() != 0 || hasTailCall(); 404 } 405 406 /// Return the minimum frame object index. getObjectIndexBegin()407 int getObjectIndexBegin() const { return -NumFixedObjects; } 408 409 /// Return one past the maximum frame object index. getObjectIndexEnd()410 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } 411 412 /// Return the number of fixed objects. getNumFixedObjects()413 unsigned getNumFixedObjects() const { return NumFixedObjects; } 414 415 /// Return the number of objects. getNumObjects()416 unsigned getNumObjects() const { return Objects.size(); } 417 418 /// Map a frame index into the local object block mapLocalFrameObject(int ObjectIndex,int64_t Offset)419 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { 420 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); 421 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; 422 } 423 424 /// Get the local offset mapping for a for an object. getLocalFrameObjectMap(int i)425 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { 426 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && 427 "Invalid local object reference!"); 428 return LocalFrameObjects[i]; 429 } 430 431 /// Return the number of objects allocated into the local object block. getLocalFrameObjectCount()432 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } 433 434 /// Set the size of the local object blob. setLocalFrameSize(int64_t sz)435 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } 436 437 /// Get the size of the local object blob. getLocalFrameSize()438 int64_t getLocalFrameSize() const { return LocalFrameSize; } 439 440 /// Required alignment of the local object blob, 441 /// which is the strictest alignment of any object in it. setLocalFrameMaxAlign(Align Alignment)442 void setLocalFrameMaxAlign(Align Alignment) { 443 LocalFrameMaxAlign = Alignment; 444 } 445 446 /// Return the required alignment of the local object blob. getLocalFrameMaxAlign()447 Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } 448 449 /// Get whether the local allocation blob should be allocated together or 450 /// let PEI allocate the locals in it directly. getUseLocalStackAllocationBlock()451 bool getUseLocalStackAllocationBlock() const { 452 return UseLocalStackAllocationBlock; 453 } 454 455 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob 456 /// should be allocated together or let PEI allocate the locals in it 457 /// directly. setUseLocalStackAllocationBlock(bool v)458 void setUseLocalStackAllocationBlock(bool v) { 459 UseLocalStackAllocationBlock = v; 460 } 461 462 /// Return true if the object was pre-allocated into the local block. isObjectPreAllocated(int ObjectIdx)463 bool isObjectPreAllocated(int ObjectIdx) const { 464 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 465 "Invalid Object Idx!"); 466 return Objects[ObjectIdx+NumFixedObjects].PreAllocated; 467 } 468 469 /// Return the size of the specified object. getObjectSize(int ObjectIdx)470 int64_t getObjectSize(int ObjectIdx) const { 471 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 472 "Invalid Object Idx!"); 473 return Objects[ObjectIdx+NumFixedObjects].Size; 474 } 475 476 /// Change the size of the specified stack object. setObjectSize(int ObjectIdx,int64_t Size)477 void setObjectSize(int ObjectIdx, int64_t Size) { 478 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 479 "Invalid Object Idx!"); 480 Objects[ObjectIdx+NumFixedObjects].Size = Size; 481 } 482 483 /// Return the alignment of the specified stack object. getObjectAlign(int ObjectIdx)484 Align getObjectAlign(int ObjectIdx) const { 485 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 486 "Invalid Object Idx!"); 487 return Objects[ObjectIdx + NumFixedObjects].Alignment; 488 } 489 490 /// Should this stack ID be considered in MaxAlignment. contributesToMaxAlignment(uint8_t StackID)491 bool contributesToMaxAlignment(uint8_t StackID) { 492 return StackID == TargetStackID::Default || 493 StackID == TargetStackID::ScalableVector; 494 } 495 496 /// setObjectAlignment - Change the alignment of the specified stack object. setObjectAlignment(int ObjectIdx,Align Alignment)497 void setObjectAlignment(int ObjectIdx, Align Alignment) { 498 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 499 "Invalid Object Idx!"); 500 Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment; 501 502 // Only ensure max alignment for the default and scalable vector stack. 503 uint8_t StackID = getStackID(ObjectIdx); 504 if (contributesToMaxAlignment(StackID)) 505 ensureMaxAlignment(Alignment); 506 } 507 508 /// Return the underlying Alloca of the specified 509 /// stack object if it exists. Returns 0 if none exists. getObjectAllocation(int ObjectIdx)510 const AllocaInst* getObjectAllocation(int ObjectIdx) const { 511 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 512 "Invalid Object Idx!"); 513 return Objects[ObjectIdx+NumFixedObjects].Alloca; 514 } 515 516 /// Remove the underlying Alloca of the specified stack object if it 517 /// exists. This generally should not be used and is for reduction tooling. clearObjectAllocation(int ObjectIdx)518 void clearObjectAllocation(int ObjectIdx) { 519 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 520 "Invalid Object Idx!"); 521 Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr; 522 } 523 524 /// Return the assigned stack offset of the specified object 525 /// from the incoming stack pointer. getObjectOffset(int ObjectIdx)526 int64_t getObjectOffset(int ObjectIdx) const { 527 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 528 "Invalid Object Idx!"); 529 assert(!isDeadObjectIndex(ObjectIdx) && 530 "Getting frame offset for a dead object?"); 531 return Objects[ObjectIdx+NumFixedObjects].SPOffset; 532 } 533 isObjectZExt(int ObjectIdx)534 bool isObjectZExt(int ObjectIdx) const { 535 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 536 "Invalid Object Idx!"); 537 return Objects[ObjectIdx+NumFixedObjects].isZExt; 538 } 539 setObjectZExt(int ObjectIdx,bool IsZExt)540 void setObjectZExt(int ObjectIdx, bool IsZExt) { 541 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 542 "Invalid Object Idx!"); 543 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; 544 } 545 isObjectSExt(int ObjectIdx)546 bool isObjectSExt(int ObjectIdx) const { 547 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 548 "Invalid Object Idx!"); 549 return Objects[ObjectIdx+NumFixedObjects].isSExt; 550 } 551 setObjectSExt(int ObjectIdx,bool IsSExt)552 void setObjectSExt(int ObjectIdx, bool IsSExt) { 553 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 554 "Invalid Object Idx!"); 555 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; 556 } 557 558 /// Set the stack frame offset of the specified object. The 559 /// offset is relative to the stack pointer on entry to the function. setObjectOffset(int ObjectIdx,int64_t SPOffset)560 void setObjectOffset(int ObjectIdx, int64_t SPOffset) { 561 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 562 "Invalid Object Idx!"); 563 assert(!isDeadObjectIndex(ObjectIdx) && 564 "Setting frame offset for a dead object?"); 565 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; 566 } 567 getObjectSSPLayout(int ObjectIdx)568 SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const { 569 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 570 "Invalid Object Idx!"); 571 return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout; 572 } 573 setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)574 void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) { 575 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 576 "Invalid Object Idx!"); 577 assert(!isDeadObjectIndex(ObjectIdx) && 578 "Setting SSP layout for a dead object?"); 579 Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind; 580 } 581 582 /// Return the number of bytes that must be allocated to hold 583 /// all of the fixed size frame objects. This is only valid after 584 /// Prolog/Epilog code insertion has finalized the stack frame layout. getStackSize()585 uint64_t getStackSize() const { return StackSize; } 586 587 /// Set the size of the stack. setStackSize(uint64_t Size)588 void setStackSize(uint64_t Size) { StackSize = Size; } 589 590 /// Estimate and return the size of the stack frame. 591 uint64_t estimateStackSize(const MachineFunction &MF) const; 592 593 /// Return the correction for frame offsets. getOffsetAdjustment()594 int getOffsetAdjustment() const { return OffsetAdjustment; } 595 596 /// Set the correction for frame offsets. setOffsetAdjustment(int Adj)597 void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } 598 599 /// Return the alignment in bytes that this function must be aligned to, 600 /// which is greater than the default stack alignment provided by the target. getMaxAlign()601 Align getMaxAlign() const { return MaxAlignment; } 602 603 /// Make sure the function is at least Align bytes aligned. 604 void ensureMaxAlignment(Align Alignment); 605 606 /// Return true if this function adjusts the stack -- e.g., 607 /// when calling another function. This is only valid during and after 608 /// prolog/epilog code insertion. adjustsStack()609 bool adjustsStack() const { return AdjustsStack; } setAdjustsStack(bool V)610 void setAdjustsStack(bool V) { AdjustsStack = V; } 611 612 /// Return true if the current function has any function calls. hasCalls()613 bool hasCalls() const { return HasCalls; } setHasCalls(bool V)614 void setHasCalls(bool V) { HasCalls = V; } 615 616 /// Returns true if the function contains opaque dynamic stack adjustments. hasOpaqueSPAdjustment()617 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } setHasOpaqueSPAdjustment(bool B)618 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } 619 620 /// Returns true if the function contains operations which will lower down to 621 /// instructions which manipulate the stack pointer. hasCopyImplyingStackAdjustment()622 bool hasCopyImplyingStackAdjustment() const { 623 return HasCopyImplyingStackAdjustment; 624 } setHasCopyImplyingStackAdjustment(bool B)625 void setHasCopyImplyingStackAdjustment(bool B) { 626 HasCopyImplyingStackAdjustment = B; 627 } 628 629 /// Returns true if the function calls the llvm.va_start intrinsic. hasVAStart()630 bool hasVAStart() const { return HasVAStart; } setHasVAStart(bool B)631 void setHasVAStart(bool B) { HasVAStart = B; } 632 633 /// Returns true if the function is variadic and contains a musttail call. hasMustTailInVarArgFunc()634 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } setHasMustTailInVarArgFunc(bool B)635 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } 636 637 /// Returns true if the function contains a tail call. hasTailCall()638 bool hasTailCall() const { return HasTailCall; } 639 void setHasTailCall(bool V = true) { HasTailCall = V; } 640 641 /// Computes the maximum size of a callframe and the AdjustsStack property. 642 /// This only works for targets defining 643 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), 644 /// and getFrameSize(). 645 /// This is usually computed by the prologue epilogue inserter but some 646 /// targets may call this to compute it earlier. 647 void computeMaxCallFrameSize(const MachineFunction &MF); 648 649 /// Return the maximum size of a call frame that must be 650 /// allocated for an outgoing function call. This is only available if 651 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and 652 /// then only during or after prolog/epilog code insertion. 653 /// getMaxCallFrameSize()654 unsigned getMaxCallFrameSize() const { 655 // TODO: Enable this assert when targets are fixed. 656 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); 657 if (!isMaxCallFrameSizeComputed()) 658 return 0; 659 return MaxCallFrameSize; 660 } isMaxCallFrameSizeComputed()661 bool isMaxCallFrameSizeComputed() const { 662 return MaxCallFrameSize != ~0u; 663 } setMaxCallFrameSize(unsigned S)664 void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } 665 666 /// Returns how many bytes of callee-saved registers the target pushed in the 667 /// prologue. Only used for debug info. getCVBytesOfCalleeSavedRegisters()668 unsigned getCVBytesOfCalleeSavedRegisters() const { 669 return CVBytesOfCalleeSavedRegisters; 670 } setCVBytesOfCalleeSavedRegisters(unsigned S)671 void setCVBytesOfCalleeSavedRegisters(unsigned S) { 672 CVBytesOfCalleeSavedRegisters = S; 673 } 674 675 /// Create a new object at a fixed location on the stack. 676 /// All fixed objects should be created before other objects are created for 677 /// efficiency. By default, fixed objects are not pointed to by LLVM IR 678 /// values. This returns an index with a negative value. 679 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, 680 bool isAliased = false); 681 682 /// Create a spill slot at a fixed location on the stack. 683 /// Returns an index with a negative value. 684 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, 685 bool IsImmutable = false); 686 687 /// Returns true if the specified index corresponds to a fixed stack object. isFixedObjectIndex(int ObjectIdx)688 bool isFixedObjectIndex(int ObjectIdx) const { 689 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); 690 } 691 692 /// Returns true if the specified index corresponds 693 /// to an object that might be pointed to by an LLVM IR value. isAliasedObjectIndex(int ObjectIdx)694 bool isAliasedObjectIndex(int ObjectIdx) const { 695 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 696 "Invalid Object Idx!"); 697 return Objects[ObjectIdx+NumFixedObjects].isAliased; 698 } 699 700 /// Returns true if the specified index corresponds to an immutable object. isImmutableObjectIndex(int ObjectIdx)701 bool isImmutableObjectIndex(int ObjectIdx) const { 702 // Tail calling functions can clobber their function arguments. 703 if (HasTailCall) 704 return false; 705 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 706 "Invalid Object Idx!"); 707 return Objects[ObjectIdx+NumFixedObjects].isImmutable; 708 } 709 710 /// Marks the immutability of an object. setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)711 void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { 712 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 713 "Invalid Object Idx!"); 714 Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; 715 } 716 717 /// Returns true if the specified index corresponds to a spill slot. isSpillSlotObjectIndex(int ObjectIdx)718 bool isSpillSlotObjectIndex(int ObjectIdx) const { 719 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 720 "Invalid Object Idx!"); 721 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; 722 } 723 isStatepointSpillSlotObjectIndex(int ObjectIdx)724 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { 725 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 726 "Invalid Object Idx!"); 727 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; 728 } 729 730 /// \see StackID getStackID(int ObjectIdx)731 uint8_t getStackID(int ObjectIdx) const { 732 return Objects[ObjectIdx+NumFixedObjects].StackID; 733 } 734 735 /// \see StackID setStackID(int ObjectIdx,uint8_t ID)736 void setStackID(int ObjectIdx, uint8_t ID) { 737 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 738 "Invalid Object Idx!"); 739 Objects[ObjectIdx+NumFixedObjects].StackID = ID; 740 // If ID > 0, MaxAlignment may now be overly conservative. 741 // If ID == 0, MaxAlignment will need to be updated separately. 742 } 743 744 /// Returns true if the specified index corresponds to a dead object. isDeadObjectIndex(int ObjectIdx)745 bool isDeadObjectIndex(int ObjectIdx) const { 746 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 747 "Invalid Object Idx!"); 748 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; 749 } 750 751 /// Returns true if the specified index corresponds to a variable sized 752 /// object. isVariableSizedObjectIndex(int ObjectIdx)753 bool isVariableSizedObjectIndex(int ObjectIdx) const { 754 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 755 "Invalid Object Idx!"); 756 return Objects[ObjectIdx + NumFixedObjects].Size == 0; 757 } 758 markAsStatepointSpillSlotObjectIndex(int ObjectIdx)759 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { 760 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 761 "Invalid Object Idx!"); 762 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; 763 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); 764 } 765 766 /// Create a new statically sized stack object, returning 767 /// a nonnegative identifier to represent it. 768 int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, 769 const AllocaInst *Alloca = nullptr, uint8_t ID = 0); 770 771 /// Create a new statically sized stack object that represents a spill slot, 772 /// returning a nonnegative identifier to represent it. 773 int CreateSpillStackObject(uint64_t Size, Align Alignment); 774 775 /// Remove or mark dead a statically sized stack object. RemoveStackObject(int ObjectIdx)776 void RemoveStackObject(int ObjectIdx) { 777 // Mark it dead. 778 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; 779 } 780 781 /// Notify the MachineFrameInfo object that a variable sized object has been 782 /// created. This must be created whenever a variable sized object is 783 /// created, whether or not the index returned is actually used. 784 int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca); 785 786 /// Returns a reference to call saved info vector for the current function. getCalleeSavedInfo()787 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { 788 return CSInfo; 789 } 790 /// \copydoc getCalleeSavedInfo() getCalleeSavedInfo()791 std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } 792 793 /// Used by prolog/epilog inserter to set the function's callee saved 794 /// information. setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI)795 void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) { 796 CSInfo = std::move(CSI); 797 } 798 799 /// Has the callee saved info been calculated yet? isCalleeSavedInfoValid()800 bool isCalleeSavedInfoValid() const { return CSIValid; } 801 setCalleeSavedInfoValid(bool v)802 void setCalleeSavedInfoValid(bool v) { CSIValid = v; } 803 getSavePoint()804 MachineBasicBlock *getSavePoint() const { return Save; } setSavePoint(MachineBasicBlock * NewSave)805 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } getRestorePoint()806 MachineBasicBlock *getRestorePoint() const { return Restore; } setRestorePoint(MachineBasicBlock * NewRestore)807 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } 808 getUnsafeStackSize()809 uint64_t getUnsafeStackSize() const { return UnsafeStackSize; } setUnsafeStackSize(uint64_t Size)810 void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; } 811 812 /// Return a set of physical registers that are pristine. 813 /// 814 /// Pristine registers hold a value that is useless to the current function, 815 /// but that must be preserved - they are callee saved registers that are not 816 /// saved. 817 /// 818 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this 819 /// method always returns an empty set. 820 BitVector getPristineRegs(const MachineFunction &MF) const; 821 822 /// Used by the MachineFunction printer to print information about 823 /// stack objects. Implemented in MachineFunction.cpp. 824 void print(const MachineFunction &MF, raw_ostream &OS) const; 825 826 /// dump - Print the function to stderr. 827 void dump(const MachineFunction &MF) const; 828 }; 829 830 } // End llvm namespace 831 832 #endif 833