1 //===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// \brief Find all cycles in a control-flow graph, including irreducible loops. 11 /// 12 /// See docs/CycleTerminology.rst for a formal definition of cycles. 13 /// 14 /// Briefly: 15 /// - A cycle is a generalization of a loop which can represent 16 /// irreducible control flow. 17 /// - Cycles identified in a program are implementation defined, 18 /// depending on the DFS traversal chosen. 19 /// - Cycles are well-nested, and form a forest with a parent-child 20 /// relationship. 21 /// - In any choice of DFS, every natural loop L is represented by a 22 /// unique cycle C which is a superset of L. 23 /// - In the absence of irreducible control flow, the cycles are 24 /// exactly the natural loops in the program. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #ifndef LLVM_ADT_GENERICCYCLEINFO_H 29 #define LLVM_ADT_GENERICCYCLEINFO_H 30 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/GenericSSAContext.h" 33 #include "llvm/ADT/GraphTraits.h" 34 #include "llvm/ADT/SetVector.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 namespace llvm { 39 40 template <typename ContextT> class GenericCycleInfo; 41 template <typename ContextT> class GenericCycleInfoCompute; 42 43 /// A possibly irreducible generalization of a \ref Loop. 44 template <typename ContextT> class GenericCycle { 45 public: 46 using BlockT = typename ContextT::BlockT; 47 using FunctionT = typename ContextT::FunctionT; 48 template <typename> friend class GenericCycleInfo; 49 template <typename> friend class GenericCycleInfoCompute; 50 51 private: 52 /// The parent cycle. Is null for the root "cycle". Top-level cycles point 53 /// at the root. 54 GenericCycle *ParentCycle = nullptr; 55 56 /// The entry block(s) of the cycle. The header is the only entry if 57 /// this is a loop. Is empty for the root "cycle", to avoid 58 /// unnecessary memory use. 59 SmallVector<BlockT *, 1> Entries; 60 61 /// Child cycles, if any. 62 std::vector<std::unique_ptr<GenericCycle>> Children; 63 64 /// Basic blocks that are contained in the cycle, including entry blocks, 65 /// and including blocks that are part of a child cycle. 66 using BlockSetVectorT = SetVector<BlockT *, SmallVector<BlockT *, 8>, 67 DenseSet<const BlockT *>, 8>; 68 BlockSetVectorT Blocks; 69 70 /// Depth of the cycle in the tree. The root "cycle" is at depth 0. 71 /// 72 /// \note Depths are not necessarily contiguous. However, child loops always 73 /// have strictly greater depth than their parents, and sibling loops 74 /// always have the same depth. 75 unsigned Depth = 0; 76 clear()77 void clear() { 78 Entries.clear(); 79 Children.clear(); 80 Blocks.clear(); 81 Depth = 0; 82 ParentCycle = nullptr; 83 } 84 appendEntry(BlockT * Block)85 void appendEntry(BlockT *Block) { Entries.push_back(Block); } appendBlock(BlockT * Block)86 void appendBlock(BlockT *Block) { Blocks.insert(Block); } 87 88 GenericCycle(const GenericCycle &) = delete; 89 GenericCycle &operator=(const GenericCycle &) = delete; 90 GenericCycle(GenericCycle &&Rhs) = delete; 91 GenericCycle &operator=(GenericCycle &&Rhs) = delete; 92 93 public: 94 GenericCycle() = default; 95 96 /// \brief Whether the cycle is a natural loop. isReducible()97 bool isReducible() const { return Entries.size() == 1; } 98 getHeader()99 BlockT *getHeader() const { return Entries[0]; } 100 getEntries()101 const SmallVectorImpl<BlockT *> & getEntries() const { 102 return Entries; 103 } 104 105 /// \brief Return whether \p Block is an entry block of the cycle. isEntry(const BlockT * Block)106 bool isEntry(const BlockT *Block) const { 107 return is_contained(Entries, Block); 108 } 109 110 /// \brief Return whether \p Block is contained in the cycle. contains(const BlockT * Block)111 bool contains(const BlockT *Block) const { return Blocks.contains(Block); } 112 113 /// \brief Returns true iff this cycle contains \p C. 114 /// 115 /// Note: Non-strict containment check, i.e. returns true if C is the 116 /// same cycle. 117 bool contains(const GenericCycle *C) const; 118 getParentCycle()119 const GenericCycle *getParentCycle() const { return ParentCycle; } getParentCycle()120 GenericCycle *getParentCycle() { return ParentCycle; } getDepth()121 unsigned getDepth() const { return Depth; } 122 123 /// Return all of the successor blocks of this cycle. 124 /// 125 /// These are the blocks _outside of the current cycle_ which are 126 /// branched to. 127 void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const; 128 129 /// Return the preheader block for this cycle. Pre-header is well-defined for 130 /// reducible cycle in docs/LoopTerminology.rst as: the only one entering 131 /// block and its only edge is to the entry block. Return null for irreducible 132 /// cycles. 133 BlockT *getCyclePreheader() const; 134 135 /// If the cycle has exactly one entry with exactly one predecessor, return 136 /// it, otherwise return nullptr. 137 BlockT *getCyclePredecessor() const; 138 139 /// Iteration over child cycles. 140 //@{ 141 using const_child_iterator_base = 142 typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator; 143 struct const_child_iterator 144 : iterator_adaptor_base<const_child_iterator, const_child_iterator_base> { 145 using Base = 146 iterator_adaptor_base<const_child_iterator, const_child_iterator_base>; 147 148 const_child_iterator() = default; const_child_iteratorconst_child_iterator149 explicit const_child_iterator(const_child_iterator_base I) : Base(I) {} 150 wrappedconst_child_iterator151 const const_child_iterator_base &wrapped() { return Base::wrapped(); } 152 GenericCycle *operator*() const { return Base::I->get(); } 153 }; 154 child_begin()155 const_child_iterator child_begin() const { 156 return const_child_iterator{Children.begin()}; 157 } child_end()158 const_child_iterator child_end() const { 159 return const_child_iterator{Children.end()}; 160 } getNumChildren()161 size_t getNumChildren() const { return Children.size(); } children()162 iterator_range<const_child_iterator> children() const { 163 return llvm::make_range(const_child_iterator{Children.begin()}, 164 const_child_iterator{Children.end()}); 165 } 166 //@} 167 168 /// Iteration over blocks in the cycle (including entry blocks). 169 //@{ 170 using const_block_iterator = typename BlockSetVectorT::const_iterator; 171 block_begin()172 const_block_iterator block_begin() const { 173 return const_block_iterator{Blocks.begin()}; 174 } block_end()175 const_block_iterator block_end() const { 176 return const_block_iterator{Blocks.end()}; 177 } getNumBlocks()178 size_t getNumBlocks() const { return Blocks.size(); } blocks()179 iterator_range<const_block_iterator> blocks() const { 180 return llvm::make_range(block_begin(), block_end()); 181 } 182 //@} 183 184 /// Iteration over entry blocks. 185 //@{ 186 using const_entry_iterator = 187 typename SmallVectorImpl<BlockT *>::const_iterator; 188 getNumEntries()189 size_t getNumEntries() const { return Entries.size(); } entries()190 iterator_range<const_entry_iterator> entries() const { 191 return llvm::make_range(Entries.begin(), Entries.end()); 192 } 193 //@} 194 printEntries(const ContextT & Ctx)195 Printable printEntries(const ContextT &Ctx) const { 196 return Printable([this, &Ctx](raw_ostream &Out) { 197 bool First = true; 198 for (auto *Entry : Entries) { 199 if (!First) 200 Out << ' '; 201 First = false; 202 Out << Ctx.print(Entry); 203 } 204 }); 205 } 206 print(const ContextT & Ctx)207 Printable print(const ContextT &Ctx) const { 208 return Printable([this, &Ctx](raw_ostream &Out) { 209 Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')'; 210 211 for (auto *Block : Blocks) { 212 if (isEntry(Block)) 213 continue; 214 215 Out << ' ' << Ctx.print(Block); 216 } 217 }); 218 } 219 }; 220 221 /// \brief Cycle information for a function. 222 template <typename ContextT> class GenericCycleInfo { 223 public: 224 using BlockT = typename ContextT::BlockT; 225 using CycleT = GenericCycle<ContextT>; 226 using FunctionT = typename ContextT::FunctionT; 227 template <typename> friend class GenericCycle; 228 template <typename> friend class GenericCycleInfoCompute; 229 230 private: 231 ContextT Context; 232 233 /// Map basic blocks to their inner-most containing cycle. 234 DenseMap<BlockT *, CycleT *> BlockMap; 235 236 /// Map basic blocks to their top level containing cycle. 237 DenseMap<BlockT *, CycleT *> BlockMapTopLevel; 238 239 /// Top-level cycles discovered by any DFS. 240 /// 241 /// Note: The implementation treats the nullptr as the parent of 242 /// every top-level cycle. See \ref contains for an example. 243 std::vector<std::unique_ptr<CycleT>> TopLevelCycles; 244 245 /// Move \p Child to \p NewParent by manipulating Children vectors. 246 /// 247 /// Note: This is an incomplete operation that does not update the depth of 248 /// the subtree. 249 void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child); 250 251 /// Assumes that \p Cycle is the innermost cycle containing \p Block. 252 /// \p Block will be appended to \p Cycle and all of its parent cycles. 253 /// \p Block will be added to BlockMap with \p Cycle and 254 /// BlockMapTopLevel with \p Cycle's top level parent cycle. 255 void addBlockToCycle(BlockT *Block, CycleT *Cycle); 256 257 public: 258 GenericCycleInfo() = default; 259 GenericCycleInfo(GenericCycleInfo &&) = default; 260 GenericCycleInfo &operator=(GenericCycleInfo &&) = default; 261 262 void clear(); 263 void compute(FunctionT &F); 264 void splitCriticalEdge(BlockT *Pred, BlockT *Succ, BlockT *New); 265 getFunction()266 const FunctionT *getFunction() const { return Context.getFunction(); } getSSAContext()267 const ContextT &getSSAContext() const { return Context; } 268 269 CycleT *getCycle(const BlockT *Block) const; 270 CycleT *getSmallestCommonCycle(CycleT *A, CycleT *B) const; 271 unsigned getCycleDepth(const BlockT *Block) const; 272 CycleT *getTopLevelParentCycle(BlockT *Block); 273 274 /// Methods for debug and self-test. 275 //@{ 276 #ifndef NDEBUG 277 bool validateTree() const; 278 #endif 279 void print(raw_ostream &Out) const; dump()280 void dump() const { print(dbgs()); } print(const CycleT * Cycle)281 Printable print(const CycleT *Cycle) { return Cycle->print(Context); } 282 //@} 283 284 /// Iteration over top-level cycles. 285 //@{ 286 using const_toplevel_iterator_base = 287 typename std::vector<std::unique_ptr<CycleT>>::const_iterator; 288 struct const_toplevel_iterator 289 : iterator_adaptor_base<const_toplevel_iterator, 290 const_toplevel_iterator_base> { 291 using Base = iterator_adaptor_base<const_toplevel_iterator, 292 const_toplevel_iterator_base>; 293 294 const_toplevel_iterator() = default; const_toplevel_iteratorconst_toplevel_iterator295 explicit const_toplevel_iterator(const_toplevel_iterator_base I) 296 : Base(I) {} 297 wrappedconst_toplevel_iterator298 const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); } 299 CycleT *operator*() const { return Base::I->get(); } 300 }; 301 toplevel_begin()302 const_toplevel_iterator toplevel_begin() const { 303 return const_toplevel_iterator{TopLevelCycles.begin()}; 304 } toplevel_end()305 const_toplevel_iterator toplevel_end() const { 306 return const_toplevel_iterator{TopLevelCycles.end()}; 307 } 308 toplevel_cycles()309 iterator_range<const_toplevel_iterator> toplevel_cycles() const { 310 return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()}, 311 const_toplevel_iterator{TopLevelCycles.end()}); 312 } 313 //@} 314 }; 315 316 /// \brief GraphTraits for iterating over a sub-tree of the CycleT tree. 317 template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits { 318 using NodeRef = CycleRefT; 319 320 using nodes_iterator = ChildIteratorT; 321 using ChildIteratorType = nodes_iterator; 322 getEntryNodeCycleGraphTraits323 static NodeRef getEntryNode(NodeRef Graph) { return Graph; } 324 child_beginCycleGraphTraits325 static ChildIteratorType child_begin(NodeRef Ref) { 326 return Ref->child_begin(); 327 } child_endCycleGraphTraits328 static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); } 329 330 // Not implemented: 331 // static nodes_iterator nodes_begin(GraphType *G) 332 // static nodes_iterator nodes_end (GraphType *G) 333 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 334 335 // typedef EdgeRef - Type of Edge token in the graph, which should 336 // be cheap to copy. 337 // typedef ChildEdgeIteratorType - Type used to iterate over children edges in 338 // graph, dereference to a EdgeRef. 339 340 // static ChildEdgeIteratorType child_edge_begin(NodeRef) 341 // static ChildEdgeIteratorType child_edge_end(NodeRef) 342 // Return iterators that point to the beginning and ending of the 343 // edge list for the given callgraph node. 344 // 345 // static NodeRef edge_dest(EdgeRef) 346 // Return the destination node of an edge. 347 // static unsigned size (GraphType *G) 348 // Return total number of nodes in the graph 349 }; 350 351 template <typename BlockT> 352 struct GraphTraits<const GenericCycle<BlockT> *> 353 : CycleGraphTraits<const GenericCycle<BlockT> *, 354 typename GenericCycle<BlockT>::const_child_iterator> {}; 355 template <typename BlockT> 356 struct GraphTraits<GenericCycle<BlockT> *> 357 : CycleGraphTraits<GenericCycle<BlockT> *, 358 typename GenericCycle<BlockT>::const_child_iterator> {}; 359 360 } // namespace llvm 361 362 #endif // LLVM_ADT_GENERICCYCLEINFO_H 363