1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/OperandTraits.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <optional>
41 
42 namespace llvm {
43 
44 template <class ConstantClass> struct ConstantAggrKeyType;
45 
46 /// Base class for constants with no operands.
47 ///
48 /// These constants have no operands; they represent their data directly.
49 /// Since they can be in use by unrelated modules (and are never based on
50 /// GlobalValues), it never makes sense to RAUW them.
51 class ConstantData : public Constant {
52   friend class Constant;
53 
handleOperandChangeImpl(Value * From,Value * To)54   Value *handleOperandChangeImpl(Value *From, Value *To) {
55     llvm_unreachable("Constant data does not have operands!");
56   }
57 
58 protected:
ConstantData(Type * Ty,ValueTy VT)59   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60 
new(size_t S)61   void *operator new(size_t S) { return User::operator new(S, 0); }
62 
63 public:
delete(void * Ptr)64   void operator delete(void *Ptr) { User::operator delete(Ptr); }
65 
66   ConstantData(const ConstantData &) = delete;
67 
68   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)69   static bool classof(const Value *V) {
70     return V->getValueID() >= ConstantDataFirstVal &&
71            V->getValueID() <= ConstantDataLastVal;
72   }
73 };
74 
75 //===----------------------------------------------------------------------===//
76 /// This is the shared class of boolean and integer constants. This class
77 /// represents both boolean and integral constants.
78 /// Class for constant integers.
79 class ConstantInt final : public ConstantData {
80   friend class Constant;
81   friend class ConstantVector;
82 
83   APInt Val;
84 
85   ConstantInt(Type *Ty, const APInt &V);
86 
87   void destroyConstantImpl();
88 
89   /// Return a ConstantInt with the specified value and an implied Type. The
90   /// type is the vector type whose integer element type corresponds to the bit
91   /// width of the value.
92   static ConstantInt *get(LLVMContext &Context, ElementCount EC,
93                           const APInt &V);
94 
95 public:
96   ConstantInt(const ConstantInt &) = delete;
97 
98   static ConstantInt *getTrue(LLVMContext &Context);
99   static ConstantInt *getFalse(LLVMContext &Context);
100   static ConstantInt *getBool(LLVMContext &Context, bool V);
101   static Constant *getTrue(Type *Ty);
102   static Constant *getFalse(Type *Ty);
103   static Constant *getBool(Type *Ty, bool V);
104 
105   /// If Ty is a vector type, return a Constant with a splat of the given
106   /// value. Otherwise return a ConstantInt for the given value.
107   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
108 
109   /// Return a ConstantInt with the specified integer value for the specified
110   /// type. If the type is wider than 64 bits, the value will be zero-extended
111   /// to fit the type, unless IsSigned is true, in which case the value will
112   /// be interpreted as a 64-bit signed integer and sign-extended to fit
113   /// the type.
114   /// Get a ConstantInt for a specific value.
115   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
116 
117   /// Return a ConstantInt with the specified value for the specified type. The
118   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
119   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
120   /// signed value for the type Ty.
121   /// Get a ConstantInt for a specific signed value.
getSigned(IntegerType * Ty,int64_t V)122   static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
123     return get(Ty, V, true);
124   }
getSigned(Type * Ty,int64_t V)125   static Constant *getSigned(Type *Ty, int64_t V) {
126     return get(Ty, V, true);
127   }
128 
129   /// Return a ConstantInt with the specified value and an implied Type. The
130   /// type is the integer type that corresponds to the bit width of the value.
131   static ConstantInt *get(LLVMContext &Context, const APInt &V);
132 
133   /// Return a ConstantInt constructed from the string strStart with the given
134   /// radix.
135   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
136 
137   /// If Ty is a vector type, return a Constant with a splat of the given
138   /// value. Otherwise return a ConstantInt for the given value.
139   static Constant *get(Type *Ty, const APInt &V);
140 
141   /// Return the constant as an APInt value reference. This allows clients to
142   /// obtain a full-precision copy of the value.
143   /// Return the constant's value.
getValue()144   inline const APInt &getValue() const { return Val; }
145 
146   /// getBitWidth - Return the scalar bitwidth of this constant.
getBitWidth()147   unsigned getBitWidth() const { return Val.getBitWidth(); }
148 
149   /// Return the constant as a 64-bit unsigned integer value after it
150   /// has been zero extended as appropriate for the type of this constant. Note
151   /// that this method can assert if the value does not fit in 64 bits.
152   /// Return the zero extended value.
getZExtValue()153   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
154 
155   /// Return the constant as a 64-bit integer value after it has been sign
156   /// extended as appropriate for the type of this constant. Note that
157   /// this method can assert if the value does not fit in 64 bits.
158   /// Return the sign extended value.
getSExtValue()159   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
160 
161   /// Return the constant as an llvm::MaybeAlign.
162   /// Note that this method can assert if the value does not fit in 64 bits or
163   /// is not a power of two.
getMaybeAlignValue()164   inline MaybeAlign getMaybeAlignValue() const {
165     return MaybeAlign(getZExtValue());
166   }
167 
168   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
169   /// Note that this method can assert if the value does not fit in 64 bits or
170   /// is not a power of two.
getAlignValue()171   inline Align getAlignValue() const {
172     return getMaybeAlignValue().valueOrOne();
173   }
174 
175   /// A helper method that can be used to determine if the constant contained
176   /// within is equal to a constant.  This only works for very small values,
177   /// because this is all that can be represented with all types.
178   /// Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)179   bool equalsInt(uint64_t V) const { return Val == V; }
180 
181   /// Variant of the getType() method to always return an IntegerType, which
182   /// reduces the amount of casting needed in parts of the compiler.
getIntegerType()183   inline IntegerType *getIntegerType() const {
184     return cast<IntegerType>(Value::getType());
185   }
186 
187   /// This static method returns true if the type Ty is big enough to
188   /// represent the value V. This can be used to avoid having the get method
189   /// assert when V is larger than Ty can represent. Note that there are two
190   /// versions of this method, one for unsigned and one for signed integers.
191   /// Although ConstantInt canonicalizes everything to an unsigned integer,
192   /// the signed version avoids callers having to convert a signed quantity
193   /// to the appropriate unsigned type before calling the method.
194   /// @returns true if V is a valid value for type Ty
195   /// Determine if the value is in range for the given type.
196   static bool isValueValidForType(Type *Ty, uint64_t V);
197   static bool isValueValidForType(Type *Ty, int64_t V);
198 
isNegative()199   bool isNegative() const { return Val.isNegative(); }
200 
201   /// This is just a convenience method to make client code smaller for a
202   /// common code. It also correctly performs the comparison without the
203   /// potential for an assertion from getZExtValue().
isZero()204   bool isZero() const { return Val.isZero(); }
205 
206   /// This is just a convenience method to make client code smaller for a
207   /// common case. It also correctly performs the comparison without the
208   /// potential for an assertion from getZExtValue().
209   /// Determine if the value is one.
isOne()210   bool isOne() const { return Val.isOne(); }
211 
212   /// This function will return true iff every bit in this constant is set
213   /// to true.
214   /// @returns true iff this constant's bits are all set to true.
215   /// Determine if the value is all ones.
isMinusOne()216   bool isMinusOne() const { return Val.isAllOnes(); }
217 
218   /// This function will return true iff this constant represents the largest
219   /// value that may be represented by the constant's type.
220   /// @returns true iff this is the largest value that may be represented
221   /// by this type.
222   /// Determine if the value is maximal.
isMaxValue(bool IsSigned)223   bool isMaxValue(bool IsSigned) const {
224     if (IsSigned)
225       return Val.isMaxSignedValue();
226     else
227       return Val.isMaxValue();
228   }
229 
230   /// This function will return true iff this constant represents the smallest
231   /// value that may be represented by this constant's type.
232   /// @returns true if this is the smallest value that may be represented by
233   /// this type.
234   /// Determine if the value is minimal.
isMinValue(bool IsSigned)235   bool isMinValue(bool IsSigned) const {
236     if (IsSigned)
237       return Val.isMinSignedValue();
238     else
239       return Val.isMinValue();
240   }
241 
242   /// This function will return true iff this constant represents a value with
243   /// active bits bigger than 64 bits or a value greater than the given uint64_t
244   /// value.
245   /// @returns true iff this constant is greater or equal to the given number.
246   /// Determine if the value is greater or equal to the given number.
uge(uint64_t Num)247   bool uge(uint64_t Num) const { return Val.uge(Num); }
248 
249   /// getLimitedValue - If the value is smaller than the specified limit,
250   /// return it, otherwise return the limit value.  This causes the value
251   /// to saturate to the limit.
252   /// @returns the min of the value of the constant and the specified value
253   /// Get the constant's value with a saturation limit
254   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
255     return Val.getLimitedValue(Limit);
256   }
257 
258   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)259   static bool classof(const Value *V) {
260     return V->getValueID() == ConstantIntVal;
261   }
262 };
263 
264 //===----------------------------------------------------------------------===//
265 /// ConstantFP - Floating Point Values [float, double]
266 ///
267 class ConstantFP final : public ConstantData {
268   friend class Constant;
269   friend class ConstantVector;
270 
271   APFloat Val;
272 
273   ConstantFP(Type *Ty, const APFloat &V);
274 
275   void destroyConstantImpl();
276 
277   /// Return a ConstantFP with the specified value and an implied Type. The
278   /// type is the vector type whose element type has the same floating point
279   /// semantics as the value.
280   static ConstantFP *get(LLVMContext &Context, ElementCount EC,
281                          const APFloat &V);
282 
283 public:
284   ConstantFP(const ConstantFP &) = delete;
285 
286   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
287   /// for the specified value in the specified type. This should only be used
288   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
289   /// host double and as the target format.
290   static Constant *get(Type *Ty, double V);
291 
292   /// If Ty is a vector type, return a Constant with a splat of the given
293   /// value. Otherwise return a ConstantFP for the given value.
294   static Constant *get(Type *Ty, const APFloat &V);
295 
296   static Constant *get(Type *Ty, StringRef Str);
297   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
298   static Constant *getNaN(Type *Ty, bool Negative = false,
299                           uint64_t Payload = 0);
300   static Constant *getQNaN(Type *Ty, bool Negative = false,
301                            APInt *Payload = nullptr);
302   static Constant *getSNaN(Type *Ty, bool Negative = false,
303                            APInt *Payload = nullptr);
304   static Constant *getZero(Type *Ty, bool Negative = false);
getNegativeZero(Type * Ty)305   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
306   static Constant *getInfinity(Type *Ty, bool Negative = false);
307 
308   /// Return true if Ty is big enough to represent V.
309   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()310   inline const APFloat &getValueAPF() const { return Val; }
getValue()311   inline const APFloat &getValue() const { return Val; }
312 
313   /// Return true if the value is positive or negative zero.
isZero()314   bool isZero() const { return Val.isZero(); }
315 
316   /// Return true if the sign bit is set.
isNegative()317   bool isNegative() const { return Val.isNegative(); }
318 
319   /// Return true if the value is infinity
isInfinity()320   bool isInfinity() const { return Val.isInfinity(); }
321 
322   /// Return true if the value is a NaN.
isNaN()323   bool isNaN() const { return Val.isNaN(); }
324 
325   /// We don't rely on operator== working on double values, as it returns true
326   /// for things that are clearly not equal, like -0.0 and 0.0.
327   /// As such, this method can be used to do an exact bit-for-bit comparison of
328   /// two floating point values.  The version with a double operand is retained
329   /// because it's so convenient to write isExactlyValue(2.0), but please use
330   /// it only for simple constants.
331   bool isExactlyValue(const APFloat &V) const;
332 
isExactlyValue(double V)333   bool isExactlyValue(double V) const {
334     bool ignored;
335     APFloat FV(V);
336     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
337     return isExactlyValue(FV);
338   }
339 
340   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)341   static bool classof(const Value *V) {
342     return V->getValueID() == ConstantFPVal;
343   }
344 };
345 
346 //===----------------------------------------------------------------------===//
347 /// All zero aggregate value
348 ///
349 class ConstantAggregateZero final : public ConstantData {
350   friend class Constant;
351 
ConstantAggregateZero(Type * Ty)352   explicit ConstantAggregateZero(Type *Ty)
353       : ConstantData(Ty, ConstantAggregateZeroVal) {}
354 
355   void destroyConstantImpl();
356 
357 public:
358   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
359 
360   static ConstantAggregateZero *get(Type *Ty);
361 
362   /// If this CAZ has array or vector type, return a zero with the right element
363   /// type.
364   Constant *getSequentialElement() const;
365 
366   /// If this CAZ has struct type, return a zero with the right element type for
367   /// the specified element.
368   Constant *getStructElement(unsigned Elt) const;
369 
370   /// Return a zero of the right value for the specified GEP index if we can,
371   /// otherwise return null (e.g. if C is a ConstantExpr).
372   Constant *getElementValue(Constant *C) const;
373 
374   /// Return a zero of the right value for the specified GEP index.
375   Constant *getElementValue(unsigned Idx) const;
376 
377   /// Return the number of elements in the array, vector, or struct.
378   ElementCount getElementCount() const;
379 
380   /// Methods for support type inquiry through isa, cast, and dyn_cast:
381   ///
classof(const Value * V)382   static bool classof(const Value *V) {
383     return V->getValueID() == ConstantAggregateZeroVal;
384   }
385 };
386 
387 /// Base class for aggregate constants (with operands).
388 ///
389 /// These constants are aggregates of other constants, which are stored as
390 /// operands.
391 ///
392 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
393 /// ConstantVector.
394 ///
395 /// \note Some subclasses of \a ConstantData are semantically aggregates --
396 /// such as \a ConstantDataArray -- but are not subclasses of this because they
397 /// use operands.
398 class ConstantAggregate : public Constant {
399 protected:
400   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
401 
402 public:
403   /// Transparently provide more efficient getOperand methods.
404   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
405 
406   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)407   static bool classof(const Value *V) {
408     return V->getValueID() >= ConstantAggregateFirstVal &&
409            V->getValueID() <= ConstantAggregateLastVal;
410   }
411 };
412 
413 template <>
414 struct OperandTraits<ConstantAggregate>
415     : public VariadicOperandTraits<ConstantAggregate> {};
416 
417 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
418 
419 //===----------------------------------------------------------------------===//
420 /// ConstantArray - Constant Array Declarations
421 ///
422 class ConstantArray final : public ConstantAggregate {
423   friend struct ConstantAggrKeyType<ConstantArray>;
424   friend class Constant;
425 
426   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
427 
428   void destroyConstantImpl();
429   Value *handleOperandChangeImpl(Value *From, Value *To);
430 
431 public:
432   // ConstantArray accessors
433   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
434 
435 private:
436   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
437 
438 public:
439   /// Specialize the getType() method to always return an ArrayType,
440   /// which reduces the amount of casting needed in parts of the compiler.
441   inline ArrayType *getType() const {
442     return cast<ArrayType>(Value::getType());
443   }
444 
445   /// Methods for support type inquiry through isa, cast, and dyn_cast:
446   static bool classof(const Value *V) {
447     return V->getValueID() == ConstantArrayVal;
448   }
449 };
450 
451 //===----------------------------------------------------------------------===//
452 // Constant Struct Declarations
453 //
454 class ConstantStruct final : public ConstantAggregate {
455   friend struct ConstantAggrKeyType<ConstantStruct>;
456   friend class Constant;
457 
458   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
459 
460   void destroyConstantImpl();
461   Value *handleOperandChangeImpl(Value *From, Value *To);
462 
463 public:
464   // ConstantStruct accessors
465   static Constant *get(StructType *T, ArrayRef<Constant *> V);
466 
467   template <typename... Csts>
468   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
469   get(StructType *T, Csts *...Vs) {
470     return get(T, ArrayRef<Constant *>({Vs...}));
471   }
472 
473   /// Return an anonymous struct that has the specified elements.
474   /// If the struct is possibly empty, then you must specify a context.
475   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
476     return get(getTypeForElements(V, Packed), V);
477   }
478   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
479                            bool Packed = false) {
480     return get(getTypeForElements(Ctx, V, Packed), V);
481   }
482 
483   /// Return an anonymous struct type to use for a constant with the specified
484   /// set of elements. The list must not be empty.
485   static StructType *getTypeForElements(ArrayRef<Constant *> V,
486                                         bool Packed = false);
487   /// This version of the method allows an empty list.
488   static StructType *getTypeForElements(LLVMContext &Ctx,
489                                         ArrayRef<Constant *> V,
490                                         bool Packed = false);
491 
492   /// Specialization - reduce amount of casting.
493   inline StructType *getType() const {
494     return cast<StructType>(Value::getType());
495   }
496 
497   /// Methods for support type inquiry through isa, cast, and dyn_cast:
498   static bool classof(const Value *V) {
499     return V->getValueID() == ConstantStructVal;
500   }
501 };
502 
503 //===----------------------------------------------------------------------===//
504 /// Constant Vector Declarations
505 ///
506 class ConstantVector final : public ConstantAggregate {
507   friend struct ConstantAggrKeyType<ConstantVector>;
508   friend class Constant;
509 
510   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
511 
512   void destroyConstantImpl();
513   Value *handleOperandChangeImpl(Value *From, Value *To);
514 
515 public:
516   // ConstantVector accessors
517   static Constant *get(ArrayRef<Constant *> V);
518 
519 private:
520   static Constant *getImpl(ArrayRef<Constant *> V);
521 
522 public:
523   /// Return a ConstantVector with the specified constant in each element.
524   /// Note that this might not return an instance of ConstantVector
525   static Constant *getSplat(ElementCount EC, Constant *Elt);
526 
527   /// Specialize the getType() method to always return a FixedVectorType,
528   /// which reduces the amount of casting needed in parts of the compiler.
529   inline FixedVectorType *getType() const {
530     return cast<FixedVectorType>(Value::getType());
531   }
532 
533   /// If all elements of the vector constant have the same value, return that
534   /// value. Otherwise, return nullptr. Ignore undefined elements by setting
535   /// AllowUndefs to true.
536   Constant *getSplatValue(bool AllowUndefs = false) const;
537 
538   /// Methods for support type inquiry through isa, cast, and dyn_cast:
539   static bool classof(const Value *V) {
540     return V->getValueID() == ConstantVectorVal;
541   }
542 };
543 
544 //===----------------------------------------------------------------------===//
545 /// A constant pointer value that points to null
546 ///
547 class ConstantPointerNull final : public ConstantData {
548   friend class Constant;
549 
550   explicit ConstantPointerNull(PointerType *T)
551       : ConstantData(T, Value::ConstantPointerNullVal) {}
552 
553   void destroyConstantImpl();
554 
555 public:
556   ConstantPointerNull(const ConstantPointerNull &) = delete;
557 
558   /// Static factory methods - Return objects of the specified value
559   static ConstantPointerNull *get(PointerType *T);
560 
561   /// Specialize the getType() method to always return an PointerType,
562   /// which reduces the amount of casting needed in parts of the compiler.
563   inline PointerType *getType() const {
564     return cast<PointerType>(Value::getType());
565   }
566 
567   /// Methods for support type inquiry through isa, cast, and dyn_cast:
568   static bool classof(const Value *V) {
569     return V->getValueID() == ConstantPointerNullVal;
570   }
571 };
572 
573 //===----------------------------------------------------------------------===//
574 /// ConstantDataSequential - A vector or array constant whose element type is a
575 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
576 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
577 /// node has no operands because it stores all of the elements of the constant
578 /// as densely packed data, instead of as Value*'s.
579 ///
580 /// This is the common base class of ConstantDataArray and ConstantDataVector.
581 ///
582 class ConstantDataSequential : public ConstantData {
583   friend class LLVMContextImpl;
584   friend class Constant;
585 
586   /// A pointer to the bytes underlying this constant (which is owned by the
587   /// uniquing StringMap).
588   const char *DataElements;
589 
590   /// This forms a link list of ConstantDataSequential nodes that have
591   /// the same value but different type.  For example, 0,0,0,1 could be a 4
592   /// element array of i8, or a 1-element array of i32.  They'll both end up in
593   /// the same StringMap bucket, linked up.
594   std::unique_ptr<ConstantDataSequential> Next;
595 
596   void destroyConstantImpl();
597 
598 protected:
599   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
600       : ConstantData(ty, VT), DataElements(Data) {}
601 
602   static Constant *getImpl(StringRef Bytes, Type *Ty);
603 
604 public:
605   ConstantDataSequential(const ConstantDataSequential &) = delete;
606 
607   /// Return true if a ConstantDataSequential can be formed with a vector or
608   /// array of the specified element type.
609   /// ConstantDataArray only works with normal float and int types that are
610   /// stored densely in memory, not with things like i42 or x86_f80.
611   static bool isElementTypeCompatible(Type *Ty);
612 
613   /// If this is a sequential container of integers (of any size), return the
614   /// specified element in the low bits of a uint64_t.
615   uint64_t getElementAsInteger(unsigned i) const;
616 
617   /// If this is a sequential container of integers (of any size), return the
618   /// specified element as an APInt.
619   APInt getElementAsAPInt(unsigned i) const;
620 
621   /// If this is a sequential container of floating point type, return the
622   /// specified element as an APFloat.
623   APFloat getElementAsAPFloat(unsigned i) const;
624 
625   /// If this is an sequential container of floats, return the specified element
626   /// as a float.
627   float getElementAsFloat(unsigned i) const;
628 
629   /// If this is an sequential container of doubles, return the specified
630   /// element as a double.
631   double getElementAsDouble(unsigned i) const;
632 
633   /// Return a Constant for a specified index's element.
634   /// Note that this has to compute a new constant to return, so it isn't as
635   /// efficient as getElementAsInteger/Float/Double.
636   Constant *getElementAsConstant(unsigned i) const;
637 
638   /// Return the element type of the array/vector.
639   Type *getElementType() const;
640 
641   /// Return the number of elements in the array or vector.
642   unsigned getNumElements() const;
643 
644   /// Return the size (in bytes) of each element in the array/vector.
645   /// The size of the elements is known to be a multiple of one byte.
646   uint64_t getElementByteSize() const;
647 
648   /// This method returns true if this is an array of \p CharSize integers.
649   bool isString(unsigned CharSize = 8) const;
650 
651   /// This method returns true if the array "isString", ends with a null byte,
652   /// and does not contains any other null bytes.
653   bool isCString() const;
654 
655   /// If this array is isString(), then this method returns the array as a
656   /// StringRef. Otherwise, it asserts out.
657   StringRef getAsString() const {
658     assert(isString() && "Not a string");
659     return getRawDataValues();
660   }
661 
662   /// If this array is isCString(), then this method returns the array (without
663   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
664   StringRef getAsCString() const {
665     assert(isCString() && "Isn't a C string");
666     StringRef Str = getAsString();
667     return Str.substr(0, Str.size() - 1);
668   }
669 
670   /// Return the raw, underlying, bytes of this data. Note that this is an
671   /// extremely tricky thing to work with, as it exposes the host endianness of
672   /// the data elements.
673   StringRef getRawDataValues() const;
674 
675   /// Methods for support type inquiry through isa, cast, and dyn_cast:
676   static bool classof(const Value *V) {
677     return V->getValueID() == ConstantDataArrayVal ||
678            V->getValueID() == ConstantDataVectorVal;
679   }
680 
681 private:
682   const char *getElementPointer(unsigned Elt) const;
683 };
684 
685 //===----------------------------------------------------------------------===//
686 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
687 /// float/double, and whose elements are just simple data values
688 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
689 /// stores all of the elements of the constant as densely packed data, instead
690 /// of as Value*'s.
691 class ConstantDataArray final : public ConstantDataSequential {
692   friend class ConstantDataSequential;
693 
694   explicit ConstantDataArray(Type *ty, const char *Data)
695       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
696 
697 public:
698   ConstantDataArray(const ConstantDataArray &) = delete;
699 
700   /// get() constructor - Return a constant with array type with an element
701   /// count and element type matching the ArrayRef passed in.  Note that this
702   /// can return a ConstantAggregateZero object.
703   template <typename ElementTy>
704   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
705     const char *Data = reinterpret_cast<const char *>(Elts.data());
706     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
707                   Type::getScalarTy<ElementTy>(Context));
708   }
709 
710   /// get() constructor - ArrayTy needs to be compatible with
711   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
712   template <typename ArrayTy>
713   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
714     return ConstantDataArray::get(Context, ArrayRef(Elts));
715   }
716 
717   /// getRaw() constructor - Return a constant with array type with an element
718   /// count and element type matching the NumElements and ElementTy parameters
719   /// passed in. Note that this can return a ConstantAggregateZero object.
720   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
721   /// the buffer containing the elements. Be careful to make sure Data uses the
722   /// right endianness, the buffer will be used as-is.
723   static Constant *getRaw(StringRef Data, uint64_t NumElements,
724                           Type *ElementTy) {
725     Type *Ty = ArrayType::get(ElementTy, NumElements);
726     return getImpl(Data, Ty);
727   }
728 
729   /// getFP() constructors - Return a constant of array type with a float
730   /// element type taken from argument `ElementType', and count taken from
731   /// argument `Elts'.  The amount of bits of the contained type must match the
732   /// number of bits of the type contained in the passed in ArrayRef.
733   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
734   /// that this can return a ConstantAggregateZero object.
735   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
736   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
737   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
738 
739   /// This method constructs a CDS and initializes it with a text string.
740   /// The default behavior (AddNull==true) causes a null terminator to
741   /// be placed at the end of the array (increasing the length of the string by
742   /// one more than the StringRef would normally indicate.  Pass AddNull=false
743   /// to disable this behavior.
744   static Constant *getString(LLVMContext &Context, StringRef Initializer,
745                              bool AddNull = true);
746 
747   /// Specialize the getType() method to always return an ArrayType,
748   /// which reduces the amount of casting needed in parts of the compiler.
749   inline ArrayType *getType() const {
750     return cast<ArrayType>(Value::getType());
751   }
752 
753   /// Methods for support type inquiry through isa, cast, and dyn_cast:
754   static bool classof(const Value *V) {
755     return V->getValueID() == ConstantDataArrayVal;
756   }
757 };
758 
759 //===----------------------------------------------------------------------===//
760 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
761 /// float/double, and whose elements are just simple data values
762 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
763 /// stores all of the elements of the constant as densely packed data, instead
764 /// of as Value*'s.
765 class ConstantDataVector final : public ConstantDataSequential {
766   friend class ConstantDataSequential;
767 
768   explicit ConstantDataVector(Type *ty, const char *Data)
769       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
770         IsSplatSet(false) {}
771   // Cache whether or not the constant is a splat.
772   mutable bool IsSplatSet : 1;
773   mutable bool IsSplat : 1;
774   bool isSplatData() const;
775 
776 public:
777   ConstantDataVector(const ConstantDataVector &) = delete;
778 
779   /// get() constructors - Return a constant with vector type with an element
780   /// count and element type matching the ArrayRef passed in.  Note that this
781   /// can return a ConstantAggregateZero object.
782   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
783   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
784   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
785   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
786   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
787   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
788 
789   /// getRaw() constructor - Return a constant with vector type with an element
790   /// count and element type matching the NumElements and ElementTy parameters
791   /// passed in. Note that this can return a ConstantAggregateZero object.
792   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
793   /// the buffer containing the elements. Be careful to make sure Data uses the
794   /// right endianness, the buffer will be used as-is.
795   static Constant *getRaw(StringRef Data, uint64_t NumElements,
796                           Type *ElementTy) {
797     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
798     return getImpl(Data, Ty);
799   }
800 
801   /// getFP() constructors - Return a constant of vector type with a float
802   /// element type taken from argument `ElementType', and count taken from
803   /// argument `Elts'.  The amount of bits of the contained type must match the
804   /// number of bits of the type contained in the passed in ArrayRef.
805   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
806   /// that this can return a ConstantAggregateZero object.
807   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
808   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
809   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
810 
811   /// Return a ConstantVector with the specified constant in each element.
812   /// The specified constant has to be a of a compatible type (i8/i16/
813   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
814   static Constant *getSplat(unsigned NumElts, Constant *Elt);
815 
816   /// Returns true if this is a splat constant, meaning that all elements have
817   /// the same value.
818   bool isSplat() const;
819 
820   /// If this is a splat constant, meaning that all of the elements have the
821   /// same value, return that value. Otherwise return NULL.
822   Constant *getSplatValue() const;
823 
824   /// Specialize the getType() method to always return a FixedVectorType,
825   /// which reduces the amount of casting needed in parts of the compiler.
826   inline FixedVectorType *getType() const {
827     return cast<FixedVectorType>(Value::getType());
828   }
829 
830   /// Methods for support type inquiry through isa, cast, and dyn_cast:
831   static bool classof(const Value *V) {
832     return V->getValueID() == ConstantDataVectorVal;
833   }
834 };
835 
836 //===----------------------------------------------------------------------===//
837 /// A constant token which is empty
838 ///
839 class ConstantTokenNone final : public ConstantData {
840   friend class Constant;
841 
842   explicit ConstantTokenNone(LLVMContext &Context)
843       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
844 
845   void destroyConstantImpl();
846 
847 public:
848   ConstantTokenNone(const ConstantTokenNone &) = delete;
849 
850   /// Return the ConstantTokenNone.
851   static ConstantTokenNone *get(LLVMContext &Context);
852 
853   /// Methods to support type inquiry through isa, cast, and dyn_cast.
854   static bool classof(const Value *V) {
855     return V->getValueID() == ConstantTokenNoneVal;
856   }
857 };
858 
859 /// A constant target extension type default initializer
860 class ConstantTargetNone final : public ConstantData {
861   friend class Constant;
862 
863   explicit ConstantTargetNone(TargetExtType *T)
864       : ConstantData(T, Value::ConstantTargetNoneVal) {}
865 
866   void destroyConstantImpl();
867 
868 public:
869   ConstantTargetNone(const ConstantTargetNone &) = delete;
870 
871   /// Static factory methods - Return objects of the specified value.
872   static ConstantTargetNone *get(TargetExtType *T);
873 
874   /// Specialize the getType() method to always return an TargetExtType,
875   /// which reduces the amount of casting needed in parts of the compiler.
876   inline TargetExtType *getType() const {
877     return cast<TargetExtType>(Value::getType());
878   }
879 
880   /// Methods for support type inquiry through isa, cast, and dyn_cast.
881   static bool classof(const Value *V) {
882     return V->getValueID() == ConstantTargetNoneVal;
883   }
884 };
885 
886 /// The address of a basic block.
887 ///
888 class BlockAddress final : public Constant {
889   friend class Constant;
890 
891   BlockAddress(Function *F, BasicBlock *BB);
892 
893   void *operator new(size_t S) { return User::operator new(S, 2); }
894 
895   void destroyConstantImpl();
896   Value *handleOperandChangeImpl(Value *From, Value *To);
897 
898 public:
899   void operator delete(void *Ptr) { User::operator delete(Ptr); }
900 
901   /// Return a BlockAddress for the specified function and basic block.
902   static BlockAddress *get(Function *F, BasicBlock *BB);
903 
904   /// Return a BlockAddress for the specified basic block.  The basic
905   /// block must be embedded into a function.
906   static BlockAddress *get(BasicBlock *BB);
907 
908   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
909   ///
910   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
911   static BlockAddress *lookup(const BasicBlock *BB);
912 
913   /// Transparently provide more efficient getOperand methods.
914   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
915 
916   Function *getFunction() const { return (Function *)Op<0>().get(); }
917   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
918 
919   /// Methods for support type inquiry through isa, cast, and dyn_cast:
920   static bool classof(const Value *V) {
921     return V->getValueID() == BlockAddressVal;
922   }
923 };
924 
925 template <>
926 struct OperandTraits<BlockAddress>
927     : public FixedNumOperandTraits<BlockAddress, 2> {};
928 
929 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
930 
931 /// Wrapper for a function that represents a value that
932 /// functionally represents the original function. This can be a function,
933 /// global alias to a function, or an ifunc.
934 class DSOLocalEquivalent final : public Constant {
935   friend class Constant;
936 
937   DSOLocalEquivalent(GlobalValue *GV);
938 
939   void *operator new(size_t S) { return User::operator new(S, 1); }
940 
941   void destroyConstantImpl();
942   Value *handleOperandChangeImpl(Value *From, Value *To);
943 
944 public:
945   void operator delete(void *Ptr) { User::operator delete(Ptr); }
946 
947   /// Return a DSOLocalEquivalent for the specified global value.
948   static DSOLocalEquivalent *get(GlobalValue *GV);
949 
950   /// Transparently provide more efficient getOperand methods.
951   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
952 
953   GlobalValue *getGlobalValue() const {
954     return cast<GlobalValue>(Op<0>().get());
955   }
956 
957   /// Methods for support type inquiry through isa, cast, and dyn_cast:
958   static bool classof(const Value *V) {
959     return V->getValueID() == DSOLocalEquivalentVal;
960   }
961 };
962 
963 template <>
964 struct OperandTraits<DSOLocalEquivalent>
965     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
966 
967 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
968 
969 /// Wrapper for a value that won't be replaced with a CFI jump table
970 /// pointer in LowerTypeTestsModule.
971 class NoCFIValue final : public Constant {
972   friend class Constant;
973 
974   NoCFIValue(GlobalValue *GV);
975 
976   void *operator new(size_t S) { return User::operator new(S, 1); }
977 
978   void destroyConstantImpl();
979   Value *handleOperandChangeImpl(Value *From, Value *To);
980 
981 public:
982   /// Return a NoCFIValue for the specified function.
983   static NoCFIValue *get(GlobalValue *GV);
984 
985   /// Transparently provide more efficient getOperand methods.
986   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
987 
988   GlobalValue *getGlobalValue() const {
989     return cast<GlobalValue>(Op<0>().get());
990   }
991 
992   /// NoCFIValue is always a pointer.
993   PointerType *getType() const {
994     return cast<PointerType>(Value::getType());
995   }
996 
997   /// Methods for support type inquiry through isa, cast, and dyn_cast:
998   static bool classof(const Value *V) {
999     return V->getValueID() == NoCFIValueVal;
1000   }
1001 };
1002 
1003 template <>
1004 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
1005 };
1006 
1007 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
1008 
1009 //===----------------------------------------------------------------------===//
1010 /// A constant value that is initialized with an expression using
1011 /// other constant values.
1012 ///
1013 /// This class uses the standard Instruction opcodes to define the various
1014 /// constant expressions.  The Opcode field for the ConstantExpr class is
1015 /// maintained in the Value::SubclassData field.
1016 class ConstantExpr : public Constant {
1017   friend struct ConstantExprKeyType;
1018   friend class Constant;
1019 
1020   void destroyConstantImpl();
1021   Value *handleOperandChangeImpl(Value *From, Value *To);
1022 
1023 protected:
1024   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1025       : Constant(ty, ConstantExprVal, Ops, NumOps) {
1026     // Operation type (an Instruction opcode) is stored as the SubclassData.
1027     setValueSubclassData(Opcode);
1028   }
1029 
1030   ~ConstantExpr() = default;
1031 
1032 public:
1033   // Static methods to construct a ConstantExpr of different kinds.  Note that
1034   // these methods may return a object that is not an instance of the
1035   // ConstantExpr class, because they will attempt to fold the constant
1036   // expression into something simpler if possible.
1037 
1038   /// getAlignOf constant expr - computes the alignment of a type in a target
1039   /// independent way (Note: the return type is an i64).
1040   static Constant *getAlignOf(Type *Ty);
1041 
1042   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1043   /// address-units, not bits) in a target independent way (Note: the return
1044   /// type is an i64).
1045   ///
1046   static Constant *getSizeOf(Type *Ty);
1047 
1048   static Constant *getNeg(Constant *C, bool HasNUW = false,
1049                           bool HasNSW = false);
1050   static Constant *getNot(Constant *C);
1051   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1052                           bool HasNSW = false);
1053   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1054                           bool HasNSW = false);
1055   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1056                           bool HasNSW = false);
1057   static Constant *getXor(Constant *C1, Constant *C2);
1058   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1059                           bool HasNSW = false);
1060   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1061   static Constant *getPtrToInt(Constant *C, Type *Ty,
1062                                bool OnlyIfReduced = false);
1063   static Constant *getIntToPtr(Constant *C, Type *Ty,
1064                                bool OnlyIfReduced = false);
1065   static Constant *getBitCast(Constant *C, Type *Ty,
1066                               bool OnlyIfReduced = false);
1067   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1068                                     bool OnlyIfReduced = false);
1069 
1070   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1071   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1072 
1073   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1074     return getAdd(C1, C2, false, true);
1075   }
1076 
1077   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1078     return getAdd(C1, C2, true, false);
1079   }
1080 
1081   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1082     return getSub(C1, C2, false, true);
1083   }
1084 
1085   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1086     return getSub(C1, C2, true, false);
1087   }
1088 
1089   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1090     return getMul(C1, C2, false, true);
1091   }
1092 
1093   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1094     return getMul(C1, C2, true, false);
1095   }
1096 
1097   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1098     return getShl(C1, C2, false, true);
1099   }
1100 
1101   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1102     return getShl(C1, C2, true, false);
1103   }
1104 
1105   /// If C is a scalar/fixed width vector of known powers of 2, then this
1106   /// function returns a new scalar/fixed width vector obtained from logBase2
1107   /// of C. Undef vector elements are set to zero.
1108   /// Return a null pointer otherwise.
1109   static Constant *getExactLogBase2(Constant *C);
1110 
1111   /// Return the identity constant for a binary opcode.
1112   /// If the binop is not commutative, callers can acquire the operand 1
1113   /// identity constant by setting AllowRHSConstant to true. For example, any
1114   /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1115   /// is a fadd/fsub operation and we don't care about signed zeros, then
1116   /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1117   /// nullptr if the operator does not have an identity constant.
1118   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1119                                     bool AllowRHSConstant = false,
1120                                     bool NSZ = false);
1121 
1122   static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1123 
1124   /// Return the identity constant for a binary or intrinsic Instruction.
1125   /// The identity constant C is defined as X op C = X and C op X = X where C
1126   /// and X are the first two operands, and the operation is commutative.
1127   static Constant *getIdentity(Instruction *I, Type *Ty,
1128                                bool AllowRHSConstant = false, bool NSZ = false);
1129 
1130   /// Return the absorbing element for the given binary
1131   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1132   /// every X.  For example, this returns zero for integer multiplication.
1133   /// It returns null if the operator doesn't have an absorbing element.
1134   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1135 
1136   /// Transparently provide more efficient getOperand methods.
1137   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1138 
1139   /// Convenience function for getting a Cast operation.
1140   ///
1141   /// \param ops The opcode for the conversion
1142   /// \param C  The constant to be converted
1143   /// \param Ty The type to which the constant is converted
1144   /// \param OnlyIfReduced see \a getWithOperands() docs.
1145   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1146                            bool OnlyIfReduced = false);
1147 
1148   // Create a Trunc or BitCast cast constant expression
1149   static Constant *
1150   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1151                     Type *Ty     ///< The type to trunc or bitcast C to
1152   );
1153 
1154   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1155   /// expression.
1156   static Constant *
1157   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1158                  Type *Ty     ///< The type to which cast should be made
1159   );
1160 
1161   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1162   /// the address space.
1163   static Constant *getPointerBitCastOrAddrSpaceCast(
1164       Constant *C, ///< The constant to addrspacecast or bitcast
1165       Type *Ty     ///< The type to bitcast or addrspacecast C to
1166   );
1167 
1168   /// Return true if this is a convert constant expression
1169   bool isCast() const;
1170 
1171   /// Return true if this is a compare constant expression
1172   bool isCompare() const;
1173 
1174   /// get - Return a binary or shift operator constant expression,
1175   /// folding if possible.
1176   ///
1177   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1178   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1179                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1180 
1181   /// Return an ICmp or FCmp comparison operator constant expression.
1182   ///
1183   /// \param OnlyIfReduced see \a getWithOperands() docs.
1184   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1185                               bool OnlyIfReduced = false);
1186 
1187   /// get* - Return some common constants without having to
1188   /// specify the full Instruction::OPCODE identifier.
1189   ///
1190   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1191                            bool OnlyIfReduced = false);
1192   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1193                            bool OnlyIfReduced = false);
1194 
1195   /// Getelementptr form.  Value* is only accepted for convenience;
1196   /// all elements must be Constants.
1197   ///
1198   /// \param InRangeIndex the inrange index if present or std::nullopt.
1199   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1200   static Constant *
1201   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1202                    bool InBounds = false,
1203                    std::optional<unsigned> InRangeIndex = std::nullopt,
1204                    Type *OnlyIfReducedTy = nullptr) {
1205     return getGetElementPtr(
1206         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1207         InBounds, InRangeIndex, OnlyIfReducedTy);
1208   }
1209   static Constant *
1210   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false,
1211                    std::optional<unsigned> InRangeIndex = std::nullopt,
1212                    Type *OnlyIfReducedTy = nullptr) {
1213     // This form of the function only exists to avoid ambiguous overload
1214     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1215     // ArrayRef<Value *>.
1216     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1217                             OnlyIfReducedTy);
1218   }
1219   static Constant *
1220   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1221                    bool InBounds = false,
1222                    std::optional<unsigned> InRangeIndex = std::nullopt,
1223                    Type *OnlyIfReducedTy = nullptr);
1224 
1225   /// Create an "inbounds" getelementptr. See the documentation for the
1226   /// "inbounds" flag in LangRef.html for details.
1227   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1228                                             ArrayRef<Constant *> IdxList) {
1229     return getGetElementPtr(Ty, C, IdxList, true);
1230   }
1231   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1232                                             Constant *Idx) {
1233     // This form of the function only exists to avoid ambiguous overload
1234     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1235     // ArrayRef<Value *>.
1236     return getGetElementPtr(Ty, C, Idx, true);
1237   }
1238   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1239                                             ArrayRef<Value *> IdxList) {
1240     return getGetElementPtr(Ty, C, IdxList, true);
1241   }
1242 
1243   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1244                                      Type *OnlyIfReducedTy = nullptr);
1245   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1246                                     Type *OnlyIfReducedTy = nullptr);
1247   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1248                                     ArrayRef<int> Mask,
1249                                     Type *OnlyIfReducedTy = nullptr);
1250 
1251   /// Return the opcode at the root of this constant expression
1252   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1253 
1254   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1255   /// FCMP constant expression.
1256   unsigned getPredicate() const;
1257 
1258   /// Assert that this is a shufflevector and return the mask. See class
1259   /// ShuffleVectorInst for a description of the mask representation.
1260   ArrayRef<int> getShuffleMask() const;
1261 
1262   /// Assert that this is a shufflevector and return the mask.
1263   ///
1264   /// TODO: This is a temporary hack until we update the bitcode format for
1265   /// shufflevector.
1266   Constant *getShuffleMaskForBitcode() const;
1267 
1268   /// Return a string representation for an opcode.
1269   const char *getOpcodeName() const;
1270 
1271   /// This returns the current constant expression with the operands replaced
1272   /// with the specified values. The specified array must have the same number
1273   /// of operands as our current one.
1274   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1275     return getWithOperands(Ops, getType());
1276   }
1277 
1278   /// Get the current expression with the operands replaced.
1279   ///
1280   /// Return the current constant expression with the operands replaced with \c
1281   /// Ops and the type with \c Ty.  The new operands must have the same number
1282   /// as the current ones.
1283   ///
1284   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1285   /// gets constant-folded, the type changes, or the expression is otherwise
1286   /// canonicalized.  This parameter should almost always be \c false.
1287   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1288                             bool OnlyIfReduced = false,
1289                             Type *SrcTy = nullptr) const;
1290 
1291   /// Returns an Instruction which implements the same operation as this
1292   /// ConstantExpr. If \p InsertBefore is not null, the new instruction is
1293   /// inserted before it, otherwise it is not inserted into any basic block.
1294   ///
1295   /// A better approach to this could be to have a constructor for Instruction
1296   /// which would take a ConstantExpr parameter, but that would have spread
1297   /// implementation details of ConstantExpr outside of Constants.cpp, which
1298   /// would make it harder to remove ConstantExprs altogether.
1299   Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const;
1300 
1301   /// Whether creating a constant expression for this binary operator is
1302   /// desirable.
1303   static bool isDesirableBinOp(unsigned Opcode);
1304 
1305   /// Whether creating a constant expression for this binary operator is
1306   /// supported.
1307   static bool isSupportedBinOp(unsigned Opcode);
1308 
1309   /// Whether creating a constant expression for this cast is desirable.
1310   static bool isDesirableCastOp(unsigned Opcode);
1311 
1312   /// Whether creating a constant expression for this cast is supported.
1313   static bool isSupportedCastOp(unsigned Opcode);
1314 
1315   /// Whether creating a constant expression for this getelementptr type is
1316   /// supported.
1317   static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1318     return !SrcElemTy->isScalableTy();
1319   }
1320 
1321   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1322   static bool classof(const Value *V) {
1323     return V->getValueID() == ConstantExprVal;
1324   }
1325 
1326 private:
1327   // Shadow Value::setValueSubclassData with a private forwarding method so that
1328   // subclasses cannot accidentally use it.
1329   void setValueSubclassData(unsigned short D) {
1330     Value::setValueSubclassData(D);
1331   }
1332 };
1333 
1334 template <>
1335 struct OperandTraits<ConstantExpr>
1336     : public VariadicOperandTraits<ConstantExpr, 1> {};
1337 
1338 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1339 
1340 //===----------------------------------------------------------------------===//
1341 /// 'undef' values are things that do not have specified contents.
1342 /// These are used for a variety of purposes, including global variable
1343 /// initializers and operands to instructions.  'undef' values can occur with
1344 /// any first-class type.
1345 ///
1346 /// Undef values aren't exactly constants; if they have multiple uses, they
1347 /// can appear to have different bit patterns at each use. See
1348 /// LangRef.html#undefvalues for details.
1349 ///
1350 class UndefValue : public ConstantData {
1351   friend class Constant;
1352 
1353   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1354 
1355   void destroyConstantImpl();
1356 
1357 protected:
1358   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1359 
1360 public:
1361   UndefValue(const UndefValue &) = delete;
1362 
1363   /// Static factory methods - Return an 'undef' object of the specified type.
1364   static UndefValue *get(Type *T);
1365 
1366   /// If this Undef has array or vector type, return a undef with the right
1367   /// element type.
1368   UndefValue *getSequentialElement() const;
1369 
1370   /// If this undef has struct type, return a undef with the right element type
1371   /// for the specified element.
1372   UndefValue *getStructElement(unsigned Elt) const;
1373 
1374   /// Return an undef of the right value for the specified GEP index if we can,
1375   /// otherwise return null (e.g. if C is a ConstantExpr).
1376   UndefValue *getElementValue(Constant *C) const;
1377 
1378   /// Return an undef of the right value for the specified GEP index.
1379   UndefValue *getElementValue(unsigned Idx) const;
1380 
1381   /// Return the number of elements in the array, vector, or struct.
1382   unsigned getNumElements() const;
1383 
1384   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1385   static bool classof(const Value *V) {
1386     return V->getValueID() == UndefValueVal ||
1387            V->getValueID() == PoisonValueVal;
1388   }
1389 };
1390 
1391 //===----------------------------------------------------------------------===//
1392 /// In order to facilitate speculative execution, many instructions do not
1393 /// invoke immediate undefined behavior when provided with illegal operands,
1394 /// and return a poison value instead.
1395 ///
1396 /// see LangRef.html#poisonvalues for details.
1397 ///
1398 class PoisonValue final : public UndefValue {
1399   friend class Constant;
1400 
1401   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1402 
1403   void destroyConstantImpl();
1404 
1405 public:
1406   PoisonValue(const PoisonValue &) = delete;
1407 
1408   /// Static factory methods - Return an 'poison' object of the specified type.
1409   static PoisonValue *get(Type *T);
1410 
1411   /// If this poison has array or vector type, return a poison with the right
1412   /// element type.
1413   PoisonValue *getSequentialElement() const;
1414 
1415   /// If this poison has struct type, return a poison with the right element
1416   /// type for the specified element.
1417   PoisonValue *getStructElement(unsigned Elt) const;
1418 
1419   /// Return an poison of the right value for the specified GEP index if we can,
1420   /// otherwise return null (e.g. if C is a ConstantExpr).
1421   PoisonValue *getElementValue(Constant *C) const;
1422 
1423   /// Return an poison of the right value for the specified GEP index.
1424   PoisonValue *getElementValue(unsigned Idx) const;
1425 
1426   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1427   static bool classof(const Value *V) {
1428     return V->getValueID() == PoisonValueVal;
1429   }
1430 };
1431 
1432 } // end namespace llvm
1433 
1434 #endif // LLVM_IR_CONSTANTS_H
1435