1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/RegisterBank.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/MC/LaneBitmask.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 
33 namespace llvm {
34 
35 class BitVector;
36 class DIExpression;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
43 class LiveInterval;
44 
45 class TargetRegisterClass {
46 public:
47   using iterator = const MCPhysReg *;
48   using const_iterator = const MCPhysReg *;
49   using sc_iterator = const TargetRegisterClass* const *;
50 
51   // Instance variables filled by tablegen, do not use!
52   const MCRegisterClass *MC;
53   const uint32_t *SubClassMask;
54   const uint16_t *SuperRegIndices;
55   const LaneBitmask LaneMask;
56   /// Classes with a higher priority value are assigned first by register
57   /// allocators using a greedy heuristic. The value is in the range [0,31].
58   const uint8_t AllocationPriority;
59 
60   // Change allocation priority heuristic used by greedy.
61   const bool GlobalPriority;
62 
63   /// Configurable target specific flags.
64   const uint8_t TSFlags;
65   /// Whether the class supports two (or more) disjunct subregister indices.
66   const bool HasDisjunctSubRegs;
67   /// Whether a combination of subregisters can cover every register in the
68   /// class. See also the CoveredBySubRegs description in Target.td.
69   const bool CoveredBySubRegs;
70   const sc_iterator SuperClasses;
71   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
72 
73   /// Return the register class ID number.
getID()74   unsigned getID() const { return MC->getID(); }
75 
76   /// begin/end - Return all of the registers in this class.
77   ///
begin()78   iterator       begin() const { return MC->begin(); }
end()79   iterator         end() const { return MC->end(); }
80 
81   /// Return the number of registers in this class.
getNumRegs()82   unsigned getNumRegs() const { return MC->getNumRegs(); }
83 
getRegisters()84   ArrayRef<MCPhysReg> getRegisters() const {
85     return ArrayRef(begin(), getNumRegs());
86   }
87 
88   /// Return the specified register in the class.
getRegister(unsigned i)89   MCRegister getRegister(unsigned i) const {
90     return MC->getRegister(i);
91   }
92 
93   /// Return true if the specified register is included in this register class.
94   /// This does not include virtual registers.
contains(Register Reg)95   bool contains(Register Reg) const {
96     /// FIXME: Historically this function has returned false when given vregs
97     ///        but it should probably only receive physical registers
98     if (!Reg.isPhysical())
99       return false;
100     return MC->contains(Reg.asMCReg());
101   }
102 
103   /// Return true if both registers are in this class.
contains(Register Reg1,Register Reg2)104   bool contains(Register Reg1, Register Reg2) const {
105     /// FIXME: Historically this function has returned false when given a vregs
106     ///        but it should probably only receive physical registers
107     if (!Reg1.isPhysical() || !Reg2.isPhysical())
108       return false;
109     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
110   }
111 
112   /// Return the cost of copying a value between two registers in this class.
113   /// A negative number means the register class is very expensive
114   /// to copy e.g. status flag register classes.
getCopyCost()115   int getCopyCost() const { return MC->getCopyCost(); }
116 
117   /// Return true if this register class may be used to create virtual
118   /// registers.
isAllocatable()119   bool isAllocatable() const { return MC->isAllocatable(); }
120 
121   /// Return true if this register class has a defined BaseClassOrder.
isBaseClass()122   bool isBaseClass() const { return MC->isBaseClass(); }
123 
124   /// Return true if the specified TargetRegisterClass
125   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)126   bool hasSubClass(const TargetRegisterClass *RC) const {
127     return RC != this && hasSubClassEq(RC);
128   }
129 
130   /// Returns true if RC is a sub-class of or equal to this class.
hasSubClassEq(const TargetRegisterClass * RC)131   bool hasSubClassEq(const TargetRegisterClass *RC) const {
132     unsigned ID = RC->getID();
133     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134   }
135 
136   /// Return true if the specified TargetRegisterClass is a
137   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)138   bool hasSuperClass(const TargetRegisterClass *RC) const {
139     return RC->hasSubClass(this);
140   }
141 
142   /// Returns true if RC is a super-class of or equal to this class.
hasSuperClassEq(const TargetRegisterClass * RC)143   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
144     return RC->hasSubClassEq(this);
145   }
146 
147   /// Returns a bit vector of subclasses, including this one.
148   /// The vector is indexed by class IDs.
149   ///
150   /// To use it, consider the returned array as a chunk of memory that
151   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
152   /// contains a bitset of the ID of the subclasses in big-endian style.
153 
154   /// I.e., the representation of the memory from left to right at the
155   /// bit level looks like:
156   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
157   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
158   /// Where the number represents the class ID and XXX bits that
159   /// should be ignored.
160   ///
161   /// See the implementation of hasSubClassEq for an example of how it
162   /// can be used.
getSubClassMask()163   const uint32_t *getSubClassMask() const {
164     return SubClassMask;
165   }
166 
167   /// Returns a 0-terminated list of sub-register indices that project some
168   /// super-register class into this register class. The list has an entry for
169   /// each Idx such that:
170   ///
171   ///   There exists SuperRC where:
172   ///     For all Reg in SuperRC:
173   ///       this->contains(Reg:Idx)
getSuperRegIndices()174   const uint16_t *getSuperRegIndices() const {
175     return SuperRegIndices;
176   }
177 
178   /// Returns a NULL-terminated list of super-classes.  The
179   /// classes are ordered by ID which is also a topological ordering from large
180   /// to small classes.  The list does NOT include the current class.
getSuperClasses()181   sc_iterator getSuperClasses() const {
182     return SuperClasses;
183   }
184 
185   /// Return true if this TargetRegisterClass is a subset
186   /// class of at least one other TargetRegisterClass.
isASubClass()187   bool isASubClass() const {
188     return SuperClasses[0] != nullptr;
189   }
190 
191   /// Returns the preferred order for allocating registers from this register
192   /// class in MF. The raw order comes directly from the .td file and may
193   /// include reserved registers that are not allocatable.
194   /// Register allocators should also make sure to allocate
195   /// callee-saved registers only after all the volatiles are used. The
196   /// RegisterClassInfo class provides filtered allocation orders with
197   /// callee-saved registers moved to the end.
198   ///
199   /// The MachineFunction argument can be used to tune the allocatable
200   /// registers based on the characteristics of the function, subtarget, or
201   /// other criteria.
202   ///
203   /// By default, this method returns all registers in the class.
getRawAllocationOrder(const MachineFunction & MF)204   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
205     return OrderFunc ? OrderFunc(MF) : getRegisters();
206   }
207 
208   /// Returns the combination of all lane masks of register in this class.
209   /// The lane masks of the registers are the combination of all lane masks
210   /// of their subregisters. Returns 1 if there are no subregisters.
getLaneMask()211   LaneBitmask getLaneMask() const {
212     return LaneMask;
213   }
214 };
215 
216 /// Extra information, not in MCRegisterDesc, about registers.
217 /// These are used by codegen, not by MC.
218 struct TargetRegisterInfoDesc {
219   const uint8_t *CostPerUse; // Extra cost of instructions using register.
220   unsigned NumCosts; // Number of cost values associated with each register.
221   const bool
222       *InAllocatableClass; // Register belongs to an allocatable regclass.
223 };
224 
225 /// Each TargetRegisterClass has a per register weight, and weight
226 /// limit which must be less than the limits of its pressure sets.
227 struct RegClassWeight {
228   unsigned RegWeight;
229   unsigned WeightLimit;
230 };
231 
232 /// TargetRegisterInfo base class - We assume that the target defines a static
233 /// array of TargetRegisterDesc objects that represent all of the machine
234 /// registers that the target has.  As such, we simply have to track a pointer
235 /// to this array so that we can turn register number into a register
236 /// descriptor.
237 ///
238 class TargetRegisterInfo : public MCRegisterInfo {
239 public:
240   using regclass_iterator = const TargetRegisterClass * const *;
241   using vt_iterator = const MVT::SimpleValueType *;
242   struct RegClassInfo {
243     unsigned RegSize, SpillSize, SpillAlignment;
244     unsigned VTListOffset;
245   };
246 private:
247   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
248   const char *const *SubRegIndexNames;        // Names of subreg indexes.
249   // Pointer to array of lane masks, one per sub-reg index.
250   const LaneBitmask *SubRegIndexLaneMasks;
251 
252   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
253   LaneBitmask CoveringLanes;
254   const RegClassInfo *const RCInfos;
255   const MVT::SimpleValueType *const RCVTLists;
256   unsigned HwMode;
257 
258 protected:
259   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
260                      regclass_iterator RCB,
261                      regclass_iterator RCE,
262                      const char *const *SRINames,
263                      const LaneBitmask *SRILaneMasks,
264                      LaneBitmask CoveringLanes,
265                      const RegClassInfo *const RCIs,
266                      const MVT::SimpleValueType *const RCVTLists,
267                      unsigned Mode = 0);
268   virtual ~TargetRegisterInfo();
269 
270 public:
271   /// Return the number of registers for the function. (may overestimate)
getNumSupportedRegs(const MachineFunction &)272   virtual unsigned getNumSupportedRegs(const MachineFunction &) const {
273     return getNumRegs();
274   }
275 
276   // Register numbers can represent physical registers, virtual registers, and
277   // sometimes stack slots. The unsigned values are divided into these ranges:
278   //
279   //   0           Not a register, can be used as a sentinel.
280   //   [1;2^30)    Physical registers assigned by TableGen.
281   //   [2^30;2^31) Stack slots. (Rarely used.)
282   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
283   //
284   // Further sentinels can be allocated from the small negative integers.
285   // DenseMapInfo<unsigned> uses -1u and -2u.
286 
287   /// Return the size in bits of a register from class RC.
getRegSizeInBits(const TargetRegisterClass & RC)288   TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const {
289     return TypeSize::getFixed(getRegClassInfo(RC).RegSize);
290   }
291 
292   /// Return the size in bytes of the stack slot allocated to hold a spilled
293   /// copy of a register from class RC.
getSpillSize(const TargetRegisterClass & RC)294   unsigned getSpillSize(const TargetRegisterClass &RC) const {
295     return getRegClassInfo(RC).SpillSize / 8;
296   }
297 
298   /// Return the minimum required alignment in bytes for a spill slot for
299   /// a register of this class.
getSpillAlign(const TargetRegisterClass & RC)300   Align getSpillAlign(const TargetRegisterClass &RC) const {
301     return Align(getRegClassInfo(RC).SpillAlignment / 8);
302   }
303 
304   /// Return true if the given TargetRegisterClass has the ValueType T.
isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)305   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
306     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
307       if (MVT(*I) == T)
308         return true;
309     return false;
310   }
311 
312   /// Return true if the given TargetRegisterClass is compatible with LLT T.
isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)313   bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
314     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
315       MVT VT(*I);
316       if (VT == MVT::Untyped)
317         return true;
318 
319       if (LLT(VT) == T)
320         return true;
321     }
322     return false;
323   }
324 
325   /// Loop over all of the value types that can be represented by values
326   /// in the given register class.
legalclasstypes_begin(const TargetRegisterClass & RC)327   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
328     return &RCVTLists[getRegClassInfo(RC).VTListOffset];
329   }
330 
legalclasstypes_end(const TargetRegisterClass & RC)331   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
332     vt_iterator I = legalclasstypes_begin(RC);
333     while (*I != MVT::Other)
334       ++I;
335     return I;
336   }
337 
338   /// Returns the Register Class of a physical register of the given type,
339   /// picking the most sub register class of the right type that contains this
340   /// physreg.
341   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
342                                                     MVT VT = MVT::Other) const;
343 
344   /// Returns the Register Class of a physical register of the given type,
345   /// picking the most sub register class of the right type that contains this
346   /// physreg. If there is no register class compatible with the given type,
347   /// returns nullptr.
348   const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
349                                                        LLT Ty = LLT()) const;
350 
351   /// Return the maximal subclass of the given register class that is
352   /// allocatable or NULL.
353   const TargetRegisterClass *
354     getAllocatableClass(const TargetRegisterClass *RC) const;
355 
356   /// Returns a bitset indexed by register number indicating if a register is
357   /// allocatable or not. If a register class is specified, returns the subset
358   /// for the class.
359   BitVector getAllocatableSet(const MachineFunction &MF,
360                               const TargetRegisterClass *RC = nullptr) const;
361 
362   /// Get a list of cost values for all registers that correspond to the index
363   /// returned by RegisterCostTableIndex.
getRegisterCosts(const MachineFunction & MF)364   ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
365     unsigned Idx = getRegisterCostTableIndex(MF);
366     unsigned NumRegs = getNumRegs();
367     assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
368 
369     return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
370   }
371 
372   /// Return true if the register is in the allocation of any register class.
isInAllocatableClass(MCRegister RegNo)373   bool isInAllocatableClass(MCRegister RegNo) const {
374     return InfoDesc->InAllocatableClass[RegNo];
375   }
376 
377   /// Return the human-readable symbolic target-specific
378   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)379   const char *getSubRegIndexName(unsigned SubIdx) const {
380     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
381            "This is not a subregister index");
382     return SubRegIndexNames[SubIdx-1];
383   }
384 
385   /// Return a bitmask representing the parts of a register that are covered by
386   /// SubIdx \see LaneBitmask.
387   ///
388   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
getSubRegIndexLaneMask(unsigned SubIdx)389   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
390     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
391     return SubRegIndexLaneMasks[SubIdx];
392   }
393 
394   /// Try to find one or more subregister indexes to cover \p LaneMask.
395   ///
396   /// If this is possible, returns true and appends the best matching set of
397   /// indexes to \p Indexes. If this is not possible, returns false.
398   bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
399                                 const TargetRegisterClass *RC,
400                                 LaneBitmask LaneMask,
401                                 SmallVectorImpl<unsigned> &Indexes) const;
402 
403   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
404   /// used to determine if sub-registers overlap - they can't be used to
405   /// determine if a set of sub-registers completely cover another
406   /// sub-register.
407   ///
408   /// The X86 general purpose registers have two lanes corresponding to the
409   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
410   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
411   /// sub_32bit sub-register.
412   ///
413   /// On the other hand, the ARM NEON lanes fully cover their registers: The
414   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
415   /// This is related to the CoveredBySubRegs property on register definitions.
416   ///
417   /// This function returns a bit mask of lanes that completely cover their
418   /// sub-registers. More precisely, given:
419   ///
420   ///   Covering = getCoveringLanes();
421   ///   MaskA = getSubRegIndexLaneMask(SubA);
422   ///   MaskB = getSubRegIndexLaneMask(SubB);
423   ///
424   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
425   /// SubB.
getCoveringLanes()426   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
427 
428   /// Returns true if the two registers are equal or alias each other.
429   /// The registers may be virtual registers.
regsOverlap(Register RegA,Register RegB)430   bool regsOverlap(Register RegA, Register RegB) const {
431     if (RegA == RegB)
432       return true;
433     if (RegA.isPhysical() && RegB.isPhysical())
434       return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg());
435     return false;
436   }
437 
438   /// Returns true if Reg contains RegUnit.
hasRegUnit(MCRegister Reg,Register RegUnit)439   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
440     for (MCRegUnit Unit : regunits(Reg))
441       if (Register(Unit) == RegUnit)
442         return true;
443     return false;
444   }
445 
446   /// Returns the original SrcReg unless it is the target of a copy-like
447   /// operation, in which case we chain backwards through all such operations
448   /// to the ultimate source register.  If a physical register is encountered,
449   /// we stop the search.
450   virtual Register lookThruCopyLike(Register SrcReg,
451                                     const MachineRegisterInfo *MRI) const;
452 
453   /// Find the original SrcReg unless it is the target of a copy-like operation,
454   /// in which case we chain backwards through all such operations to the
455   /// ultimate source register. If a physical register is encountered, we stop
456   /// the search.
457   /// Return the original SrcReg if all the definitions in the chain only have
458   /// one user and not a physical register.
459   virtual Register
460   lookThruSingleUseCopyChain(Register SrcReg,
461                              const MachineRegisterInfo *MRI) const;
462 
463   /// Return a null-terminated list of all of the callee-saved registers on
464   /// this target. The register should be in the order of desired callee-save
465   /// stack frame offset. The first register is closest to the incoming stack
466   /// pointer if stack grows down, and vice versa.
467   /// Notice: This function does not take into account disabled CSRs.
468   ///         In most cases you will want to use instead the function
469   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
470   virtual const MCPhysReg*
471   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
472 
473   /// Return a mask of call-preserved registers for the given calling convention
474   /// on the current function. The mask should include all call-preserved
475   /// aliases. This is used by the register allocator to determine which
476   /// registers can be live across a call.
477   ///
478   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
479   /// A set bit indicates that all bits of the corresponding register are
480   /// preserved across the function call.  The bit mask is expected to be
481   /// sub-register complete, i.e. if A is preserved, so are all its
482   /// sub-registers.
483   ///
484   /// Bits are numbered from the LSB, so the bit for physical register Reg can
485   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
486   ///
487   /// A NULL pointer means that no register mask will be used, and call
488   /// instructions should use implicit-def operands to indicate call clobbered
489   /// registers.
490   ///
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)491   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
492                                                CallingConv::ID) const {
493     // The default mask clobbers everything.  All targets should override.
494     return nullptr;
495   }
496 
497   /// Return a register mask for the registers preserved by the unwinder,
498   /// or nullptr if no custom mask is needed.
499   virtual const uint32_t *
getCustomEHPadPreservedMask(const MachineFunction & MF)500   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
501     return nullptr;
502   }
503 
504   /// Return a register mask that clobbers everything.
getNoPreservedMask()505   virtual const uint32_t *getNoPreservedMask() const {
506     llvm_unreachable("target does not provide no preserved mask");
507   }
508 
509   /// Return a list of all of the registers which are clobbered "inside" a call
510   /// to the given function. For example, these might be needed for PLT
511   /// sequences of long-branch veneers.
512   virtual ArrayRef<MCPhysReg>
getIntraCallClobberedRegs(const MachineFunction * MF)513   getIntraCallClobberedRegs(const MachineFunction *MF) const {
514     return {};
515   }
516 
517   /// Return true if all bits that are set in mask \p mask0 are also set in
518   /// \p mask1.
519   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
520 
521   /// Return all the call-preserved register masks defined for this target.
522   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
523   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
524 
525   /// Returns a bitset indexed by physical register number indicating if a
526   /// register is a special register that has particular uses and should be
527   /// considered unavailable at all times, e.g. stack pointer, return address.
528   /// A reserved register:
529   /// - is not allocatable
530   /// - is considered always live
531   /// - is ignored by liveness tracking
532   /// It is often necessary to reserve the super registers of a reserved
533   /// register as well, to avoid them getting allocated indirectly. You may use
534   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
535   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
536 
537   /// Returns either a string explaining why the given register is reserved for
538   /// this function, or an empty optional if no explanation has been written.
539   /// The absence of an explanation does not mean that the register is not
540   /// reserved (meaning, you should check that PhysReg is in fact reserved
541   /// before calling this).
542   virtual std::optional<std::string>
explainReservedReg(const MachineFunction & MF,MCRegister PhysReg)543   explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const {
544     return {};
545   }
546 
547   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
548   /// clobber constraint, will be preserved across the statement.
isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)549   virtual bool isAsmClobberable(const MachineFunction &MF,
550                                 MCRegister PhysReg) const {
551     return true;
552   }
553 
554   /// Returns true if PhysReg cannot be written to in inline asm statements.
isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)555   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
556                                       unsigned PhysReg) const {
557     return false;
558   }
559 
560   /// Returns true if PhysReg is unallocatable and constant throughout the
561   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
isConstantPhysReg(MCRegister PhysReg)562   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
563 
564   /// Returns true if the register class is considered divergent.
isDivergentRegClass(const TargetRegisterClass * RC)565   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
566     return false;
567   }
568 
569   /// Returns true if the register is considered uniform.
isUniformReg(const MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register Reg)570   virtual bool isUniformReg(const MachineRegisterInfo &MRI,
571                             const RegisterBankInfo &RBI, Register Reg) const {
572     return false;
573   }
574 
575   /// Physical registers that may be modified within a function but are
576   /// guaranteed to be restored before any uses. This is useful for targets that
577   /// have call sequences where a GOT register may be updated by the caller
578   /// prior to a call and is guaranteed to be restored (also by the caller)
579   /// after the call.
isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)580   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
581                                         const MachineFunction &MF) const {
582     return false;
583   }
584 
585   /// This is a wrapper around getCallPreservedMask().
586   /// Return true if the register is preserved after the call.
587   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
588                                     const MachineFunction &MF) const;
589 
590   /// Returns true if PhysReg can be used as an argument to a function.
isArgumentRegister(const MachineFunction & MF,MCRegister PhysReg)591   virtual bool isArgumentRegister(const MachineFunction &MF,
592                                   MCRegister PhysReg) const {
593     return false;
594   }
595 
596   /// Returns true if PhysReg is a fixed register.
isFixedRegister(const MachineFunction & MF,MCRegister PhysReg)597   virtual bool isFixedRegister(const MachineFunction &MF,
598                                MCRegister PhysReg) const {
599     return false;
600   }
601 
602   /// Returns true if PhysReg is a general purpose register.
isGeneralPurposeRegister(const MachineFunction & MF,MCRegister PhysReg)603   virtual bool isGeneralPurposeRegister(const MachineFunction &MF,
604                                         MCRegister PhysReg) const {
605     return false;
606   }
607 
608   /// Prior to adding the live-out mask to a stackmap or patchpoint
609   /// instruction, provide the target the opportunity to adjust it (mainly to
610   /// remove pseudo-registers that should be ignored).
adjustStackMapLiveOutMask(uint32_t * Mask)611   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
612 
613   /// Return a super-register of the specified register
614   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)615   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
616                                  const TargetRegisterClass *RC) const {
617     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
618   }
619 
620   /// Return a subclass of the specified register
621   /// class A so that each register in it has a sub-register of the
622   /// specified sub-register index which is in the specified register class B.
623   ///
624   /// TableGen will synthesize missing A sub-classes.
625   virtual const TargetRegisterClass *
626   getMatchingSuperRegClass(const TargetRegisterClass *A,
627                            const TargetRegisterClass *B, unsigned Idx) const;
628 
629   // For a copy-like instruction that defines a register of class DefRC with
630   // subreg index DefSubReg, reading from another source with class SrcRC and
631   // subregister SrcSubReg return true if this is a preferable copy
632   // instruction or an earlier use should be used.
633   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
634                                     unsigned DefSubReg,
635                                     const TargetRegisterClass *SrcRC,
636                                     unsigned SrcSubReg) const;
637 
638   /// Returns the largest legal sub-class of RC that
639   /// supports the sub-register index Idx.
640   /// If no such sub-class exists, return NULL.
641   /// If all registers in RC already have an Idx sub-register, return RC.
642   ///
643   /// TableGen generates a version of this function that is good enough in most
644   /// cases.  Targets can override if they have constraints that TableGen
645   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
646   /// supported by the full GR32 register class in 64-bit mode, but only by the
647   /// GR32_ABCD regiister class in 32-bit mode.
648   ///
649   /// TableGen will synthesize missing RC sub-classes.
650   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)651   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
652     assert(Idx == 0 && "Target has no sub-registers");
653     return RC;
654   }
655 
656   /// Return a register class that can be used for a subregister copy from/into
657   /// \p SuperRC at \p SubRegIdx.
658   virtual const TargetRegisterClass *
getSubRegisterClass(const TargetRegisterClass * SuperRC,unsigned SubRegIdx)659   getSubRegisterClass(const TargetRegisterClass *SuperRC,
660                       unsigned SubRegIdx) const {
661     return nullptr;
662   }
663 
664   /// Return the subregister index you get from composing
665   /// two subregister indices.
666   ///
667   /// The special null sub-register index composes as the identity.
668   ///
669   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
670   /// returns c. Note that composeSubRegIndices does not tell you about illegal
671   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
672   /// b, composeSubRegIndices doesn't tell you.
673   ///
674   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
675   /// ssub_0:S0 - ssub_3:S3 subregs.
676   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
composeSubRegIndices(unsigned a,unsigned b)677   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
678     if (!a) return b;
679     if (!b) return a;
680     return composeSubRegIndicesImpl(a, b);
681   }
682 
683   /// Transforms a LaneMask computed for one subregister to the lanemask that
684   /// would have been computed when composing the subsubregisters with IdxA
685   /// first. @sa composeSubRegIndices()
composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)686   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
687                                          LaneBitmask Mask) const {
688     if (!IdxA)
689       return Mask;
690     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
691   }
692 
693   /// Transform a lanemask given for a virtual register to the corresponding
694   /// lanemask before using subregister with index \p IdxA.
695   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
696   /// valie lane mask (no invalid bits set) the following holds:
697   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
698   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
699   /// => X1 == Mask
reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)700   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
701                                                 LaneBitmask LaneMask) const {
702     if (!IdxA)
703       return LaneMask;
704     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
705   }
706 
707   /// Debugging helper: dump register in human readable form to dbgs() stream.
708   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
709                       const TargetRegisterInfo *TRI = nullptr);
710 
711   /// Return target defined base register class for a physical register.
712   /// This is the register class with the lowest BaseClassOrder containing the
713   /// register.
714   /// Will be nullptr if the register is not in any base register class.
getPhysRegBaseClass(MCRegister Reg)715   virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const {
716     return nullptr;
717   }
718 
719 protected:
720   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)721   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
722     llvm_unreachable("Target has no sub-registers");
723   }
724 
725   /// Overridden by TableGen in targets that have sub-registers.
726   virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)727   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
728     llvm_unreachable("Target has no sub-registers");
729   }
730 
reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)731   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
732                                                             LaneBitmask) const {
733     llvm_unreachable("Target has no sub-registers");
734   }
735 
736   /// Return the register cost table index. This implementation is sufficient
737   /// for most architectures and can be overriden by targets in case there are
738   /// multiple cost values associated with each register.
getRegisterCostTableIndex(const MachineFunction & MF)739   virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
740     return 0;
741   }
742 
743 public:
744   /// Find a common super-register class if it exists.
745   ///
746   /// Find a register class, SuperRC and two sub-register indices, PreA and
747   /// PreB, such that:
748   ///
749   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
750   ///
751   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
752   ///
753   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
754   ///
755   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
756   /// requirements, and there is no register class with a smaller spill size
757   /// that satisfies the requirements.
758   ///
759   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
760   ///
761   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
762   /// that case, the returned register class will be a sub-class of the
763   /// corresponding argument register class.
764   ///
765   /// The function returns NULL if no register class can be found.
766   const TargetRegisterClass*
767   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
768                          const TargetRegisterClass *RCB, unsigned SubB,
769                          unsigned &PreA, unsigned &PreB) const;
770 
771   //===--------------------------------------------------------------------===//
772   // Register Class Information
773   //
774 protected:
getRegClassInfo(const TargetRegisterClass & RC)775   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
776     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
777   }
778 
779 public:
780   /// Register class iterators
regclass_begin()781   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()782   regclass_iterator regclass_end() const { return RegClassEnd; }
regclasses()783   iterator_range<regclass_iterator> regclasses() const {
784     return make_range(regclass_begin(), regclass_end());
785   }
786 
getNumRegClasses()787   unsigned getNumRegClasses() const {
788     return (unsigned)(regclass_end()-regclass_begin());
789   }
790 
791   /// Returns the register class associated with the enumeration value.
792   /// See class MCOperandInfo.
getRegClass(unsigned i)793   const TargetRegisterClass *getRegClass(unsigned i) const {
794     assert(i < getNumRegClasses() && "Register Class ID out of range");
795     return RegClassBegin[i];
796   }
797 
798   /// Returns the name of the register class.
getRegClassName(const TargetRegisterClass * Class)799   const char *getRegClassName(const TargetRegisterClass *Class) const {
800     return MCRegisterInfo::getRegClassName(Class->MC);
801   }
802 
803   /// Find the largest common subclass of A and B.
804   /// Return NULL if there is no common subclass.
805   const TargetRegisterClass *
806   getCommonSubClass(const TargetRegisterClass *A,
807                     const TargetRegisterClass *B) const;
808 
809   /// Returns a TargetRegisterClass used for pointer values.
810   /// If a target supports multiple different pointer register classes,
811   /// kind specifies which one is indicated.
812   virtual const TargetRegisterClass *
813   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
814     llvm_unreachable("Target didn't implement getPointerRegClass!");
815   }
816 
817   /// Returns a legal register class to copy a register in the specified class
818   /// to or from. If it is possible to copy the register directly without using
819   /// a cross register class copy, return the specified RC. Returns NULL if it
820   /// is not possible to copy between two registers of the specified class.
821   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)822   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
823     return RC;
824   }
825 
826   /// Returns the largest super class of RC that is legal to use in the current
827   /// sub-target and has the same spill size.
828   /// The returned register class can be used to create virtual registers which
829   /// means that all its registers can be copied and spilled.
830   virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)831   getLargestLegalSuperClass(const TargetRegisterClass *RC,
832                             const MachineFunction &) const {
833     /// The default implementation is very conservative and doesn't allow the
834     /// register allocator to inflate register classes.
835     return RC;
836   }
837 
838   /// Return the register pressure "high water mark" for the specific register
839   /// class. The scheduler is in high register pressure mode (for the specific
840   /// register class) if it goes over the limit.
841   ///
842   /// Note: this is the old register pressure model that relies on a manually
843   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)844   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
845                                        MachineFunction &MF) const {
846     return 0;
847   }
848 
849   /// Return a heuristic for the machine scheduler to compare the profitability
850   /// of increasing one register pressure set versus another.  The scheduler
851   /// will prefer increasing the register pressure of the set which returns
852   /// the largest value for this function.
getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)853   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
854                                           unsigned PSetID) const {
855     return PSetID;
856   }
857 
858   /// Get the weight in units of pressure for this register class.
859   virtual const RegClassWeight &getRegClassWeight(
860     const TargetRegisterClass *RC) const = 0;
861 
862   /// Returns size in bits of a phys/virtual/generic register.
863   TypeSize getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
864 
865   /// Get the weight in units of pressure for this register unit.
866   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
867 
868   /// Get the number of dimensions of register pressure.
869   virtual unsigned getNumRegPressureSets() const = 0;
870 
871   /// Get the name of this register unit pressure set.
872   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
873 
874   /// Get the register unit pressure limit for this dimension.
875   /// This limit must be adjusted dynamically for reserved registers.
876   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
877                                           unsigned Idx) const = 0;
878 
879   /// Get the dimensions of register pressure impacted by this register class.
880   /// Returns a -1 terminated array of pressure set IDs.
881   virtual const int *getRegClassPressureSets(
882     const TargetRegisterClass *RC) const = 0;
883 
884   /// Get the dimensions of register pressure impacted by this register unit.
885   /// Returns a -1 terminated array of pressure set IDs.
886   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
887 
888   /// Get a list of 'hint' registers that the register allocator should try
889   /// first when allocating a physical register for the virtual register
890   /// VirtReg. These registers are effectively moved to the front of the
891   /// allocation order. If true is returned, regalloc will try to only use
892   /// hints to the greatest extent possible even if it means spilling.
893   ///
894   /// The Order argument is the allocation order for VirtReg's register class
895   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
896   /// come from Order, and they must not be reserved.
897   ///
898   /// The default implementation of this function will only add target
899   /// independent register allocation hints. Targets that override this
900   /// function should typically call this default implementation as well and
901   /// expect to see generic copy hints added.
902   virtual bool
903   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
904                         SmallVectorImpl<MCPhysReg> &Hints,
905                         const MachineFunction &MF,
906                         const VirtRegMap *VRM = nullptr,
907                         const LiveRegMatrix *Matrix = nullptr) const;
908 
909   /// A callback to allow target a chance to update register allocation hints
910   /// when a register is "changed" (e.g. coalesced) to another register.
911   /// e.g. On ARM, some virtual registers should target register pairs,
912   /// if one of pair is coalesced to another register, the allocation hint of
913   /// the other half of the pair should be changed to point to the new register.
updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)914   virtual void updateRegAllocHint(Register Reg, Register NewReg,
915                                   MachineFunction &MF) const {
916     // Do nothing.
917   }
918 
919   /// Allow the target to reverse allocation order of local live ranges. This
920   /// will generally allocate shorter local live ranges first. For targets with
921   /// many registers, this could reduce regalloc compile time by a large
922   /// factor. It is disabled by default for three reasons:
923   /// (1) Top-down allocation is simpler and easier to debug for targets that
924   /// don't benefit from reversing the order.
925   /// (2) Bottom-up allocation could result in poor evicition decisions on some
926   /// targets affecting the performance of compiled code.
927   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()928   virtual bool reverseLocalAssignment() const { return false; }
929 
930   /// Allow the target to override the cost of using a callee-saved register for
931   /// the first time. Default value of 0 means we will use a callee-saved
932   /// register if it is available.
getCSRFirstUseCost()933   virtual unsigned getCSRFirstUseCost() const { return 0; }
934 
935   /// Returns true if the target requires (and can make use of) the register
936   /// scavenger.
requiresRegisterScavenging(const MachineFunction & MF)937   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
938     return false;
939   }
940 
941   /// Returns true if the target wants to use frame pointer based accesses to
942   /// spill to the scavenger emergency spill slot.
useFPForScavengingIndex(const MachineFunction & MF)943   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
944     return true;
945   }
946 
947   /// Returns true if the target requires post PEI scavenging of registers for
948   /// materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)949   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
950     return false;
951   }
952 
953   /// Returns true if the target requires using the RegScavenger directly for
954   /// frame elimination despite using requiresFrameIndexScavenging.
requiresFrameIndexReplacementScavenging(const MachineFunction & MF)955   virtual bool requiresFrameIndexReplacementScavenging(
956       const MachineFunction &MF) const {
957     return false;
958   }
959 
960   /// Returns true if the target wants the LocalStackAllocation pass to be run
961   /// and virtual base registers used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)962   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
963     return false;
964   }
965 
966   /// Return true if target has reserved a spill slot in the stack frame of
967   /// the given function for the specified register. e.g. On x86, if the frame
968   /// register is required, the first fixed stack object is reserved as its
969   /// spill slot. This tells PEI not to create a new stack frame
970   /// object for the given register. It should be called only after
971   /// determineCalleeSaves().
hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)972   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
973                                     int &FrameIdx) const {
974     return false;
975   }
976 
977   /// Returns true if the live-ins should be tracked after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)978   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
979     return true;
980   }
981 
982   /// True if the stack can be realigned for the target.
983   virtual bool canRealignStack(const MachineFunction &MF) const;
984 
985   /// True if storage within the function requires the stack pointer to be
986   /// aligned more than the normal calling convention calls for.
987   virtual bool shouldRealignStack(const MachineFunction &MF) const;
988 
989   /// True if stack realignment is required and still possible.
hasStackRealignment(const MachineFunction & MF)990   bool hasStackRealignment(const MachineFunction &MF) const {
991     return shouldRealignStack(MF) && canRealignStack(MF);
992   }
993 
994   /// Get the offset from the referenced frame index in the instruction,
995   /// if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)996   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
997                                            int Idx) const {
998     return 0;
999   }
1000 
1001   /// Returns true if the instruction's frame index reference would be better
1002   /// served by a base register other than FP or SP.
1003   /// Used by LocalStackFrameAllocation to determine which frame index
1004   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)1005   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1006     return false;
1007   }
1008 
1009   /// Insert defining instruction(s) for a pointer to FrameIdx before
1010   /// insertion point I. Return materialized frame pointer.
materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)1011   virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
1012                                                 int FrameIdx,
1013                                                 int64_t Offset) const {
1014     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
1015                      "target");
1016   }
1017 
1018   /// Resolve a frame index operand of an instruction
1019   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)1020   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1021                                  int64_t Offset) const {
1022     llvm_unreachable("resolveFrameIndex does not exist on this target");
1023   }
1024 
1025   /// Determine whether a given base register plus offset immediate is
1026   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)1027   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
1028                                   int64_t Offset) const {
1029     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
1030   }
1031 
1032   /// Gets the DWARF expression opcodes for \p Offset.
1033   virtual void getOffsetOpcodes(const StackOffset &Offset,
1034                                 SmallVectorImpl<uint64_t> &Ops) const;
1035 
1036   /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
1037   DIExpression *
1038   prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
1039                           const StackOffset &Offset) const;
1040 
1041   /// Spill the register so it can be used by the register scavenger.
1042   /// Return true if the register was spilled, false otherwise.
1043   /// If this function does not spill the register, the scavenger
1044   /// will instead spill it to the emergency spill slot.
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)1045   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
1046                                      MachineBasicBlock::iterator I,
1047                                      MachineBasicBlock::iterator &UseMI,
1048                                      const TargetRegisterClass *RC,
1049                                      Register Reg) const {
1050     return false;
1051   }
1052 
1053   /// Process frame indices in reverse block order. This changes the behavior of
1054   /// the RegScavenger passed to eliminateFrameIndex. If this is true targets
1055   /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets
1056   /// should prefer reverse scavenging behavior.
1057   /// TODO: Remove this when all targets return true.
eliminateFrameIndicesBackwards()1058   virtual bool eliminateFrameIndicesBackwards() const { return true; }
1059 
1060   /// This method must be overriden to eliminate abstract frame indices from
1061   /// instructions which may use them. The instruction referenced by the
1062   /// iterator contains an MO_FrameIndex operand which must be eliminated by
1063   /// this method. This method may modify or replace the specified instruction,
1064   /// as long as it keeps the iterator pointing at the finished product.
1065   /// SPAdj is the SP adjustment due to call frame setup instruction.
1066   /// FIOperandNum is the FI operand number.
1067   /// Returns true if the current instruction was removed and the iterator
1068   /// is not longer valid
1069   virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI,
1070                                    int SPAdj, unsigned FIOperandNum,
1071                                    RegScavenger *RS = nullptr) const = 0;
1072 
1073   /// Return the assembly name for \p Reg.
getRegAsmName(MCRegister Reg)1074   virtual StringRef getRegAsmName(MCRegister Reg) const {
1075     // FIXME: We are assuming that the assembly name is equal to the TableGen
1076     // name converted to lower case
1077     //
1078     // The TableGen name is the name of the definition for this register in the
1079     // target's tablegen files.  For example, the TableGen name of
1080     // def EAX : Register <...>; is "EAX"
1081     return StringRef(getName(Reg));
1082   }
1083 
1084   //===--------------------------------------------------------------------===//
1085   /// Subtarget Hooks
1086 
1087   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1088   virtual bool shouldCoalesce(MachineInstr *MI,
1089                               const TargetRegisterClass *SrcRC,
1090                               unsigned SubReg,
1091                               const TargetRegisterClass *DstRC,
1092                               unsigned DstSubReg,
1093                               const TargetRegisterClass *NewRC,
1094                               LiveIntervals &LIS) const
1095   { return true; }
1096 
1097   /// Region split has a high compile time cost especially for large live range.
1098   /// This method is used to decide whether or not \p VirtReg should
1099   /// go through this expensive splitting heuristic.
1100   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1101                                            const LiveInterval &VirtReg) const;
1102 
1103   /// Last chance recoloring has a high compile time cost especially for
1104   /// targets with a lot of registers.
1105   /// This method is used to decide whether or not \p VirtReg should
1106   /// go through this expensive heuristic.
1107   /// When this target hook is hit, by returning false, there is a high
1108   /// chance that the register allocation will fail altogether (usually with
1109   /// "ran out of registers").
1110   /// That said, this error usually points to another problem in the
1111   /// optimization pipeline.
1112   virtual bool
shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1113   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1114                                           const LiveInterval &VirtReg) const {
1115     return true;
1116   }
1117 
1118   /// Deferred spilling delays the spill insertion of a virtual register
1119   /// after every other allocation. By deferring the spilling, it is
1120   /// sometimes possible to eliminate that spilling altogether because
1121   /// something else could have been eliminated, thus leaving some space
1122   /// for the virtual register.
1123   /// However, this comes with a compile time impact because it adds one
1124   /// more stage to the greedy register allocator.
1125   /// This method is used to decide whether \p VirtReg should use the deferred
1126   /// spilling stage instead of being spilled right away.
1127   virtual bool
shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1128   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1129                                       const LiveInterval &VirtReg) const {
1130     return false;
1131   }
1132 
1133   /// When prioritizing live ranges in register allocation, if this hook returns
1134   /// true then the AllocationPriority of the register class will be treated as
1135   /// more important than whether the range is local to a basic block or global.
1136   virtual bool
regClassPriorityTrumpsGlobalness(const MachineFunction & MF)1137   regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const {
1138     return false;
1139   }
1140 
1141   //===--------------------------------------------------------------------===//
1142   /// Debug information queries.
1143 
1144   /// getFrameRegister - This method should return the register used as a base
1145   /// for values allocated in the current stack frame.
1146   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1147 
1148   /// Mark a register and all its aliases as reserved in the given set.
1149   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1150 
1151   /// Returns true if for every register in the set all super registers are part
1152   /// of the set as well.
1153   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1154       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1155 
1156   virtual const TargetRegisterClass *
getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1157   getConstrainedRegClassForOperand(const MachineOperand &MO,
1158                                    const MachineRegisterInfo &MRI) const {
1159     return nullptr;
1160   }
1161 
1162   /// Returns the physical register number of sub-register "Index"
1163   /// for physical register RegNo. Return zero if the sub-register does not
1164   /// exist.
getSubReg(MCRegister Reg,unsigned Idx)1165   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1166     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1167   }
1168 
1169   /// Some targets have non-allocatable registers that aren't technically part
1170   /// of the explicit callee saved register list, but should be handled as such
1171   /// in certain cases.
isNonallocatableRegisterCalleeSave(MCRegister Reg)1172   virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const {
1173     return false;
1174   }
1175 
1176   /// Returns the Largest Super Class that is being initialized. There
1177   /// should be a Pseudo Instruction implemented for the super class
1178   /// that is being returned to ensure that Init Undef can apply the
1179   /// initialization correctly.
1180   virtual const TargetRegisterClass *
getLargestSuperClass(const TargetRegisterClass * RC)1181   getLargestSuperClass(const TargetRegisterClass *RC) const {
1182     llvm_unreachable("Unexpected target register class.");
1183   }
1184 
1185   /// Returns if the architecture being targeted has the required Pseudo
1186   /// Instructions for initializing the register. By default this returns false,
1187   /// but where it is overriden for an architecture, the behaviour will be
1188   /// different. This can either be a check to ensure the Register Class is
1189   /// present, or to return true as an indication the architecture supports the
1190   /// pass. If using the method that does not check for the Register Class, it
1191   /// is imperative to ensure all required Pseudo Instructions are implemented,
1192   /// otherwise compilation may fail with an `Unexpected register class` error.
1193   virtual bool
doesRegClassHavePseudoInitUndef(const TargetRegisterClass * RC)1194   doesRegClassHavePseudoInitUndef(const TargetRegisterClass *RC) const {
1195     return false;
1196   }
1197 };
1198 
1199 //===----------------------------------------------------------------------===//
1200 //                           SuperRegClassIterator
1201 //===----------------------------------------------------------------------===//
1202 //
1203 // Iterate over the possible super-registers for a given register class. The
1204 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1205 // possible classes of super-registers.
1206 //
1207 // Each bit mask will have at least one set bit, and each set bit in Mask
1208 // corresponds to a SuperRC such that:
1209 //
1210 //   For all Reg in SuperRC: Reg:Idx is in RC.
1211 //
1212 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1213 // also satisfies the above requirement, assuming Reg:0 == Reg.
1214 //
1215 class SuperRegClassIterator {
1216   const unsigned RCMaskWords;
1217   unsigned SubReg = 0;
1218   const uint16_t *Idx;
1219   const uint32_t *Mask;
1220 
1221 public:
1222   /// Create a SuperRegClassIterator that visits all the super-register classes
1223   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1224   SuperRegClassIterator(const TargetRegisterClass *RC,
1225                         const TargetRegisterInfo *TRI,
1226                         bool IncludeSelf = false)
1227     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1228       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1229     if (!IncludeSelf)
1230       ++*this;
1231   }
1232 
1233   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1234   bool isValid() const { return Idx; }
1235 
1236   /// Returns the current sub-register index.
getSubReg()1237   unsigned getSubReg() const { return SubReg; }
1238 
1239   /// Returns the bit mask of register classes that getSubReg() projects into
1240   /// RC.
1241   /// See TargetRegisterClass::getSubClassMask() for how to use it.
getMask()1242   const uint32_t *getMask() const { return Mask; }
1243 
1244   /// Advance iterator to the next entry.
1245   void operator++() {
1246     assert(isValid() && "Cannot move iterator past end.");
1247     Mask += RCMaskWords;
1248     SubReg = *Idx++;
1249     if (!SubReg)
1250       Idx = nullptr;
1251   }
1252 };
1253 
1254 //===----------------------------------------------------------------------===//
1255 //                           BitMaskClassIterator
1256 //===----------------------------------------------------------------------===//
1257 /// This class encapuslates the logic to iterate over bitmask returned by
1258 /// the various RegClass related APIs.
1259 /// E.g., this class can be used to iterate over the subclasses provided by
1260 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1261 class BitMaskClassIterator {
1262   /// Total number of register classes.
1263   const unsigned NumRegClasses;
1264   /// Base index of CurrentChunk.
1265   /// In other words, the number of bit we read to get at the
1266   /// beginning of that chunck.
1267   unsigned Base = 0;
1268   /// Adjust base index of CurrentChunk.
1269   /// Base index + how many bit we read within CurrentChunk.
1270   unsigned Idx = 0;
1271   /// Current register class ID.
1272   unsigned ID = 0;
1273   /// Mask we are iterating over.
1274   const uint32_t *Mask;
1275   /// Current chunk of the Mask we are traversing.
1276   uint32_t CurrentChunk;
1277 
1278   /// Move ID to the next set bit.
moveToNextID()1279   void moveToNextID() {
1280     // If the current chunk of memory is empty, move to the next one,
1281     // while making sure we do not go pass the number of register
1282     // classes.
1283     while (!CurrentChunk) {
1284       // Move to the next chunk.
1285       Base += 32;
1286       if (Base >= NumRegClasses) {
1287         ID = NumRegClasses;
1288         return;
1289       }
1290       CurrentChunk = *++Mask;
1291       Idx = Base;
1292     }
1293     // Otherwise look for the first bit set from the right
1294     // (representation of the class ID is big endian).
1295     // See getSubClassMask for more details on the representation.
1296     unsigned Offset = llvm::countr_zero(CurrentChunk);
1297     // Add the Offset to the adjusted base number of this chunk: Idx.
1298     // This is the ID of the register class.
1299     ID = Idx + Offset;
1300 
1301     // Consume the zeros, if any, and the bit we just read
1302     // so that we are at the right spot for the next call.
1303     // Do not do Offset + 1 because Offset may be 31 and 32
1304     // will be UB for the shift, though in that case we could
1305     // have make the chunk being equal to 0, but that would
1306     // have introduced a if statement.
1307     moveNBits(Offset);
1308     moveNBits(1);
1309   }
1310 
1311   /// Move \p NumBits Bits forward in CurrentChunk.
moveNBits(unsigned NumBits)1312   void moveNBits(unsigned NumBits) {
1313     assert(NumBits < 32 && "Undefined behavior spotted!");
1314     // Consume the bit we read for the next call.
1315     CurrentChunk >>= NumBits;
1316     // Adjust the base for the chunk.
1317     Idx += NumBits;
1318   }
1319 
1320 public:
1321   /// Create a BitMaskClassIterator that visits all the register classes
1322   /// represented by \p Mask.
1323   ///
1324   /// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1325   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1326       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1327     // Move to the first ID.
1328     moveToNextID();
1329   }
1330 
1331   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1332   bool isValid() const { return getID() != NumRegClasses; }
1333 
1334   /// Returns the current register class ID.
getID()1335   unsigned getID() const { return ID; }
1336 
1337   /// Advance iterator to the next entry.
1338   void operator++() {
1339     assert(isValid() && "Cannot move iterator past end.");
1340     moveToNextID();
1341   }
1342 };
1343 
1344 // This is useful when building IndexedMaps keyed on virtual registers
1345 struct VirtReg2IndexFunctor {
1346   using argument_type = Register;
operatorVirtReg2IndexFunctor1347   unsigned operator()(Register Reg) const {
1348     return Register::virtReg2Index(Reg);
1349   }
1350 };
1351 
1352 /// Prints virtual and physical registers with or without a TRI instance.
1353 ///
1354 /// The format is:
1355 ///   %noreg          - NoRegister
1356 ///   %5              - a virtual register.
1357 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1358 ///   %eax            - a physical register
1359 ///   %physreg17      - a physical register when no TRI instance given.
1360 ///
1361 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1362 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1363                    unsigned SubIdx = 0,
1364                    const MachineRegisterInfo *MRI = nullptr);
1365 
1366 /// Create Printable object to print register units on a \ref raw_ostream.
1367 ///
1368 /// Register units are named after their root registers:
1369 ///
1370 ///   al      - Single root.
1371 ///   fp0~st7 - Dual roots.
1372 ///
1373 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1374 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1375 
1376 /// Create Printable object to print virtual registers and physical
1377 /// registers on a \ref raw_ostream.
1378 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1379 
1380 /// Create Printable object to print register classes or register banks
1381 /// on a \ref raw_ostream.
1382 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1383                               const TargetRegisterInfo *TRI);
1384 
1385 } // end namespace llvm
1386 
1387 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1388