1//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the target-independent interfaces used by SelectionDAG 10// instruction selection generators. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// Selection DAG Type Constraint definitions. 16// 17// Note that the semantics of these constraints are hard coded into tblgen. To 18// modify or add constraints, you have to hack tblgen. 19// 20 21class SDTypeConstraint<int opnum> { 22 int OperandNum = opnum; 23} 24 25// SDTCisVT - The specified operand has exactly this VT. 26class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { 27 ValueType VT = vt; 28} 29 30class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>; 31 32// SDTCisInt - The specified operand has integer type. 33class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>; 34 35// SDTCisFP - The specified operand has floating-point type. 36class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>; 37 38// SDTCisVec - The specified operand has a vector type. 39class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>; 40 41// SDTCisSameAs - The two specified operands have identical types. 42class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 43 int OtherOperandNum = OtherOp; 44} 45 46// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is 47// smaller than the 'Other' operand. 48class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 49 int OtherOperandNum = OtherOp; 50} 51 52class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{ 53 int BigOperandNum = BigOp; 54} 55 56/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same 57/// type as the element type of OtherOp, which is a vector type. 58class SDTCisEltOfVec<int ThisOp, int OtherOp> 59 : SDTypeConstraint<ThisOp> { 60 int OtherOpNum = OtherOp; 61} 62 63/// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type 64/// with length less that of OtherOp, which is a vector type. 65class SDTCisSubVecOfVec<int ThisOp, int OtherOp> 66 : SDTypeConstraint<ThisOp> { 67 int OtherOpNum = OtherOp; 68} 69 70// SDTCVecEltisVT - The specified operand is vector type with element type 71// of VT. 72class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { 73 ValueType VT = vt; 74} 75 76// SDTCisSameNumEltsAs - The two specified operands have identical number 77// of elements. 78class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 79 int OtherOperandNum = OtherOp; 80} 81 82// SDTCisSameSizeAs - The two specified operands have identical size. 83class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 84 int OtherOperandNum = OtherOp; 85} 86 87//===----------------------------------------------------------------------===// 88// Selection DAG Type Profile definitions. 89// 90// These use the constraints defined above to describe the type requirements of 91// the various nodes. These are not hard coded into tblgen, allowing targets to 92// add their own if needed. 93// 94 95// SDTypeProfile - This profile describes the type requirements of a Selection 96// DAG node. 97class SDTypeProfile<int numresults, int numoperands, 98 list<SDTypeConstraint> constraints> { 99 int NumResults = numresults; 100 int NumOperands = numoperands; 101 list<SDTypeConstraint> Constraints = constraints; 102} 103 104// Builtin profiles. 105def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. 106def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. 107def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. 108def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. 109def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. 110def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert. 111 112def SDTPtrAddOp : SDTypeProfile<1, 2, [ // ptradd 113 SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisPtrTy<1> 114]>; 115def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. 116 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> 117]>; 118def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl 119 SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> 120]>; 121def SDTIntShiftDOp: SDTypeProfile<1, 3, [ // fshl, fshr 122 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> 123]>; 124def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift 125 SDTCisSameAs<0, 1>, SDTCisInt<2> 126]>; 127def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem 128 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0> 129]>; 130def SDTIntScaledBinOp : SDTypeProfile<1, 3, [ // smulfix, sdivfix, etc 131 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> 132]>; 133 134def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. 135 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> 136]>; 137def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. 138 SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> 139]>; 140def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. 141 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> 142]>; 143def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // bitreverse 144 SDTCisSameAs<0, 1>, SDTCisInt<0> 145]>; 146def SDTIntBitCountUnaryOp : SDTypeProfile<1, 1, [ // ctlz, cttz 147 SDTCisInt<0>, SDTCisInt<1> 148]>; 149def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext 150 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> 151]>; 152def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc 153 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> 154]>; 155def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc 156 SDTCisSameAs<0, 1>, SDTCisFP<0> 157]>; 158def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fpround 159 SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> 160]>; 161def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fpextend 162 SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> 163]>; 164def SDIsFPClassOp : SDTypeProfile<1, 2, [ // is_fpclass 165 SDTCisInt<0>, SDTCisFP<1>, SDTCisInt<2>, SDTCisSameNumEltsAs<0, 1> 166]>; 167def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp 168 SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1> 169]>; 170def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int 171 SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1> 172]>; 173def SDTFPToIntSatOp : SDTypeProfile<1, 2, [ // fp_to_[su]int_sat 174 SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>, SDTCisVT<2, OtherVT> 175]>; 176def SDTFPExpOp : SDTypeProfile<1, 2, [ // ldexp 177 SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2> 178]>; 179def SDTGetFPStateOp : SDTypeProfile<1, 0, [ // get_fpenv, get_fpmode 180 SDTCisInt<0> 181]>; 182def SDTSetFPStateOp : SDTypeProfile<0, 1, [ // set_fpenv, set_fpmode 183 SDTCisInt<0> 184]>; 185def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg 186 SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, 187 SDTCisVTSmallerThanOp<2, 1> 188]>; 189def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec 190 SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>, 191 SDTCisOpSmallerThanOp<1, 0> 192]>; 193def SDTFreeze : SDTypeProfile<1, 1, [ 194 SDTCisSameAs<0, 1> 195]>; 196 197def SDTSetCC : SDTypeProfile<1, 3, [ // setcc 198 SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> 199]>; 200 201def SDTSelect : SDTypeProfile<1, 3, [ // select 202 SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> 203]>; 204 205def SDTVSelect : SDTypeProfile<1, 3, [ // vselect 206 SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1> 207]>; 208 209def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc 210 SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, 211 SDTCisVT<5, OtherVT> 212]>; 213 214def SDTBr : SDTypeProfile<0, 1, [ // br 215 SDTCisVT<0, OtherVT> 216]>; 217 218def SDTBrCC : SDTypeProfile<0, 4, [ // brcc 219 SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> 220]>; 221 222def SDTBrcond : SDTypeProfile<0, 2, [ // brcond 223 SDTCisInt<0>, SDTCisVT<1, OtherVT> 224]>; 225 226def SDTBrind : SDTypeProfile<0, 1, [ // brind 227 SDTCisPtrTy<0> 228]>; 229 230def SDTCatchret : SDTypeProfile<0, 2, [ // catchret 231 SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT> 232]>; 233 234def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap 235 236def SDTUBSANTrap : SDTypeProfile<0, 1, []>; // ubsantrap 237 238def SDTLoad : SDTypeProfile<1, 1, [ // load 239 SDTCisPtrTy<1> 240]>; 241 242def SDTStore : SDTypeProfile<0, 2, [ // store 243 SDTCisPtrTy<1> 244]>; 245 246def SDTIStore : SDTypeProfile<1, 3, [ // indexed store 247 SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> 248]>; 249 250def SDTMaskedStore: SDTypeProfile<0, 4, [ // masked store 251 SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameNumEltsAs<0, 3> 252]>; 253 254def SDTMaskedLoad: SDTypeProfile<1, 4, [ // masked load 255 SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameAs<0, 4>, 256 SDTCisSameNumEltsAs<0, 3> 257]>; 258 259def SDTMaskedGather : SDTypeProfile<1, 4, [ 260 SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVec<2>, SDTCisPtrTy<3>, SDTCisVec<4>, 261 SDTCisSameNumEltsAs<0, 2>, SDTCisSameNumEltsAs<0, 4> 262]>; 263 264def SDTMaskedScatter : SDTypeProfile<0, 4, [ 265 SDTCisVec<0>, SDTCisVec<1>, SDTCisPtrTy<2>, SDTCisVec<3>, 266 SDTCisSameNumEltsAs<0, 1>, SDTCisSameNumEltsAs<0, 3> 267]>; 268 269def SDTVecShuffle : SDTypeProfile<1, 2, [ 270 SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2> 271]>; 272def SDTVecSlice : SDTypeProfile<1, 3, [ // vector splice 273 SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisInt<3> 274]>; 275def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract 276 SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> 277]>; 278def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert 279 SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> 280]>; 281def SDTVecReduce : SDTypeProfile<1, 1, [ // vector reduction 282 SDTCisInt<0>, SDTCisVec<1> 283]>; 284def SDTFPVecReduce : SDTypeProfile<1, 1, [ // FP vector reduction 285 SDTCisFP<0>, SDTCisVec<1> 286]>; 287 288def SDTVecReverse : SDTypeProfile<1, 1, [ // vector reverse 289 SDTCisVec<0>, SDTCisSameAs<0,1> 290]>; 291 292def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract 293 SDTCisSubVecOfVec<0,1>, SDTCisInt<2> 294]>; 295def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert 296 SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3> 297]>; 298 299def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch 300 SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1> 301]>; 302 303def SDTAtomicFence : SDTypeProfile<0, 2, [ 304 SDTCisSameAs<0,1>, SDTCisPtrTy<0> 305]>; 306def SDTAtomic3 : SDTypeProfile<1, 3, [ 307 SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> 308]>; 309def SDTAtomic2 : SDTypeProfile<1, 2, [ 310 SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> 311]>; 312 313def SDTFPAtomic2 : SDTypeProfile<1, 2, [ 314 SDTCisSameAs<0,2>, SDTCisFP<0>, SDTCisPtrTy<1> 315]>; 316 317def SDTAtomicStore : SDTypeProfile<0, 2, [ 318 SDTCisInt<0>, SDTCisPtrTy<1> 319]>; 320def SDTAtomicLoad : SDTypeProfile<1, 1, [ 321 SDTCisInt<0>, SDTCisPtrTy<1> 322]>; 323 324class SDCallSeqStart<list<SDTypeConstraint> constraints> : 325 SDTypeProfile<0, 2, constraints>; 326class SDCallSeqEnd<list<SDTypeConstraint> constraints> : 327 SDTypeProfile<0, 2, constraints>; 328 329//===----------------------------------------------------------------------===// 330// Selection DAG Node definitions. 331// 332class SDNode<string opcode, SDTypeProfile typeprof, 333 list<SDNodeProperty> props = [], string sdclass = "SDNode"> 334 : SDPatternOperator { 335 string Opcode = opcode; 336 string SDClass = sdclass; 337 let Properties = props; 338 SDTypeProfile TypeProfile = typeprof; 339} 340 341// Special TableGen-recognized dag nodes 342def set; 343def implicit; 344def node; 345def srcvalue; 346 347def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; 348def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">; 349def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; 350def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; 351def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; 352def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; 353def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; 354def vscale : SDNode<"ISD::VSCALE" , SDTIntUnaryOp, []>; 355def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], 356 "GlobalAddressSDNode">; 357def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], 358 "GlobalAddressSDNode">; 359def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], 360 "GlobalAddressSDNode">; 361def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], 362 "GlobalAddressSDNode">; 363def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], 364 "ConstantPoolSDNode">; 365def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], 366 "ConstantPoolSDNode">; 367def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], 368 "JumpTableSDNode">; 369def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], 370 "JumpTableSDNode">; 371def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], 372 "FrameIndexSDNode">; 373def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], 374 "FrameIndexSDNode">; 375def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], 376 "ExternalSymbolSDNode">; 377def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], 378 "ExternalSymbolSDNode">; 379def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">; 380def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [], 381 "BlockAddressSDNode">; 382def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [], 383 "BlockAddressSDNode">; 384 385def add : SDNode<"ISD::ADD" , SDTIntBinOp , 386 [SDNPCommutative, SDNPAssociative]>; 387def ptradd : SDNode<"ISD::ADD" , SDTPtrAddOp, []>; 388def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; 389def mul : SDNode<"ISD::MUL" , SDTIntBinOp, 390 [SDNPCommutative, SDNPAssociative]>; 391def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; 392def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; 393def avgfloors : SDNode<"ISD::AVGFLOORS" , SDTIntBinOp, [SDNPCommutative]>; 394def avgflooru : SDNode<"ISD::AVGFLOORU" , SDTIntBinOp, [SDNPCommutative]>; 395def avgceils : SDNode<"ISD::AVGCEILS" , SDTIntBinOp, [SDNPCommutative]>; 396def avgceilu : SDNode<"ISD::AVGCEILU" , SDTIntBinOp, [SDNPCommutative]>; 397def abds : SDNode<"ISD::ABDS" , SDTIntBinOp, [SDNPCommutative]>; 398def abdu : SDNode<"ISD::ABDU" , SDTIntBinOp, [SDNPCommutative]>; 399def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; 400def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; 401def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; 402def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; 403def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; 404def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; 405def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>; 406def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>; 407def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; 408def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; 409def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; 410def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; 411def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; 412def fshl : SDNode<"ISD::FSHL" , SDTIntShiftDOp>; 413def fshr : SDNode<"ISD::FSHR" , SDTIntShiftDOp>; 414def and : SDNode<"ISD::AND" , SDTIntBinOp, 415 [SDNPCommutative, SDNPAssociative]>; 416def or : SDNode<"ISD::OR" , SDTIntBinOp, 417 [SDNPCommutative, SDNPAssociative]>; 418def xor : SDNode<"ISD::XOR" , SDTIntBinOp, 419 [SDNPCommutative, SDNPAssociative]>; 420def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, 421 [SDNPCommutative, SDNPOutGlue]>; 422def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, 423 [SDNPCommutative, SDNPOutGlue, SDNPInGlue]>; 424def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, 425 [SDNPOutGlue]>; 426def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, 427 [SDNPOutGlue, SDNPInGlue]>; 428def smin : SDNode<"ISD::SMIN" , SDTIntBinOp, 429 [SDNPCommutative, SDNPAssociative]>; 430def smax : SDNode<"ISD::SMAX" , SDTIntBinOp, 431 [SDNPCommutative, SDNPAssociative]>; 432def umin : SDNode<"ISD::UMIN" , SDTIntBinOp, 433 [SDNPCommutative, SDNPAssociative]>; 434def umax : SDNode<"ISD::UMAX" , SDTIntBinOp, 435 [SDNPCommutative, SDNPAssociative]>; 436 437def saddsat : SDNode<"ISD::SADDSAT" , SDTIntBinOp, [SDNPCommutative]>; 438def uaddsat : SDNode<"ISD::UADDSAT" , SDTIntBinOp, [SDNPCommutative]>; 439def ssubsat : SDNode<"ISD::SSUBSAT" , SDTIntBinOp>; 440def usubsat : SDNode<"ISD::USUBSAT" , SDTIntBinOp>; 441def sshlsat : SDNode<"ISD::SSHLSAT" , SDTIntBinOp>; 442def ushlsat : SDNode<"ISD::USHLSAT" , SDTIntBinOp>; 443 444def smulfix : SDNode<"ISD::SMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; 445def smulfixsat : SDNode<"ISD::SMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; 446def umulfix : SDNode<"ISD::UMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; 447def umulfixsat : SDNode<"ISD::UMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; 448def sdivfix : SDNode<"ISD::SDIVFIX" , SDTIntScaledBinOp>; 449def sdivfixsat : SDNode<"ISD::SDIVFIXSAT", SDTIntScaledBinOp>; 450def udivfix : SDNode<"ISD::UDIVFIX" , SDTIntScaledBinOp>; 451def udivfixsat : SDNode<"ISD::UDIVFIXSAT", SDTIntScaledBinOp>; 452 453def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; 454def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>; 455def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>; 456 457def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>; 458def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>; 459def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; 460def ctlz : SDNode<"ISD::CTLZ" , SDTIntBitCountUnaryOp>; 461def cttz : SDNode<"ISD::CTTZ" , SDTIntBitCountUnaryOp>; 462def ctpop : SDNode<"ISD::CTPOP" , SDTIntBitCountUnaryOp>; 463def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; 464def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; 465def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; 466def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; 467def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; 468def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; 469def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>; 470def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>; 471def freeze : SDNode<"ISD::FREEZE" , SDTFreeze>; 472def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; 473def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; 474 475def vecreduce_add : SDNode<"ISD::VECREDUCE_ADD", SDTVecReduce>; 476def vecreduce_smax : SDNode<"ISD::VECREDUCE_SMAX", SDTVecReduce>; 477def vecreduce_umax : SDNode<"ISD::VECREDUCE_UMAX", SDTVecReduce>; 478def vecreduce_smin : SDNode<"ISD::VECREDUCE_SMIN", SDTVecReduce>; 479def vecreduce_umin : SDNode<"ISD::VECREDUCE_UMIN", SDTVecReduce>; 480def vecreduce_fadd : SDNode<"ISD::VECREDUCE_FADD", SDTFPVecReduce>; 481def vecreduce_fmin : SDNode<"ISD::VECREDUCE_FMIN", SDTFPVecReduce>; 482def vecreduce_fmax : SDNode<"ISD::VECREDUCE_FMAX", SDTFPVecReduce>; 483def vecreduce_fminimum : SDNode<"ISD::VECREDUCE_FMINIMUM", SDTFPVecReduce>; 484def vecreduce_fmaximum : SDNode<"ISD::VECREDUCE_FMAXIMUM", SDTFPVecReduce>; 485 486def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; 487def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; 488def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; 489def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; 490def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; 491def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp, [SDNPCommutative]>; 492def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp, [SDNPCommutative]>; 493def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; 494def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp, 495 [SDNPCommutative, SDNPAssociative]>; 496def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp, 497 [SDNPCommutative, SDNPAssociative]>; 498def fminnum_ieee : SDNode<"ISD::FMINNUM_IEEE", SDTFPBinOp, 499 [SDNPCommutative]>; 500def fmaxnum_ieee : SDNode<"ISD::FMAXNUM_IEEE", SDTFPBinOp, 501 [SDNPCommutative]>; 502def fminimum : SDNode<"ISD::FMINIMUM" , SDTFPBinOp, 503 [SDNPCommutative, SDNPAssociative]>; 504def fmaximum : SDNode<"ISD::FMAXIMUM" , SDTFPBinOp, 505 [SDNPCommutative, SDNPAssociative]>; 506def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>; 507def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>; 508def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; 509def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; 510def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; 511def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; 512def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>; 513def fexp10 : SDNode<"ISD::FEXP10" , SDTFPUnaryOp>; 514def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>; 515def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>; 516def fldexp : SDNode<"ISD::FLDEXP" , SDTFPExpOp>; 517def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>; 518def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>; 519def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>; 520def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>; 521def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>; 522def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>; 523def froundeven : SDNode<"ISD::FROUNDEVEN" , SDTFPUnaryOp>; 524 525def lround : SDNode<"ISD::LROUND" , SDTFPToIntOp>; 526def llround : SDNode<"ISD::LLROUND" , SDTFPToIntOp>; 527def lrint : SDNode<"ISD::LRINT" , SDTFPToIntOp>; 528def llrint : SDNode<"ISD::LLRINT" , SDTFPToIntOp>; 529 530def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; 531def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; 532def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; 533 534def is_fpclass : SDNode<"ISD::IS_FPCLASS" , SDIsFPClassOp>; 535 536def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; 537def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; 538def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; 539def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; 540def fp_to_sint_sat : SDNode<"ISD::FP_TO_SINT_SAT" , SDTFPToIntSatOp>; 541def fp_to_uint_sat : SDNode<"ISD::FP_TO_UINT_SAT" , SDTFPToIntSatOp>; 542def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>; 543def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>; 544 545def strict_fadd : SDNode<"ISD::STRICT_FADD", 546 SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; 547def strict_fsub : SDNode<"ISD::STRICT_FSUB", 548 SDTFPBinOp, [SDNPHasChain]>; 549def strict_fmul : SDNode<"ISD::STRICT_FMUL", 550 SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; 551def strict_fdiv : SDNode<"ISD::STRICT_FDIV", 552 SDTFPBinOp, [SDNPHasChain]>; 553def strict_frem : SDNode<"ISD::STRICT_FREM", 554 SDTFPBinOp, [SDNPHasChain]>; 555def strict_fma : SDNode<"ISD::STRICT_FMA", 556 SDTFPTernaryOp, [SDNPHasChain, SDNPCommutative]>; 557def strict_fsqrt : SDNode<"ISD::STRICT_FSQRT", 558 SDTFPUnaryOp, [SDNPHasChain]>; 559def strict_fsin : SDNode<"ISD::STRICT_FSIN", 560 SDTFPUnaryOp, [SDNPHasChain]>; 561def strict_fcos : SDNode<"ISD::STRICT_FCOS", 562 SDTFPUnaryOp, [SDNPHasChain]>; 563def strict_fexp2 : SDNode<"ISD::STRICT_FEXP2", 564 SDTFPUnaryOp, [SDNPHasChain]>; 565def strict_fpow : SDNode<"ISD::STRICT_FPOW", 566 SDTFPBinOp, [SDNPHasChain]>; 567def strict_fldexp : SDNode<"ISD::STRICT_FLDEXP", 568 SDTFPExpOp, [SDNPHasChain]>; 569def strict_flog2 : SDNode<"ISD::STRICT_FLOG2", 570 SDTFPUnaryOp, [SDNPHasChain]>; 571def strict_frint : SDNode<"ISD::STRICT_FRINT", 572 SDTFPUnaryOp, [SDNPHasChain]>; 573def strict_lrint : SDNode<"ISD::STRICT_LRINT", 574 SDTFPToIntOp, [SDNPHasChain]>; 575def strict_llrint : SDNode<"ISD::STRICT_LLRINT", 576 SDTFPToIntOp, [SDNPHasChain]>; 577def strict_fnearbyint : SDNode<"ISD::STRICT_FNEARBYINT", 578 SDTFPUnaryOp, [SDNPHasChain]>; 579def strict_fceil : SDNode<"ISD::STRICT_FCEIL", 580 SDTFPUnaryOp, [SDNPHasChain]>; 581def strict_ffloor : SDNode<"ISD::STRICT_FFLOOR", 582 SDTFPUnaryOp, [SDNPHasChain]>; 583def strict_lround : SDNode<"ISD::STRICT_LROUND", 584 SDTFPToIntOp, [SDNPHasChain]>; 585def strict_llround : SDNode<"ISD::STRICT_LLROUND", 586 SDTFPToIntOp, [SDNPHasChain]>; 587def strict_fround : SDNode<"ISD::STRICT_FROUND", 588 SDTFPUnaryOp, [SDNPHasChain]>; 589def strict_froundeven : SDNode<"ISD::STRICT_FROUNDEVEN", 590 SDTFPUnaryOp, [SDNPHasChain]>; 591def strict_ftrunc : SDNode<"ISD::STRICT_FTRUNC", 592 SDTFPUnaryOp, [SDNPHasChain]>; 593def strict_fminnum : SDNode<"ISD::STRICT_FMINNUM", 594 SDTFPBinOp, [SDNPHasChain, 595 SDNPCommutative, SDNPAssociative]>; 596def strict_fmaxnum : SDNode<"ISD::STRICT_FMAXNUM", 597 SDTFPBinOp, [SDNPHasChain, 598 SDNPCommutative, SDNPAssociative]>; 599def strict_fminimum : SDNode<"ISD::STRICT_FMINIMUM", 600 SDTFPBinOp, [SDNPHasChain, 601 SDNPCommutative, SDNPAssociative]>; 602def strict_fmaximum : SDNode<"ISD::STRICT_FMAXIMUM", 603 SDTFPBinOp, [SDNPHasChain, 604 SDNPCommutative, SDNPAssociative]>; 605def strict_fpround : SDNode<"ISD::STRICT_FP_ROUND", 606 SDTFPRoundOp, [SDNPHasChain]>; 607def strict_fpextend : SDNode<"ISD::STRICT_FP_EXTEND", 608 SDTFPExtendOp, [SDNPHasChain]>; 609def strict_fp_to_sint : SDNode<"ISD::STRICT_FP_TO_SINT", 610 SDTFPToIntOp, [SDNPHasChain]>; 611def strict_fp_to_uint : SDNode<"ISD::STRICT_FP_TO_UINT", 612 SDTFPToIntOp, [SDNPHasChain]>; 613def strict_sint_to_fp : SDNode<"ISD::STRICT_SINT_TO_FP", 614 SDTIntToFPOp, [SDNPHasChain]>; 615def strict_uint_to_fp : SDNode<"ISD::STRICT_UINT_TO_FP", 616 SDTIntToFPOp, [SDNPHasChain]>; 617def strict_fsetcc : SDNode<"ISD::STRICT_FSETCC", SDTSetCC, [SDNPHasChain]>; 618def strict_fsetccs : SDNode<"ISD::STRICT_FSETCCS", SDTSetCC, [SDNPHasChain]>; 619 620def get_fpenv : SDNode<"ISD::GET_FPENV", SDTGetFPStateOp, [SDNPHasChain]>; 621def set_fpenv : SDNode<"ISD::SET_FPENV", SDTSetFPStateOp, [SDNPHasChain]>; 622def reset_fpenv : SDNode<"ISD::RESET_FPENV", SDTNone, [SDNPHasChain]>; 623def get_fpmode : SDNode<"ISD::GET_FPMODE", SDTGetFPStateOp, [SDNPHasChain]>; 624def set_fpmode : SDNode<"ISD::SET_FPMODE", SDTSetFPStateOp, [SDNPHasChain]>; 625def reset_fpmode : SDNode<"ISD::RESET_FPMODE", SDTNone, [SDNPHasChain]>; 626 627def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; 628def select : SDNode<"ISD::SELECT" , SDTSelect>; 629def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>; 630def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; 631 632def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>; 633def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; 634def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; 635def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; 636def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret, 637 [SDNPHasChain, SDNPSideEffect]>; 638def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>; 639 640def trap : SDNode<"ISD::TRAP" , SDTNone, 641 [SDNPHasChain, SDNPSideEffect]>; 642def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone, 643 [SDNPHasChain, SDNPSideEffect]>; 644def ubsantrap : SDNode<"ISD::UBSANTRAP" , SDTUBSANTrap, 645 [SDNPHasChain, SDNPSideEffect]>; 646 647def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch, 648 [SDNPHasChain, SDNPMayLoad, SDNPMayStore, 649 SDNPMemOperand]>; 650 651def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf, 652 [SDNPHasChain, SDNPSideEffect]>; 653 654def membarrier : SDNode<"ISD::MEMBARRIER", SDTNone, 655 [SDNPHasChain, SDNPSideEffect]>; 656 657def jump_table_debug_info : SDNode<"ISD::JUMP_TABLE_DEBUG_INFO", SDTNone, 658 [SDNPHasChain]>; 659 660def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence, 661 [SDNPHasChain, SDNPSideEffect]>; 662 663def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3, 664 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 665def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2, 666 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 667def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2, 668 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 669def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2, 670 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 671def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2, 672 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 673def atomic_load_clr : SDNode<"ISD::ATOMIC_LOAD_CLR" , SDTAtomic2, 674 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 675def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2, 676 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 677def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2, 678 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 679def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2, 680 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 681def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2, 682 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 683def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2, 684 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 685def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2, 686 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 687def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2, 688 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 689def atomic_load_fadd : SDNode<"ISD::ATOMIC_LOAD_FADD" , SDTFPAtomic2, 690 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 691def atomic_load_fsub : SDNode<"ISD::ATOMIC_LOAD_FSUB" , SDTFPAtomic2, 692 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 693def atomic_load_fmax : SDNode<"ISD::ATOMIC_LOAD_FMAX", SDTFPAtomic2, 694 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 695def atomic_load_fmin : SDNode<"ISD::ATOMIC_LOAD_FMIN", SDTFPAtomic2, 696 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 697def atomic_load_uinc_wrap : SDNode<"ISD::ATOMIC_LOAD_UINC_WRAP", SDTAtomic2, 698 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 699def atomic_load_udec_wrap : SDNode<"ISD::ATOMIC_LOAD_UDEC_WRAP", SDTAtomic2, 700 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 701 702def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad, 703 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 704def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore, 705 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 706 707def masked_st : SDNode<"ISD::MSTORE", SDTMaskedStore, 708 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 709def masked_ld : SDNode<"ISD::MLOAD", SDTMaskedLoad, 710 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 711 712def masked_gather : SDNode<"ISD::MGATHER", SDTMaskedGather, 713 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 714 715def masked_scatter : SDNode<"ISD::MSCATTER", SDTMaskedScatter, 716 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 717 718// Do not use ld, st directly. Use load, extload, sextload, zextload, store, 719// and truncst (see below). 720def ld : SDNode<"ISD::LOAD" , SDTLoad, 721 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 722def st : SDNode<"ISD::STORE" , SDTStore, 723 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 724def ist : SDNode<"ISD::STORE" , SDTIStore, 725 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 726 727def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; 728def vector_reverse : SDNode<"ISD::VECTOR_REVERSE", SDTVecReverse>; 729def vector_splice : SDNode<"ISD::VECTOR_SPLICE", SDTVecSlice, []>; 730def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>; 731def splat_vector : SDNode<"ISD::SPLAT_VECTOR", SDTypeProfile<1, 1, []>, []>; 732def step_vector : SDNode<"ISD::STEP_VECTOR", SDTypeProfile<1, 1, 733 [SDTCisVec<0>, SDTCisInt<1>]>, []>; 734def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, 735 []>; 736 737// vector_extract/vector_insert are deprecated. extractelt/insertelt 738// are preferred. 739def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", 740 SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; 741def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", 742 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; 743def concat_vectors : SDNode<"ISD::CONCAT_VECTORS", 744 SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>; 745 746// This operator does not do subvector type checking. The ARM 747// backend, at least, needs it. 748def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR", 749 SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>, 750 []>; 751def vector_insert_subvec : SDNode<"ISD::INSERT_SUBVECTOR", 752 SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVec<2>, SDTCisInt<3>]>, 753 []>; 754 755// This operator does subvector type checking. 756def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>; 757def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>; 758 759// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use 760// these internally. Don't reference these directly. 761def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", 762 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 763 [SDNPHasChain]>; 764def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", 765 SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, 766 [SDNPHasChain]>; 767def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", 768 SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; 769 770def SDT_assert : SDTypeProfile<1, 1, 771 [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>; 772def assertsext : SDNode<"ISD::AssertSext", SDT_assert>; 773def assertzext : SDNode<"ISD::AssertZext", SDT_assert>; 774def assertalign : SDNode<"ISD::AssertAlign", SDT_assert>; 775 776//===----------------------------------------------------------------------===// 777// Selection DAG Condition Codes 778 779class CondCode<string fcmpName = "", string icmpName = ""> { 780 string ICmpPredicate = icmpName; 781 string FCmpPredicate = fcmpName; 782} 783 784// ISD::CondCode enums, and mapping to CmpInst::Predicate names 785def SETOEQ : CondCode<"FCMP_OEQ">; 786def SETOGT : CondCode<"FCMP_OGT">; 787def SETOGE : CondCode<"FCMP_OGE">; 788def SETOLT : CondCode<"FCMP_OLT">; 789def SETOLE : CondCode<"FCMP_OLE">; 790def SETONE : CondCode<"FCMP_ONE">; 791def SETO : CondCode<"FCMP_ORD">; 792def SETUO : CondCode<"FCMP_UNO">; 793def SETUEQ : CondCode<"FCMP_UEQ">; 794def SETUGT : CondCode<"FCMP_UGT", "ICMP_UGT">; 795def SETUGE : CondCode<"FCMP_UGE", "ICMP_UGE">; 796def SETULT : CondCode<"FCMP_ULT", "ICMP_ULT">; 797def SETULE : CondCode<"FCMP_ULE", "ICMP_ULE">; 798def SETUNE : CondCode<"FCMP_UNE">; 799def SETEQ : CondCode<"", "ICMP_EQ">; 800def SETGT : CondCode<"", "ICMP_SGT">; 801def SETGE : CondCode<"", "ICMP_SGE">; 802def SETLT : CondCode<"", "ICMP_SLT">; 803def SETLE : CondCode<"", "ICMP_SLE">; 804def SETNE : CondCode<"", "ICMP_NE">; 805 806//===----------------------------------------------------------------------===// 807// Selection DAG Node Transformation Functions. 808// 809// This mechanism allows targets to manipulate nodes in the output DAG once a 810// match has been formed. This is typically used to manipulate immediate 811// values. 812// 813class SDNodeXForm<SDNode opc, code xformFunction> { 814 SDNode Opcode = opc; 815 code XFormFunction = xformFunction; 816} 817 818def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>; 819 820//===----------------------------------------------------------------------===// 821// Selection DAG Pattern Fragments. 822// 823// Pattern fragments are reusable chunks of dags that match specific things. 824// They can take arguments and have C++ predicates that control whether they 825// match. They are intended to make the patterns for common instructions more 826// compact and readable. 827// 828 829/// PatFrags - Represents a set of pattern fragments. Each single fragment 830/// can match something on the DAG, from a single node to multiple nested other 831/// fragments. The whole set of fragments matches if any of the single 832/// fragments match. This allows e.g. matching and "add with overflow" and 833/// a regular "add" with the same fragment set. 834/// 835class PatFrags<dag ops, list<dag> frags, code pred = [{}], 836 SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator { 837 dag Operands = ops; 838 list<dag> Fragments = frags; 839 code PredicateCode = pred; 840 code GISelPredicateCode = [{}]; 841 code ImmediateCode = [{}]; 842 SDNodeXForm OperandTransform = xform; 843 844 // When this is set, the PredicateCode may refer to a constant Operands 845 // vector which contains the captured nodes of the DAG, in the order listed 846 // by the Operands field above. 847 // 848 // This is useful when Fragments involves associative / commutative 849 // operators: a single piece of code can easily refer to all operands even 850 // when re-associated / commuted variants of the fragment are matched. 851 bit PredicateCodeUsesOperands = false; 852 853 // Define a few pre-packaged predicates. This helps GlobalISel import 854 // existing rules from SelectionDAG for many common cases. 855 // They will be tested prior to the code in pred and must not be used in 856 // ImmLeaf and its subclasses. 857 858 // If set to true, a predicate is added that checks for the absence of use of 859 // the first result. 860 bit HasNoUse = ?; 861 862 // Is the desired pre-packaged predicate for a load? 863 bit IsLoad = ?; 864 // Is the desired pre-packaged predicate for a store? 865 bit IsStore = ?; 866 // Is the desired pre-packaged predicate for an atomic? 867 bit IsAtomic = ?; 868 869 // cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 870 // cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 871 bit IsUnindexed = ?; 872 873 // cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD 874 bit IsNonExtLoad = ?; 875 // cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; 876 bit IsAnyExtLoad = ?; 877 // cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 878 bit IsSignExtLoad = ?; 879 // cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 880 bit IsZeroExtLoad = ?; 881 // !cast<StoreSDNode>(N)->isTruncatingStore(); 882 // cast<StoreSDNode>(N)->isTruncatingStore(); 883 bit IsTruncStore = ?; 884 885 // cast<MemSDNode>(N)->getAddressSpace() == 886 // If this empty, accept any address space. 887 list<int> AddressSpaces = ?; 888 889 // cast<MemSDNode>(N)->getAlign() >= 890 // If this is empty, accept any alignment. 891 int MinAlignment = ?; 892 893 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Monotonic 894 bit IsAtomicOrderingMonotonic = ?; 895 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Acquire 896 bit IsAtomicOrderingAcquire = ?; 897 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Release 898 bit IsAtomicOrderingRelease = ?; 899 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::AcquireRelease 900 bit IsAtomicOrderingAcquireRelease = ?; 901 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent 902 bit IsAtomicOrderingSequentiallyConsistent = ?; 903 904 // isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 905 // !isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 906 bit IsAtomicOrderingAcquireOrStronger = ?; 907 908 // isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 909 // !isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 910 bit IsAtomicOrderingReleaseOrStronger = ?; 911 912 // cast<LoadSDNode>(N)->getMemoryVT() == MVT::<VT>; 913 // cast<StoreSDNode>(N)->getMemoryVT() == MVT::<VT>; 914 ValueType MemoryVT = ?; 915 // cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; 916 // cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; 917 ValueType ScalarMemoryVT = ?; 918} 919 920// Patterns and PatFrags can also subclass GISelFlags to set flags that affect 921// how GlobalISel behaves when matching them. 922class GISelFlags { 923 bit GIIgnoreCopies = ?; 924} 925 926// PatFrag - A version of PatFrags matching only a single fragment. 927class PatFrag<dag ops, dag frag, code pred = [{}], 928 SDNodeXForm xform = NOOP_SDNodeXForm> 929 : PatFrags<ops, [frag], pred, xform>; 930 931// OutPatFrag is a pattern fragment that is used as part of an output pattern 932// (not an input pattern). These do not have predicates or transforms, but are 933// used to avoid repeated subexpressions in output patterns. 934class OutPatFrag<dag ops, dag frag> 935 : PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>; 936 937// PatLeaf's are pattern fragments that have no operands. This is just a helper 938// to define immediates and other common things concisely. 939class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> 940 : PatFrag<(ops), frag, pred, xform>; 941 942 943// ImmLeaf is a pattern fragment with a constraint on the immediate. The 944// constraint is a function that is run on the immediate (always with the value 945// sign extended out to an int64_t) as Imm. For example: 946// 947// def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>; 948// 949// this is a more convenient form to match 'imm' nodes in than PatLeaf and also 950// is preferred over using PatLeaf because it allows the code generator to 951// reason more about the constraint. 952// 953// If FastIsel should ignore all instructions that have an operand of this type, 954// the FastIselShouldIgnore flag can be set. This is an optimization to reduce 955// the code size of the generated fast instruction selector. 956class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, 957 SDNode ImmNode = imm> 958 : PatFrag<(ops), (vt ImmNode), [{}], xform> { 959 let ImmediateCode = pred; 960 bit FastIselShouldIgnore = false; 961 962 // Is the data type of the immediate an APInt? 963 bit IsAPInt = false; 964 965 // Is the data type of the immediate an APFloat? 966 bit IsAPFloat = false; 967} 968 969// Convenience wrapper for ImmLeaf to use timm/TargetConstant instead 970// of imm/Constant. 971class TImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, 972 SDNode ImmNode = timm> : ImmLeaf<vt, pred, xform, ImmNode>; 973 974// An ImmLeaf except that Imm is an APInt. This is useful when you need to 975// zero-extend the immediate instead of sign-extend it. 976// 977// Note that FastISel does not currently understand IntImmLeaf and will not 978// generate code for rules that make use of it. As such, it does not make sense 979// to replace ImmLeaf with IntImmLeaf. However, replacing PatLeaf with an 980// IntImmLeaf will allow GlobalISel to import the rule. 981class IntImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> 982 : ImmLeaf<vt, pred, xform> { 983 let IsAPInt = true; 984 let FastIselShouldIgnore = true; 985} 986 987// An ImmLeaf except that Imm is an APFloat. 988// 989// Note that FastISel does not currently understand FPImmLeaf and will not 990// generate code for rules that make use of it. 991class FPImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> 992 : ImmLeaf<vt, pred, xform, fpimm> { 993 let IsAPFloat = true; 994 let FastIselShouldIgnore = true; 995} 996 997// Leaf fragments. 998 999def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>; 1000def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>; 1001 1002// Use ISD::isConstantSplatVectorAllOnes or ISD::isConstantSplatVectorAllZeros 1003// to look for the corresponding build_vector or splat_vector. Will look through 1004// bitcasts and check for either opcode, except when used as a pattern root. 1005// When used as a pattern root, only fixed-length build_vector and scalable 1006// splat_vector are supported. 1007def immAllOnesV : SDPatternOperator; // ISD::isConstantSplatVectorAllOnes 1008def immAllZerosV : SDPatternOperator; // ISD::isConstantSplatVectorAllZeros 1009 1010// Other helper fragments. 1011def not : PatFrag<(ops node:$in), (xor node:$in, -1)>; 1012def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; 1013def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; 1014 1015def zanyext : PatFrags<(ops node:$op), 1016 [(zext node:$op), 1017 (anyext node:$op)]>; 1018 1019// null_frag - The null pattern operator is used in multiclass instantiations 1020// which accept an SDPatternOperator for use in matching patterns for internal 1021// definitions. When expanding a pattern, if the null fragment is referenced 1022// in the expansion, the pattern is discarded and it is as-if '[]' had been 1023// specified. This allows multiclasses to have the isel patterns be optional. 1024def null_frag : SDPatternOperator; 1025 1026// load fragments. 1027def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr)> { 1028 let IsLoad = true; 1029 let IsUnindexed = true; 1030} 1031def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 1032 let IsLoad = true; 1033 let IsNonExtLoad = true; 1034} 1035 1036// extending load fragments. 1037def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 1038 let IsLoad = true; 1039 let IsAnyExtLoad = true; 1040} 1041def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 1042 let IsLoad = true; 1043 let IsSignExtLoad = true; 1044} 1045def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 1046 let IsLoad = true; 1047 let IsZeroExtLoad = true; 1048} 1049 1050def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1051 let IsLoad = true; 1052 let MemoryVT = i1; 1053} 1054def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1055 let IsLoad = true; 1056 let MemoryVT = i8; 1057} 1058def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1059 let IsLoad = true; 1060 let MemoryVT = i16; 1061} 1062def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1063 let IsLoad = true; 1064 let MemoryVT = i32; 1065} 1066def extloadi64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1067 let IsLoad = true; 1068 let MemoryVT = i64; 1069} 1070def extloadf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1071 let IsLoad = true; 1072 let MemoryVT = f16; 1073} 1074def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1075 let IsLoad = true; 1076 let MemoryVT = f32; 1077} 1078def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1079 let IsLoad = true; 1080 let MemoryVT = f64; 1081} 1082 1083def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1084 let IsLoad = true; 1085 let MemoryVT = i1; 1086} 1087def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1088 let IsLoad = true; 1089 let MemoryVT = i8; 1090} 1091def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1092 let IsLoad = true; 1093 let MemoryVT = i16; 1094} 1095def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1096 let IsLoad = true; 1097 let MemoryVT = i32; 1098} 1099def sextloadi64 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1100 let IsLoad = true; 1101 let MemoryVT = i64; 1102} 1103 1104def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1105 let IsLoad = true; 1106 let MemoryVT = i1; 1107} 1108def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1109 let IsLoad = true; 1110 let MemoryVT = i8; 1111} 1112def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1113 let IsLoad = true; 1114 let MemoryVT = i16; 1115} 1116def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1117 let IsLoad = true; 1118 let MemoryVT = i32; 1119} 1120def zextloadi64 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1121 let IsLoad = true; 1122 let MemoryVT = i64; 1123} 1124 1125def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1126 let IsLoad = true; 1127 let ScalarMemoryVT = i1; 1128} 1129def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1130 let IsLoad = true; 1131 let ScalarMemoryVT = i8; 1132} 1133def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1134 let IsLoad = true; 1135 let ScalarMemoryVT = i16; 1136} 1137def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1138 let IsLoad = true; 1139 let ScalarMemoryVT = i32; 1140} 1141def extloadvf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1142 let IsLoad = true; 1143 let ScalarMemoryVT = f16; 1144} 1145def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1146 let IsLoad = true; 1147 let ScalarMemoryVT = f32; 1148} 1149def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1150 let IsLoad = true; 1151 let ScalarMemoryVT = f64; 1152} 1153 1154def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1155 let IsLoad = true; 1156 let ScalarMemoryVT = i1; 1157} 1158def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1159 let IsLoad = true; 1160 let ScalarMemoryVT = i8; 1161} 1162def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1163 let IsLoad = true; 1164 let ScalarMemoryVT = i16; 1165} 1166def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1167 let IsLoad = true; 1168 let ScalarMemoryVT = i32; 1169} 1170 1171def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1172 let IsLoad = true; 1173 let ScalarMemoryVT = i1; 1174} 1175def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1176 let IsLoad = true; 1177 let ScalarMemoryVT = i8; 1178} 1179def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1180 let IsLoad = true; 1181 let ScalarMemoryVT = i16; 1182} 1183def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1184 let IsLoad = true; 1185 let ScalarMemoryVT = i32; 1186} 1187 1188// store fragments. 1189def unindexedstore : PatFrag<(ops node:$val, node:$ptr), 1190 (st node:$val, node:$ptr)> { 1191 let IsStore = true; 1192 let IsUnindexed = true; 1193} 1194def store : PatFrag<(ops node:$val, node:$ptr), 1195 (unindexedstore node:$val, node:$ptr)> { 1196 let IsStore = true; 1197 let IsTruncStore = false; 1198} 1199 1200// truncstore fragments. 1201def truncstore : PatFrag<(ops node:$val, node:$ptr), 1202 (unindexedstore node:$val, node:$ptr)> { 1203 let IsStore = true; 1204 let IsTruncStore = true; 1205} 1206def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), 1207 (truncstore node:$val, node:$ptr)> { 1208 let IsStore = true; 1209 let MemoryVT = i8; 1210 let IsTruncStore = true; 1211} 1212def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), 1213 (truncstore node:$val, node:$ptr)> { 1214 let IsStore = true; 1215 let MemoryVT = i16; 1216 let IsTruncStore = true; 1217} 1218def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), 1219 (truncstore node:$val, node:$ptr)> { 1220 let IsStore = true; 1221 let MemoryVT = i32; 1222 let IsTruncStore = true; 1223} 1224def truncstorei64 : PatFrag<(ops node:$val, node:$ptr), 1225 (truncstore node:$val, node:$ptr)> { 1226 let IsStore = true; 1227 let MemoryVT = i64; 1228 let IsTruncStore = true; 1229} 1230def truncstoref16 : PatFrag<(ops node:$val, node:$ptr), 1231 (truncstore node:$val, node:$ptr)> { 1232 let IsStore = true; 1233 let MemoryVT = f16; 1234} 1235def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), 1236 (truncstore node:$val, node:$ptr)> { 1237 let IsStore = true; 1238 let MemoryVT = f32; 1239} 1240def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), 1241 (truncstore node:$val, node:$ptr)> { 1242 let IsStore = true; 1243 let MemoryVT = f64; 1244} 1245 1246def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr), 1247 (truncstore node:$val, node:$ptr)> { 1248 let IsStore = true; 1249 let ScalarMemoryVT = i8; 1250} 1251 1252def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr), 1253 (truncstore node:$val, node:$ptr)> { 1254 let IsStore = true; 1255 let ScalarMemoryVT = i16; 1256} 1257 1258def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr), 1259 (truncstore node:$val, node:$ptr)> { 1260 let IsStore = true; 1261 let ScalarMemoryVT = i32; 1262} 1263 1264// indexed store fragments. 1265def istore : PatFrag<(ops node:$val, node:$base, node:$offset), 1266 (ist node:$val, node:$base, node:$offset)> { 1267 let IsStore = true; 1268 let IsTruncStore = false; 1269} 1270 1271def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), 1272 (istore node:$val, node:$base, node:$offset), [{ 1273 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1274 return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1275}]>; 1276 1277def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset), 1278 (ist node:$val, node:$base, node:$offset)> { 1279 let IsStore = true; 1280 let IsTruncStore = true; 1281} 1282def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), 1283 (itruncstore node:$val, node:$base, node:$offset), [{ 1284 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1285 return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1286}]>; 1287def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), 1288 (pre_truncst node:$val, node:$base, node:$offset)> { 1289 let IsStore = true; 1290 let MemoryVT = i1; 1291} 1292def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1293 (pre_truncst node:$val, node:$base, node:$offset)> { 1294 let IsStore = true; 1295 let MemoryVT = i8; 1296} 1297def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1298 (pre_truncst node:$val, node:$base, node:$offset)> { 1299 let IsStore = true; 1300 let MemoryVT = i16; 1301} 1302def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1303 (pre_truncst node:$val, node:$base, node:$offset)> { 1304 let IsStore = true; 1305 let MemoryVT = i32; 1306} 1307def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1308 (pre_truncst node:$val, node:$base, node:$offset)> { 1309 let IsStore = true; 1310 let MemoryVT = f32; 1311} 1312def pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1313 (pre_truncst node:$val, node:$base, node:$offset)> { 1314 let IsStore = true; 1315 let ScalarMemoryVT = i8; 1316} 1317def pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1318 (pre_truncst node:$val, node:$base, node:$offset)> { 1319 let IsStore = true; 1320 let ScalarMemoryVT = i16; 1321} 1322 1323def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 1324 (istore node:$val, node:$ptr, node:$offset), [{ 1325 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1326 return AM == ISD::POST_INC || AM == ISD::POST_DEC; 1327}]>; 1328 1329def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), 1330 (itruncstore node:$val, node:$base, node:$offset), [{ 1331 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1332 return AM == ISD::POST_INC || AM == ISD::POST_DEC; 1333}]>; 1334def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), 1335 (post_truncst node:$val, node:$base, node:$offset)> { 1336 let IsStore = true; 1337 let MemoryVT = i1; 1338} 1339def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1340 (post_truncst node:$val, node:$base, node:$offset)> { 1341 let IsStore = true; 1342 let MemoryVT = i8; 1343} 1344def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1345 (post_truncst node:$val, node:$base, node:$offset)> { 1346 let IsStore = true; 1347 let MemoryVT = i16; 1348} 1349def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1350 (post_truncst node:$val, node:$base, node:$offset)> { 1351 let IsStore = true; 1352 let MemoryVT = i32; 1353} 1354def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1355 (post_truncst node:$val, node:$base, node:$offset)> { 1356 let IsStore = true; 1357 let MemoryVT = f32; 1358} 1359def post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1360 (post_truncst node:$val, node:$base, node:$offset)> { 1361 let IsStore = true; 1362 let ScalarMemoryVT = i8; 1363} 1364def post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1365 (post_truncst node:$val, node:$base, node:$offset)> { 1366 let IsStore = true; 1367 let ScalarMemoryVT = i16; 1368} 1369 1370// A helper for matching undef or freeze undef 1371def undef_or_freeze_undef : PatFrags<(ops), [(undef), (freeze undef)]>; 1372 1373// TODO: Split these into volatile and unordered flavors to enable 1374// selectively legal optimizations for each. (See D66309) 1375def simple_load : PatFrag<(ops node:$ptr), 1376 (load node:$ptr), [{ 1377 return cast<LoadSDNode>(N)->isSimple(); 1378}]>; 1379def simple_store : PatFrag<(ops node:$val, node:$ptr), 1380 (store node:$val, node:$ptr), [{ 1381 return cast<StoreSDNode>(N)->isSimple(); 1382}]>; 1383 1384// nontemporal store fragments. 1385def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1386 (store node:$val, node:$ptr), [{ 1387 return cast<StoreSDNode>(N)->isNonTemporal(); 1388}]>; 1389 1390def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1391 (nontemporalstore node:$val, node:$ptr), [{ 1392 StoreSDNode *St = cast<StoreSDNode>(N); 1393 return St->getAlign() >= St->getMemoryVT().getStoreSize(); 1394}]>; 1395 1396def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1397 (nontemporalstore node:$val, node:$ptr), [{ 1398 StoreSDNode *St = cast<StoreSDNode>(N); 1399 return St->getAlignment() < St->getMemoryVT().getStoreSize(); 1400}]>; 1401 1402// nontemporal load fragments. 1403def nontemporalload : PatFrag<(ops node:$ptr), 1404 (load node:$ptr), [{ 1405 return cast<LoadSDNode>(N)->isNonTemporal(); 1406}]>; 1407 1408def alignednontemporalload : PatFrag<(ops node:$ptr), 1409 (nontemporalload node:$ptr), [{ 1410 LoadSDNode *Ld = cast<LoadSDNode>(N); 1411 return Ld->getAlign() >= Ld->getMemoryVT().getStoreSize(); 1412}]>; 1413 1414// setcc convenience fragments. 1415def setoeq : PatFrag<(ops node:$lhs, node:$rhs), 1416 (setcc node:$lhs, node:$rhs, SETOEQ)>; 1417def setogt : PatFrag<(ops node:$lhs, node:$rhs), 1418 (setcc node:$lhs, node:$rhs, SETOGT)>; 1419def setoge : PatFrag<(ops node:$lhs, node:$rhs), 1420 (setcc node:$lhs, node:$rhs, SETOGE)>; 1421def setolt : PatFrag<(ops node:$lhs, node:$rhs), 1422 (setcc node:$lhs, node:$rhs, SETOLT)>; 1423def setole : PatFrag<(ops node:$lhs, node:$rhs), 1424 (setcc node:$lhs, node:$rhs, SETOLE)>; 1425def setone : PatFrag<(ops node:$lhs, node:$rhs), 1426 (setcc node:$lhs, node:$rhs, SETONE)>; 1427def seto : PatFrag<(ops node:$lhs, node:$rhs), 1428 (setcc node:$lhs, node:$rhs, SETO)>; 1429def setuo : PatFrag<(ops node:$lhs, node:$rhs), 1430 (setcc node:$lhs, node:$rhs, SETUO)>; 1431def setueq : PatFrag<(ops node:$lhs, node:$rhs), 1432 (setcc node:$lhs, node:$rhs, SETUEQ)>; 1433def setugt : PatFrag<(ops node:$lhs, node:$rhs), 1434 (setcc node:$lhs, node:$rhs, SETUGT)>; 1435def setuge : PatFrag<(ops node:$lhs, node:$rhs), 1436 (setcc node:$lhs, node:$rhs, SETUGE)>; 1437def setult : PatFrag<(ops node:$lhs, node:$rhs), 1438 (setcc node:$lhs, node:$rhs, SETULT)>; 1439def setule : PatFrag<(ops node:$lhs, node:$rhs), 1440 (setcc node:$lhs, node:$rhs, SETULE)>; 1441def setune : PatFrag<(ops node:$lhs, node:$rhs), 1442 (setcc node:$lhs, node:$rhs, SETUNE)>; 1443def seteq : PatFrag<(ops node:$lhs, node:$rhs), 1444 (setcc node:$lhs, node:$rhs, SETEQ)>; 1445def setgt : PatFrag<(ops node:$lhs, node:$rhs), 1446 (setcc node:$lhs, node:$rhs, SETGT)>; 1447def setge : PatFrag<(ops node:$lhs, node:$rhs), 1448 (setcc node:$lhs, node:$rhs, SETGE)>; 1449def setlt : PatFrag<(ops node:$lhs, node:$rhs), 1450 (setcc node:$lhs, node:$rhs, SETLT)>; 1451def setle : PatFrag<(ops node:$lhs, node:$rhs), 1452 (setcc node:$lhs, node:$rhs, SETLE)>; 1453def setne : PatFrag<(ops node:$lhs, node:$rhs), 1454 (setcc node:$lhs, node:$rhs, SETNE)>; 1455 1456// We don't have strict FP extended loads as single DAG nodes, but we can 1457// still provide convenience fragments to match those operations. 1458def strict_extloadf32 : PatFrag<(ops node:$ptr), 1459 (strict_fpextend (f32 (load node:$ptr)))>; 1460def strict_extloadf64 : PatFrag<(ops node:$ptr), 1461 (strict_fpextend (f64 (load node:$ptr)))>; 1462 1463// Convenience fragments to match both strict and non-strict fp operations 1464def any_fadd : PatFrags<(ops node:$lhs, node:$rhs), 1465 [(strict_fadd node:$lhs, node:$rhs), 1466 (fadd node:$lhs, node:$rhs)]>; 1467def any_fsub : PatFrags<(ops node:$lhs, node:$rhs), 1468 [(strict_fsub node:$lhs, node:$rhs), 1469 (fsub node:$lhs, node:$rhs)]>; 1470def any_fmul : PatFrags<(ops node:$lhs, node:$rhs), 1471 [(strict_fmul node:$lhs, node:$rhs), 1472 (fmul node:$lhs, node:$rhs)]>; 1473def any_fdiv : PatFrags<(ops node:$lhs, node:$rhs), 1474 [(strict_fdiv node:$lhs, node:$rhs), 1475 (fdiv node:$lhs, node:$rhs)]>; 1476def any_frem : PatFrags<(ops node:$lhs, node:$rhs), 1477 [(strict_frem node:$lhs, node:$rhs), 1478 (frem node:$lhs, node:$rhs)]>; 1479def any_fma : PatFrags<(ops node:$src1, node:$src2, node:$src3), 1480 [(strict_fma node:$src1, node:$src2, node:$src3), 1481 (fma node:$src1, node:$src2, node:$src3)]>; 1482def any_fsqrt : PatFrags<(ops node:$src), 1483 [(strict_fsqrt node:$src), 1484 (fsqrt node:$src)]>; 1485def any_fsin : PatFrags<(ops node:$src), 1486 [(strict_fsin node:$src), 1487 (fsin node:$src)]>; 1488def any_fcos : PatFrags<(ops node:$src), 1489 [(strict_fcos node:$src), 1490 (fcos node:$src)]>; 1491def any_fexp2 : PatFrags<(ops node:$src), 1492 [(strict_fexp2 node:$src), 1493 (fexp2 node:$src)]>; 1494def any_fpow : PatFrags<(ops node:$lhs, node:$rhs), 1495 [(strict_fpow node:$lhs, node:$rhs), 1496 (fpow node:$lhs, node:$rhs)]>; 1497def any_fldexp : PatFrags<(ops node:$lhs, node:$rhs), 1498 [(strict_fldexp node:$lhs, node:$rhs), 1499 (fldexp node:$lhs, node:$rhs)]>; 1500def any_flog2 : PatFrags<(ops node:$src), 1501 [(strict_flog2 node:$src), 1502 (flog2 node:$src)]>; 1503def any_frint : PatFrags<(ops node:$src), 1504 [(strict_frint node:$src), 1505 (frint node:$src)]>; 1506def any_lrint : PatFrags<(ops node:$src), 1507 [(strict_lrint node:$src), 1508 (lrint node:$src)]>; 1509def any_llrint : PatFrags<(ops node:$src), 1510 [(strict_llrint node:$src), 1511 (llrint node:$src)]>; 1512def any_fnearbyint : PatFrags<(ops node:$src), 1513 [(strict_fnearbyint node:$src), 1514 (fnearbyint node:$src)]>; 1515def any_fceil : PatFrags<(ops node:$src), 1516 [(strict_fceil node:$src), 1517 (fceil node:$src)]>; 1518def any_ffloor : PatFrags<(ops node:$src), 1519 [(strict_ffloor node:$src), 1520 (ffloor node:$src)]>; 1521def any_lround : PatFrags<(ops node:$src), 1522 [(strict_lround node:$src), 1523 (lround node:$src)]>; 1524def any_llround : PatFrags<(ops node:$src), 1525 [(strict_llround node:$src), 1526 (llround node:$src)]>; 1527def any_fround : PatFrags<(ops node:$src), 1528 [(strict_fround node:$src), 1529 (fround node:$src)]>; 1530def any_froundeven : PatFrags<(ops node:$src), 1531 [(strict_froundeven node:$src), 1532 (froundeven node:$src)]>; 1533def any_ftrunc : PatFrags<(ops node:$src), 1534 [(strict_ftrunc node:$src), 1535 (ftrunc node:$src)]>; 1536def any_fmaxnum : PatFrags<(ops node:$lhs, node:$rhs), 1537 [(strict_fmaxnum node:$lhs, node:$rhs), 1538 (fmaxnum node:$lhs, node:$rhs)]>; 1539def any_fminnum : PatFrags<(ops node:$lhs, node:$rhs), 1540 [(strict_fminnum node:$lhs, node:$rhs), 1541 (fminnum node:$lhs, node:$rhs)]>; 1542def any_fmaximum : PatFrags<(ops node:$lhs, node:$rhs), 1543 [(strict_fmaximum node:$lhs, node:$rhs), 1544 (fmaximum node:$lhs, node:$rhs)]>; 1545def any_fminimum : PatFrags<(ops node:$lhs, node:$rhs), 1546 [(strict_fminimum node:$lhs, node:$rhs), 1547 (fminimum node:$lhs, node:$rhs)]>; 1548def any_fpround : PatFrags<(ops node:$src), 1549 [(strict_fpround node:$src), 1550 (fpround node:$src)]>; 1551def any_fpextend : PatFrags<(ops node:$src), 1552 [(strict_fpextend node:$src), 1553 (fpextend node:$src)]>; 1554def any_extloadf32 : PatFrags<(ops node:$ptr), 1555 [(strict_extloadf32 node:$ptr), 1556 (extloadf32 node:$ptr)]>; 1557def any_extloadf64 : PatFrags<(ops node:$ptr), 1558 [(strict_extloadf64 node:$ptr), 1559 (extloadf64 node:$ptr)]>; 1560def any_fp_to_sint : PatFrags<(ops node:$src), 1561 [(strict_fp_to_sint node:$src), 1562 (fp_to_sint node:$src)]>; 1563def any_fp_to_uint : PatFrags<(ops node:$src), 1564 [(strict_fp_to_uint node:$src), 1565 (fp_to_uint node:$src)]>; 1566def any_sint_to_fp : PatFrags<(ops node:$src), 1567 [(strict_sint_to_fp node:$src), 1568 (sint_to_fp node:$src)]>; 1569def any_uint_to_fp : PatFrags<(ops node:$src), 1570 [(strict_uint_to_fp node:$src), 1571 (uint_to_fp node:$src)]>; 1572def any_fsetcc : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), 1573 [(strict_fsetcc node:$lhs, node:$rhs, node:$pred), 1574 (setcc node:$lhs, node:$rhs, node:$pred)]>; 1575def any_fsetccs : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), 1576 [(strict_fsetccs node:$lhs, node:$rhs, node:$pred), 1577 (setcc node:$lhs, node:$rhs, node:$pred)]>; 1578 1579multiclass binary_atomic_op_ord { 1580 def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$val), 1581 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1582 let IsAtomic = true; 1583 let IsAtomicOrderingMonotonic = true; 1584 } 1585 def NAME#_acquire : PatFrag<(ops node:$ptr, node:$val), 1586 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1587 let IsAtomic = true; 1588 let IsAtomicOrderingAcquire = true; 1589 } 1590 def NAME#_release : PatFrag<(ops node:$ptr, node:$val), 1591 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1592 let IsAtomic = true; 1593 let IsAtomicOrderingRelease = true; 1594 } 1595 def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$val), 1596 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1597 let IsAtomic = true; 1598 let IsAtomicOrderingAcquireRelease = true; 1599 } 1600 def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$val), 1601 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1602 let IsAtomic = true; 1603 let IsAtomicOrderingSequentiallyConsistent = true; 1604 } 1605} 1606 1607multiclass ternary_atomic_op_ord { 1608 def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1609 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1610 let IsAtomic = true; 1611 let IsAtomicOrderingMonotonic = true; 1612 } 1613 def NAME#_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1614 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1615 let IsAtomic = true; 1616 let IsAtomicOrderingAcquire = true; 1617 } 1618 def NAME#_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1619 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1620 let IsAtomic = true; 1621 let IsAtomicOrderingRelease = true; 1622 } 1623 def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1624 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1625 let IsAtomic = true; 1626 let IsAtomicOrderingAcquireRelease = true; 1627 } 1628 def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1629 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1630 let IsAtomic = true; 1631 let IsAtomicOrderingSequentiallyConsistent = true; 1632 } 1633} 1634 1635multiclass binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { 1636 def _8 : PatFrag<(ops node:$ptr, node:$val), 1637 (atomic_op node:$ptr, node:$val)> { 1638 let IsAtomic = true; 1639 let MemoryVT = !if(IsInt, i8, ?); 1640 } 1641 def _16 : PatFrag<(ops node:$ptr, node:$val), 1642 (atomic_op node:$ptr, node:$val)> { 1643 let IsAtomic = true; 1644 let MemoryVT = !if(IsInt, i16, f16); 1645 } 1646 def _32 : PatFrag<(ops node:$ptr, node:$val), 1647 (atomic_op node:$ptr, node:$val)> { 1648 let IsAtomic = true; 1649 let MemoryVT = !if(IsInt, i32, f32); 1650 } 1651 def _64 : PatFrag<(ops node:$ptr, node:$val), 1652 (atomic_op node:$ptr, node:$val)> { 1653 let IsAtomic = true; 1654 let MemoryVT = !if(IsInt, i64, f64); 1655 } 1656 1657 defm NAME#_8 : binary_atomic_op_ord; 1658 defm NAME#_16 : binary_atomic_op_ord; 1659 defm NAME#_32 : binary_atomic_op_ord; 1660 defm NAME#_64 : binary_atomic_op_ord; 1661} 1662 1663multiclass ternary_atomic_op<SDNode atomic_op> { 1664 def _8 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1665 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1666 let IsAtomic = true; 1667 let MemoryVT = i8; 1668 } 1669 def _16 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1670 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1671 let IsAtomic = true; 1672 let MemoryVT = i16; 1673 } 1674 def _32 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1675 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1676 let IsAtomic = true; 1677 let MemoryVT = i32; 1678 } 1679 def _64 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1680 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1681 let IsAtomic = true; 1682 let MemoryVT = i64; 1683 } 1684 1685 defm NAME#_8 : ternary_atomic_op_ord; 1686 defm NAME#_16 : ternary_atomic_op_ord; 1687 defm NAME#_32 : ternary_atomic_op_ord; 1688 defm NAME#_64 : ternary_atomic_op_ord; 1689} 1690 1691defm atomic_load_add : binary_atomic_op<atomic_load_add>; 1692defm atomic_swap : binary_atomic_op<atomic_swap>; 1693defm atomic_load_sub : binary_atomic_op<atomic_load_sub>; 1694defm atomic_load_and : binary_atomic_op<atomic_load_and>; 1695defm atomic_load_clr : binary_atomic_op<atomic_load_clr>; 1696defm atomic_load_or : binary_atomic_op<atomic_load_or>; 1697defm atomic_load_xor : binary_atomic_op<atomic_load_xor>; 1698defm atomic_load_nand : binary_atomic_op<atomic_load_nand>; 1699defm atomic_load_min : binary_atomic_op<atomic_load_min>; 1700defm atomic_load_max : binary_atomic_op<atomic_load_max>; 1701defm atomic_load_umin : binary_atomic_op<atomic_load_umin>; 1702defm atomic_load_umax : binary_atomic_op<atomic_load_umax>; 1703defm atomic_cmp_swap : ternary_atomic_op<atomic_cmp_swap>; 1704 1705/// Atomic load which zeroes the excess high bits. 1706def atomic_load_zext : 1707 PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { 1708 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1709 let IsZeroExtLoad = true; 1710} 1711 1712/// Atomic load which sign extends the excess high bits. 1713def atomic_load_sext : 1714 PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { 1715 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1716 let IsSignExtLoad = true; 1717} 1718 1719def atomic_load_8 : 1720 PatFrag<(ops node:$ptr), 1721 (atomic_load node:$ptr)> { 1722 let IsAtomic = true; 1723 let MemoryVT = i8; 1724} 1725 1726def atomic_load_16 : 1727 PatFrag<(ops node:$ptr), 1728 (atomic_load node:$ptr)> { 1729 let IsAtomic = true; 1730 let MemoryVT = i16; 1731} 1732 1733def atomic_load_32 : 1734 PatFrag<(ops node:$ptr), 1735 (atomic_load node:$ptr)> { 1736 let IsAtomic = true; 1737 let MemoryVT = i32; 1738} 1739def atomic_load_64 : 1740 PatFrag<(ops node:$ptr), 1741 (atomic_load node:$ptr)> { 1742 let IsAtomic = true; 1743 let MemoryVT = i64; 1744} 1745 1746def atomic_load_zext_8 : 1747 PatFrag<(ops node:$ptr), (atomic_load_zext node:$ptr)> { 1748 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1749 let MemoryVT = i8; 1750} 1751 1752def atomic_load_zext_16 : 1753 PatFrag<(ops node:$ptr), (atomic_load_zext node:$ptr)> { 1754 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1755 let MemoryVT = i16; 1756} 1757 1758def atomic_load_sext_8 : 1759 PatFrag<(ops node:$ptr), (atomic_load_sext node:$ptr)> { 1760 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1761 let MemoryVT = i8; 1762} 1763 1764def atomic_load_sext_16 : 1765 PatFrag<(ops node:$ptr), (atomic_load_sext node:$ptr)> { 1766 let IsAtomic = true; // FIXME: Should be IsLoad and/or IsAtomic? 1767 let MemoryVT = i16; 1768} 1769 1770// Atomic load which zeroes or anyextends the high bits. 1771def atomic_load_az_8 : PatFrags<(ops node:$op), 1772 [(atomic_load_8 node:$op), 1773 (atomic_load_zext_8 node:$op)]>; 1774 1775// Atomic load which zeroes or anyextends the high bits. 1776def atomic_load_az_16 : PatFrags<(ops node:$op), 1777 [(atomic_load_16 node:$op), 1778 (atomic_load_zext_16 node:$op)]>; 1779 1780def nonext_masked_gather : 1781 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1782 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1783 return cast<MaskedGatherSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; 1784}]>; 1785 1786// Any extending masked gather fragments. 1787def ext_masked_gather_i8 : 1788 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1789 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1790 auto MGN = cast<MaskedGatherSDNode>(N); 1791 return MGN->getExtensionType() == ISD::EXTLOAD && 1792 MGN->getMemoryVT().getScalarType() == MVT::i8; 1793}]>; 1794def ext_masked_gather_i16 : 1795 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1796 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1797 auto MGN = cast<MaskedGatherSDNode>(N); 1798 return MGN->getExtensionType() == ISD::EXTLOAD && 1799 MGN->getMemoryVT().getScalarType() == MVT::i16; 1800}]>; 1801def ext_masked_gather_i32 : 1802 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1803 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1804 auto MGN = cast<MaskedGatherSDNode>(N); 1805 return MGN->getExtensionType() == ISD::EXTLOAD && 1806 MGN->getMemoryVT().getScalarType() == MVT::i32; 1807}]>; 1808 1809// Sign extending masked gather fragments. 1810def sext_masked_gather_i8 : 1811 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1812 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1813 auto MGN = cast<MaskedGatherSDNode>(N); 1814 return MGN->getExtensionType() == ISD::SEXTLOAD && 1815 MGN->getMemoryVT().getScalarType() == MVT::i8; 1816}]>; 1817def sext_masked_gather_i16 : 1818 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1819 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1820 auto MGN = cast<MaskedGatherSDNode>(N); 1821 return MGN->getExtensionType() == ISD::SEXTLOAD && 1822 MGN->getMemoryVT().getScalarType() == MVT::i16; 1823}]>; 1824def sext_masked_gather_i32 : 1825 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1826 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1827 auto MGN = cast<MaskedGatherSDNode>(N); 1828 return MGN->getExtensionType() == ISD::SEXTLOAD && 1829 MGN->getMemoryVT().getScalarType() == MVT::i32; 1830}]>; 1831 1832// Zero extending masked gather fragments. 1833def zext_masked_gather_i8 : 1834 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1835 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1836 auto MGN = cast<MaskedGatherSDNode>(N); 1837 return MGN->getExtensionType() == ISD::ZEXTLOAD && 1838 MGN->getMemoryVT().getScalarType() == MVT::i8; 1839}]>; 1840def zext_masked_gather_i16 : 1841 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1842 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1843 auto MGN = cast<MaskedGatherSDNode>(N); 1844 return MGN->getExtensionType() == ISD::ZEXTLOAD && 1845 MGN->getMemoryVT().getScalarType() == MVT::i16; 1846}]>; 1847def zext_masked_gather_i32 : 1848 PatFrag<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1849 (masked_gather node:$def, node:$pred, node:$ptr, node:$idx), [{ 1850 auto MGN = cast<MaskedGatherSDNode>(N); 1851 return MGN->getExtensionType() == ISD::ZEXTLOAD && 1852 MGN->getMemoryVT().getScalarType() == MVT::i32; 1853}]>; 1854 1855// Any/Zero extending masked gather fragments. 1856def azext_masked_gather_i8 : 1857 PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1858 [(ext_masked_gather_i8 node:$def, node:$pred, node:$ptr, node:$idx), 1859 (zext_masked_gather_i8 node:$def, node:$pred, node:$ptr, node:$idx)]>; 1860def azext_masked_gather_i16 : 1861 PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1862 [(ext_masked_gather_i16 node:$def, node:$pred, node:$ptr, node:$idx), 1863 (zext_masked_gather_i16 node:$def, node:$pred, node:$ptr, node:$idx)]>; 1864def azext_masked_gather_i32 : 1865 PatFrags<(ops node:$def, node:$pred, node:$ptr, node:$idx), 1866 [(ext_masked_gather_i32 node:$def, node:$pred, node:$ptr, node:$idx), 1867 (zext_masked_gather_i32 node:$def, node:$pred, node:$ptr, node:$idx)]>; 1868 1869def nontrunc_masked_scatter : 1870 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 1871 (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ 1872 return !cast<MaskedScatterSDNode>(N)->isTruncatingStore(); 1873}]>; 1874 1875// Truncating masked scatter fragments. 1876def trunc_masked_scatter_i8 : 1877 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 1878 (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ 1879 auto MSN = cast<MaskedScatterSDNode>(N); 1880 return MSN->isTruncatingStore() && 1881 MSN->getMemoryVT().getScalarType() == MVT::i8; 1882}]>; 1883def trunc_masked_scatter_i16 : 1884 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 1885 (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ 1886 auto MSN = cast<MaskedScatterSDNode>(N); 1887 return MSN->isTruncatingStore() && 1888 MSN->getMemoryVT().getScalarType() == MVT::i16; 1889}]>; 1890def trunc_masked_scatter_i32 : 1891 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 1892 (masked_scatter node:$val, node:$pred, node:$ptr, node:$idx), [{ 1893 auto MSN = cast<MaskedScatterSDNode>(N); 1894 return MSN->isTruncatingStore() && 1895 MSN->getMemoryVT().getScalarType() == MVT::i32; 1896}]>; 1897 1898 1899def atomic_store_8 : 1900 PatFrag<(ops node:$val, node:$ptr), 1901 (atomic_store node:$val, node:$ptr)> { 1902 let IsAtomic = true; 1903 let MemoryVT = i8; 1904} 1905 1906def atomic_store_16 : 1907 PatFrag<(ops node:$val, node:$ptr), 1908 (atomic_store node:$val, node:$ptr)> { 1909 let IsAtomic = true; 1910 let MemoryVT = i16; 1911} 1912 1913def atomic_store_32 : 1914 PatFrag<(ops node:$val, node:$ptr), 1915 (atomic_store node:$val, node:$ptr)> { 1916 let IsAtomic = true; 1917 let MemoryVT = i32; 1918} 1919 1920def atomic_store_64 : 1921 PatFrag<(ops node:$val, node:$ptr), 1922 (atomic_store node:$val, node:$ptr)> { 1923 let IsAtomic = true; 1924 let MemoryVT = i64; 1925} 1926 1927//===----------------------------------------------------------------------===// 1928// Selection DAG Pattern Support. 1929// 1930// Patterns are what are actually matched against by the target-flavored 1931// instruction selection DAG. Instructions defined by the target implicitly 1932// define patterns in most cases, but patterns can also be explicitly added when 1933// an operation is defined by a sequence of instructions (e.g. loading a large 1934// immediate value on RISC targets that do not support immediates as large as 1935// their GPRs). 1936// 1937 1938class Pattern<dag patternToMatch, list<dag> resultInstrs> { 1939 dag PatternToMatch = patternToMatch; 1940 list<dag> ResultInstrs = resultInstrs; 1941 list<Predicate> Predicates = []; // See class Instruction in Target.td. 1942 int AddedComplexity = 0; // See class Instruction in Target.td. 1943} 1944 1945// Pat - A simple (but common) form of a pattern, which produces a simple result 1946// not needing a full list. 1947class Pat<dag pattern, dag result> : Pattern<pattern, [result]>; 1948 1949//===----------------------------------------------------------------------===// 1950// Complex pattern definitions. 1951// 1952 1953// Complex patterns, e.g. X86 addressing mode, requires pattern matching code 1954// in C++. Ty is the type of return value; NumOperands is the number of operands 1955// returned by the select function; SelectFunc is the name of the function used 1956// to pattern match the max. pattern; RootNodes are the list of possible root nodes 1957// of the sub-dags to match. 1958// e.g. X86 addressing mode - def addr : ComplexPattern<iPTR, 4, "SelectAddr", [add]>; 1959// 1960class ComplexPattern<ValueType ty, int numops, string fn, 1961 list<SDNode> roots = [], list<SDNodeProperty> props = [], 1962 int complexity = -1> { 1963 ValueType Ty = ty; 1964 int NumOperands = numops; 1965 string SelectFunc = fn; 1966 list<SDNode> RootNodes = roots; 1967 list<SDNodeProperty> Properties = props; 1968 int Complexity = complexity; 1969} 1970