1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <iterator>
36 #include <memory>
37 #include <string>
38 #include <type_traits>
39 #include <utility>
40
41 namespace llvm {
42
43 class Module;
44 class ModuleSlotTracker;
45 class raw_ostream;
46 class DPValue;
47 template <typename T> class StringMapEntry;
48 template <typename ValueTy> class StringMapEntryStorage;
49 class Type;
50
51 enum LLVMConstants : uint32_t {
52 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54
55 /// Magic number in the value profile metadata showing a target has been
56 /// promoted for the instruction and shouldn't be promoted again.
57 const uint64_t NOMORE_ICP_MAGICNUM = -1;
58
59 /// Root of the metadata hierarchy.
60 ///
61 /// This is a root class for typeless data in the IR.
62 class Metadata {
63 friend class ReplaceableMetadataImpl;
64
65 /// RTTI.
66 const unsigned char SubclassID;
67
68 protected:
69 /// Active type of storage.
70 enum StorageType { Uniqued, Distinct, Temporary };
71
72 /// Storage flag for non-uniqued, otherwise unowned, metadata.
73 unsigned char Storage : 7;
74
75 unsigned char SubclassData1 : 1;
76 unsigned short SubclassData16 = 0;
77 unsigned SubclassData32 = 0;
78
79 public:
80 enum MetadataKind {
81 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
82 #include "llvm/IR/Metadata.def"
83 };
84
85 protected:
Metadata(unsigned ID,StorageType Storage)86 Metadata(unsigned ID, StorageType Storage)
87 : SubclassID(ID), Storage(Storage), SubclassData1(false) {
88 static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
89 }
90
91 ~Metadata() = default;
92
93 /// Default handling of a changed operand, which asserts.
94 ///
95 /// If subclasses pass themselves in as owners to a tracking node reference,
96 /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)97 void handleChangedOperand(void *, Metadata *) {
98 llvm_unreachable("Unimplemented in Metadata subclass");
99 }
100
101 public:
getMetadataID()102 unsigned getMetadataID() const { return SubclassID; }
103
104 /// User-friendly dump.
105 ///
106 /// If \c M is provided, metadata nodes will be numbered canonically;
107 /// otherwise, pointer addresses are substituted.
108 ///
109 /// Note: this uses an explicit overload instead of default arguments so that
110 /// the nullptr version is easy to call from a debugger.
111 ///
112 /// @{
113 void dump() const;
114 void dump(const Module *M) const;
115 /// @}
116
117 /// Print.
118 ///
119 /// Prints definition of \c this.
120 ///
121 /// If \c M is provided, metadata nodes will be numbered canonically;
122 /// otherwise, pointer addresses are substituted.
123 /// @{
124 void print(raw_ostream &OS, const Module *M = nullptr,
125 bool IsForDebug = false) const;
126 void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
127 bool IsForDebug = false) const;
128 /// @}
129
130 /// Print as operand.
131 ///
132 /// Prints reference of \c this.
133 ///
134 /// If \c M is provided, metadata nodes will be numbered canonically;
135 /// otherwise, pointer addresses are substituted.
136 /// @{
137 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
138 void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
139 const Module *M = nullptr) const;
140 /// @}
141 };
142
143 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)144 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
145
146 // Specialized opaque metadata conversions.
147 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
148 return reinterpret_cast<Metadata**>(MDs);
149 }
150
151 #define HANDLE_METADATA(CLASS) class CLASS;
152 #include "llvm/IR/Metadata.def"
153
154 // Provide specializations of isa so that we don't need definitions of
155 // subclasses to see if the metadata is a subclass.
156 #define HANDLE_METADATA_LEAF(CLASS) \
157 template <> struct isa_impl<CLASS, Metadata> { \
158 static inline bool doit(const Metadata &MD) { \
159 return MD.getMetadataID() == Metadata::CLASS##Kind; \
160 } \
161 };
162 #include "llvm/IR/Metadata.def"
163
164 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
165 MD.print(OS);
166 return OS;
167 }
168
169 /// Metadata wrapper in the Value hierarchy.
170 ///
171 /// A member of the \a Value hierarchy to represent a reference to metadata.
172 /// This allows, e.g., intrinsics to have metadata as operands.
173 ///
174 /// Notably, this is the only thing in either hierarchy that is allowed to
175 /// reference \a LocalAsMetadata.
176 class MetadataAsValue : public Value {
177 friend class ReplaceableMetadataImpl;
178 friend class LLVMContextImpl;
179
180 Metadata *MD;
181
182 MetadataAsValue(Type *Ty, Metadata *MD);
183
184 /// Drop use of metadata (during teardown).
dropUse()185 void dropUse() { MD = nullptr; }
186
187 public:
188 ~MetadataAsValue();
189
190 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
191 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
192
getMetadata()193 Metadata *getMetadata() const { return MD; }
194
classof(const Value * V)195 static bool classof(const Value *V) {
196 return V->getValueID() == MetadataAsValueVal;
197 }
198
199 private:
200 void handleChangedMetadata(Metadata *MD);
201 void track();
202 void untrack();
203 };
204
205 /// Base class for tracking ValueAsMetadata/DIArgLists with user lookups and
206 /// Owner callbacks outside of ValueAsMetadata.
207 ///
208 /// Currently only inherited by DPValue; if other classes need to use it, then
209 /// a SubclassID will need to be added (either as a new field or by making
210 /// DebugValue into a PointerIntUnion) to discriminate between the subclasses in
211 /// lookup and callback handling.
212 class DebugValueUser {
213 protected:
214 Metadata *DebugValue;
215
216 public:
217 DPValue *getUser();
218 const DPValue *getUser() const;
219 void handleChangedValue(Metadata *NewDebugValue);
220 DebugValueUser() = default;
DebugValueUser(Metadata * DebugValue)221 explicit DebugValueUser(Metadata *DebugValue) : DebugValue(DebugValue) {
222 trackDebugValue();
223 }
224
DebugValueUser(DebugValueUser && X)225 DebugValueUser(DebugValueUser &&X) : DebugValue(X.DebugValue) {
226 retrackDebugValue(X);
227 }
DebugValueUser(const DebugValueUser & X)228 DebugValueUser(const DebugValueUser &X) : DebugValue(X.DebugValue) {
229 trackDebugValue();
230 }
231
232 DebugValueUser &operator=(DebugValueUser &&X) {
233 if (&X == this)
234 return *this;
235
236 untrackDebugValue();
237 DebugValue = X.DebugValue;
238 retrackDebugValue(X);
239 return *this;
240 }
241
242 DebugValueUser &operator=(const DebugValueUser &X) {
243 if (&X == this)
244 return *this;
245
246 untrackDebugValue();
247 DebugValue = X.DebugValue;
248 trackDebugValue();
249 return *this;
250 }
251
~DebugValueUser()252 ~DebugValueUser() { untrackDebugValue(); }
253
resetDebugValue()254 void resetDebugValue() {
255 untrackDebugValue();
256 DebugValue = nullptr;
257 }
resetDebugValue(Metadata * DebugValue)258 void resetDebugValue(Metadata *DebugValue) {
259 untrackDebugValue();
260 this->DebugValue = DebugValue;
261 trackDebugValue();
262 }
263
264 bool operator==(const DebugValueUser &X) const {
265 return DebugValue == X.DebugValue;
266 }
267 bool operator!=(const DebugValueUser &X) const {
268 return DebugValue != X.DebugValue;
269 }
270
271 private:
272 void trackDebugValue();
273 void untrackDebugValue();
274 void retrackDebugValue(DebugValueUser &X);
275 };
276
277 /// API for tracking metadata references through RAUW and deletion.
278 ///
279 /// Shared API for updating \a Metadata pointers in subclasses that support
280 /// RAUW.
281 ///
282 /// This API is not meant to be used directly. See \a TrackingMDRef for a
283 /// user-friendly tracking reference.
284 class MetadataTracking {
285 public:
286 /// Track the reference to metadata.
287 ///
288 /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
289 /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
290 /// deleted, \c MD will be set to \c nullptr.
291 ///
292 /// If tracking isn't supported, \c *MD will not change.
293 ///
294 /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)295 static bool track(Metadata *&MD) {
296 return track(&MD, *MD, static_cast<Metadata *>(nullptr));
297 }
298
299 /// Track the reference to metadata for \a Metadata.
300 ///
301 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
302 /// tell it that its operand changed. This could trigger \c Owner being
303 /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)304 static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
305 return track(Ref, MD, &Owner);
306 }
307
308 /// Track the reference to metadata for \a MetadataAsValue.
309 ///
310 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
311 /// tell it that its operand changed. This could trigger \c Owner being
312 /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)313 static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
314 return track(Ref, MD, &Owner);
315 }
316
317 /// Track the reference to metadata for \a DebugValueUser.
318 ///
319 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
320 /// tell it that its operand changed. This could trigger \c Owner being
321 /// re-uniqued.
track(void * Ref,Metadata & MD,DebugValueUser & Owner)322 static bool track(void *Ref, Metadata &MD, DebugValueUser &Owner) {
323 return track(Ref, MD, &Owner);
324 }
325
326 /// Stop tracking a reference to metadata.
327 ///
328 /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)329 static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
330 static void untrack(void *Ref, Metadata &MD);
331
332 /// Move tracking from one reference to another.
333 ///
334 /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
335 /// except that ownership callbacks are maintained.
336 ///
337 /// Note: it is an error if \c *MD does not equal \c New.
338 ///
339 /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)340 static bool retrack(Metadata *&MD, Metadata *&New) {
341 return retrack(&MD, *MD, &New);
342 }
343 static bool retrack(void *Ref, Metadata &MD, void *New);
344
345 /// Check whether metadata is replaceable.
346 static bool isReplaceable(const Metadata &MD);
347
348 using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *, DebugValueUser *>;
349
350 private:
351 /// Track a reference to metadata for an owner.
352 ///
353 /// Generalized version of tracking.
354 static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
355 };
356
357 /// Shared implementation of use-lists for replaceable metadata.
358 ///
359 /// Most metadata cannot be RAUW'ed. This is a shared implementation of
360 /// use-lists and associated API for the three that support it (
361 /// \a ValueAsMetadata, \a TempMDNode, and \a DIArgList).
362 class ReplaceableMetadataImpl {
363 friend class MetadataTracking;
364
365 public:
366 using OwnerTy = MetadataTracking::OwnerTy;
367
368 private:
369 LLVMContext &Context;
370 uint64_t NextIndex = 0;
371 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
372
373 public:
ReplaceableMetadataImpl(LLVMContext & Context)374 ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
375
~ReplaceableMetadataImpl()376 ~ReplaceableMetadataImpl() {
377 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
378 }
379
getContext()380 LLVMContext &getContext() const { return Context; }
381
382 /// Replace all uses of this with MD.
383 ///
384 /// Replace all uses of this with \c MD, which is allowed to be null.
385 void replaceAllUsesWith(Metadata *MD);
386 /// Replace all uses of the constant with Undef in debug info metadata
387 static void SalvageDebugInfo(const Constant &C);
388 /// Returns the list of all DIArgList users of this.
389 SmallVector<Metadata *> getAllArgListUsers();
390 /// Returns the list of all DPValue users of this.
391 SmallVector<DPValue *> getAllDPValueUsers();
392
393 /// Resolve all uses of this.
394 ///
395 /// Resolve all uses of this, turning off RAUW permanently. If \c
396 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
397 /// is resolved.
398 void resolveAllUses(bool ResolveUsers = true);
399
400 private:
401 void addRef(void *Ref, OwnerTy Owner);
402 void dropRef(void *Ref);
403 void moveRef(void *Ref, void *New, const Metadata &MD);
404
405 /// Lazily construct RAUW support on MD.
406 ///
407 /// If this is an unresolved MDNode, RAUW support will be created on-demand.
408 /// ValueAsMetadata always has RAUW support.
409 static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
410
411 /// Get RAUW support on MD, if it exists.
412 static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
413
414 /// Check whether this node will support RAUW.
415 ///
416 /// Returns \c true unless getOrCreate() would return null.
417 static bool isReplaceable(const Metadata &MD);
418 };
419
420 /// Value wrapper in the Metadata hierarchy.
421 ///
422 /// This is a custom value handle that allows other metadata to refer to
423 /// classes in the Value hierarchy.
424 ///
425 /// Because of full uniquing support, each value is only wrapped by a single \a
426 /// ValueAsMetadata object, so the lookup maps are far more efficient than
427 /// those using ValueHandleBase.
428 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
429 friend class ReplaceableMetadataImpl;
430 friend class LLVMContextImpl;
431
432 Value *V;
433
434 /// Drop users without RAUW (during teardown).
dropUsers()435 void dropUsers() {
436 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
437 }
438
439 protected:
ValueAsMetadata(unsigned ID,Value * V)440 ValueAsMetadata(unsigned ID, Value *V)
441 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
442 assert(V && "Expected valid value");
443 }
444
445 ~ValueAsMetadata() = default;
446
447 public:
448 static ValueAsMetadata *get(Value *V);
449
getConstant(Value * C)450 static ConstantAsMetadata *getConstant(Value *C) {
451 return cast<ConstantAsMetadata>(get(C));
452 }
453
getLocal(Value * Local)454 static LocalAsMetadata *getLocal(Value *Local) {
455 return cast<LocalAsMetadata>(get(Local));
456 }
457
458 static ValueAsMetadata *getIfExists(Value *V);
459
getConstantIfExists(Value * C)460 static ConstantAsMetadata *getConstantIfExists(Value *C) {
461 return cast_or_null<ConstantAsMetadata>(getIfExists(C));
462 }
463
getLocalIfExists(Value * Local)464 static LocalAsMetadata *getLocalIfExists(Value *Local) {
465 return cast_or_null<LocalAsMetadata>(getIfExists(Local));
466 }
467
getValue()468 Value *getValue() const { return V; }
getType()469 Type *getType() const { return V->getType(); }
getContext()470 LLVMContext &getContext() const { return V->getContext(); }
471
getAllArgListUsers()472 SmallVector<Metadata *> getAllArgListUsers() {
473 return ReplaceableMetadataImpl::getAllArgListUsers();
474 }
getAllDPValueUsers()475 SmallVector<DPValue *> getAllDPValueUsers() {
476 return ReplaceableMetadataImpl::getAllDPValueUsers();
477 }
478
479 static void handleDeletion(Value *V);
480 static void handleRAUW(Value *From, Value *To);
481
482 protected:
483 /// Handle collisions after \a Value::replaceAllUsesWith().
484 ///
485 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
486 /// \a Value gets RAUW'ed and the target already exists, this is used to
487 /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)488 void replaceAllUsesWith(Metadata *MD) {
489 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
490 }
491
492 public:
classof(const Metadata * MD)493 static bool classof(const Metadata *MD) {
494 return MD->getMetadataID() == LocalAsMetadataKind ||
495 MD->getMetadataID() == ConstantAsMetadataKind;
496 }
497 };
498
499 class ConstantAsMetadata : public ValueAsMetadata {
500 friend class ValueAsMetadata;
501
ConstantAsMetadata(Constant * C)502 ConstantAsMetadata(Constant *C)
503 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
504
505 public:
get(Constant * C)506 static ConstantAsMetadata *get(Constant *C) {
507 return ValueAsMetadata::getConstant(C);
508 }
509
getIfExists(Constant * C)510 static ConstantAsMetadata *getIfExists(Constant *C) {
511 return ValueAsMetadata::getConstantIfExists(C);
512 }
513
getValue()514 Constant *getValue() const {
515 return cast<Constant>(ValueAsMetadata::getValue());
516 }
517
classof(const Metadata * MD)518 static bool classof(const Metadata *MD) {
519 return MD->getMetadataID() == ConstantAsMetadataKind;
520 }
521 };
522
523 class LocalAsMetadata : public ValueAsMetadata {
524 friend class ValueAsMetadata;
525
LocalAsMetadata(Value * Local)526 LocalAsMetadata(Value *Local)
527 : ValueAsMetadata(LocalAsMetadataKind, Local) {
528 assert(!isa<Constant>(Local) && "Expected local value");
529 }
530
531 public:
get(Value * Local)532 static LocalAsMetadata *get(Value *Local) {
533 return ValueAsMetadata::getLocal(Local);
534 }
535
getIfExists(Value * Local)536 static LocalAsMetadata *getIfExists(Value *Local) {
537 return ValueAsMetadata::getLocalIfExists(Local);
538 }
539
classof(const Metadata * MD)540 static bool classof(const Metadata *MD) {
541 return MD->getMetadataID() == LocalAsMetadataKind;
542 }
543 };
544
545 /// Transitional API for extracting constants from Metadata.
546 ///
547 /// This namespace contains transitional functions for metadata that points to
548 /// \a Constants.
549 ///
550 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
551 /// operands could refer to any \a Value. There's was a lot of code like this:
552 ///
553 /// \code
554 /// MDNode *N = ...;
555 /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
556 /// \endcode
557 ///
558 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
559 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
560 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
561 /// cast in the \a Value hierarchy. Besides creating boiler-plate, this
562 /// requires subtle control flow changes.
563 ///
564 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
565 /// so that metadata can refer to numbers without traversing a bridge to the \a
566 /// Value hierarchy. In this final state, the code above would look like this:
567 ///
568 /// \code
569 /// MDNode *N = ...;
570 /// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
571 /// \endcode
572 ///
573 /// The API in this namespace supports the transition. \a MDInt doesn't exist
574 /// yet, and even once it does, changing each metadata schema to use it is its
575 /// own mini-project. In the meantime this API prevents us from introducing
576 /// complex and bug-prone control flow that will disappear in the end. In
577 /// particular, the above code looks like this:
578 ///
579 /// \code
580 /// MDNode *N = ...;
581 /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
582 /// \endcode
583 ///
584 /// The full set of provided functions includes:
585 ///
586 /// mdconst::hasa <=> isa
587 /// mdconst::extract <=> cast
588 /// mdconst::extract_or_null <=> cast_or_null
589 /// mdconst::dyn_extract <=> dyn_cast
590 /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
591 ///
592 /// The target of the cast must be a subclass of \a Constant.
593 namespace mdconst {
594
595 namespace detail {
596
597 template <class T> T &make();
598 template <class T, class Result> struct HasDereference {
599 using Yes = char[1];
600 using No = char[2];
601 template <size_t N> struct SFINAE {};
602
603 template <class U, class V>
604 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
605 template <class U, class V> static No &hasDereference(...);
606
607 static const bool value =
608 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
609 };
610 template <class V, class M> struct IsValidPointer {
611 static const bool value = std::is_base_of<Constant, V>::value &&
612 HasDereference<M, const Metadata &>::value;
613 };
614 template <class V, class M> struct IsValidReference {
615 static const bool value = std::is_base_of<Constant, V>::value &&
616 std::is_convertible<M, const Metadata &>::value;
617 };
618
619 } // end namespace detail
620
621 /// Check whether Metadata has a Value.
622 ///
623 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
624 /// type \c X.
625 template <class X, class Y>
626 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y && MD)627 hasa(Y &&MD) {
628 assert(MD && "Null pointer sent into hasa");
629 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
630 return isa<X>(V->getValue());
631 return false;
632 }
633 template <class X, class Y>
634 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
hasa(Y & MD)635 hasa(Y &MD) {
636 return hasa(&MD);
637 }
638
639 /// Extract a Value from Metadata.
640 ///
641 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
642 template <class X, class Y>
643 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y && MD)644 extract(Y &&MD) {
645 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
646 }
647 template <class X, class Y>
648 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
extract(Y & MD)649 extract(Y &MD) {
650 return extract(&MD);
651 }
652
653 /// Extract a Value from Metadata, allowing null.
654 ///
655 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
656 /// from \c MD, allowing \c MD to be null.
657 template <class X, class Y>
658 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y && MD)659 extract_or_null(Y &&MD) {
660 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
661 return cast<X>(V->getValue());
662 return nullptr;
663 }
664
665 /// Extract a Value from Metadata, if any.
666 ///
667 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
668 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
669 /// Value it does contain is of the wrong subclass.
670 template <class X, class Y>
671 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y && MD)672 dyn_extract(Y &&MD) {
673 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
674 return dyn_cast<X>(V->getValue());
675 return nullptr;
676 }
677
678 /// Extract a Value from Metadata, if any, allowing null.
679 ///
680 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
681 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
682 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
683 template <class X, class Y>
684 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y && MD)685 dyn_extract_or_null(Y &&MD) {
686 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
687 return dyn_cast<X>(V->getValue());
688 return nullptr;
689 }
690
691 } // end namespace mdconst
692
693 //===----------------------------------------------------------------------===//
694 /// A single uniqued string.
695 ///
696 /// These are used to efficiently contain a byte sequence for metadata.
697 /// MDString is always unnamed.
698 class MDString : public Metadata {
699 friend class StringMapEntryStorage<MDString>;
700
701 StringMapEntry<MDString> *Entry = nullptr;
702
MDString()703 MDString() : Metadata(MDStringKind, Uniqued) {}
704
705 public:
706 MDString(const MDString &) = delete;
707 MDString &operator=(MDString &&) = delete;
708 MDString &operator=(const MDString &) = delete;
709
710 static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)711 static MDString *get(LLVMContext &Context, const char *Str) {
712 return get(Context, Str ? StringRef(Str) : StringRef());
713 }
714
715 StringRef getString() const;
716
getLength()717 unsigned getLength() const { return (unsigned)getString().size(); }
718
719 using iterator = StringRef::iterator;
720
721 /// Pointer to the first byte of the string.
begin()722 iterator begin() const { return getString().begin(); }
723
724 /// Pointer to one byte past the end of the string.
end()725 iterator end() const { return getString().end(); }
726
bytes_begin()727 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()728 const unsigned char *bytes_end() const { return getString().bytes_end(); }
729
730 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)731 static bool classof(const Metadata *MD) {
732 return MD->getMetadataID() == MDStringKind;
733 }
734 };
735
736 /// A collection of metadata nodes that might be associated with a
737 /// memory access used by the alias-analysis infrastructure.
738 struct AAMDNodes {
739 explicit AAMDNodes() = default;
AAMDNodesAAMDNodes740 explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
741 : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
742
743 bool operator==(const AAMDNodes &A) const {
744 return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
745 NoAlias == A.NoAlias;
746 }
747
748 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
749
750 explicit operator bool() const {
751 return TBAA || TBAAStruct || Scope || NoAlias;
752 }
753
754 /// The tag for type-based alias analysis.
755 MDNode *TBAA = nullptr;
756
757 /// The tag for type-based alias analysis (tbaa struct).
758 MDNode *TBAAStruct = nullptr;
759
760 /// The tag for alias scope specification (used with noalias).
761 MDNode *Scope = nullptr;
762
763 /// The tag specifying the noalias scope.
764 MDNode *NoAlias = nullptr;
765
766 // Shift tbaa Metadata node to start off bytes later
767 static MDNode *shiftTBAA(MDNode *M, size_t off);
768
769 // Shift tbaa.struct Metadata node to start off bytes later
770 static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
771
772 // Extend tbaa Metadata node to apply to a series of bytes of length len.
773 // A size of -1 denotes an unknown size.
774 static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
775
776 /// Given two sets of AAMDNodes that apply to the same pointer,
777 /// give the best AAMDNodes that are compatible with both (i.e. a set of
778 /// nodes whose allowable aliasing conclusions are a subset of those
779 /// allowable by both of the inputs). However, for efficiency
780 /// reasons, do not create any new MDNodes.
intersectAAMDNodes781 AAMDNodes intersect(const AAMDNodes &Other) const {
782 AAMDNodes Result;
783 Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
784 Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
785 Result.Scope = Other.Scope == Scope ? Scope : nullptr;
786 Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
787 return Result;
788 }
789
790 /// Create a new AAMDNode that describes this AAMDNode after applying a
791 /// constant offset to the start of the pointer.
shiftAAMDNodes792 AAMDNodes shift(size_t Offset) const {
793 AAMDNodes Result;
794 Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
795 Result.TBAAStruct =
796 TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
797 Result.Scope = Scope;
798 Result.NoAlias = NoAlias;
799 return Result;
800 }
801
802 /// Create a new AAMDNode that describes this AAMDNode after extending it to
803 /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
804 /// size.
extendToAAMDNodes805 AAMDNodes extendTo(ssize_t Len) const {
806 AAMDNodes Result;
807 Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
808 // tbaa.struct contains (offset, size, type) triples. Extending the length
809 // of the tbaa.struct doesn't require changing this (though more information
810 // could be provided by adding more triples at subsequent lengths).
811 Result.TBAAStruct = TBAAStruct;
812 Result.Scope = Scope;
813 Result.NoAlias = NoAlias;
814 return Result;
815 }
816
817 /// Given two sets of AAMDNodes applying to potentially different locations,
818 /// determine the best AAMDNodes that apply to both.
819 AAMDNodes merge(const AAMDNodes &Other) const;
820
821 /// Determine the best AAMDNodes after concatenating two different locations
822 /// together. Different from `merge`, where different locations should
823 /// overlap each other, `concat` puts non-overlapping locations together.
824 AAMDNodes concat(const AAMDNodes &Other) const;
825 };
826
827 // Specialize DenseMapInfo for AAMDNodes.
828 template<>
829 struct DenseMapInfo<AAMDNodes> {
830 static inline AAMDNodes getEmptyKey() {
831 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
832 nullptr, nullptr, nullptr);
833 }
834
835 static inline AAMDNodes getTombstoneKey() {
836 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
837 nullptr, nullptr, nullptr);
838 }
839
840 static unsigned getHashValue(const AAMDNodes &Val) {
841 return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
842 DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
843 DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
844 DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
845 }
846
847 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
848 return LHS == RHS;
849 }
850 };
851
852 /// Tracking metadata reference owned by Metadata.
853 ///
854 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
855 /// of \a Metadata, which has the option of registering itself for callbacks to
856 /// re-unique itself.
857 ///
858 /// In particular, this is used by \a MDNode.
859 class MDOperand {
860 Metadata *MD = nullptr;
861
862 public:
863 MDOperand() = default;
864 MDOperand(const MDOperand &) = delete;
865 MDOperand(MDOperand &&Op) {
866 MD = Op.MD;
867 if (MD)
868 (void)MetadataTracking::retrack(Op.MD, MD);
869 Op.MD = nullptr;
870 }
871 MDOperand &operator=(const MDOperand &) = delete;
872 MDOperand &operator=(MDOperand &&Op) {
873 MD = Op.MD;
874 if (MD)
875 (void)MetadataTracking::retrack(Op.MD, MD);
876 Op.MD = nullptr;
877 return *this;
878 }
879
880 // Check if MDOperand is of type MDString and equals `Str`.
881 bool equalsStr(StringRef Str) const {
882 return isa<MDString>(this->get()) &&
883 cast<MDString>(this->get())->getString() == Str;
884 }
885
886 ~MDOperand() { untrack(); }
887
888 Metadata *get() const { return MD; }
889 operator Metadata *() const { return get(); }
890 Metadata *operator->() const { return get(); }
891 Metadata &operator*() const { return *get(); }
892
893 void reset() {
894 untrack();
895 MD = nullptr;
896 }
897 void reset(Metadata *MD, Metadata *Owner) {
898 untrack();
899 this->MD = MD;
900 track(Owner);
901 }
902
903 private:
904 void track(Metadata *Owner) {
905 if (MD) {
906 if (Owner)
907 MetadataTracking::track(this, *MD, *Owner);
908 else
909 MetadataTracking::track(MD);
910 }
911 }
912
913 void untrack() {
914 assert(static_cast<void *>(this) == &MD && "Expected same address");
915 if (MD)
916 MetadataTracking::untrack(MD);
917 }
918 };
919
920 template <> struct simplify_type<MDOperand> {
921 using SimpleType = Metadata *;
922
923 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
924 };
925
926 template <> struct simplify_type<const MDOperand> {
927 using SimpleType = Metadata *;
928
929 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
930 };
931
932 /// Pointer to the context, with optional RAUW support.
933 ///
934 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
935 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
936 class ContextAndReplaceableUses {
937 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
938
939 public:
940 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
941 ContextAndReplaceableUses(
942 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
943 : Ptr(ReplaceableUses.release()) {
944 assert(getReplaceableUses() && "Expected non-null replaceable uses");
945 }
946 ContextAndReplaceableUses() = delete;
947 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
948 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
949 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
950 ContextAndReplaceableUses &
951 operator=(const ContextAndReplaceableUses &) = delete;
952 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
953
954 operator LLVMContext &() { return getContext(); }
955
956 /// Whether this contains RAUW support.
957 bool hasReplaceableUses() const {
958 return isa<ReplaceableMetadataImpl *>(Ptr);
959 }
960
961 LLVMContext &getContext() const {
962 if (hasReplaceableUses())
963 return getReplaceableUses()->getContext();
964 return *cast<LLVMContext *>(Ptr);
965 }
966
967 ReplaceableMetadataImpl *getReplaceableUses() const {
968 if (hasReplaceableUses())
969 return cast<ReplaceableMetadataImpl *>(Ptr);
970 return nullptr;
971 }
972
973 /// Ensure that this has RAUW support, and then return it.
974 ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
975 if (!hasReplaceableUses())
976 makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
977 return getReplaceableUses();
978 }
979
980 /// Assign RAUW support to this.
981 ///
982 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
983 /// not be null).
984 void
985 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
986 assert(ReplaceableUses && "Expected non-null replaceable uses");
987 assert(&ReplaceableUses->getContext() == &getContext() &&
988 "Expected same context");
989 delete getReplaceableUses();
990 Ptr = ReplaceableUses.release();
991 }
992
993 /// Drop RAUW support.
994 ///
995 /// Cede ownership of RAUW support, returning it.
996 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
997 assert(hasReplaceableUses() && "Expected to own replaceable uses");
998 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
999 getReplaceableUses());
1000 Ptr = &ReplaceableUses->getContext();
1001 return ReplaceableUses;
1002 }
1003 };
1004
1005 struct TempMDNodeDeleter {
1006 inline void operator()(MDNode *Node) const;
1007 };
1008
1009 #define HANDLE_MDNODE_LEAF(CLASS) \
1010 using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
1011 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
1012 #include "llvm/IR/Metadata.def"
1013
1014 /// Metadata node.
1015 ///
1016 /// Metadata nodes can be uniqued, like constants, or distinct. Temporary
1017 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
1018 /// until forward references are known. The basic metadata node is an \a
1019 /// MDTuple.
1020 ///
1021 /// There is limited support for RAUW at construction time. At construction
1022 /// time, if any operand is a temporary node (or an unresolved uniqued node,
1023 /// which indicates a transitive temporary operand), the node itself will be
1024 /// unresolved. As soon as all operands become resolved, it will drop RAUW
1025 /// support permanently.
1026 ///
1027 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
1028 /// to be called on some member of the cycle once all temporary nodes have been
1029 /// replaced.
1030 ///
1031 /// MDNodes can be large or small, as well as resizable or non-resizable.
1032 /// Large MDNodes' operands are allocated in a separate storage vector,
1033 /// whereas small MDNodes' operands are co-allocated. Distinct and temporary
1034 /// MDnodes are resizable, but only MDTuples support this capability.
1035 ///
1036 /// Clients can add operands to resizable MDNodes using push_back().
1037 class MDNode : public Metadata {
1038 friend class ReplaceableMetadataImpl;
1039 friend class LLVMContextImpl;
1040
1041 /// The header that is coallocated with an MDNode along with its "small"
1042 /// operands. It is located immediately before the main body of the node.
1043 /// The operands are in turn located immediately before the header.
1044 /// For resizable MDNodes, the space for the storage vector is also allocated
1045 /// immediately before the header, overlapping with the operands.
1046 /// Explicity set alignment because bitfields by default have an
1047 /// alignment of 1 on z/OS.
1048 struct alignas(alignof(size_t)) Header {
1049 bool IsResizable : 1;
1050 bool IsLarge : 1;
1051 size_t SmallSize : 4;
1052 size_t SmallNumOps : 4;
1053 size_t : sizeof(size_t) * CHAR_BIT - 10;
1054
1055 unsigned NumUnresolved = 0;
1056 using LargeStorageVector = SmallVector<MDOperand, 0>;
1057
1058 static constexpr size_t NumOpsFitInVector =
1059 sizeof(LargeStorageVector) / sizeof(MDOperand);
1060 static_assert(
1061 NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
1062 "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
1063
1064 static constexpr size_t MaxSmallSize = 15;
1065
1066 static constexpr size_t getOpSize(unsigned NumOps) {
1067 return sizeof(MDOperand) * NumOps;
1068 }
1069 /// Returns the number of operands the node has space for based on its
1070 /// allocation characteristics.
1071 static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
1072 return IsLarge ? NumOpsFitInVector
1073 : std::max(NumOps, NumOpsFitInVector * IsResizable);
1074 }
1075 /// Returns the number of bytes allocated for operands and header.
1076 static size_t getAllocSize(StorageType Storage, size_t NumOps) {
1077 return getOpSize(
1078 getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
1079 sizeof(Header);
1080 }
1081
1082 /// Only temporary and distinct nodes are resizable.
1083 static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
1084 static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
1085
1086 size_t getAllocSize() const {
1087 return getOpSize(SmallSize) + sizeof(Header);
1088 }
1089 void *getAllocation() {
1090 return reinterpret_cast<char *>(this + 1) -
1091 alignTo(getAllocSize(), alignof(uint64_t));
1092 }
1093
1094 void *getLargePtr() const {
1095 static_assert(alignof(LargeStorageVector) <= alignof(Header),
1096 "LargeStorageVector too strongly aligned");
1097 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1098 sizeof(LargeStorageVector);
1099 }
1100
1101 void *getSmallPtr();
1102
1103 LargeStorageVector &getLarge() {
1104 assert(IsLarge);
1105 return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1106 }
1107
1108 const LargeStorageVector &getLarge() const {
1109 assert(IsLarge);
1110 return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1111 }
1112
1113 void resizeSmall(size_t NumOps);
1114 void resizeSmallToLarge(size_t NumOps);
1115 void resize(size_t NumOps);
1116
1117 explicit Header(size_t NumOps, StorageType Storage);
1118 ~Header();
1119
1120 MutableArrayRef<MDOperand> operands() {
1121 if (IsLarge)
1122 return getLarge();
1123 return MutableArrayRef(
1124 reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1125 }
1126
1127 ArrayRef<MDOperand> operands() const {
1128 if (IsLarge)
1129 return getLarge();
1130 return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1131 SmallNumOps);
1132 }
1133
1134 unsigned getNumOperands() const {
1135 if (!IsLarge)
1136 return SmallNumOps;
1137 return getLarge().size();
1138 }
1139 };
1140
1141 Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1142
1143 const Header &getHeader() const {
1144 return *(reinterpret_cast<const Header *>(this) - 1);
1145 }
1146
1147 ContextAndReplaceableUses Context;
1148
1149 protected:
1150 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1151 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1152 ~MDNode() = default;
1153
1154 void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1155 void operator delete(void *Mem);
1156
1157 /// Required by std, but never called.
1158 void operator delete(void *, unsigned) {
1159 llvm_unreachable("Constructor throws?");
1160 }
1161
1162 /// Required by std, but never called.
1163 void operator delete(void *, unsigned, bool) {
1164 llvm_unreachable("Constructor throws?");
1165 }
1166
1167 void dropAllReferences();
1168
1169 MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1170 MDOperand *mutable_end() { return getHeader().operands().end(); }
1171
1172 using mutable_op_range = iterator_range<MDOperand *>;
1173
1174 mutable_op_range mutable_operands() {
1175 return mutable_op_range(mutable_begin(), mutable_end());
1176 }
1177
1178 public:
1179 MDNode(const MDNode &) = delete;
1180 void operator=(const MDNode &) = delete;
1181 void *operator new(size_t) = delete;
1182
1183 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1184 static inline MDTuple *getIfExists(LLVMContext &Context,
1185 ArrayRef<Metadata *> MDs);
1186 static inline MDTuple *getDistinct(LLVMContext &Context,
1187 ArrayRef<Metadata *> MDs);
1188 static inline TempMDTuple getTemporary(LLVMContext &Context,
1189 ArrayRef<Metadata *> MDs);
1190
1191 /// Create a (temporary) clone of this.
1192 TempMDNode clone() const;
1193
1194 /// Deallocate a node created by getTemporary.
1195 ///
1196 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1197 /// references will be reset.
1198 static void deleteTemporary(MDNode *N);
1199
1200 LLVMContext &getContext() const { return Context.getContext(); }
1201
1202 /// Replace a specific operand.
1203 void replaceOperandWith(unsigned I, Metadata *New);
1204
1205 /// Check if node is fully resolved.
1206 ///
1207 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1208 /// this always returns \c true.
1209 ///
1210 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1211 /// support (because all operands are resolved).
1212 ///
1213 /// As forward declarations are resolved, their containers should get
1214 /// resolved automatically. However, if this (or one of its operands) is
1215 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1216 bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1217
1218 bool isUniqued() const { return Storage == Uniqued; }
1219 bool isDistinct() const { return Storage == Distinct; }
1220 bool isTemporary() const { return Storage == Temporary; }
1221
1222 bool isReplaceable() const { return isTemporary(); }
1223
1224 /// RAUW a temporary.
1225 ///
1226 /// \pre \a isTemporary() must be \c true.
1227 void replaceAllUsesWith(Metadata *MD) {
1228 assert(isReplaceable() && "Expected temporary/replaceable node");
1229 if (Context.hasReplaceableUses())
1230 Context.getReplaceableUses()->replaceAllUsesWith(MD);
1231 }
1232
1233 /// Resolve cycles.
1234 ///
1235 /// Once all forward declarations have been resolved, force cycles to be
1236 /// resolved.
1237 ///
1238 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1239 void resolveCycles();
1240
1241 /// Resolve a unique, unresolved node.
1242 void resolve();
1243
1244 /// Replace a temporary node with a permanent one.
1245 ///
1246 /// Try to create a uniqued version of \c N -- in place, if possible -- and
1247 /// return it. If \c N cannot be uniqued, return a distinct node instead.
1248 template <class T>
1249 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1250 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1251 return cast<T>(N.release()->replaceWithPermanentImpl());
1252 }
1253
1254 /// Replace a temporary node with a uniqued one.
1255 ///
1256 /// Create a uniqued version of \c N -- in place, if possible -- and return
1257 /// it. Takes ownership of the temporary node.
1258 ///
1259 /// \pre N does not self-reference.
1260 template <class T>
1261 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1262 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1263 return cast<T>(N.release()->replaceWithUniquedImpl());
1264 }
1265
1266 /// Replace a temporary node with a distinct one.
1267 ///
1268 /// Create a distinct version of \c N -- in place, if possible -- and return
1269 /// it. Takes ownership of the temporary node.
1270 template <class T>
1271 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1272 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1273 return cast<T>(N.release()->replaceWithDistinctImpl());
1274 }
1275
1276 /// Print in tree shape.
1277 ///
1278 /// Prints definition of \c this in tree shape.
1279 ///
1280 /// If \c M is provided, metadata nodes will be numbered canonically;
1281 /// otherwise, pointer addresses are substituted.
1282 /// @{
1283 void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1284 void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1285 const Module *M = nullptr) const;
1286 /// @}
1287
1288 /// User-friendly dump in tree shape.
1289 ///
1290 /// If \c M is provided, metadata nodes will be numbered canonically;
1291 /// otherwise, pointer addresses are substituted.
1292 ///
1293 /// Note: this uses an explicit overload instead of default arguments so that
1294 /// the nullptr version is easy to call from a debugger.
1295 ///
1296 /// @{
1297 void dumpTree() const;
1298 void dumpTree(const Module *M) const;
1299 /// @}
1300
1301 private:
1302 MDNode *replaceWithPermanentImpl();
1303 MDNode *replaceWithUniquedImpl();
1304 MDNode *replaceWithDistinctImpl();
1305
1306 protected:
1307 /// Set an operand.
1308 ///
1309 /// Sets the operand directly, without worrying about uniquing.
1310 void setOperand(unsigned I, Metadata *New);
1311
1312 unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1313
1314 void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1315 void storeDistinctInContext();
1316 template <class T, class StoreT>
1317 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1318 template <class T> static T *storeImpl(T *N, StorageType Storage);
1319
1320 /// Resize the node to hold \a NumOps operands.
1321 ///
1322 /// \pre \a isTemporary() or \a isDistinct()
1323 /// \pre MetadataID == MDTupleKind
1324 void resize(size_t NumOps) {
1325 assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1326 assert(getMetadataID() == MDTupleKind &&
1327 "Resizing is not supported for this node kind");
1328 getHeader().resize(NumOps);
1329 }
1330
1331 private:
1332 void handleChangedOperand(void *Ref, Metadata *New);
1333
1334 /// Drop RAUW support, if any.
1335 void dropReplaceableUses();
1336
1337 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1338 void decrementUnresolvedOperandCount();
1339 void countUnresolvedOperands();
1340
1341 /// Mutate this to be "uniqued".
1342 ///
1343 /// Mutate this so that \a isUniqued().
1344 /// \pre \a isTemporary().
1345 /// \pre already added to uniquing set.
1346 void makeUniqued();
1347
1348 /// Mutate this to be "distinct".
1349 ///
1350 /// Mutate this so that \a isDistinct().
1351 /// \pre \a isTemporary().
1352 void makeDistinct();
1353
1354 void deleteAsSubclass();
1355 MDNode *uniquify();
1356 void eraseFromStore();
1357
1358 template <class NodeTy> struct HasCachedHash;
1359 template <class NodeTy>
1360 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1361 N->recalculateHash();
1362 }
1363 template <class NodeTy>
1364 static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1365 template <class NodeTy>
1366 static void dispatchResetHash(NodeTy *N, std::true_type) {
1367 N->setHash(0);
1368 }
1369 template <class NodeTy>
1370 static void dispatchResetHash(NodeTy *, std::false_type) {}
1371
1372 /// Merge branch weights from two direct callsites.
1373 static MDNode *mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1374 const Instruction *AInstr,
1375 const Instruction *BInstr);
1376
1377 public:
1378 using op_iterator = const MDOperand *;
1379 using op_range = iterator_range<op_iterator>;
1380
1381 op_iterator op_begin() const {
1382 return const_cast<MDNode *>(this)->mutable_begin();
1383 }
1384
1385 op_iterator op_end() const {
1386 return const_cast<MDNode *>(this)->mutable_end();
1387 }
1388
1389 ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1390
1391 const MDOperand &getOperand(unsigned I) const {
1392 assert(I < getNumOperands() && "Out of range");
1393 return getHeader().operands()[I];
1394 }
1395
1396 /// Return number of MDNode operands.
1397 unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1398
1399 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1400 static bool classof(const Metadata *MD) {
1401 switch (MD->getMetadataID()) {
1402 default:
1403 return false;
1404 #define HANDLE_MDNODE_LEAF(CLASS) \
1405 case CLASS##Kind: \
1406 return true;
1407 #include "llvm/IR/Metadata.def"
1408 }
1409 }
1410
1411 /// Check whether MDNode is a vtable access.
1412 bool isTBAAVtableAccess() const;
1413
1414 /// Methods for metadata merging.
1415 static MDNode *concatenate(MDNode *A, MDNode *B);
1416 static MDNode *intersect(MDNode *A, MDNode *B);
1417 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1418 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1419 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1420 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1421 static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1422 /// Merge !prof metadata from two instructions.
1423 /// Currently only implemented with direct callsites with branch weights.
1424 static MDNode *getMergedProfMetadata(MDNode *A, MDNode *B,
1425 const Instruction *AInstr,
1426 const Instruction *BInstr);
1427 };
1428
1429 /// Tuple of metadata.
1430 ///
1431 /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
1432 /// default based on their operands.
1433 class MDTuple : public MDNode {
1434 friend class LLVMContextImpl;
1435 friend class MDNode;
1436
1437 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1438 ArrayRef<Metadata *> Vals)
1439 : MDNode(C, MDTupleKind, Storage, Vals) {
1440 setHash(Hash);
1441 }
1442
1443 ~MDTuple() { dropAllReferences(); }
1444
1445 void setHash(unsigned Hash) { SubclassData32 = Hash; }
1446 void recalculateHash();
1447
1448 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1449 StorageType Storage, bool ShouldCreate = true);
1450
1451 TempMDTuple cloneImpl() const {
1452 ArrayRef<MDOperand> Operands = operands();
1453 return getTemporary(getContext(), SmallVector<Metadata *, 4>(
1454 Operands.begin(), Operands.end()));
1455 }
1456
1457 public:
1458 /// Get the hash, if any.
1459 unsigned getHash() const { return SubclassData32; }
1460
1461 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1462 return getImpl(Context, MDs, Uniqued);
1463 }
1464
1465 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1466 return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1467 }
1468
1469 /// Return a distinct node.
1470 ///
1471 /// Return a distinct node -- i.e., a node that is not uniqued.
1472 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1473 return getImpl(Context, MDs, Distinct);
1474 }
1475
1476 /// Return a temporary node.
1477 ///
1478 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1479 /// not uniqued, may be RAUW'd, and must be manually deleted with
1480 /// deleteTemporary.
1481 static TempMDTuple getTemporary(LLVMContext &Context,
1482 ArrayRef<Metadata *> MDs) {
1483 return TempMDTuple(getImpl(Context, MDs, Temporary));
1484 }
1485
1486 /// Return a (temporary) clone of this.
1487 TempMDTuple clone() const { return cloneImpl(); }
1488
1489 /// Append an element to the tuple. This will resize the node.
1490 void push_back(Metadata *MD) {
1491 size_t NumOps = getNumOperands();
1492 resize(NumOps + 1);
1493 setOperand(NumOps, MD);
1494 }
1495
1496 /// Shrink the operands by 1.
1497 void pop_back() { resize(getNumOperands() - 1); }
1498
1499 static bool classof(const Metadata *MD) {
1500 return MD->getMetadataID() == MDTupleKind;
1501 }
1502 };
1503
1504 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1505 return MDTuple::get(Context, MDs);
1506 }
1507
1508 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1509 return MDTuple::getIfExists(Context, MDs);
1510 }
1511
1512 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1513 return MDTuple::getDistinct(Context, MDs);
1514 }
1515
1516 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1517 ArrayRef<Metadata *> MDs) {
1518 return MDTuple::getTemporary(Context, MDs);
1519 }
1520
1521 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1522 MDNode::deleteTemporary(Node);
1523 }
1524
1525 /// This is a simple wrapper around an MDNode which provides a higher-level
1526 /// interface by hiding the details of how alias analysis information is encoded
1527 /// in its operands.
1528 class AliasScopeNode {
1529 const MDNode *Node = nullptr;
1530
1531 public:
1532 AliasScopeNode() = default;
1533 explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1534
1535 /// Get the MDNode for this AliasScopeNode.
1536 const MDNode *getNode() const { return Node; }
1537
1538 /// Get the MDNode for this AliasScopeNode's domain.
1539 const MDNode *getDomain() const {
1540 if (Node->getNumOperands() < 2)
1541 return nullptr;
1542 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1543 }
1544 StringRef getName() const {
1545 if (Node->getNumOperands() > 2)
1546 if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1547 return N->getString();
1548 return StringRef();
1549 }
1550 };
1551
1552 /// Typed iterator through MDNode operands.
1553 ///
1554 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1555 /// particular Metadata subclass.
1556 template <class T> class TypedMDOperandIterator {
1557 MDNode::op_iterator I = nullptr;
1558
1559 public:
1560 using iterator_category = std::input_iterator_tag;
1561 using value_type = T *;
1562 using difference_type = std::ptrdiff_t;
1563 using pointer = void;
1564 using reference = T *;
1565
1566 TypedMDOperandIterator() = default;
1567 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1568
1569 T *operator*() const { return cast_or_null<T>(*I); }
1570
1571 TypedMDOperandIterator &operator++() {
1572 ++I;
1573 return *this;
1574 }
1575
1576 TypedMDOperandIterator operator++(int) {
1577 TypedMDOperandIterator Temp(*this);
1578 ++I;
1579 return Temp;
1580 }
1581
1582 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1583 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1584 };
1585
1586 /// Typed, array-like tuple of metadata.
1587 ///
1588 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1589 /// particular type of metadata.
1590 template <class T> class MDTupleTypedArrayWrapper {
1591 const MDTuple *N = nullptr;
1592
1593 public:
1594 MDTupleTypedArrayWrapper() = default;
1595 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1596
1597 template <class U>
1598 MDTupleTypedArrayWrapper(
1599 const MDTupleTypedArrayWrapper<U> &Other,
1600 std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1601 : N(Other.get()) {}
1602
1603 template <class U>
1604 explicit MDTupleTypedArrayWrapper(
1605 const MDTupleTypedArrayWrapper<U> &Other,
1606 std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1607 : N(Other.get()) {}
1608
1609 explicit operator bool() const { return get(); }
1610 explicit operator MDTuple *() const { return get(); }
1611
1612 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1613 MDTuple *operator->() const { return get(); }
1614 MDTuple &operator*() const { return *get(); }
1615
1616 // FIXME: Fix callers and remove condition on N.
1617 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1618 bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1619 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1620
1621 // FIXME: Fix callers and remove condition on N.
1622 using iterator = TypedMDOperandIterator<T>;
1623
1624 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1625 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1626 };
1627
1628 #define HANDLE_METADATA(CLASS) \
1629 using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1630 #include "llvm/IR/Metadata.def"
1631
1632 /// Placeholder metadata for operands of distinct MDNodes.
1633 ///
1634 /// This is a lightweight placeholder for an operand of a distinct node. It's
1635 /// purpose is to help track forward references when creating a distinct node.
1636 /// This allows distinct nodes involved in a cycle to be constructed before
1637 /// their operands without requiring a heavyweight temporary node with
1638 /// full-blown RAUW support.
1639 ///
1640 /// Each placeholder supports only a single MDNode user. Clients should pass
1641 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1642 /// should be replaced with.
1643 ///
1644 /// While it would be possible to implement move operators, they would be
1645 /// fairly expensive. Leave them unimplemented to discourage their use
1646 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1647 class DistinctMDOperandPlaceholder : public Metadata {
1648 friend class MetadataTracking;
1649
1650 Metadata **Use = nullptr;
1651
1652 public:
1653 explicit DistinctMDOperandPlaceholder(unsigned ID)
1654 : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1655 SubclassData32 = ID;
1656 }
1657
1658 DistinctMDOperandPlaceholder() = delete;
1659 DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1660 DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1661
1662 ~DistinctMDOperandPlaceholder() {
1663 if (Use)
1664 *Use = nullptr;
1665 }
1666
1667 unsigned getID() const { return SubclassData32; }
1668
1669 /// Replace the use of this with MD.
1670 void replaceUseWith(Metadata *MD) {
1671 if (!Use)
1672 return;
1673 *Use = MD;
1674
1675 if (*Use)
1676 MetadataTracking::track(*Use);
1677
1678 Metadata *T = cast<Metadata>(this);
1679 MetadataTracking::untrack(T);
1680 assert(!Use && "Use is still being tracked despite being untracked!");
1681 }
1682 };
1683
1684 //===----------------------------------------------------------------------===//
1685 /// A tuple of MDNodes.
1686 ///
1687 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1688 ///
1689 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1690 ///
1691 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1692 class NamedMDNode : public ilist_node<NamedMDNode> {
1693 friend class LLVMContextImpl;
1694 friend class Module;
1695
1696 std::string Name;
1697 Module *Parent = nullptr;
1698 void *Operands; // SmallVector<TrackingMDRef, 4>
1699
1700 void setParent(Module *M) { Parent = M; }
1701
1702 explicit NamedMDNode(const Twine &N);
1703
1704 template <class T1, class T2> class op_iterator_impl {
1705 friend class NamedMDNode;
1706
1707 const NamedMDNode *Node = nullptr;
1708 unsigned Idx = 0;
1709
1710 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1711
1712 public:
1713 using iterator_category = std::bidirectional_iterator_tag;
1714 using value_type = T2;
1715 using difference_type = std::ptrdiff_t;
1716 using pointer = value_type *;
1717 using reference = value_type &;
1718
1719 op_iterator_impl() = default;
1720
1721 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1722 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1723
1724 op_iterator_impl &operator++() {
1725 ++Idx;
1726 return *this;
1727 }
1728
1729 op_iterator_impl operator++(int) {
1730 op_iterator_impl tmp(*this);
1731 operator++();
1732 return tmp;
1733 }
1734
1735 op_iterator_impl &operator--() {
1736 --Idx;
1737 return *this;
1738 }
1739
1740 op_iterator_impl operator--(int) {
1741 op_iterator_impl tmp(*this);
1742 operator--();
1743 return tmp;
1744 }
1745
1746 T1 operator*() const { return Node->getOperand(Idx); }
1747 };
1748
1749 public:
1750 NamedMDNode(const NamedMDNode &) = delete;
1751 ~NamedMDNode();
1752
1753 /// Drop all references and remove the node from parent module.
1754 void eraseFromParent();
1755
1756 /// Remove all uses and clear node vector.
1757 void dropAllReferences() { clearOperands(); }
1758 /// Drop all references to this node's operands.
1759 void clearOperands();
1760
1761 /// Get the module that holds this named metadata collection.
1762 inline Module *getParent() { return Parent; }
1763 inline const Module *getParent() const { return Parent; }
1764
1765 MDNode *getOperand(unsigned i) const;
1766 unsigned getNumOperands() const;
1767 void addOperand(MDNode *M);
1768 void setOperand(unsigned I, MDNode *New);
1769 StringRef getName() const;
1770 void print(raw_ostream &ROS, bool IsForDebug = false) const;
1771 void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1772 bool IsForDebug = false) const;
1773 void dump() const;
1774
1775 // ---------------------------------------------------------------------------
1776 // Operand Iterator interface...
1777 //
1778 using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1779
1780 op_iterator op_begin() { return op_iterator(this, 0); }
1781 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1782
1783 using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1784
1785 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1786 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1787
1788 inline iterator_range<op_iterator> operands() {
1789 return make_range(op_begin(), op_end());
1790 }
1791 inline iterator_range<const_op_iterator> operands() const {
1792 return make_range(op_begin(), op_end());
1793 }
1794 };
1795
1796 // Create wrappers for C Binding types (see CBindingWrapping.h).
1797 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1798
1799 } // end namespace llvm
1800
1801 #endif // LLVM_IR_METADATA_H
1802