1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/ilist.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/DAGCombine.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineValueType.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/Support/Allocator.h"
38 #include "llvm/Support/ArrayRecycler.h"
39 #include "llvm/Support/CodeGen.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/RecyclingAllocator.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <functional>
45 #include <map>
46 #include <string>
47 #include <tuple>
48 #include <utility>
49 #include <vector>
50 
51 namespace llvm {
52 
53 class DIExpression;
54 class DILabel;
55 class DIVariable;
56 class Function;
57 class Pass;
58 class Type;
59 template <class GraphType> struct GraphTraits;
60 template <typename T, unsigned int N> class SmallSetVector;
61 template <typename T, typename Enable> struct FoldingSetTrait;
62 class AAResults;
63 class BlockAddress;
64 class BlockFrequencyInfo;
65 class Constant;
66 class ConstantFP;
67 class ConstantInt;
68 class DataLayout;
69 struct fltSemantics;
70 class FunctionLoweringInfo;
71 class FunctionVarLocs;
72 class GlobalValue;
73 struct KnownBits;
74 class LLVMContext;
75 class MachineBasicBlock;
76 class MachineConstantPoolValue;
77 class MCSymbol;
78 class OptimizationRemarkEmitter;
79 class ProfileSummaryInfo;
80 class SDDbgValue;
81 class SDDbgOperand;
82 class SDDbgLabel;
83 class SelectionDAG;
84 class SelectionDAGTargetInfo;
85 class TargetLibraryInfo;
86 class TargetLowering;
87 class TargetMachine;
88 class TargetSubtargetInfo;
89 class Value;
90 
91 template <typename T> class GenericSSAContext;
92 using SSAContext = GenericSSAContext<Function>;
93 template <typename T> class GenericUniformityInfo;
94 using UniformityInfo = GenericUniformityInfo<SSAContext>;
95 
96 class SDVTListNode : public FoldingSetNode {
97   friend struct FoldingSetTrait<SDVTListNode>;
98 
99   /// A reference to an Interned FoldingSetNodeID for this node.
100   /// The Allocator in SelectionDAG holds the data.
101   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
102   /// The size of this list is not expected to be big so it won't introduce
103   /// a memory penalty.
104   FoldingSetNodeIDRef FastID;
105   const EVT *VTs;
106   unsigned int NumVTs;
107   /// The hash value for SDVTList is fixed, so cache it to avoid
108   /// hash calculation.
109   unsigned HashValue;
110 
111 public:
112   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
113       FastID(ID), VTs(VT), NumVTs(Num) {
114     HashValue = ID.ComputeHash();
115   }
116 
117   SDVTList getSDVTList() {
118     SDVTList result = {VTs, NumVTs};
119     return result;
120   }
121 };
122 
123 /// Specialize FoldingSetTrait for SDVTListNode
124 /// to avoid computing temp FoldingSetNodeID and hash value.
125 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
126   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
127     ID = X.FastID;
128   }
129 
130   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
131                      unsigned IDHash, FoldingSetNodeID &TempID) {
132     if (X.HashValue != IDHash)
133       return false;
134     return ID == X.FastID;
135   }
136 
137   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
138     return X.HashValue;
139   }
140 };
141 
142 template <> struct ilist_alloc_traits<SDNode> {
143   static void deleteNode(SDNode *) {
144     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
145   }
146 };
147 
148 /// Keeps track of dbg_value information through SDISel.  We do
149 /// not build SDNodes for these so as not to perturb the generated code;
150 /// instead the info is kept off to the side in this structure. Each SDNode may
151 /// have one or more associated dbg_value entries. This information is kept in
152 /// DbgValMap.
153 /// Byval parameters are handled separately because they don't use alloca's,
154 /// which busts the normal mechanism.  There is good reason for handling all
155 /// parameters separately:  they may not have code generated for them, they
156 /// should always go at the beginning of the function regardless of other code
157 /// motion, and debug info for them is potentially useful even if the parameter
158 /// is unused.  Right now only byval parameters are handled separately.
159 class SDDbgInfo {
160   BumpPtrAllocator Alloc;
161   SmallVector<SDDbgValue*, 32> DbgValues;
162   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
163   SmallVector<SDDbgLabel*, 4> DbgLabels;
164   using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
165   DbgValMapType DbgValMap;
166 
167 public:
168   SDDbgInfo() = default;
169   SDDbgInfo(const SDDbgInfo &) = delete;
170   SDDbgInfo &operator=(const SDDbgInfo &) = delete;
171 
172   void add(SDDbgValue *V, bool isParameter);
173 
174   void add(SDDbgLabel *L) { DbgLabels.push_back(L); }
175 
176   /// Invalidate all DbgValues attached to the node and remove
177   /// it from the Node-to-DbgValues map.
178   void erase(const SDNode *Node);
179 
180   void clear() {
181     DbgValMap.clear();
182     DbgValues.clear();
183     ByvalParmDbgValues.clear();
184     DbgLabels.clear();
185     Alloc.Reset();
186   }
187 
188   BumpPtrAllocator &getAlloc() { return Alloc; }
189 
190   bool empty() const {
191     return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
192   }
193 
194   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
195     auto I = DbgValMap.find(Node);
196     if (I != DbgValMap.end())
197       return I->second;
198     return ArrayRef<SDDbgValue*>();
199   }
200 
201   using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
202   using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
203 
204   DbgIterator DbgBegin() { return DbgValues.begin(); }
205   DbgIterator DbgEnd()   { return DbgValues.end(); }
206   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
207   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
208   DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
209   DbgLabelIterator DbgLabelEnd()   { return DbgLabels.end(); }
210 };
211 
212 void checkForCycles(const SelectionDAG *DAG, bool force = false);
213 
214 /// This is used to represent a portion of an LLVM function in a low-level
215 /// Data Dependence DAG representation suitable for instruction selection.
216 /// This DAG is constructed as the first step of instruction selection in order
217 /// to allow implementation of machine specific optimizations
218 /// and code simplifications.
219 ///
220 /// The representation used by the SelectionDAG is a target-independent
221 /// representation, which has some similarities to the GCC RTL representation,
222 /// but is significantly more simple, powerful, and is a graph form instead of a
223 /// linear form.
224 ///
225 class SelectionDAG {
226   const TargetMachine &TM;
227   const SelectionDAGTargetInfo *TSI = nullptr;
228   const TargetLowering *TLI = nullptr;
229   const TargetLibraryInfo *LibInfo = nullptr;
230   const FunctionVarLocs *FnVarLocs = nullptr;
231   MachineFunction *MF;
232   Pass *SDAGISelPass = nullptr;
233   LLVMContext *Context;
234   CodeGenOptLevel OptLevel;
235 
236   UniformityInfo *UA = nullptr;
237   FunctionLoweringInfo * FLI = nullptr;
238 
239   /// The function-level optimization remark emitter.  Used to emit remarks
240   /// whenever manipulating the DAG.
241   OptimizationRemarkEmitter *ORE;
242 
243   ProfileSummaryInfo *PSI = nullptr;
244   BlockFrequencyInfo *BFI = nullptr;
245 
246   /// List of non-single value types.
247   FoldingSet<SDVTListNode> VTListMap;
248 
249   /// Pool allocation for misc. objects that are created once per SelectionDAG.
250   BumpPtrAllocator Allocator;
251 
252   /// The starting token.
253   SDNode EntryNode;
254 
255   /// The root of the entire DAG.
256   SDValue Root;
257 
258   /// A linked list of nodes in the current DAG.
259   ilist<SDNode> AllNodes;
260 
261   /// The AllocatorType for allocating SDNodes. We use
262   /// pool allocation with recycling.
263   using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
264                                                sizeof(LargestSDNode),
265                                                alignof(MostAlignedSDNode)>;
266 
267   /// Pool allocation for nodes.
268   NodeAllocatorType NodeAllocator;
269 
270   /// This structure is used to memoize nodes, automatically performing
271   /// CSE with existing nodes when a duplicate is requested.
272   FoldingSet<SDNode> CSEMap;
273 
274   /// Pool allocation for machine-opcode SDNode operands.
275   BumpPtrAllocator OperandAllocator;
276   ArrayRecycler<SDUse> OperandRecycler;
277 
278   /// Tracks dbg_value and dbg_label information through SDISel.
279   SDDbgInfo *DbgInfo;
280 
281   using CallSiteInfo = MachineFunction::CallSiteInfo;
282   using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
283 
284   struct NodeExtraInfo {
285     CallSiteInfo CSInfo;
286     MDNode *HeapAllocSite = nullptr;
287     MDNode *PCSections = nullptr;
288     bool NoMerge = false;
289   };
290   /// Out-of-line extra information for SDNodes.
291   DenseMap<const SDNode *, NodeExtraInfo> SDEI;
292 
293   /// PersistentId counter to be used when inserting the next
294   /// SDNode to this SelectionDAG. We do not place that under
295   /// `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` intentionally because
296   /// it adds unneeded complexity without noticeable
297   /// benefits (see discussion with @thakis in D120714).
298   uint16_t NextPersistentId = 0;
299 
300 public:
301   /// Clients of various APIs that cause global effects on
302   /// the DAG can optionally implement this interface.  This allows the clients
303   /// to handle the various sorts of updates that happen.
304   ///
305   /// A DAGUpdateListener automatically registers itself with DAG when it is
306   /// constructed, and removes itself when destroyed in RAII fashion.
307   struct DAGUpdateListener {
308     DAGUpdateListener *const Next;
309     SelectionDAG &DAG;
310 
311     explicit DAGUpdateListener(SelectionDAG &D)
312       : Next(D.UpdateListeners), DAG(D) {
313       DAG.UpdateListeners = this;
314     }
315 
316     virtual ~DAGUpdateListener() {
317       assert(DAG.UpdateListeners == this &&
318              "DAGUpdateListeners must be destroyed in LIFO order");
319       DAG.UpdateListeners = Next;
320     }
321 
322     /// The node N that was deleted and, if E is not null, an
323     /// equivalent node E that replaced it.
324     virtual void NodeDeleted(SDNode *N, SDNode *E);
325 
326     /// The node N that was updated.
327     virtual void NodeUpdated(SDNode *N);
328 
329     /// The node N that was inserted.
330     virtual void NodeInserted(SDNode *N);
331   };
332 
333   struct DAGNodeDeletedListener : public DAGUpdateListener {
334     std::function<void(SDNode *, SDNode *)> Callback;
335 
336     DAGNodeDeletedListener(SelectionDAG &DAG,
337                            std::function<void(SDNode *, SDNode *)> Callback)
338         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
339 
340     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
341 
342    private:
343     virtual void anchor();
344   };
345 
346   struct DAGNodeInsertedListener : public DAGUpdateListener {
347     std::function<void(SDNode *)> Callback;
348 
349     DAGNodeInsertedListener(SelectionDAG &DAG,
350                             std::function<void(SDNode *)> Callback)
351         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
352 
353     void NodeInserted(SDNode *N) override { Callback(N); }
354 
355   private:
356     virtual void anchor();
357   };
358 
359   /// Help to insert SDNodeFlags automatically in transforming. Use
360   /// RAII to save and resume flags in current scope.
361   class FlagInserter {
362     SelectionDAG &DAG;
363     SDNodeFlags Flags;
364     FlagInserter *LastInserter;
365 
366   public:
367     FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags)
368         : DAG(SDAG), Flags(Flags),
369           LastInserter(SDAG.getFlagInserter()) {
370       SDAG.setFlagInserter(this);
371     }
372     FlagInserter(SelectionDAG &SDAG, SDNode *N)
373         : FlagInserter(SDAG, N->getFlags()) {}
374 
375     FlagInserter(const FlagInserter &) = delete;
376     FlagInserter &operator=(const FlagInserter &) = delete;
377     ~FlagInserter() { DAG.setFlagInserter(LastInserter); }
378 
379     SDNodeFlags getFlags() const { return Flags; }
380   };
381 
382   /// When true, additional steps are taken to
383   /// ensure that getConstant() and similar functions return DAG nodes that
384   /// have legal types. This is important after type legalization since
385   /// any illegally typed nodes generated after this point will not experience
386   /// type legalization.
387   bool NewNodesMustHaveLegalTypes = false;
388 
389 private:
390   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
391   friend struct DAGUpdateListener;
392 
393   /// Linked list of registered DAGUpdateListener instances.
394   /// This stack is maintained by DAGUpdateListener RAII.
395   DAGUpdateListener *UpdateListeners = nullptr;
396 
397   /// Implementation of setSubgraphColor.
398   /// Return whether we had to truncate the search.
399   bool setSubgraphColorHelper(SDNode *N, const char *Color,
400                               DenseSet<SDNode *> &visited,
401                               int level, bool &printed);
402 
403   template <typename SDNodeT, typename... ArgTypes>
404   SDNodeT *newSDNode(ArgTypes &&... Args) {
405     return new (NodeAllocator.template Allocate<SDNodeT>())
406         SDNodeT(std::forward<ArgTypes>(Args)...);
407   }
408 
409   /// Build a synthetic SDNodeT with the given args and extract its subclass
410   /// data as an integer (e.g. for use in a folding set).
411   ///
412   /// The args to this function are the same as the args to SDNodeT's
413   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
414   /// omitted.
415   template <typename SDNodeT, typename... ArgTypes>
416   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
417                                                ArgTypes &&... Args) {
418     // The compiler can reduce this expression to a constant iff we pass an
419     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
420     // on the subclass data.
421     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
422         .getRawSubclassData();
423   }
424 
425   template <typename SDNodeTy>
426   static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
427                                                 SDVTList VTs, EVT MemoryVT,
428                                                 MachineMemOperand *MMO) {
429     return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
430          .getRawSubclassData();
431   }
432 
433   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
434 
435   void removeOperands(SDNode *Node) {
436     if (!Node->OperandList)
437       return;
438     OperandRecycler.deallocate(
439         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
440         Node->OperandList);
441     Node->NumOperands = 0;
442     Node->OperandList = nullptr;
443   }
444   void CreateTopologicalOrder(std::vector<SDNode*>& Order);
445 
446 public:
447   // Maximum depth for recursive analysis such as computeKnownBits, etc.
448   static constexpr unsigned MaxRecursionDepth = 6;
449 
450   explicit SelectionDAG(const TargetMachine &TM, CodeGenOptLevel);
451   SelectionDAG(const SelectionDAG &) = delete;
452   SelectionDAG &operator=(const SelectionDAG &) = delete;
453   ~SelectionDAG();
454 
455   /// Prepare this SelectionDAG to process code in the given MachineFunction.
456   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
457             Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
458             UniformityInfo *UA, ProfileSummaryInfo *PSIin,
459             BlockFrequencyInfo *BFIin, FunctionVarLocs const *FnVarLocs);
460 
461   void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
462     FLI = FuncInfo;
463   }
464 
465   /// Clear state and free memory necessary to make this
466   /// SelectionDAG ready to process a new block.
467   void clear();
468 
469   MachineFunction &getMachineFunction() const { return *MF; }
470   const Pass *getPass() const { return SDAGISelPass; }
471 
472   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
473   const TargetMachine &getTarget() const { return TM; }
474   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
475   template <typename STC> const STC &getSubtarget() const {
476     return MF->getSubtarget<STC>();
477   }
478   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
479   const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
480   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
481   const UniformityInfo *getUniformityInfo() const { return UA; }
482   /// Returns the result of the AssignmentTrackingAnalysis pass if it's
483   /// available, otherwise return nullptr.
484   const FunctionVarLocs *getFunctionVarLocs() const { return FnVarLocs; }
485   LLVMContext *getContext() const { return Context; }
486   OptimizationRemarkEmitter &getORE() const { return *ORE; }
487   ProfileSummaryInfo *getPSI() const { return PSI; }
488   BlockFrequencyInfo *getBFI() const { return BFI; }
489 
490   FlagInserter *getFlagInserter() { return Inserter; }
491   void setFlagInserter(FlagInserter *FI) { Inserter = FI; }
492 
493   /// Just dump dot graph to a user-provided path and title.
494   /// This doesn't open the dot viewer program and
495   /// helps visualization when outside debugging session.
496   /// FileName expects absolute path. If provided
497   /// without any path separators then the file
498   /// will be created in the current directory.
499   /// Error will be emitted if the path is insane.
500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
501   LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title);
502 #endif
503 
504   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
505   void viewGraph(const std::string &Title);
506   void viewGraph();
507 
508 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
509   std::map<const SDNode *, std::string> NodeGraphAttrs;
510 #endif
511 
512   /// Clear all previously defined node graph attributes.
513   /// Intended to be used from a debugging tool (eg. gdb).
514   void clearGraphAttrs();
515 
516   /// Set graph attributes for a node. (eg. "color=red".)
517   void setGraphAttrs(const SDNode *N, const char *Attrs);
518 
519   /// Get graph attributes for a node. (eg. "color=red".)
520   /// Used from getNodeAttributes.
521   std::string getGraphAttrs(const SDNode *N) const;
522 
523   /// Convenience for setting node color attribute.
524   void setGraphColor(const SDNode *N, const char *Color);
525 
526   /// Convenience for setting subgraph color attribute.
527   void setSubgraphColor(SDNode *N, const char *Color);
528 
529   using allnodes_const_iterator = ilist<SDNode>::const_iterator;
530 
531   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
532   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
533 
534   using allnodes_iterator = ilist<SDNode>::iterator;
535 
536   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
537   allnodes_iterator allnodes_end() { return AllNodes.end(); }
538 
539   ilist<SDNode>::size_type allnodes_size() const {
540     return AllNodes.size();
541   }
542 
543   iterator_range<allnodes_iterator> allnodes() {
544     return make_range(allnodes_begin(), allnodes_end());
545   }
546   iterator_range<allnodes_const_iterator> allnodes() const {
547     return make_range(allnodes_begin(), allnodes_end());
548   }
549 
550   /// Return the root tag of the SelectionDAG.
551   const SDValue &getRoot() const { return Root; }
552 
553   /// Return the token chain corresponding to the entry of the function.
554   SDValue getEntryNode() const {
555     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
556   }
557 
558   /// Set the current root tag of the SelectionDAG.
559   ///
560   const SDValue &setRoot(SDValue N) {
561     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
562            "DAG root value is not a chain!");
563     if (N.getNode())
564       checkForCycles(N.getNode(), this);
565     Root = N;
566     if (N.getNode())
567       checkForCycles(this);
568     return Root;
569   }
570 
571 #ifndef NDEBUG
572   void VerifyDAGDivergence();
573 #endif
574 
575   /// This iterates over the nodes in the SelectionDAG, folding
576   /// certain types of nodes together, or eliminating superfluous nodes.  The
577   /// Level argument controls whether Combine is allowed to produce nodes and
578   /// types that are illegal on the target.
579   void Combine(CombineLevel Level, AAResults *AA, CodeGenOptLevel OptLevel);
580 
581   /// This transforms the SelectionDAG into a SelectionDAG that
582   /// only uses types natively supported by the target.
583   /// Returns "true" if it made any changes.
584   ///
585   /// Note that this is an involved process that may invalidate pointers into
586   /// the graph.
587   bool LegalizeTypes();
588 
589   /// This transforms the SelectionDAG into a SelectionDAG that is
590   /// compatible with the target instruction selector, as indicated by the
591   /// TargetLowering object.
592   ///
593   /// Note that this is an involved process that may invalidate pointers into
594   /// the graph.
595   void Legalize();
596 
597   /// Transforms a SelectionDAG node and any operands to it into a node
598   /// that is compatible with the target instruction selector, as indicated by
599   /// the TargetLowering object.
600   ///
601   /// \returns true if \c N is a valid, legal node after calling this.
602   ///
603   /// This essentially runs a single recursive walk of the \c Legalize process
604   /// over the given node (and its operands). This can be used to incrementally
605   /// legalize the DAG. All of the nodes which are directly replaced,
606   /// potentially including N, are added to the output parameter \c
607   /// UpdatedNodes so that the delta to the DAG can be understood by the
608   /// caller.
609   ///
610   /// When this returns false, N has been legalized in a way that make the
611   /// pointer passed in no longer valid. It may have even been deleted from the
612   /// DAG, and so it shouldn't be used further. When this returns true, the
613   /// N passed in is a legal node, and can be immediately processed as such.
614   /// This may still have done some work on the DAG, and will still populate
615   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
616   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
617 
618   /// This transforms the SelectionDAG into a SelectionDAG
619   /// that only uses vector math operations supported by the target.  This is
620   /// necessary as a separate step from Legalize because unrolling a vector
621   /// operation can introduce illegal types, which requires running
622   /// LegalizeTypes again.
623   ///
624   /// This returns true if it made any changes; in that case, LegalizeTypes
625   /// is called again before Legalize.
626   ///
627   /// Note that this is an involved process that may invalidate pointers into
628   /// the graph.
629   bool LegalizeVectors();
630 
631   /// This method deletes all unreachable nodes in the SelectionDAG.
632   void RemoveDeadNodes();
633 
634   /// Remove the specified node from the system.  This node must
635   /// have no referrers.
636   void DeleteNode(SDNode *N);
637 
638   /// Return an SDVTList that represents the list of values specified.
639   SDVTList getVTList(EVT VT);
640   SDVTList getVTList(EVT VT1, EVT VT2);
641   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
642   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
643   SDVTList getVTList(ArrayRef<EVT> VTs);
644 
645   //===--------------------------------------------------------------------===//
646   // Node creation methods.
647 
648   /// Create a ConstantSDNode wrapping a constant value.
649   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
650   ///
651   /// If only legal types can be produced, this does the necessary
652   /// transformations (e.g., if the vector element type is illegal).
653   /// @{
654   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
655                       bool isTarget = false, bool isOpaque = false);
656   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
657                       bool isTarget = false, bool isOpaque = false);
658 
659   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
660                              bool IsOpaque = false) {
661     return getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT,
662                        IsTarget, IsOpaque);
663   }
664 
665   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
666                       bool isTarget = false, bool isOpaque = false);
667   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
668                             bool isTarget = false);
669   SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
670                                  bool LegalTypes = true);
671   SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
672                                bool isTarget = false);
673 
674   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
675                             bool isOpaque = false) {
676     return getConstant(Val, DL, VT, true, isOpaque);
677   }
678   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
679                             bool isOpaque = false) {
680     return getConstant(Val, DL, VT, true, isOpaque);
681   }
682   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
683                             bool isOpaque = false) {
684     return getConstant(Val, DL, VT, true, isOpaque);
685   }
686 
687   /// Create a true or false constant of type \p VT using the target's
688   /// BooleanContent for type \p OpVT.
689   SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
690   /// @}
691 
692   /// Create a ConstantFPSDNode wrapping a constant value.
693   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
694   ///
695   /// If only legal types can be produced, this does the necessary
696   /// transformations (e.g., if the vector element type is illegal).
697   /// The forms that take a double should only be used for simple constants
698   /// that can be exactly represented in VT.  No checks are made.
699   /// @{
700   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
701                         bool isTarget = false);
702   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
703                         bool isTarget = false);
704   SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
705                         bool isTarget = false);
706   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
707     return getConstantFP(Val, DL, VT, true);
708   }
709   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
710     return getConstantFP(Val, DL, VT, true);
711   }
712   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
713     return getConstantFP(Val, DL, VT, true);
714   }
715   /// @}
716 
717   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
718                            int64_t offset = 0, bool isTargetGA = false,
719                            unsigned TargetFlags = 0);
720   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
721                                  int64_t offset = 0, unsigned TargetFlags = 0) {
722     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
723   }
724   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
725   SDValue getTargetFrameIndex(int FI, EVT VT) {
726     return getFrameIndex(FI, VT, true);
727   }
728   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
729                        unsigned TargetFlags = 0);
730   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
731     return getJumpTable(JTI, VT, true, TargetFlags);
732   }
733   SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL);
734   SDValue getConstantPool(const Constant *C, EVT VT,
735                           MaybeAlign Align = std::nullopt, int Offs = 0,
736                           bool isT = false, unsigned TargetFlags = 0);
737   SDValue getTargetConstantPool(const Constant *C, EVT VT,
738                                 MaybeAlign Align = std::nullopt, int Offset = 0,
739                                 unsigned TargetFlags = 0) {
740     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
741   }
742   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
743                           MaybeAlign Align = std::nullopt, int Offs = 0,
744                           bool isT = false, unsigned TargetFlags = 0);
745   SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
746                                 MaybeAlign Align = std::nullopt, int Offset = 0,
747                                 unsigned TargetFlags = 0) {
748     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
749   }
750   // When generating a branch to a BB, we don't in general know enough
751   // to provide debug info for the BB at that time, so keep this one around.
752   SDValue getBasicBlock(MachineBasicBlock *MBB);
753   SDValue getExternalSymbol(const char *Sym, EVT VT);
754   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
755                                   unsigned TargetFlags = 0);
756   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
757 
758   SDValue getValueType(EVT);
759   SDValue getRegister(unsigned Reg, EVT VT);
760   SDValue getRegisterMask(const uint32_t *RegMask);
761   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
762   SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
763                        MCSymbol *Label);
764   SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
765                           bool isTarget = false, unsigned TargetFlags = 0);
766   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
767                                 int64_t Offset = 0, unsigned TargetFlags = 0) {
768     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
769   }
770 
771   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
772                        SDValue N) {
773     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
774                    getRegister(Reg, N.getValueType()), N);
775   }
776 
777   // This version of the getCopyToReg method takes an extra operand, which
778   // indicates that there is potentially an incoming glue value (if Glue is not
779   // null) and that there should be a glue result.
780   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
781                        SDValue Glue) {
782     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
783     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
784     return getNode(ISD::CopyToReg, dl, VTs,
785                    ArrayRef(Ops, Glue.getNode() ? 4 : 3));
786   }
787 
788   // Similar to last getCopyToReg() except parameter Reg is a SDValue
789   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
790                        SDValue Glue) {
791     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
792     SDValue Ops[] = { Chain, Reg, N, Glue };
793     return getNode(ISD::CopyToReg, dl, VTs,
794                    ArrayRef(Ops, Glue.getNode() ? 4 : 3));
795   }
796 
797   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
798     SDVTList VTs = getVTList(VT, MVT::Other);
799     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
800     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
801   }
802 
803   // This version of the getCopyFromReg method takes an extra operand, which
804   // indicates that there is potentially an incoming glue value (if Glue is not
805   // null) and that there should be a glue result.
806   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
807                          SDValue Glue) {
808     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
809     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
810     return getNode(ISD::CopyFromReg, dl, VTs,
811                    ArrayRef(Ops, Glue.getNode() ? 3 : 2));
812   }
813 
814   SDValue getCondCode(ISD::CondCode Cond);
815 
816   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
817   /// which must be a vector type, must match the number of mask elements
818   /// NumElts. An integer mask element equal to -1 is treated as undefined.
819   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
820                            ArrayRef<int> Mask);
821 
822   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
823   /// which must be a vector type, must match the number of operands in Ops.
824   /// The operands must have the same type as (or, for integers, a type wider
825   /// than) VT's element type.
826   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
827     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
828     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
829   }
830 
831   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
832   /// which must be a vector type, must match the number of operands in Ops.
833   /// The operands must have the same type as (or, for integers, a type wider
834   /// than) VT's element type.
835   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
836     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
837     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
838   }
839 
840   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
841   /// elements. VT must be a vector type. Op's type must be the same as (or,
842   /// for integers, a type wider than) VT's element type.
843   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
844     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
845     if (Op.getOpcode() == ISD::UNDEF) {
846       assert((VT.getVectorElementType() == Op.getValueType() ||
847               (VT.isInteger() &&
848                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
849              "A splatted value must have a width equal or (for integers) "
850              "greater than the vector element type!");
851       return getNode(ISD::UNDEF, SDLoc(), VT);
852     }
853 
854     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
855     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
856   }
857 
858   // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all
859   // elements.
860   SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) {
861     if (Op.getOpcode() == ISD::UNDEF) {
862       assert((VT.getVectorElementType() == Op.getValueType() ||
863               (VT.isInteger() &&
864                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
865              "A splatted value must have a width equal or (for integers) "
866              "greater than the vector element type!");
867       return getNode(ISD::UNDEF, SDLoc(), VT);
868     }
869     return getNode(ISD::SPLAT_VECTOR, DL, VT, Op);
870   }
871 
872   /// Returns a node representing a splat of one value into all lanes
873   /// of the provided vector type.  This is a utility which returns
874   /// either a BUILD_VECTOR or SPLAT_VECTOR depending on the
875   /// scalability of the desired vector type.
876   SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op) {
877     assert(VT.isVector() && "Can't splat to non-vector type");
878     return VT.isScalableVector() ?
879       getSplatVector(VT, DL, Op) : getSplatBuildVector(VT, DL, Op);
880   }
881 
882   /// Returns a vector of type ResVT whose elements contain the linear sequence
883   ///   <0, Step, Step * 2, Step * 3, ...>
884   SDValue getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal);
885 
886   /// Returns a vector of type ResVT whose elements contain the linear sequence
887   ///   <0, 1, 2, 3, ...>
888   SDValue getStepVector(const SDLoc &DL, EVT ResVT);
889 
890   /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
891   /// the shuffle node in input but with swapped operands.
892   ///
893   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
894   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
895 
896   /// Convert Op, which must be of float type, to the
897   /// float type VT, by either extending or rounding (by truncation).
898   SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
899 
900   /// Convert Op, which must be a STRICT operation of float type, to the
901   /// float type VT, by either extending or rounding (by truncation).
902   std::pair<SDValue, SDValue>
903   getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT);
904 
905   /// Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
906   static unsigned getOpcode_EXTEND(unsigned Opcode) {
907     switch (Opcode) {
908     case ISD::ANY_EXTEND:
909     case ISD::ANY_EXTEND_VECTOR_INREG:
910       return ISD::ANY_EXTEND;
911     case ISD::ZERO_EXTEND:
912     case ISD::ZERO_EXTEND_VECTOR_INREG:
913       return ISD::ZERO_EXTEND;
914     case ISD::SIGN_EXTEND:
915     case ISD::SIGN_EXTEND_VECTOR_INREG:
916       return ISD::SIGN_EXTEND;
917     }
918     llvm_unreachable("Unknown opcode");
919   }
920 
921   /// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
922   static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) {
923     switch (Opcode) {
924     case ISD::ANY_EXTEND:
925     case ISD::ANY_EXTEND_VECTOR_INREG:
926       return ISD::ANY_EXTEND_VECTOR_INREG;
927     case ISD::ZERO_EXTEND:
928     case ISD::ZERO_EXTEND_VECTOR_INREG:
929       return ISD::ZERO_EXTEND_VECTOR_INREG;
930     case ISD::SIGN_EXTEND:
931     case ISD::SIGN_EXTEND_VECTOR_INREG:
932       return ISD::SIGN_EXTEND_VECTOR_INREG;
933     }
934     llvm_unreachable("Unknown opcode");
935   }
936 
937   /// Convert Op, which must be of integer type, to the
938   /// integer type VT, by either any-extending or truncating it.
939   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
940 
941   /// Convert Op, which must be of integer type, to the
942   /// integer type VT, by either sign-extending or truncating it.
943   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
944 
945   /// Convert Op, which must be of integer type, to the
946   /// integer type VT, by either zero-extending or truncating it.
947   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
948 
949   /// Convert Op, which must be of integer type, to the
950   /// integer type VT, by either any/sign/zero-extending (depending on IsAny /
951   /// IsSigned) or truncating it.
952   SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL,
953                         EVT VT, unsigned Opcode) {
954     switch(Opcode) {
955       case ISD::ANY_EXTEND:
956         return getAnyExtOrTrunc(Op, DL, VT);
957       case ISD::ZERO_EXTEND:
958         return getZExtOrTrunc(Op, DL, VT);
959       case ISD::SIGN_EXTEND:
960         return getSExtOrTrunc(Op, DL, VT);
961     }
962     llvm_unreachable("Unsupported opcode");
963   }
964 
965   /// Convert Op, which must be of integer type, to the
966   /// integer type VT, by either sign/zero-extending (depending on IsSigned) or
967   /// truncating it.
968   SDValue getExtOrTrunc(bool IsSigned, SDValue Op, const SDLoc &DL, EVT VT) {
969     return IsSigned ? getSExtOrTrunc(Op, DL, VT) : getZExtOrTrunc(Op, DL, VT);
970   }
971 
972   /// Convert Op, which must be of integer type, to the
973   /// integer type VT, by first bitcasting (from potential vector) to
974   /// corresponding scalar type then either any-extending or truncating it.
975   SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
976 
977   /// Convert Op, which must be of integer type, to the
978   /// integer type VT, by first bitcasting (from potential vector) to
979   /// corresponding scalar type then either sign-extending or truncating it.
980   SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
981 
982   /// Convert Op, which must be of integer type, to the
983   /// integer type VT, by first bitcasting (from potential vector) to
984   /// corresponding scalar type then either zero-extending or truncating it.
985   SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
986 
987   /// Return the expression required to zero extend the Op
988   /// value assuming it was the smaller SrcTy value.
989   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
990 
991   /// Convert Op, which must be of integer type, to the integer type VT, by
992   /// either truncating it or performing either zero or sign extension as
993   /// appropriate extension for the pointer's semantics.
994   SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
995 
996   /// Return the expression required to extend the Op as a pointer value
997   /// assuming it was the smaller SrcTy value. This may be either a zero extend
998   /// or a sign extend.
999   SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
1000 
1001   /// Convert Op, which must be of integer type, to the integer type VT,
1002   /// by using an extension appropriate for the target's
1003   /// BooleanContent for type OpVT or truncating it.
1004   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
1005 
1006   /// Create negative operation as (SUB 0, Val).
1007   SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT);
1008 
1009   /// Create a bitwise NOT operation as (XOR Val, -1).
1010   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
1011 
1012   /// Create a logical NOT operation as (XOR Val, BooleanOne).
1013   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
1014 
1015   /// Create a vector-predicated logical NOT operation as (VP_XOR Val,
1016   /// BooleanOne, Mask, EVL).
1017   SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask,
1018                           SDValue EVL, EVT VT);
1019 
1020   /// Convert a vector-predicated Op, which must be an integer vector, to the
1021   /// vector-type VT, by performing either vector-predicated zext or truncating
1022   /// it. The Op will be returned as-is if Op and VT are vectors containing
1023   /// integer with same width.
1024   SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask,
1025                            SDValue EVL);
1026 
1027   /// Convert a vector-predicated Op, which must be of integer type, to the
1028   /// vector-type integer type VT, by either truncating it or performing either
1029   /// vector-predicated zero or sign extension as appropriate extension for the
1030   /// pointer's semantics. This function just redirects to getVPZExtOrTrunc
1031   /// right now.
1032   SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask,
1033                              SDValue EVL);
1034 
1035   /// Returns sum of the base pointer and offset.
1036   /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default.
1037   SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL,
1038                                const SDNodeFlags Flags = SDNodeFlags());
1039   SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL,
1040                                const SDNodeFlags Flags = SDNodeFlags());
1041 
1042   /// Create an add instruction with appropriate flags when used for
1043   /// addressing some offset of an object. i.e. if a load is split into multiple
1044   /// components, create an add nuw from the base pointer to the offset.
1045   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset) {
1046     SDNodeFlags Flags;
1047     Flags.setNoUnsignedWrap(true);
1048     return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
1049   }
1050 
1051   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) {
1052     // The object itself can't wrap around the address space, so it shouldn't be
1053     // possible for the adds of the offsets to the split parts to overflow.
1054     SDNodeFlags Flags;
1055     Flags.setNoUnsignedWrap(true);
1056     return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
1057   }
1058 
1059   /// Return a new CALLSEQ_START node, that starts new call frame, in which
1060   /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
1061   /// OutSize specifies part of the frame set up prior to the sequence.
1062   SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
1063                            const SDLoc &DL) {
1064     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
1065     SDValue Ops[] = { Chain,
1066                       getIntPtrConstant(InSize, DL, true),
1067                       getIntPtrConstant(OutSize, DL, true) };
1068     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
1069   }
1070 
1071   /// Return a new CALLSEQ_END node, which always must have a
1072   /// glue result (to ensure it's not CSE'd).
1073   /// CALLSEQ_END does not have a useful SDLoc.
1074   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
1075                          SDValue InGlue, const SDLoc &DL) {
1076     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
1077     SmallVector<SDValue, 4> Ops;
1078     Ops.push_back(Chain);
1079     Ops.push_back(Op1);
1080     Ops.push_back(Op2);
1081     if (InGlue.getNode())
1082       Ops.push_back(InGlue);
1083     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
1084   }
1085 
1086   SDValue getCALLSEQ_END(SDValue Chain, uint64_t Size1, uint64_t Size2,
1087                          SDValue Glue, const SDLoc &DL) {
1088     return getCALLSEQ_END(
1089         Chain, getIntPtrConstant(Size1, DL, /*isTarget=*/true),
1090         getIntPtrConstant(Size2, DL, /*isTarget=*/true), Glue, DL);
1091   }
1092 
1093   /// Return true if the result of this operation is always undefined.
1094   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
1095 
1096   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
1097   SDValue getUNDEF(EVT VT) {
1098     return getNode(ISD::UNDEF, SDLoc(), VT);
1099   }
1100 
1101   /// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
1102   SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm,
1103                     bool ConstantFold = true);
1104 
1105   SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC,
1106                           bool ConstantFold = true);
1107 
1108   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
1109   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
1110     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
1111   }
1112 
1113   /// Gets or creates the specified node.
1114   ///
1115   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1116                   ArrayRef<SDUse> Ops);
1117   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1118                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1119   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
1120                   ArrayRef<SDValue> Ops);
1121   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1122                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1123 
1124   // Use flags from current flag inserter.
1125   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1126                   ArrayRef<SDValue> Ops);
1127   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1128                   ArrayRef<SDValue> Ops);
1129   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand);
1130   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1131                   SDValue N2);
1132   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1133                   SDValue N2, SDValue N3);
1134 
1135   // Specialize based on number of operands.
1136   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
1137   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
1138                   const SDNodeFlags Flags);
1139   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1140                   SDValue N2, const SDNodeFlags Flags);
1141   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1142                   SDValue N2, SDValue N3, const SDNodeFlags Flags);
1143   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1144                   SDValue N2, SDValue N3, SDValue N4);
1145   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1146                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
1147 
1148   // Specialize again based on number of operands for nodes with a VTList
1149   // rather than a single VT.
1150   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
1151   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
1152   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1153                   SDValue N2);
1154   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1155                   SDValue N2, SDValue N3);
1156   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1157                   SDValue N2, SDValue N3, SDValue N4);
1158   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1159                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
1160 
1161   /// Compute a TokenFactor to force all the incoming stack arguments to be
1162   /// loaded from the stack. This is used in tail call lowering to protect
1163   /// stack arguments from being clobbered.
1164   SDValue getStackArgumentTokenFactor(SDValue Chain);
1165 
1166   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1167                     SDValue Size, Align Alignment, bool isVol,
1168                     bool AlwaysInline, bool isTailCall,
1169                     MachinePointerInfo DstPtrInfo,
1170                     MachinePointerInfo SrcPtrInfo,
1171                     const AAMDNodes &AAInfo = AAMDNodes(),
1172                     AAResults *AA = nullptr);
1173 
1174   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1175                      SDValue Size, Align Alignment, bool isVol, bool isTailCall,
1176                      MachinePointerInfo DstPtrInfo,
1177                      MachinePointerInfo SrcPtrInfo,
1178                      const AAMDNodes &AAInfo = AAMDNodes(),
1179                      AAResults *AA = nullptr);
1180 
1181   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1182                     SDValue Size, Align Alignment, bool isVol,
1183                     bool AlwaysInline, bool isTailCall,
1184                     MachinePointerInfo DstPtrInfo,
1185                     const AAMDNodes &AAInfo = AAMDNodes());
1186 
1187   SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
1188                           SDValue Src, SDValue Size, Type *SizeTy,
1189                           unsigned ElemSz, bool isTailCall,
1190                           MachinePointerInfo DstPtrInfo,
1191                           MachinePointerInfo SrcPtrInfo);
1192 
1193   SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
1194                            SDValue Src, SDValue Size, Type *SizeTy,
1195                            unsigned ElemSz, bool isTailCall,
1196                            MachinePointerInfo DstPtrInfo,
1197                            MachinePointerInfo SrcPtrInfo);
1198 
1199   SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
1200                           SDValue Value, SDValue Size, Type *SizeTy,
1201                           unsigned ElemSz, bool isTailCall,
1202                           MachinePointerInfo DstPtrInfo);
1203 
1204   /// Helper function to make it easier to build SetCC's if you just have an
1205   /// ISD::CondCode instead of an SDValue.
1206   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
1207                    ISD::CondCode Cond, SDValue Chain = SDValue(),
1208                    bool IsSignaling = false) {
1209     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
1210            "Vector/scalar operand type mismatch for setcc");
1211     assert(LHS.getValueType().isVector() == VT.isVector() &&
1212            "Vector/scalar result type mismatch for setcc");
1213     assert(Cond != ISD::SETCC_INVALID &&
1214            "Cannot create a setCC of an invalid node.");
1215     if (Chain)
1216       return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL,
1217                      {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)});
1218     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
1219   }
1220 
1221   /// Helper function to make it easier to build VP_SETCCs if you just have an
1222   /// ISD::CondCode instead of an SDValue.
1223   SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
1224                      ISD::CondCode Cond, SDValue Mask, SDValue EVL) {
1225     assert(LHS.getValueType().isVector() && RHS.getValueType().isVector() &&
1226            "Cannot compare scalars");
1227     assert(Cond != ISD::SETCC_INVALID &&
1228            "Cannot create a setCC of an invalid node.");
1229     return getNode(ISD::VP_SETCC, DL, VT, LHS, RHS, getCondCode(Cond), Mask,
1230                    EVL);
1231   }
1232 
1233   /// Helper function to make it easier to build Select's if you just have
1234   /// operands and don't want to check for vector.
1235   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
1236                     SDValue RHS) {
1237     assert(LHS.getValueType() == VT && RHS.getValueType() == VT &&
1238            "Cannot use select on differing types");
1239     auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
1240     return getNode(Opcode, DL, VT, Cond, LHS, RHS);
1241   }
1242 
1243   /// Helper function to make it easier to build SelectCC's if you just have an
1244   /// ISD::CondCode instead of an SDValue.
1245   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
1246                       SDValue False, ISD::CondCode Cond) {
1247     return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
1248                    False, getCondCode(Cond));
1249   }
1250 
1251   /// Try to simplify a select/vselect into 1 of its operands or a constant.
1252   SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
1253 
1254   /// Try to simplify a shift into 1 of its operands or a constant.
1255   SDValue simplifyShift(SDValue X, SDValue Y);
1256 
1257   /// Try to simplify a floating-point binary operation into 1 of its operands
1258   /// or a constant.
1259   SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
1260                           SDNodeFlags Flags);
1261 
1262   /// VAArg produces a result and token chain, and takes a pointer
1263   /// and a source value as input.
1264   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1265                    SDValue SV, unsigned Align);
1266 
1267   /// Gets a node for an atomic cmpxchg op. There are two
1268   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1269   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1270   /// a success flag (initially i1), and a chain.
1271   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1272                            SDVTList VTs, SDValue Chain, SDValue Ptr,
1273                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1274 
1275   /// Gets a node for an atomic op, produces result (if relevant)
1276   /// and chain and takes 2 operands.
1277   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1278                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1279 
1280   /// Gets a node for an atomic op, produces result and chain and
1281   /// takes 1 operand.
1282   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1283                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1284 
1285   /// Gets a node for an atomic op, produces result and chain and takes N
1286   /// operands.
1287   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1288                     SDVTList VTList, ArrayRef<SDValue> Ops,
1289                     MachineMemOperand *MMO);
1290 
1291   /// Creates a MemIntrinsicNode that may produce a
1292   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1293   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1294   /// less than FIRST_TARGET_MEMORY_OPCODE.
1295   SDValue getMemIntrinsicNode(
1296       unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1297       EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
1298       MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
1299                                        MachineMemOperand::MOStore,
1300       uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes());
1301 
1302   inline SDValue getMemIntrinsicNode(
1303       unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1304       EVT MemVT, MachinePointerInfo PtrInfo,
1305       MaybeAlign Alignment = std::nullopt,
1306       MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
1307                                        MachineMemOperand::MOStore,
1308       uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes()) {
1309     // Ensure that codegen never sees alignment 0
1310     return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo,
1311                                Alignment.value_or(getEVTAlign(MemVT)), Flags,
1312                                Size, AAInfo);
1313   }
1314 
1315   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1316                               ArrayRef<SDValue> Ops, EVT MemVT,
1317                               MachineMemOperand *MMO);
1318 
1319   /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1320   /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1321   /// offsets `Offset` and `Offset + Size`.
1322   SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1323                           int FrameIndex, int64_t Size, int64_t Offset = -1);
1324 
1325   /// Creates a PseudoProbeSDNode with function GUID `Guid` and
1326   /// the index of the block `Index` it is probing, as well as the attributes
1327   /// `attr` of the probe.
1328   SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid,
1329                              uint64_t Index, uint32_t Attr);
1330 
1331   /// Create a MERGE_VALUES node from the given operands.
1332   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1333 
1334   /// Loads are not normal binary operators: their result type is not
1335   /// determined by their operands, and they produce a value AND a token chain.
1336   ///
1337   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1338   /// you want.  The MOStore flag must not be set.
1339   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1340                   MachinePointerInfo PtrInfo,
1341                   MaybeAlign Alignment = MaybeAlign(),
1342                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1343                   const AAMDNodes &AAInfo = AAMDNodes(),
1344                   const MDNode *Ranges = nullptr);
1345   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1346                   MachineMemOperand *MMO);
1347   SDValue
1348   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1349              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1350              MaybeAlign Alignment = MaybeAlign(),
1351              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1352              const AAMDNodes &AAInfo = AAMDNodes());
1353   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1354                      SDValue Chain, SDValue Ptr, EVT MemVT,
1355                      MachineMemOperand *MMO);
1356   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1357                          SDValue Offset, ISD::MemIndexedMode AM);
1358   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1359                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1360                   MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
1361                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1362                   const AAMDNodes &AAInfo = AAMDNodes(),
1363                   const MDNode *Ranges = nullptr);
1364   inline SDValue getLoad(
1365       ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
1366       SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo,
1367       EVT MemVT, MaybeAlign Alignment = MaybeAlign(),
1368       MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1369       const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) {
1370     // Ensures that codegen never sees a None Alignment.
1371     return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
1372                    Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, AAInfo,
1373                    Ranges);
1374   }
1375   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1376                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1377                   EVT MemVT, MachineMemOperand *MMO);
1378 
1379   /// Helper function to build ISD::STORE nodes.
1380   ///
1381   /// This function will set the MOStore flag on MMOFlags, but you can set it if
1382   /// you want.  The MOLoad and MOInvariant flags must not be set.
1383 
1384   SDValue
1385   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1386            MachinePointerInfo PtrInfo, Align Alignment,
1387            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1388            const AAMDNodes &AAInfo = AAMDNodes());
1389   inline SDValue
1390   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1391            MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(),
1392            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1393            const AAMDNodes &AAInfo = AAMDNodes()) {
1394     return getStore(Chain, dl, Val, Ptr, PtrInfo,
1395                     Alignment.value_or(getEVTAlign(Val.getValueType())),
1396                     MMOFlags, AAInfo);
1397   }
1398   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1399                    MachineMemOperand *MMO);
1400   SDValue
1401   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1402                 MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
1403                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1404                 const AAMDNodes &AAInfo = AAMDNodes());
1405   inline SDValue
1406   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1407                 MachinePointerInfo PtrInfo, EVT SVT,
1408                 MaybeAlign Alignment = MaybeAlign(),
1409                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1410                 const AAMDNodes &AAInfo = AAMDNodes()) {
1411     return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
1412                          Alignment.value_or(getEVTAlign(SVT)), MMOFlags,
1413                          AAInfo);
1414   }
1415   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1416                         SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1417   SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1418                           SDValue Offset, ISD::MemIndexedMode AM);
1419 
1420   SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1421                     const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1422                     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo,
1423                     EVT MemVT, Align Alignment,
1424                     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
1425                     const MDNode *Ranges = nullptr, bool IsExpanding = false);
1426   inline SDValue
1427   getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1428             const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1429             SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1430             MaybeAlign Alignment = MaybeAlign(),
1431             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1432             const AAMDNodes &AAInfo = AAMDNodes(),
1433             const MDNode *Ranges = nullptr, bool IsExpanding = false) {
1434     // Ensures that codegen never sees a None Alignment.
1435     return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL,
1436                      PtrInfo, MemVT, Alignment.value_or(getEVTAlign(MemVT)),
1437                      MMOFlags, AAInfo, Ranges, IsExpanding);
1438   }
1439   SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1440                     const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1441                     SDValue Mask, SDValue EVL, EVT MemVT,
1442                     MachineMemOperand *MMO, bool IsExpanding = false);
1443   SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1444                     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo,
1445                     MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1446                     const AAMDNodes &AAInfo, const MDNode *Ranges = nullptr,
1447                     bool IsExpanding = false);
1448   SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1449                     SDValue Mask, SDValue EVL, MachineMemOperand *MMO,
1450                     bool IsExpanding = false);
1451   SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1452                        SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL,
1453                        MachinePointerInfo PtrInfo, EVT MemVT,
1454                        MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1455                        const AAMDNodes &AAInfo, bool IsExpanding = false);
1456   SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1457                        SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL,
1458                        EVT MemVT, MachineMemOperand *MMO,
1459                        bool IsExpanding = false);
1460   SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1461                            SDValue Offset, ISD::MemIndexedMode AM);
1462   SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1463                      SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT,
1464                      MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1465                      bool IsTruncating = false, bool IsCompressing = false);
1466   SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1467                           SDValue Ptr, SDValue Mask, SDValue EVL,
1468                           MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
1469                           MachineMemOperand::Flags MMOFlags,
1470                           const AAMDNodes &AAInfo, bool IsCompressing = false);
1471   SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1472                           SDValue Ptr, SDValue Mask, SDValue EVL, EVT SVT,
1473                           MachineMemOperand *MMO, bool IsCompressing = false);
1474   SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1475                             SDValue Offset, ISD::MemIndexedMode AM);
1476 
1477   SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
1478                            EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1479                            SDValue Offset, SDValue Stride, SDValue Mask,
1480                            SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1481                            Align Alignment, MachineMemOperand::Flags MMOFlags,
1482                            const AAMDNodes &AAInfo,
1483                            const MDNode *Ranges = nullptr,
1484                            bool IsExpanding = false);
1485   inline SDValue getStridedLoadVP(
1486       ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
1487       SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
1488       SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1489       MaybeAlign Alignment = MaybeAlign(),
1490       MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1491       const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr,
1492       bool IsExpanding = false) {
1493     // Ensures that codegen never sees a None Alignment.
1494     return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride,
1495                             Mask, EVL, PtrInfo, MemVT,
1496                             Alignment.value_or(getEVTAlign(MemVT)), MMOFlags,
1497                             AAInfo, Ranges, IsExpanding);
1498   }
1499   SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
1500                            EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1501                            SDValue Offset, SDValue Stride, SDValue Mask,
1502                            SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
1503                            bool IsExpanding = false);
1504   SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1505                            SDValue Stride, SDValue Mask, SDValue EVL,
1506                            MachinePointerInfo PtrInfo, MaybeAlign Alignment,
1507                            MachineMemOperand::Flags MMOFlags,
1508                            const AAMDNodes &AAInfo,
1509                            const MDNode *Ranges = nullptr,
1510                            bool IsExpanding = false);
1511   SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1512                            SDValue Stride, SDValue Mask, SDValue EVL,
1513                            MachineMemOperand *MMO, bool IsExpanding = false);
1514   SDValue
1515   getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT,
1516                       SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask,
1517                       SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1518                       MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1519                       const AAMDNodes &AAInfo, bool IsExpanding = false);
1520   SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT,
1521                               SDValue Chain, SDValue Ptr, SDValue Stride,
1522                               SDValue Mask, SDValue EVL, EVT MemVT,
1523                               MachineMemOperand *MMO, bool IsExpanding = false);
1524   SDValue getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
1525                                   SDValue Base, SDValue Offset,
1526                                   ISD::MemIndexedMode AM);
1527   SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1528                             SDValue Ptr, SDValue Offset, SDValue Stride,
1529                             SDValue Mask, SDValue EVL, EVT MemVT,
1530                             MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1531                             bool IsTruncating = false,
1532                             bool IsCompressing = false);
1533   SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1534                                  SDValue Ptr, SDValue Stride, SDValue Mask,
1535                                  SDValue EVL, MachinePointerInfo PtrInfo,
1536                                  EVT SVT, Align Alignment,
1537                                  MachineMemOperand::Flags MMOFlags,
1538                                  const AAMDNodes &AAInfo,
1539                                  bool IsCompressing = false);
1540   SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1541                                  SDValue Ptr, SDValue Stride, SDValue Mask,
1542                                  SDValue EVL, EVT SVT, MachineMemOperand *MMO,
1543                                  bool IsCompressing = false);
1544   SDValue getIndexedStridedStoreVP(SDValue OrigStore, const SDLoc &DL,
1545                                    SDValue Base, SDValue Offset,
1546                                    ISD::MemIndexedMode AM);
1547 
1548   SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1549                       ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1550                       ISD::MemIndexType IndexType);
1551   SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1552                        ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1553                        ISD::MemIndexType IndexType);
1554 
1555   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base,
1556                         SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT,
1557                         MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1558                         ISD::LoadExtType, bool IsExpanding = false);
1559   SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1560                                SDValue Offset, ISD::MemIndexedMode AM);
1561   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1562                          SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT,
1563                          MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1564                          bool IsTruncating = false, bool IsCompressing = false);
1565   SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
1566                                 SDValue Base, SDValue Offset,
1567                                 ISD::MemIndexedMode AM);
1568   SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1569                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1570                           ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy);
1571   SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1572                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1573                            ISD::MemIndexType IndexType,
1574                            bool IsTruncating = false);
1575 
1576   SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT,
1577                       MachineMemOperand *MMO);
1578   SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT,
1579                       MachineMemOperand *MMO);
1580 
1581   /// Construct a node to track a Value* through the backend.
1582   SDValue getSrcValue(const Value *v);
1583 
1584   /// Return an MDNodeSDNode which holds an MDNode.
1585   SDValue getMDNode(const MDNode *MD);
1586 
1587   /// Return a bitcast using the SDLoc of the value operand, and casting to the
1588   /// provided type. Use getNode to set a custom SDLoc.
1589   SDValue getBitcast(EVT VT, SDValue V);
1590 
1591   /// Return an AddrSpaceCastSDNode.
1592   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1593                            unsigned DestAS);
1594 
1595   /// Return a freeze using the SDLoc of the value operand.
1596   SDValue getFreeze(SDValue V);
1597 
1598   /// Return an AssertAlignSDNode.
1599   SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A);
1600 
1601   /// Swap N1 and N2 if Opcode is a commutative binary opcode
1602   /// and the canonical form expects the opposite order.
1603   void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
1604                                     SDValue &N2) const;
1605 
1606   /// Return the specified value casted to
1607   /// the target's desired shift amount type.
1608   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1609 
1610   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1611   SDValue expandVAArg(SDNode *Node);
1612 
1613   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1614   SDValue expandVACopy(SDNode *Node);
1615 
1616   /// Returs an GlobalAddress of the function from the current module with
1617   /// name matching the given ExternalSymbol. Additionally can provide the
1618   /// matched function.
1619   /// Panics the function doesn't exists.
1620   SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1621                                          Function **TargetFunction = nullptr);
1622 
1623   /// *Mutate* the specified node in-place to have the
1624   /// specified operands.  If the resultant node already exists in the DAG,
1625   /// this does not modify the specified node, instead it returns the node that
1626   /// already exists.  If the resultant node does not exist in the DAG, the
1627   /// input node is returned.  As a degenerate case, if you specify the same
1628   /// input operands as the node already has, the input node is returned.
1629   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1630   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1631   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1632                                SDValue Op3);
1633   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1634                                SDValue Op3, SDValue Op4);
1635   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1636                                SDValue Op3, SDValue Op4, SDValue Op5);
1637   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1638 
1639   /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1640   /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1641   /// the final TokenFactor has less than 64k operands.
1642   SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1643 
1644   /// *Mutate* the specified machine node's memory references to the provided
1645   /// list.
1646   void setNodeMemRefs(MachineSDNode *N,
1647                       ArrayRef<MachineMemOperand *> NewMemRefs);
1648 
1649   // Calculate divergence of node \p N based on its operands.
1650   bool calculateDivergence(SDNode *N);
1651 
1652   // Propagates the change in divergence to users
1653   void updateDivergence(SDNode * N);
1654 
1655   /// These are used for target selectors to *mutate* the
1656   /// specified node to have the specified return type, Target opcode, and
1657   /// operands.  Note that target opcodes are stored as
1658   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1659   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1660   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1661   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1662                        SDValue Op1, SDValue Op2);
1663   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1664                        SDValue Op1, SDValue Op2, SDValue Op3);
1665   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1666                        ArrayRef<SDValue> Ops);
1667   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1668   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1669                        EVT VT2, ArrayRef<SDValue> Ops);
1670   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1671                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1672   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1673                        EVT VT2, SDValue Op1, SDValue Op2);
1674   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1675                        ArrayRef<SDValue> Ops);
1676 
1677   /// This *mutates* the specified node to have the specified
1678   /// return type, opcode, and operands.
1679   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1680                       ArrayRef<SDValue> Ops);
1681 
1682   /// Mutate the specified strict FP node to its non-strict equivalent,
1683   /// unlinking the node from its chain and dropping the metadata arguments.
1684   /// The node must be a strict FP node.
1685   SDNode *mutateStrictFPToFP(SDNode *Node);
1686 
1687   /// These are used for target selectors to create a new node
1688   /// with specified return type(s), MachineInstr opcode, and operands.
1689   ///
1690   /// Note that getMachineNode returns the resultant node.  If there is already
1691   /// a node of the specified opcode and operands, it returns that node instead
1692   /// of the current one.
1693   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1694   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1695                                 SDValue Op1);
1696   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1697                                 SDValue Op1, SDValue Op2);
1698   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1699                                 SDValue Op1, SDValue Op2, SDValue Op3);
1700   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1701                                 ArrayRef<SDValue> Ops);
1702   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1703                                 EVT VT2, SDValue Op1, SDValue Op2);
1704   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1705                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1706   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1707                                 EVT VT2, ArrayRef<SDValue> Ops);
1708   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1709                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1710   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1711                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1712                                 SDValue Op3);
1713   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1714                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1715   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1716                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1717   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1718                                 ArrayRef<SDValue> Ops);
1719 
1720   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1721   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1722                                  SDValue Operand);
1723 
1724   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1725   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1726                                 SDValue Operand, SDValue Subreg);
1727 
1728   /// Get the specified node if it's already available, or else return NULL.
1729   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1730                           ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1731   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1732                           ArrayRef<SDValue> Ops);
1733 
1734   /// Check if a node exists without modifying its flags.
1735   bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops);
1736 
1737   /// Creates a SDDbgValue node.
1738   SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1739                           unsigned R, bool IsIndirect, const DebugLoc &DL,
1740                           unsigned O);
1741 
1742   /// Creates a constant SDDbgValue node.
1743   SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1744                                   const Value *C, const DebugLoc &DL,
1745                                   unsigned O);
1746 
1747   /// Creates a FrameIndex SDDbgValue node.
1748   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1749                                     unsigned FI, bool IsIndirect,
1750                                     const DebugLoc &DL, unsigned O);
1751 
1752   /// Creates a FrameIndex SDDbgValue node.
1753   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1754                                     unsigned FI,
1755                                     ArrayRef<SDNode *> Dependencies,
1756                                     bool IsIndirect, const DebugLoc &DL,
1757                                     unsigned O);
1758 
1759   /// Creates a VReg SDDbgValue node.
1760   SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1761                               unsigned VReg, bool IsIndirect,
1762                               const DebugLoc &DL, unsigned O);
1763 
1764   /// Creates a SDDbgValue node from a list of locations.
1765   SDDbgValue *getDbgValueList(DIVariable *Var, DIExpression *Expr,
1766                               ArrayRef<SDDbgOperand> Locs,
1767                               ArrayRef<SDNode *> Dependencies, bool IsIndirect,
1768                               const DebugLoc &DL, unsigned O, bool IsVariadic);
1769 
1770   /// Creates a SDDbgLabel node.
1771   SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1772 
1773   /// Transfer debug values from one node to another, while optionally
1774   /// generating fragment expressions for split-up values. If \p InvalidateDbg
1775   /// is set, debug values are invalidated after they are transferred.
1776   void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1777                          unsigned SizeInBits = 0, bool InvalidateDbg = true);
1778 
1779   /// Remove the specified node from the system. If any of its
1780   /// operands then becomes dead, remove them as well. Inform UpdateListener
1781   /// for each node deleted.
1782   void RemoveDeadNode(SDNode *N);
1783 
1784   /// This method deletes the unreachable nodes in the
1785   /// given list, and any nodes that become unreachable as a result.
1786   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1787 
1788   /// Modify anything using 'From' to use 'To' instead.
1789   /// This can cause recursive merging of nodes in the DAG.  Use the first
1790   /// version if 'From' is known to have a single result, use the second
1791   /// if you have two nodes with identical results (or if 'To' has a superset
1792   /// of the results of 'From'), use the third otherwise.
1793   ///
1794   /// These methods all take an optional UpdateListener, which (if not null) is
1795   /// informed about nodes that are deleted and modified due to recursive
1796   /// changes in the dag.
1797   ///
1798   /// These functions only replace all existing uses. It's possible that as
1799   /// these replacements are being performed, CSE may cause the From node
1800   /// to be given new uses. These new uses of From are left in place, and
1801   /// not automatically transferred to To.
1802   ///
1803   void ReplaceAllUsesWith(SDValue From, SDValue To);
1804   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1805   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1806 
1807   /// Replace any uses of From with To, leaving
1808   /// uses of other values produced by From.getNode() alone.
1809   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1810 
1811   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1812   /// This correctly handles the case where
1813   /// there is an overlap between the From values and the To values.
1814   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1815                                   unsigned Num);
1816 
1817   /// If an existing load has uses of its chain, create a token factor node with
1818   /// that chain and the new memory node's chain and update users of the old
1819   /// chain to the token factor. This ensures that the new memory node will have
1820   /// the same relative memory dependency position as the old load. Returns the
1821   /// new merged load chain.
1822   SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain);
1823 
1824   /// If an existing load has uses of its chain, create a token factor node with
1825   /// that chain and the new memory node's chain and update users of the old
1826   /// chain to the token factor. This ensures that the new memory node will have
1827   /// the same relative memory dependency position as the old load. Returns the
1828   /// new merged load chain.
1829   SDValue makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp);
1830 
1831   /// Topological-sort the AllNodes list and a
1832   /// assign a unique node id for each node in the DAG based on their
1833   /// topological order. Returns the number of nodes.
1834   unsigned AssignTopologicalOrder();
1835 
1836   /// Move node N in the AllNodes list to be immediately
1837   /// before the given iterator Position. This may be used to update the
1838   /// topological ordering when the list of nodes is modified.
1839   void RepositionNode(allnodes_iterator Position, SDNode *N) {
1840     AllNodes.insert(Position, AllNodes.remove(N));
1841   }
1842 
1843   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1844   /// a vector type, the element semantics are returned.
1845   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1846     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1847     default: llvm_unreachable("Unknown FP format");
1848     case MVT::f16:     return APFloat::IEEEhalf();
1849     case MVT::bf16:    return APFloat::BFloat();
1850     case MVT::f32:     return APFloat::IEEEsingle();
1851     case MVT::f64:     return APFloat::IEEEdouble();
1852     case MVT::f80:     return APFloat::x87DoubleExtended();
1853     case MVT::f128:    return APFloat::IEEEquad();
1854     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1855     }
1856   }
1857 
1858   /// Add a dbg_value SDNode. If SD is non-null that means the
1859   /// value is produced by SD.
1860   void AddDbgValue(SDDbgValue *DB, bool isParameter);
1861 
1862   /// Add a dbg_label SDNode.
1863   void AddDbgLabel(SDDbgLabel *DB);
1864 
1865   /// Get the debug values which reference the given SDNode.
1866   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1867     return DbgInfo->getSDDbgValues(SD);
1868   }
1869 
1870 public:
1871   /// Return true if there are any SDDbgValue nodes associated
1872   /// with this SelectionDAG.
1873   bool hasDebugValues() const { return !DbgInfo->empty(); }
1874 
1875   SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1876   SDDbgInfo::DbgIterator DbgEnd() const  { return DbgInfo->DbgEnd(); }
1877 
1878   SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1879     return DbgInfo->ByvalParmDbgBegin();
1880   }
1881   SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1882     return DbgInfo->ByvalParmDbgEnd();
1883   }
1884 
1885   SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1886     return DbgInfo->DbgLabelBegin();
1887   }
1888   SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1889     return DbgInfo->DbgLabelEnd();
1890   }
1891 
1892   /// To be invoked on an SDNode that is slated to be erased. This
1893   /// function mirrors \c llvm::salvageDebugInfo.
1894   void salvageDebugInfo(SDNode &N);
1895 
1896   void dump() const;
1897 
1898   /// In most cases this function returns the ABI alignment for a given type,
1899   /// except for illegal vector types where the alignment exceeds that of the
1900   /// stack. In such cases we attempt to break the vector down to a legal type
1901   /// and return the ABI alignment for that instead.
1902   Align getReducedAlign(EVT VT, bool UseABI);
1903 
1904   /// Create a stack temporary based on the size in bytes and the alignment
1905   SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment);
1906 
1907   /// Create a stack temporary, suitable for holding the specified value type.
1908   /// If minAlign is specified, the slot size will have at least that alignment.
1909   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1910 
1911   /// Create a stack temporary suitable for holding either of the specified
1912   /// value types.
1913   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1914 
1915   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1916                            const GlobalAddressSDNode *GA,
1917                            const SDNode *N2);
1918 
1919   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1920                                  ArrayRef<SDValue> Ops);
1921 
1922   /// Fold floating-point operations when all operands are constants and/or
1923   /// undefined.
1924   SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1925                              ArrayRef<SDValue> Ops);
1926 
1927   /// Constant fold a setcc to true or false.
1928   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1929                     const SDLoc &dl);
1930 
1931   /// Return true if the sign bit of Op is known to be zero.
1932   /// We use this predicate to simplify operations downstream.
1933   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1934 
1935   /// Return true if 'Op & Mask' is known to be zero.  We
1936   /// use this predicate to simplify operations downstream.  Op and Mask are
1937   /// known to be the same type.
1938   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1939                          unsigned Depth = 0) const;
1940 
1941   /// Return true if 'Op & Mask' is known to be zero in DemandedElts.  We
1942   /// use this predicate to simplify operations downstream.  Op and Mask are
1943   /// known to be the same type.
1944   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1945                          const APInt &DemandedElts, unsigned Depth = 0) const;
1946 
1947   /// Return true if 'Op' is known to be zero in DemandedElts.  We
1948   /// use this predicate to simplify operations downstream.
1949   bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts,
1950                           unsigned Depth = 0) const;
1951 
1952   /// Return true if '(Op & Mask) == Mask'.
1953   /// Op and Mask are known to be the same type.
1954   bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1955                             unsigned Depth = 0) const;
1956 
1957   /// For each demanded element of a vector, see if it is known to be zero.
1958   APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts,
1959                                        unsigned Depth = 0) const;
1960 
1961   /// Determine which bits of Op are known to be either zero or one and return
1962   /// them in Known. For vectors, the known bits are those that are shared by
1963   /// every vector element.
1964   /// Targets can implement the computeKnownBitsForTargetNode method in the
1965   /// TargetLowering class to allow target nodes to be understood.
1966   KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1967 
1968   /// Determine which bits of Op are known to be either zero or one and return
1969   /// them in Known. The DemandedElts argument allows us to only collect the
1970   /// known bits that are shared by the requested vector elements.
1971   /// Targets can implement the computeKnownBitsForTargetNode method in the
1972   /// TargetLowering class to allow target nodes to be understood.
1973   KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1974                              unsigned Depth = 0) const;
1975 
1976   /// Used to represent the possible overflow behavior of an operation.
1977   /// Never: the operation cannot overflow.
1978   /// Always: the operation will always overflow.
1979   /// Sometime: the operation may or may not overflow.
1980   enum OverflowKind {
1981     OFK_Never,
1982     OFK_Sometime,
1983     OFK_Always,
1984   };
1985 
1986   /// Determine if the result of the signed addition of 2 nodes can overflow.
1987   OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const;
1988 
1989   /// Determine if the result of the unsigned addition of 2 nodes can overflow.
1990   OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const;
1991 
1992   /// Determine if the result of the addition of 2 nodes can overflow.
1993   OverflowKind computeOverflowForAdd(bool IsSigned, SDValue N0,
1994                                      SDValue N1) const {
1995     return IsSigned ? computeOverflowForSignedAdd(N0, N1)
1996                     : computeOverflowForUnsignedAdd(N0, N1);
1997   }
1998 
1999   /// Determine if the result of the addition of 2 nodes can never overflow.
2000   bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const {
2001     return computeOverflowForAdd(IsSigned, N0, N1) == OFK_Never;
2002   }
2003 
2004   /// Determine if the result of the signed sub of 2 nodes can overflow.
2005   OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const;
2006 
2007   /// Determine if the result of the unsigned sub of 2 nodes can overflow.
2008   OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const;
2009 
2010   /// Determine if the result of the sub of 2 nodes can overflow.
2011   OverflowKind computeOverflowForSub(bool IsSigned, SDValue N0,
2012                                      SDValue N1) const {
2013     return IsSigned ? computeOverflowForSignedSub(N0, N1)
2014                     : computeOverflowForUnsignedSub(N0, N1);
2015   }
2016 
2017   /// Determine if the result of the sub of 2 nodes can never overflow.
2018   bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const {
2019     return computeOverflowForSub(IsSigned, N0, N1) == OFK_Never;
2020   }
2021 
2022   /// Determine if the result of the signed mul of 2 nodes can overflow.
2023   OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const;
2024 
2025   /// Determine if the result of the unsigned mul of 2 nodes can overflow.
2026   OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const;
2027 
2028   /// Determine if the result of the mul of 2 nodes can overflow.
2029   OverflowKind computeOverflowForMul(bool IsSigned, SDValue N0,
2030                                      SDValue N1) const {
2031     return IsSigned ? computeOverflowForSignedMul(N0, N1)
2032                     : computeOverflowForUnsignedMul(N0, N1);
2033   }
2034 
2035   /// Determine if the result of the mul of 2 nodes can never overflow.
2036   bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const {
2037     return computeOverflowForMul(IsSigned, N0, N1) == OFK_Never;
2038   }
2039 
2040   /// Test if the given value is known to have exactly one bit set. This differs
2041   /// from computeKnownBits in that it doesn't necessarily determine which bit
2042   /// is set.
2043   bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth = 0) const;
2044 
2045   /// Return the number of times the sign bit of the register is replicated into
2046   /// the other bits. We know that at least 1 bit is always equal to the sign
2047   /// bit (itself), but other cases can give us information. For example,
2048   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
2049   /// to each other, so we return 3. Targets can implement the
2050   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
2051   /// target nodes to be understood.
2052   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
2053 
2054   /// Return the number of times the sign bit of the register is replicated into
2055   /// the other bits. We know that at least 1 bit is always equal to the sign
2056   /// bit (itself), but other cases can give us information. For example,
2057   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
2058   /// to each other, so we return 3. The DemandedElts argument allows
2059   /// us to only collect the minimum sign bits of the requested vector elements.
2060   /// Targets can implement the ComputeNumSignBitsForTarget method in the
2061   /// TargetLowering class to allow target nodes to be understood.
2062   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
2063                               unsigned Depth = 0) const;
2064 
2065   /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2066   /// i.e.  x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2067   /// Similar to the APInt::getSignificantBits function.
2068   /// Helper wrapper to ComputeNumSignBits.
2069   unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth = 0) const;
2070 
2071   /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2072   /// i.e.  x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2073   /// Similar to the APInt::getSignificantBits function.
2074   /// Helper wrapper to ComputeNumSignBits.
2075   unsigned ComputeMaxSignificantBits(SDValue Op, const APInt &DemandedElts,
2076                                      unsigned Depth = 0) const;
2077 
2078   /// Return true if this function can prove that \p Op is never poison
2079   /// and, if \p PoisonOnly is false, does not have undef bits.
2080   bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly = false,
2081                                         unsigned Depth = 0) const;
2082 
2083   /// Return true if this function can prove that \p Op is never poison
2084   /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
2085   /// argument limits the check to the requested vector elements.
2086   bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, const APInt &DemandedElts,
2087                                         bool PoisonOnly = false,
2088                                         unsigned Depth = 0) const;
2089 
2090   /// Return true if this function can prove that \p Op is never poison.
2091   bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const {
2092     return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth);
2093   }
2094 
2095   /// Return true if this function can prove that \p Op is never poison. The
2096   /// DemandedElts argument limits the check to the requested vector elements.
2097   bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts,
2098                                  unsigned Depth = 0) const {
2099     return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts,
2100                                             /*PoisonOnly*/ true, Depth);
2101   }
2102 
2103   /// Return true if Op can create undef or poison from non-undef & non-poison
2104   /// operands. The DemandedElts argument limits the check to the requested
2105   /// vector elements.
2106   ///
2107   /// \p ConsiderFlags controls whether poison producing flags on the
2108   /// instruction are considered.  This can be used to see if the instruction
2109   /// could still introduce undef or poison even without poison generating flags
2110   /// which might be on the instruction.  (i.e. could the result of
2111   /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2112   bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
2113                               bool PoisonOnly = false,
2114                               bool ConsiderFlags = true,
2115                               unsigned Depth = 0) const;
2116 
2117   /// Return true if Op can create undef or poison from non-undef & non-poison
2118   /// operands.
2119   ///
2120   /// \p ConsiderFlags controls whether poison producing flags on the
2121   /// instruction are considered.  This can be used to see if the instruction
2122   /// could still introduce undef or poison even without poison generating flags
2123   /// which might be on the instruction.  (i.e. could the result of
2124   /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2125   bool canCreateUndefOrPoison(SDValue Op, bool PoisonOnly = false,
2126                               bool ConsiderFlags = true,
2127                               unsigned Depth = 0) const;
2128 
2129   /// Return true if the specified operand is an ISD::OR or ISD::XOR node
2130   /// that can be treated as an ISD::ADD node.
2131   /// or(x,y) == add(x,y) iff haveNoCommonBitsSet(x,y)
2132   /// xor(x,y) == add(x,y) iff isMinSignedConstant(y)
2133   bool isADDLike(SDValue Op) const;
2134 
2135   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
2136   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
2137   /// is guaranteed to have the same semantics as an ADD. This handles the
2138   /// equivalence:
2139   ///     X|Cst == X+Cst iff X&Cst = 0.
2140   bool isBaseWithConstantOffset(SDValue Op) const;
2141 
2142   /// Test whether the given SDValue (or all elements of it, if it is a
2143   /// vector) is known to never be NaN. If \p SNaN is true, returns if \p Op is
2144   /// known to never be a signaling NaN (it may still be a qNaN).
2145   bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
2146 
2147   /// \returns true if \p Op is known to never be a signaling NaN.
2148   bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
2149     return isKnownNeverNaN(Op, true, Depth);
2150   }
2151 
2152   /// Test whether the given floating point SDValue is known to never be
2153   /// positive or negative zero.
2154   bool isKnownNeverZeroFloat(SDValue Op) const;
2155 
2156   /// Test whether the given SDValue is known to contain non-zero value(s).
2157   bool isKnownNeverZero(SDValue Op, unsigned Depth = 0) const;
2158 
2159   /// Test whether two SDValues are known to compare equal. This
2160   /// is true if they are the same value, or if one is negative zero and the
2161   /// other positive zero.
2162   bool isEqualTo(SDValue A, SDValue B) const;
2163 
2164   /// Return true if A and B have no common bits set. As an example, this can
2165   /// allow an 'add' to be transformed into an 'or'.
2166   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
2167 
2168   /// Test whether \p V has a splatted value for all the demanded elements.
2169   ///
2170   /// On success \p UndefElts will indicate the elements that have UNDEF
2171   /// values instead of the splat value, this is only guaranteed to be correct
2172   /// for \p DemandedElts.
2173   ///
2174   /// NOTE: The function will return true for a demanded splat of UNDEF values.
2175   bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts,
2176                     unsigned Depth = 0) const;
2177 
2178   /// Test whether \p V has a splatted value.
2179   bool isSplatValue(SDValue V, bool AllowUndefs = false) const;
2180 
2181   /// If V is a splatted value, return the source vector and its splat index.
2182   SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
2183 
2184   /// If V is a splat vector, return its scalar source operand by extracting
2185   /// that element from the source vector. If LegalTypes is true, this method
2186   /// may only return a legally-typed splat value. If it cannot legalize the
2187   /// splatted value it will return SDValue().
2188   SDValue getSplatValue(SDValue V, bool LegalTypes = false);
2189 
2190   /// If a SHL/SRA/SRL node \p V has a constant or splat constant shift amount
2191   /// that is less than the element bit-width of the shift node, return it.
2192   const APInt *getValidShiftAmountConstant(SDValue V,
2193                                            const APInt &DemandedElts) const;
2194 
2195   /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
2196   /// than the element bit-width of the shift node, return the minimum value.
2197   const APInt *
2198   getValidMinimumShiftAmountConstant(SDValue V,
2199                                      const APInt &DemandedElts) const;
2200 
2201   /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
2202   /// than the element bit-width of the shift node, return the maximum value.
2203   const APInt *
2204   getValidMaximumShiftAmountConstant(SDValue V,
2205                                      const APInt &DemandedElts) const;
2206 
2207   /// Match a binop + shuffle pyramid that represents a horizontal reduction
2208   /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
2209   /// Extract. The reduction must use one of the opcodes listed in /p
2210   /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
2211   /// Returns the vector that is being reduced on, or SDValue() if a reduction
2212   /// was not matched. If \p AllowPartials is set then in the case of a
2213   /// reduction pattern that only matches the first few stages, the extracted
2214   /// subvector of the start of the reduction is returned.
2215   SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
2216                               ArrayRef<ISD::NodeType> CandidateBinOps,
2217                               bool AllowPartials = false);
2218 
2219   /// Utility function used by legalize and lowering to
2220   /// "unroll" a vector operation by splitting out the scalars and operating
2221   /// on each element individually.  If the ResNE is 0, fully unroll the vector
2222   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
2223   /// If the  ResNE is greater than the width of the vector op, unroll the
2224   /// vector op and fill the end of the resulting vector with UNDEFS.
2225   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
2226 
2227   /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
2228   /// This is a separate function because those opcodes have two results.
2229   std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
2230                                                      unsigned ResNE = 0);
2231 
2232   /// Return true if loads are next to each other and can be
2233   /// merged. Check that both are nonvolatile and if LD is loading
2234   /// 'Bytes' bytes from a location that is 'Dist' units away from the
2235   /// location that the 'Base' load is loading from.
2236   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
2237                                       unsigned Bytes, int Dist) const;
2238 
2239   /// Infer alignment of a load / store address. Return std::nullopt if it
2240   /// cannot be inferred.
2241   MaybeAlign InferPtrAlign(SDValue Ptr) const;
2242 
2243   /// Split the scalar node with EXTRACT_ELEMENT using the provided VTs and
2244   /// return the low/high part.
2245   std::pair<SDValue, SDValue> SplitScalar(const SDValue &N, const SDLoc &DL,
2246                                           const EVT &LoVT, const EVT &HiVT);
2247 
2248   /// Compute the VTs needed for the low/hi parts of a type
2249   /// which is split (or expanded) into two not necessarily identical pieces.
2250   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
2251 
2252   /// Compute the VTs needed for the low/hi parts of a type, dependent on an
2253   /// enveloping VT that has been split into two identical pieces. Sets the
2254   /// HisIsEmpty flag when hi type has zero storage size.
2255   std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
2256                                                bool *HiIsEmpty) const;
2257 
2258   /// Split the vector with EXTRACT_SUBVECTOR using the provides
2259   /// VTs and return the low/high part.
2260   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
2261                                           const EVT &LoVT, const EVT &HiVT);
2262 
2263   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
2264   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
2265     EVT LoVT, HiVT;
2266     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
2267     return SplitVector(N, DL, LoVT, HiVT);
2268   }
2269 
2270   /// Split the explicit vector length parameter of a VP operation.
2271   std::pair<SDValue, SDValue> SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL);
2272 
2273   /// Split the node's operand with EXTRACT_SUBVECTOR and
2274   /// return the low/high part.
2275   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
2276   {
2277     return SplitVector(N->getOperand(OpNo), SDLoc(N));
2278   }
2279 
2280   /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
2281   SDValue WidenVector(const SDValue &N, const SDLoc &DL);
2282 
2283   /// Append the extracted elements from Start to Count out of the vector Op in
2284   /// Args. If Count is 0, all of the elements will be extracted. The extracted
2285   /// elements will have type EVT if it is provided, and otherwise their type
2286   /// will be Op's element type.
2287   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
2288                              unsigned Start = 0, unsigned Count = 0,
2289                              EVT EltVT = EVT());
2290 
2291   /// Compute the default alignment value for the given type.
2292   Align getEVTAlign(EVT MemoryVT) const;
2293 
2294   /// Test whether the given value is a constant int or similar node.
2295   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) const;
2296 
2297   /// Test whether the given value is a constant FP or similar node.
2298   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) const ;
2299 
2300   /// \returns true if \p N is any kind of constant or build_vector of
2301   /// constants, int or float. If a vector, it may not necessarily be a splat.
2302   inline bool isConstantValueOfAnyType(SDValue N) const {
2303     return isConstantIntBuildVectorOrConstantInt(N) ||
2304            isConstantFPBuildVectorOrConstantFP(N);
2305   }
2306 
2307   /// Set CallSiteInfo to be associated with Node.
2308   void addCallSiteInfo(const SDNode *Node, CallSiteInfoImpl &&CallInfo) {
2309     SDEI[Node].CSInfo = std::move(CallInfo);
2310   }
2311   /// Return CallSiteInfo associated with Node, or a default if none exists.
2312   CallSiteInfo getCallSiteInfo(const SDNode *Node) {
2313     auto I = SDEI.find(Node);
2314     return I != SDEI.end() ? std::move(I->second).CSInfo : CallSiteInfo();
2315   }
2316   /// Set HeapAllocSite to be associated with Node.
2317   void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
2318     SDEI[Node].HeapAllocSite = MD;
2319   }
2320   /// Return HeapAllocSite associated with Node, or nullptr if none exists.
2321   MDNode *getHeapAllocSite(const SDNode *Node) const {
2322     auto I = SDEI.find(Node);
2323     return I != SDEI.end() ? I->second.HeapAllocSite : nullptr;
2324   }
2325   /// Set PCSections to be associated with Node.
2326   void addPCSections(const SDNode *Node, MDNode *MD) {
2327     SDEI[Node].PCSections = MD;
2328   }
2329   /// Return PCSections associated with Node, or nullptr if none exists.
2330   MDNode *getPCSections(const SDNode *Node) const {
2331     auto It = SDEI.find(Node);
2332     return It != SDEI.end() ? It->second.PCSections : nullptr;
2333   }
2334   /// Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
2335   void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) {
2336     if (NoMerge)
2337       SDEI[Node].NoMerge = NoMerge;
2338   }
2339   /// Return NoMerge info associated with Node.
2340   bool getNoMergeSiteInfo(const SDNode *Node) const {
2341     auto I = SDEI.find(Node);
2342     return I != SDEI.end() ? I->second.NoMerge : false;
2343   }
2344 
2345   /// Copy extra info associated with one node to another.
2346   void copyExtraInfo(SDNode *From, SDNode *To);
2347 
2348   /// Return the current function's default denormal handling kind for the given
2349   /// floating point type.
2350   DenormalMode getDenormalMode(EVT VT) const {
2351     return MF->getDenormalMode(EVTToAPFloatSemantics(VT));
2352   }
2353 
2354   bool shouldOptForSize() const;
2355 
2356   /// Get the (commutative) neutral element for the given opcode, if it exists.
2357   SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT,
2358                             SDNodeFlags Flags);
2359 
2360   /// Some opcodes may create immediate undefined behavior when used with some
2361   /// values (integer division-by-zero for example). Therefore, these operations
2362   /// are not generally safe to move around or change.
2363   bool isSafeToSpeculativelyExecute(unsigned Opcode) const {
2364     switch (Opcode) {
2365     case ISD::SDIV:
2366     case ISD::SREM:
2367     case ISD::SDIVREM:
2368     case ISD::UDIV:
2369     case ISD::UREM:
2370     case ISD::UDIVREM:
2371       return false;
2372     default:
2373       return true;
2374     }
2375   }
2376 
2377   /// Check if the provided node is save to speculatively executed given its
2378   /// current arguments. So, while `udiv` the opcode is not safe to
2379   /// speculatively execute, a given `udiv` node may be if the denominator is
2380   /// known nonzero.
2381   bool isSafeToSpeculativelyExecuteNode(const SDNode *N) const {
2382     switch (N->getOpcode()) {
2383     case ISD::UDIV:
2384       return isKnownNeverZero(N->getOperand(1));
2385     default:
2386       return isSafeToSpeculativelyExecute(N->getOpcode());
2387     }
2388   }
2389 
2390   SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain,
2391                                 const SDLoc &DLoc);
2392 
2393 private:
2394   void InsertNode(SDNode *N);
2395   bool RemoveNodeFromCSEMaps(SDNode *N);
2396   void AddModifiedNodeToCSEMaps(SDNode *N);
2397   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
2398   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
2399                                void *&InsertPos);
2400   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
2401                                void *&InsertPos);
2402   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
2403 
2404   void DeleteNodeNotInCSEMaps(SDNode *N);
2405   void DeallocateNode(SDNode *N);
2406 
2407   void allnodes_clear();
2408 
2409   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
2410   /// not, return the insertion token that will make insertion faster.  This
2411   /// overload is for nodes other than Constant or ConstantFP, use the other one
2412   /// for those.
2413   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
2414 
2415   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
2416   /// not, return the insertion token that will make insertion faster.  Performs
2417   /// additional processing for constant nodes.
2418   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
2419                               void *&InsertPos);
2420 
2421   /// Maps to auto-CSE operations.
2422   std::vector<CondCodeSDNode*> CondCodeNodes;
2423 
2424   std::vector<SDNode*> ValueTypeNodes;
2425   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
2426   StringMap<SDNode*> ExternalSymbols;
2427 
2428   std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
2429   DenseMap<MCSymbol *, SDNode *> MCSymbols;
2430 
2431   FlagInserter *Inserter = nullptr;
2432 };
2433 
2434 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
2435   using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
2436 
2437   static nodes_iterator nodes_begin(SelectionDAG *G) {
2438     return nodes_iterator(G->allnodes_begin());
2439   }
2440 
2441   static nodes_iterator nodes_end(SelectionDAG *G) {
2442     return nodes_iterator(G->allnodes_end());
2443   }
2444 };
2445 
2446 } // end namespace llvm
2447 
2448 #endif // LLVM_CODEGEN_SELECTIONDAG_H
2449