1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H 14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H 15 16 #include "llvm/ADT/GraphTraits.h" 17 #include "llvm/ADT/SparseBitVector.h" 18 #include "llvm/ADT/ilist.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 22 #include "llvm/IR/DebugLoc.h" 23 #include "llvm/MC/LaneBitmask.h" 24 #include "llvm/Support/BranchProbability.h" 25 #include <cassert> 26 #include <cstdint> 27 #include <iterator> 28 #include <string> 29 #include <vector> 30 31 namespace llvm { 32 33 class BasicBlock; 34 class MachineFunction; 35 class MCSymbol; 36 class ModuleSlotTracker; 37 class Pass; 38 class Printable; 39 class SlotIndexes; 40 class StringRef; 41 class raw_ostream; 42 class LiveIntervals; 43 class TargetRegisterClass; 44 class TargetRegisterInfo; 45 46 // This structure uniquely identifies a basic block section. 47 // Possible values are 48 // {Type: Default, Number: (unsigned)} (These are regular section IDs) 49 // {Type: Exception, Number: 0} (ExceptionSectionID) 50 // {Type: Cold, Number: 0} (ColdSectionID) 51 struct MBBSectionID { 52 enum SectionType { 53 Default = 0, // Regular section (these sections are distinguished by the 54 // Number field). 55 Exception, // Special section type for exception handling blocks 56 Cold, // Special section type for cold blocks 57 } Type; 58 unsigned Number; 59 MBBSectionIDMBBSectionID60 MBBSectionID(unsigned N) : Type(Default), Number(N) {} 61 62 // Special unique sections for cold and exception blocks. 63 const static MBBSectionID ColdSectionID; 64 const static MBBSectionID ExceptionSectionID; 65 66 bool operator==(const MBBSectionID &Other) const { 67 return Type == Other.Type && Number == Other.Number; 68 } 69 70 bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); } 71 72 private: 73 // This is only used to construct the special cold and exception sections. MBBSectionIDMBBSectionID74 MBBSectionID(SectionType T) : Type(T), Number(0) {} 75 }; 76 77 // This structure represents the information for a basic block. 78 struct UniqueBBID { 79 unsigned BaseID; 80 // sections profile). 81 unsigned CloneID; 82 }; 83 84 template <> struct ilist_traits<MachineInstr> { 85 private: 86 friend class MachineBasicBlock; // Set by the owning MachineBasicBlock. 87 88 MachineBasicBlock *Parent; 89 90 using instr_iterator = 91 simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator; 92 93 public: 94 void addNodeToList(MachineInstr *N); 95 void removeNodeFromList(MachineInstr *N); 96 void transferNodesFromList(ilist_traits &FromList, instr_iterator First, 97 instr_iterator Last); 98 void deleteNode(MachineInstr *MI); 99 }; 100 101 class MachineBasicBlock 102 : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> { 103 public: 104 /// Pair of physical register and lane mask. 105 /// This is not simply a std::pair typedef because the members should be named 106 /// clearly as they both have an integer type. 107 struct RegisterMaskPair { 108 public: 109 MCPhysReg PhysReg; 110 LaneBitmask LaneMask; 111 112 RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask) 113 : PhysReg(PhysReg), LaneMask(LaneMask) {} 114 }; 115 116 private: 117 using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>; 118 119 const BasicBlock *BB; 120 int Number; 121 122 /// The call frame size on entry to this basic block due to call frame setup 123 /// instructions in a predecessor. This is usually zero, unless basic blocks 124 /// are split in the middle of a call sequence. 125 /// 126 /// This information is only maintained until PrologEpilogInserter eliminates 127 /// call frame pseudos. 128 unsigned CallFrameSize = 0; 129 130 MachineFunction *xParent; 131 Instructions Insts; 132 133 /// Keep track of the predecessor / successor basic blocks. 134 std::vector<MachineBasicBlock *> Predecessors; 135 std::vector<MachineBasicBlock *> Successors; 136 137 /// Keep track of the probabilities to the successors. This vector has the 138 /// same order as Successors, or it is empty if we don't use it (disable 139 /// optimization). 140 std::vector<BranchProbability> Probs; 141 using probability_iterator = std::vector<BranchProbability>::iterator; 142 using const_probability_iterator = 143 std::vector<BranchProbability>::const_iterator; 144 145 std::optional<uint64_t> IrrLoopHeaderWeight; 146 147 /// Keep track of the physical registers that are livein of the basicblock. 148 using LiveInVector = std::vector<RegisterMaskPair>; 149 LiveInVector LiveIns; 150 151 /// Alignment of the basic block. One if the basic block does not need to be 152 /// aligned. 153 Align Alignment; 154 /// Maximum amount of bytes that can be added to align the basic block. If the 155 /// alignment cannot be reached in this many bytes, no bytes are emitted. 156 /// Zero to represent no maximum. 157 unsigned MaxBytesForAlignment = 0; 158 159 /// Indicate that this basic block is entered via an exception handler. 160 bool IsEHPad = false; 161 162 /// Indicate that this MachineBasicBlock is referenced somewhere other than 163 /// as predecessor/successor, a terminator MachineInstr, or a jump table. 164 bool MachineBlockAddressTaken = false; 165 166 /// If this MachineBasicBlock corresponds to an IR-level "blockaddress" 167 /// constant, this contains a pointer to that block. 168 BasicBlock *AddressTakenIRBlock = nullptr; 169 170 /// Indicate that this basic block needs its symbol be emitted regardless of 171 /// whether the flow just falls-through to it. 172 bool LabelMustBeEmitted = false; 173 174 /// Indicate that this basic block is the entry block of an EH scope, i.e., 175 /// the block that used to have a catchpad or cleanuppad instruction in the 176 /// LLVM IR. 177 bool IsEHScopeEntry = false; 178 179 /// Indicates if this is a target block of a catchret. 180 bool IsEHCatchretTarget = false; 181 182 /// Indicate that this basic block is the entry block of an EH funclet. 183 bool IsEHFuncletEntry = false; 184 185 /// Indicate that this basic block is the entry block of a cleanup funclet. 186 bool IsCleanupFuncletEntry = false; 187 188 /// Fixed unique ID assigned to this basic block upon creation. Used with 189 /// basic block sections and basic block labels. 190 std::optional<UniqueBBID> BBID; 191 192 /// With basic block sections, this stores the Section ID of the basic block. 193 MBBSectionID SectionID{0}; 194 195 // Indicate that this basic block begins a section. 196 bool IsBeginSection = false; 197 198 // Indicate that this basic block ends a section. 199 bool IsEndSection = false; 200 201 /// Indicate that this basic block is the indirect dest of an INLINEASM_BR. 202 bool IsInlineAsmBrIndirectTarget = false; 203 204 /// since getSymbol is a relatively heavy-weight operation, the symbol 205 /// is only computed once and is cached. 206 mutable MCSymbol *CachedMCSymbol = nullptr; 207 208 /// Cached MCSymbol for this block (used if IsEHCatchRetTarget). 209 mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr; 210 211 /// Marks the end of the basic block. Used during basic block sections to 212 /// calculate the size of the basic block, or the BB section ending with it. 213 mutable MCSymbol *CachedEndMCSymbol = nullptr; 214 215 // Intrusive list support 216 MachineBasicBlock() = default; 217 218 explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB); 219 220 ~MachineBasicBlock(); 221 222 // MachineBasicBlocks are allocated and owned by MachineFunction. 223 friend class MachineFunction; 224 225 public: 226 /// Return the LLVM basic block that this instance corresponded to originally. 227 /// Note that this may be NULL if this instance does not correspond directly 228 /// to an LLVM basic block. 229 const BasicBlock *getBasicBlock() const { return BB; } 230 231 /// Remove the reference to the underlying IR BasicBlock. This is for 232 /// reduction tools and should generally not be used. 233 void clearBasicBlock() { 234 BB = nullptr; 235 } 236 237 /// Return the name of the corresponding LLVM basic block, or an empty string. 238 StringRef getName() const; 239 240 /// Return a formatted string to identify this block and its parent function. 241 std::string getFullName() const; 242 243 /// Test whether this block is used as something other than the target 244 /// of a terminator, exception-handling target, or jump table. This is 245 /// either the result of an IR-level "blockaddress", or some form 246 /// of target-specific branch lowering. 247 bool hasAddressTaken() const { 248 return MachineBlockAddressTaken || AddressTakenIRBlock; 249 } 250 251 /// Test whether this block is used as something other than the target of a 252 /// terminator, exception-handling target, jump table, or IR blockaddress. 253 /// For example, its address might be loaded into a register, or 254 /// stored in some branch table that isn't part of MachineJumpTableInfo. 255 bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; } 256 257 /// Test whether this block is the target of an IR BlockAddress. (There can 258 /// more than one MBB associated with an IR BB where the address is taken.) 259 bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; } 260 261 /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock. 262 BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; } 263 264 /// Set this block to indicate that its address is used as something other 265 /// than the target of a terminator, exception-handling target, jump table, 266 /// or IR-level "blockaddress". 267 void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; } 268 269 /// Set this block to reflect that it corresponds to an IR-level basic block 270 /// with a BlockAddress. 271 void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; } 272 273 /// Test whether this block must have its label emitted. 274 bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; } 275 276 /// Set this block to reflect that, regardless how we flow to it, we need 277 /// its label be emitted. 278 void setLabelMustBeEmitted() { LabelMustBeEmitted = true; } 279 280 /// Return the MachineFunction containing this basic block. 281 const MachineFunction *getParent() const { return xParent; } 282 MachineFunction *getParent() { return xParent; } 283 284 using instr_iterator = Instructions::iterator; 285 using const_instr_iterator = Instructions::const_iterator; 286 using reverse_instr_iterator = Instructions::reverse_iterator; 287 using const_reverse_instr_iterator = Instructions::const_reverse_iterator; 288 289 using iterator = MachineInstrBundleIterator<MachineInstr>; 290 using const_iterator = MachineInstrBundleIterator<const MachineInstr>; 291 using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>; 292 using const_reverse_iterator = 293 MachineInstrBundleIterator<const MachineInstr, true>; 294 295 unsigned size() const { return (unsigned)Insts.size(); } 296 bool sizeWithoutDebugLargerThan(unsigned Limit) const; 297 bool empty() const { return Insts.empty(); } 298 299 MachineInstr &instr_front() { return Insts.front(); } 300 MachineInstr &instr_back() { return Insts.back(); } 301 const MachineInstr &instr_front() const { return Insts.front(); } 302 const MachineInstr &instr_back() const { return Insts.back(); } 303 304 MachineInstr &front() { return Insts.front(); } 305 MachineInstr &back() { return *--end(); } 306 const MachineInstr &front() const { return Insts.front(); } 307 const MachineInstr &back() const { return *--end(); } 308 309 instr_iterator instr_begin() { return Insts.begin(); } 310 const_instr_iterator instr_begin() const { return Insts.begin(); } 311 instr_iterator instr_end() { return Insts.end(); } 312 const_instr_iterator instr_end() const { return Insts.end(); } 313 reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); } 314 const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); } 315 reverse_instr_iterator instr_rend () { return Insts.rend(); } 316 const_reverse_instr_iterator instr_rend () const { return Insts.rend(); } 317 318 using instr_range = iterator_range<instr_iterator>; 319 using const_instr_range = iterator_range<const_instr_iterator>; 320 instr_range instrs() { return instr_range(instr_begin(), instr_end()); } 321 const_instr_range instrs() const { 322 return const_instr_range(instr_begin(), instr_end()); 323 } 324 325 iterator begin() { return instr_begin(); } 326 const_iterator begin() const { return instr_begin(); } 327 iterator end () { return instr_end(); } 328 const_iterator end () const { return instr_end(); } 329 reverse_iterator rbegin() { 330 return reverse_iterator::getAtBundleBegin(instr_rbegin()); 331 } 332 const_reverse_iterator rbegin() const { 333 return const_reverse_iterator::getAtBundleBegin(instr_rbegin()); 334 } 335 reverse_iterator rend() { return reverse_iterator(instr_rend()); } 336 const_reverse_iterator rend() const { 337 return const_reverse_iterator(instr_rend()); 338 } 339 340 /// Support for MachineInstr::getNextNode(). 341 static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) { 342 return &MachineBasicBlock::Insts; 343 } 344 345 inline iterator_range<iterator> terminators() { 346 return make_range(getFirstTerminator(), end()); 347 } 348 inline iterator_range<const_iterator> terminators() const { 349 return make_range(getFirstTerminator(), end()); 350 } 351 352 /// Returns a range that iterates over the phis in the basic block. 353 inline iterator_range<iterator> phis() { 354 return make_range(begin(), getFirstNonPHI()); 355 } 356 inline iterator_range<const_iterator> phis() const { 357 return const_cast<MachineBasicBlock *>(this)->phis(); 358 } 359 360 // Machine-CFG iterators 361 using pred_iterator = std::vector<MachineBasicBlock *>::iterator; 362 using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator; 363 using succ_iterator = std::vector<MachineBasicBlock *>::iterator; 364 using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator; 365 using pred_reverse_iterator = 366 std::vector<MachineBasicBlock *>::reverse_iterator; 367 using const_pred_reverse_iterator = 368 std::vector<MachineBasicBlock *>::const_reverse_iterator; 369 using succ_reverse_iterator = 370 std::vector<MachineBasicBlock *>::reverse_iterator; 371 using const_succ_reverse_iterator = 372 std::vector<MachineBasicBlock *>::const_reverse_iterator; 373 pred_iterator pred_begin() { return Predecessors.begin(); } 374 const_pred_iterator pred_begin() const { return Predecessors.begin(); } 375 pred_iterator pred_end() { return Predecessors.end(); } 376 const_pred_iterator pred_end() const { return Predecessors.end(); } 377 pred_reverse_iterator pred_rbegin() 378 { return Predecessors.rbegin();} 379 const_pred_reverse_iterator pred_rbegin() const 380 { return Predecessors.rbegin();} 381 pred_reverse_iterator pred_rend() 382 { return Predecessors.rend(); } 383 const_pred_reverse_iterator pred_rend() const 384 { return Predecessors.rend(); } 385 unsigned pred_size() const { 386 return (unsigned)Predecessors.size(); 387 } 388 bool pred_empty() const { return Predecessors.empty(); } 389 succ_iterator succ_begin() { return Successors.begin(); } 390 const_succ_iterator succ_begin() const { return Successors.begin(); } 391 succ_iterator succ_end() { return Successors.end(); } 392 const_succ_iterator succ_end() const { return Successors.end(); } 393 succ_reverse_iterator succ_rbegin() 394 { return Successors.rbegin(); } 395 const_succ_reverse_iterator succ_rbegin() const 396 { return Successors.rbegin(); } 397 succ_reverse_iterator succ_rend() 398 { return Successors.rend(); } 399 const_succ_reverse_iterator succ_rend() const 400 { return Successors.rend(); } 401 unsigned succ_size() const { 402 return (unsigned)Successors.size(); 403 } 404 bool succ_empty() const { return Successors.empty(); } 405 406 inline iterator_range<pred_iterator> predecessors() { 407 return make_range(pred_begin(), pred_end()); 408 } 409 inline iterator_range<const_pred_iterator> predecessors() const { 410 return make_range(pred_begin(), pred_end()); 411 } 412 inline iterator_range<succ_iterator> successors() { 413 return make_range(succ_begin(), succ_end()); 414 } 415 inline iterator_range<const_succ_iterator> successors() const { 416 return make_range(succ_begin(), succ_end()); 417 } 418 419 // LiveIn management methods. 420 421 /// Adds the specified register as a live in. Note that it is an error to add 422 /// the same register to the same set more than once unless the intention is 423 /// to call sortUniqueLiveIns after all registers are added. 424 void addLiveIn(MCRegister PhysReg, 425 LaneBitmask LaneMask = LaneBitmask::getAll()) { 426 LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask)); 427 } 428 void addLiveIn(const RegisterMaskPair &RegMaskPair) { 429 LiveIns.push_back(RegMaskPair); 430 } 431 432 /// Sorts and uniques the LiveIns vector. It can be significantly faster to do 433 /// this than repeatedly calling isLiveIn before calling addLiveIn for every 434 /// LiveIn insertion. 435 void sortUniqueLiveIns(); 436 437 /// Clear live in list. 438 void clearLiveIns(); 439 440 /// Add PhysReg as live in to this block, and ensure that there is a copy of 441 /// PhysReg to a virtual register of class RC. Return the virtual register 442 /// that is a copy of the live in PhysReg. 443 Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC); 444 445 /// Remove the specified register from the live in set. 446 void removeLiveIn(MCPhysReg Reg, 447 LaneBitmask LaneMask = LaneBitmask::getAll()); 448 449 /// Return true if the specified register is in the live in set. 450 bool isLiveIn(MCPhysReg Reg, 451 LaneBitmask LaneMask = LaneBitmask::getAll()) const; 452 453 // Iteration support for live in sets. These sets are kept in sorted 454 // order by their register number. 455 using livein_iterator = LiveInVector::const_iterator; 456 457 /// Unlike livein_begin, this method does not check that the liveness 458 /// information is accurate. Still for debug purposes it may be useful 459 /// to have iterators that won't assert if the liveness information 460 /// is not current. 461 livein_iterator livein_begin_dbg() const { return LiveIns.begin(); } 462 iterator_range<livein_iterator> liveins_dbg() const { 463 return make_range(livein_begin_dbg(), livein_end()); 464 } 465 466 livein_iterator livein_begin() const; 467 livein_iterator livein_end() const { return LiveIns.end(); } 468 bool livein_empty() const { return LiveIns.empty(); } 469 iterator_range<livein_iterator> liveins() const { 470 return make_range(livein_begin(), livein_end()); 471 } 472 473 /// Remove entry from the livein set and return iterator to the next. 474 livein_iterator removeLiveIn(livein_iterator I); 475 476 class liveout_iterator { 477 public: 478 using iterator_category = std::input_iterator_tag; 479 using difference_type = std::ptrdiff_t; 480 using value_type = RegisterMaskPair; 481 using pointer = const RegisterMaskPair *; 482 using reference = const RegisterMaskPair &; 483 484 liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer, 485 MCPhysReg ExceptionSelector, bool End) 486 : ExceptionPointer(ExceptionPointer), 487 ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()), 488 BlockEnd(MBB.succ_end()) { 489 if (End) 490 BlockI = BlockEnd; 491 else if (BlockI != BlockEnd) { 492 LiveRegI = (*BlockI)->livein_begin(); 493 if (!advanceToValidPosition()) 494 return; 495 if (LiveRegI->PhysReg == ExceptionPointer || 496 LiveRegI->PhysReg == ExceptionSelector) 497 ++(*this); 498 } 499 } 500 501 liveout_iterator &operator++() { 502 do { 503 ++LiveRegI; 504 if (!advanceToValidPosition()) 505 return *this; 506 } while ((*BlockI)->isEHPad() && 507 (LiveRegI->PhysReg == ExceptionPointer || 508 LiveRegI->PhysReg == ExceptionSelector)); 509 return *this; 510 } 511 512 liveout_iterator operator++(int) { 513 liveout_iterator Tmp = *this; 514 ++(*this); 515 return Tmp; 516 } 517 518 reference operator*() const { 519 return *LiveRegI; 520 } 521 522 pointer operator->() const { 523 return &*LiveRegI; 524 } 525 526 bool operator==(const liveout_iterator &RHS) const { 527 if (BlockI != BlockEnd) 528 return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI; 529 return RHS.BlockI == BlockEnd; 530 } 531 532 bool operator!=(const liveout_iterator &RHS) const { 533 return !(*this == RHS); 534 } 535 private: 536 bool advanceToValidPosition() { 537 if (LiveRegI != (*BlockI)->livein_end()) 538 return true; 539 540 do { 541 ++BlockI; 542 } while (BlockI != BlockEnd && (*BlockI)->livein_empty()); 543 if (BlockI == BlockEnd) 544 return false; 545 546 LiveRegI = (*BlockI)->livein_begin(); 547 return true; 548 } 549 550 MCPhysReg ExceptionPointer, ExceptionSelector; 551 const_succ_iterator BlockI; 552 const_succ_iterator BlockEnd; 553 livein_iterator LiveRegI; 554 }; 555 556 /// Iterator scanning successor basic blocks' liveins to determine the 557 /// registers potentially live at the end of this block. There may be 558 /// duplicates or overlapping registers in the list returned. 559 liveout_iterator liveout_begin() const; 560 liveout_iterator liveout_end() const { 561 return liveout_iterator(*this, 0, 0, true); 562 } 563 iterator_range<liveout_iterator> liveouts() const { 564 return make_range(liveout_begin(), liveout_end()); 565 } 566 567 /// Get the clobber mask for the start of this basic block. Funclets use this 568 /// to prevent register allocation across funclet transitions. 569 const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const; 570 571 /// Get the clobber mask for the end of the basic block. 572 /// \see getBeginClobberMask() 573 const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const; 574 575 /// Return alignment of the basic block. 576 Align getAlignment() const { return Alignment; } 577 578 /// Set alignment of the basic block. 579 void setAlignment(Align A) { Alignment = A; } 580 581 void setAlignment(Align A, unsigned MaxBytes) { 582 setAlignment(A); 583 setMaxBytesForAlignment(MaxBytes); 584 } 585 586 /// Return the maximum amount of padding allowed for aligning the basic block. 587 unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; } 588 589 /// Set the maximum amount of padding allowed for aligning the basic block 590 void setMaxBytesForAlignment(unsigned MaxBytes) { 591 MaxBytesForAlignment = MaxBytes; 592 } 593 594 /// Returns true if the block is a landing pad. That is this basic block is 595 /// entered via an exception handler. 596 bool isEHPad() const { return IsEHPad; } 597 598 /// Indicates the block is a landing pad. That is this basic block is entered 599 /// via an exception handler. 600 void setIsEHPad(bool V = true) { IsEHPad = V; } 601 602 bool hasEHPadSuccessor() const; 603 604 /// Returns true if this is the entry block of the function. 605 bool isEntryBlock() const; 606 607 /// Returns true if this is the entry block of an EH scope, i.e., the block 608 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. 609 bool isEHScopeEntry() const { return IsEHScopeEntry; } 610 611 /// Indicates if this is the entry block of an EH scope, i.e., the block that 612 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. 613 void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; } 614 615 /// Returns true if this is a target block of a catchret. 616 bool isEHCatchretTarget() const { return IsEHCatchretTarget; } 617 618 /// Indicates if this is a target block of a catchret. 619 void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; } 620 621 /// Returns true if this is the entry block of an EH funclet. 622 bool isEHFuncletEntry() const { return IsEHFuncletEntry; } 623 624 /// Indicates if this is the entry block of an EH funclet. 625 void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; } 626 627 /// Returns true if this is the entry block of a cleanup funclet. 628 bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; } 629 630 /// Indicates if this is the entry block of a cleanup funclet. 631 void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; } 632 633 /// Returns true if this block begins any section. 634 bool isBeginSection() const { return IsBeginSection; } 635 636 /// Returns true if this block ends any section. 637 bool isEndSection() const { return IsEndSection; } 638 639 void setIsBeginSection(bool V = true) { IsBeginSection = V; } 640 641 void setIsEndSection(bool V = true) { IsEndSection = V; } 642 643 std::optional<UniqueBBID> getBBID() const { return BBID; } 644 645 /// Returns the section ID of this basic block. 646 MBBSectionID getSectionID() const { return SectionID; } 647 648 /// Returns the unique section ID number of this basic block. 649 unsigned getSectionIDNum() const { 650 return ((unsigned)MBBSectionID::SectionType::Cold) - 651 ((unsigned)SectionID.Type) + SectionID.Number; 652 } 653 654 /// Sets the fixed BBID of this basic block. 655 void setBBID(const UniqueBBID &V) { 656 assert(!BBID.has_value() && "Cannot change BBID."); 657 BBID = V; 658 } 659 660 /// Sets the section ID for this basic block. 661 void setSectionID(MBBSectionID V) { SectionID = V; } 662 663 /// Returns the MCSymbol marking the end of this basic block. 664 MCSymbol *getEndSymbol() const; 665 666 /// Returns true if this block may have an INLINEASM_BR (overestimate, by 667 /// checking if any of the successors are indirect targets of any inlineasm_br 668 /// in the function). 669 bool mayHaveInlineAsmBr() const; 670 671 /// Returns true if this is the indirect dest of an INLINEASM_BR. 672 bool isInlineAsmBrIndirectTarget() const { 673 return IsInlineAsmBrIndirectTarget; 674 } 675 676 /// Indicates if this is the indirect dest of an INLINEASM_BR. 677 void setIsInlineAsmBrIndirectTarget(bool V = true) { 678 IsInlineAsmBrIndirectTarget = V; 679 } 680 681 /// Returns true if it is legal to hoist instructions into this block. 682 bool isLegalToHoistInto() const; 683 684 // Code Layout methods. 685 686 /// Move 'this' block before or after the specified block. This only moves 687 /// the block, it does not modify the CFG or adjust potential fall-throughs at 688 /// the end of the block. 689 void moveBefore(MachineBasicBlock *NewAfter); 690 void moveAfter(MachineBasicBlock *NewBefore); 691 692 /// Returns true if this and MBB belong to the same section. 693 bool sameSection(const MachineBasicBlock *MBB) const { 694 return getSectionID() == MBB->getSectionID(); 695 } 696 697 /// Update the terminator instructions in block to account for changes to 698 /// block layout which may have been made. PreviousLayoutSuccessor should be 699 /// set to the block which may have been used as fallthrough before the block 700 /// layout was modified. If the block previously fell through to that block, 701 /// it may now need a branch. If it previously branched to another block, it 702 /// may now be able to fallthrough to the current layout successor. 703 void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor); 704 705 // Machine-CFG mutators 706 707 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list 708 /// of Succ is automatically updated. PROB parameter is stored in 709 /// Probabilities list. The default probability is set as unknown. Mixing 710 /// known and unknown probabilities in successor list is not allowed. When all 711 /// successors have unknown probabilities, 1 / N is returned as the 712 /// probability for each successor, where N is the number of successors. 713 /// 714 /// Note that duplicate Machine CFG edges are not allowed. 715 void addSuccessor(MachineBasicBlock *Succ, 716 BranchProbability Prob = BranchProbability::getUnknown()); 717 718 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list 719 /// of Succ is automatically updated. The probability is not provided because 720 /// BPI is not available (e.g. -O0 is used), in which case edge probabilities 721 /// won't be used. Using this interface can save some space. 722 void addSuccessorWithoutProb(MachineBasicBlock *Succ); 723 724 /// Set successor probability of a given iterator. 725 void setSuccProbability(succ_iterator I, BranchProbability Prob); 726 727 /// Normalize probabilities of all successors so that the sum of them becomes 728 /// one. This is usually done when the current update on this MBB is done, and 729 /// the sum of its successors' probabilities is not guaranteed to be one. The 730 /// user is responsible for the correct use of this function. 731 /// MBB::removeSuccessor() has an option to do this automatically. 732 void normalizeSuccProbs() { 733 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 734 } 735 736 /// Validate successors' probabilities and check if the sum of them is 737 /// approximate one. This only works in DEBUG mode. 738 void validateSuccProbs() const; 739 740 /// Remove successor from the successors list of this MachineBasicBlock. The 741 /// Predecessors list of Succ is automatically updated. 742 /// If NormalizeSuccProbs is true, then normalize successors' probabilities 743 /// after the successor is removed. 744 void removeSuccessor(MachineBasicBlock *Succ, 745 bool NormalizeSuccProbs = false); 746 747 /// Remove specified successor from the successors list of this 748 /// MachineBasicBlock. The Predecessors list of Succ is automatically updated. 749 /// If NormalizeSuccProbs is true, then normalize successors' probabilities 750 /// after the successor is removed. 751 /// Return the iterator to the element after the one removed. 752 succ_iterator removeSuccessor(succ_iterator I, 753 bool NormalizeSuccProbs = false); 754 755 /// Replace successor OLD with NEW and update probability info. 756 void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New); 757 758 /// Copy a successor (and any probability info) from original block to this 759 /// block's. Uses an iterator into the original blocks successors. 760 /// 761 /// This is useful when doing a partial clone of successors. Afterward, the 762 /// probabilities may need to be normalized. 763 void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I); 764 765 /// Split the old successor into old plus new and updates the probability 766 /// info. 767 void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, 768 bool NormalizeSuccProbs = false); 769 770 /// Transfers all the successors from MBB to this machine basic block (i.e., 771 /// copies all the successors FromMBB and remove all the successors from 772 /// FromMBB). 773 void transferSuccessors(MachineBasicBlock *FromMBB); 774 775 /// Transfers all the successors, as in transferSuccessors, and update PHI 776 /// operands in the successor blocks which refer to FromMBB to refer to this. 777 void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB); 778 779 /// Return true if any of the successors have probabilities attached to them. 780 bool hasSuccessorProbabilities() const { return !Probs.empty(); } 781 782 /// Return true if the specified MBB is a predecessor of this block. 783 bool isPredecessor(const MachineBasicBlock *MBB) const; 784 785 /// Return true if the specified MBB is a successor of this block. 786 bool isSuccessor(const MachineBasicBlock *MBB) const; 787 788 /// Return true if the specified MBB will be emitted immediately after this 789 /// block, such that if this block exits by falling through, control will 790 /// transfer to the specified MBB. Note that MBB need not be a successor at 791 /// all, for example if this block ends with an unconditional branch to some 792 /// other block. 793 bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; 794 795 /// Return the successor of this block if it has a single successor. 796 /// Otherwise return a null pointer. 797 /// 798 const MachineBasicBlock *getSingleSuccessor() const; 799 MachineBasicBlock *getSingleSuccessor() { 800 return const_cast<MachineBasicBlock *>( 801 static_cast<const MachineBasicBlock *>(this)->getSingleSuccessor()); 802 } 803 804 /// Return the predecessor of this block if it has a single predecessor. 805 /// Otherwise return a null pointer. 806 /// 807 const MachineBasicBlock *getSinglePredecessor() const; 808 MachineBasicBlock *getSinglePredecessor() { 809 return const_cast<MachineBasicBlock *>( 810 static_cast<const MachineBasicBlock *>(this)->getSinglePredecessor()); 811 } 812 813 /// Return the fallthrough block if the block can implicitly 814 /// transfer control to the block after it by falling off the end of 815 /// it. If an explicit branch to the fallthrough block is not allowed, 816 /// set JumpToFallThrough to be false. Non-null return is a conservative 817 /// answer. 818 MachineBasicBlock *getFallThrough(bool JumpToFallThrough = true); 819 820 /// Return the fallthrough block if the block can implicitly 821 /// transfer control to it's successor, whether by a branch or 822 /// a fallthrough. Non-null return is a conservative answer. 823 MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(false); } 824 825 /// Return true if the block can implicitly transfer control to the 826 /// block after it by falling off the end of it. This should return 827 /// false if it can reach the block after it, but it uses an 828 /// explicit branch to do so (e.g., a table jump). True is a 829 /// conservative answer. 830 bool canFallThrough(); 831 832 /// Returns a pointer to the first instruction in this block that is not a 833 /// PHINode instruction. When adding instructions to the beginning of the 834 /// basic block, they should be added before the returned value, not before 835 /// the first instruction, which might be PHI. 836 /// Returns end() is there's no non-PHI instruction. 837 iterator getFirstNonPHI(); 838 const_iterator getFirstNonPHI() const { 839 return const_cast<MachineBasicBlock *>(this)->getFirstNonPHI(); 840 } 841 842 /// Return the first instruction in MBB after I that is not a PHI or a label. 843 /// This is the correct point to insert lowered copies at the beginning of a 844 /// basic block that must be before any debugging information. 845 iterator SkipPHIsAndLabels(iterator I); 846 847 /// Return the first instruction in MBB after I that is not a PHI, label or 848 /// debug. This is the correct point to insert copies at the beginning of a 849 /// basic block. \p Reg is the register being used by a spill or defined for a 850 /// restore/split during register allocation. 851 iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg = Register(), 852 bool SkipPseudoOp = true); 853 854 /// Returns an iterator to the first terminator instruction of this basic 855 /// block. If a terminator does not exist, it returns end(). 856 iterator getFirstTerminator(); 857 const_iterator getFirstTerminator() const { 858 return const_cast<MachineBasicBlock *>(this)->getFirstTerminator(); 859 } 860 861 /// Same getFirstTerminator but it ignores bundles and return an 862 /// instr_iterator instead. 863 instr_iterator getFirstInstrTerminator(); 864 865 /// Finds the first terminator in a block by scanning forward. This can handle 866 /// cases in GlobalISel where there may be non-terminator instructions between 867 /// terminators, for which getFirstTerminator() will not work correctly. 868 iterator getFirstTerminatorForward(); 869 870 /// Returns an iterator to the first non-debug instruction in the basic block, 871 /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true. 872 /// Pseudo probes are like debug instructions which do not turn into real 873 /// machine code. We try to use the function to skip both debug instructions 874 /// and pseudo probe operations to avoid API proliferation. This should work 875 /// most of the time when considering optimizing the rest of code in the 876 /// block, except for certain cases where pseudo probes are designed to block 877 /// the optimizations. For example, code merge like optimizations are supposed 878 /// to be blocked by pseudo probes for better AutoFDO profile quality. 879 /// Therefore, they should be considered as a valid instruction when this 880 /// function is called in a context of such optimizations. On the other hand, 881 /// \c SkipPseudoOp should be true when it's used in optimizations that 882 /// unlikely hurt profile quality, e.g., without block merging. The default 883 /// value of \c SkipPseudoOp is set to true to maximize code quality in 884 /// general, with an explict false value passed in in a few places like branch 885 /// folding and if-conversion to favor profile quality. 886 iterator getFirstNonDebugInstr(bool SkipPseudoOp = true); 887 const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const { 888 return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr( 889 SkipPseudoOp); 890 } 891 892 /// Returns an iterator to the last non-debug instruction in the basic block, 893 /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true. 894 /// Pseudo probes are like debug instructions which do not turn into real 895 /// machine code. We try to use the function to skip both debug instructions 896 /// and pseudo probe operations to avoid API proliferation. This should work 897 /// most of the time when considering optimizing the rest of code in the 898 /// block, except for certain cases where pseudo probes are designed to block 899 /// the optimizations. For example, code merge like optimizations are supposed 900 /// to be blocked by pseudo probes for better AutoFDO profile quality. 901 /// Therefore, they should be considered as a valid instruction when this 902 /// function is called in a context of such optimizations. On the other hand, 903 /// \c SkipPseudoOp should be true when it's used in optimizations that 904 /// unlikely hurt profile quality, e.g., without block merging. The default 905 /// value of \c SkipPseudoOp is set to true to maximize code quality in 906 /// general, with an explict false value passed in in a few places like branch 907 /// folding and if-conversion to favor profile quality. 908 iterator getLastNonDebugInstr(bool SkipPseudoOp = true); 909 const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const { 910 return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr( 911 SkipPseudoOp); 912 } 913 914 /// Convenience function that returns true if the block ends in a return 915 /// instruction. 916 bool isReturnBlock() const { 917 return !empty() && back().isReturn(); 918 } 919 920 /// Convenience function that returns true if the bock ends in a EH scope 921 /// return instruction. 922 bool isEHScopeReturnBlock() const { 923 return !empty() && back().isEHScopeReturn(); 924 } 925 926 /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be 927 /// inserted after this block, and all instructions after \p SplitInst moved 928 /// to it (\p SplitInst will be in the original block). If \p LIS is provided, 929 /// LiveIntervals will be appropriately updated. \return the newly inserted 930 /// block. 931 /// 932 /// If \p UpdateLiveIns is true, this will ensure the live ins list is 933 /// accurate, including for physreg uses/defs in the original block. 934 MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true, 935 LiveIntervals *LIS = nullptr); 936 937 /// Split the critical edge from this block to the given successor block, and 938 /// return the newly created block, or null if splitting is not possible. 939 /// 940 /// This function updates LiveVariables, MachineDominatorTree, and 941 /// MachineLoopInfo, as applicable. 942 MachineBasicBlock * 943 SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, 944 std::vector<SparseBitVector<>> *LiveInSets = nullptr); 945 946 /// Check if the edge between this block and the given successor \p 947 /// Succ, can be split. If this returns true a subsequent call to 948 /// SplitCriticalEdge is guaranteed to return a valid basic block if 949 /// no changes occurred in the meantime. 950 bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const; 951 952 void pop_front() { Insts.pop_front(); } 953 void pop_back() { Insts.pop_back(); } 954 void push_back(MachineInstr *MI) { Insts.push_back(MI); } 955 956 /// Insert MI into the instruction list before I, possibly inside a bundle. 957 /// 958 /// If the insertion point is inside a bundle, MI will be added to the bundle, 959 /// otherwise MI will not be added to any bundle. That means this function 960 /// alone can't be used to prepend or append instructions to bundles. See 961 /// MIBundleBuilder::insert() for a more reliable way of doing that. 962 instr_iterator insert(instr_iterator I, MachineInstr *M); 963 964 /// Insert a range of instructions into the instruction list before I. 965 template<typename IT> 966 void insert(iterator I, IT S, IT E) { 967 assert((I == end() || I->getParent() == this) && 968 "iterator points outside of basic block"); 969 Insts.insert(I.getInstrIterator(), S, E); 970 } 971 972 /// Insert MI into the instruction list before I. 973 iterator insert(iterator I, MachineInstr *MI) { 974 assert((I == end() || I->getParent() == this) && 975 "iterator points outside of basic block"); 976 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 977 "Cannot insert instruction with bundle flags"); 978 return Insts.insert(I.getInstrIterator(), MI); 979 } 980 981 /// Insert MI into the instruction list after I. 982 iterator insertAfter(iterator I, MachineInstr *MI) { 983 assert((I == end() || I->getParent() == this) && 984 "iterator points outside of basic block"); 985 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 986 "Cannot insert instruction with bundle flags"); 987 return Insts.insertAfter(I.getInstrIterator(), MI); 988 } 989 990 /// If I is bundled then insert MI into the instruction list after the end of 991 /// the bundle, otherwise insert MI immediately after I. 992 instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) { 993 assert((I == instr_end() || I->getParent() == this) && 994 "iterator points outside of basic block"); 995 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 996 "Cannot insert instruction with bundle flags"); 997 while (I->isBundledWithSucc()) 998 ++I; 999 return Insts.insertAfter(I, MI); 1000 } 1001 1002 /// Remove an instruction from the instruction list and delete it. 1003 /// 1004 /// If the instruction is part of a bundle, the other instructions in the 1005 /// bundle will still be bundled after removing the single instruction. 1006 instr_iterator erase(instr_iterator I); 1007 1008 /// Remove an instruction from the instruction list and delete it. 1009 /// 1010 /// If the instruction is part of a bundle, the other instructions in the 1011 /// bundle will still be bundled after removing the single instruction. 1012 instr_iterator erase_instr(MachineInstr *I) { 1013 return erase(instr_iterator(I)); 1014 } 1015 1016 /// Remove a range of instructions from the instruction list and delete them. 1017 iterator erase(iterator I, iterator E) { 1018 return Insts.erase(I.getInstrIterator(), E.getInstrIterator()); 1019 } 1020 1021 /// Remove an instruction or bundle from the instruction list and delete it. 1022 /// 1023 /// If I points to a bundle of instructions, they are all erased. 1024 iterator erase(iterator I) { 1025 return erase(I, std::next(I)); 1026 } 1027 1028 /// Remove an instruction from the instruction list and delete it. 1029 /// 1030 /// If I is the head of a bundle of instructions, the whole bundle will be 1031 /// erased. 1032 iterator erase(MachineInstr *I) { 1033 return erase(iterator(I)); 1034 } 1035 1036 /// Remove the unbundled instruction from the instruction list without 1037 /// deleting it. 1038 /// 1039 /// This function can not be used to remove bundled instructions, use 1040 /// remove_instr to remove individual instructions from a bundle. 1041 MachineInstr *remove(MachineInstr *I) { 1042 assert(!I->isBundled() && "Cannot remove bundled instructions"); 1043 return Insts.remove(instr_iterator(I)); 1044 } 1045 1046 /// Remove the possibly bundled instruction from the instruction list 1047 /// without deleting it. 1048 /// 1049 /// If the instruction is part of a bundle, the other instructions in the 1050 /// bundle will still be bundled after removing the single instruction. 1051 MachineInstr *remove_instr(MachineInstr *I); 1052 1053 void clear() { 1054 Insts.clear(); 1055 } 1056 1057 /// Take an instruction from MBB 'Other' at the position From, and insert it 1058 /// into this MBB right before 'Where'. 1059 /// 1060 /// If From points to a bundle of instructions, the whole bundle is moved. 1061 void splice(iterator Where, MachineBasicBlock *Other, iterator From) { 1062 // The range splice() doesn't allow noop moves, but this one does. 1063 if (Where != From) 1064 splice(Where, Other, From, std::next(From)); 1065 } 1066 1067 /// Take a block of instructions from MBB 'Other' in the range [From, To), 1068 /// and insert them into this MBB right before 'Where'. 1069 /// 1070 /// The instruction at 'Where' must not be included in the range of 1071 /// instructions to move. 1072 void splice(iterator Where, MachineBasicBlock *Other, 1073 iterator From, iterator To) { 1074 Insts.splice(Where.getInstrIterator(), Other->Insts, 1075 From.getInstrIterator(), To.getInstrIterator()); 1076 } 1077 1078 /// This method unlinks 'this' from the containing function, and returns it, 1079 /// but does not delete it. 1080 MachineBasicBlock *removeFromParent(); 1081 1082 /// This method unlinks 'this' from the containing function and deletes it. 1083 void eraseFromParent(); 1084 1085 /// Given a machine basic block that branched to 'Old', change the code and 1086 /// CFG so that it branches to 'New' instead. 1087 void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); 1088 1089 /// Update all phi nodes in this basic block to refer to basic block \p New 1090 /// instead of basic block \p Old. 1091 void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New); 1092 1093 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1094 /// instructions. Return UnknownLoc if there is none. 1095 DebugLoc findDebugLoc(instr_iterator MBBI); 1096 DebugLoc findDebugLoc(iterator MBBI) { 1097 return findDebugLoc(MBBI.getInstrIterator()); 1098 } 1099 1100 /// Has exact same behavior as @ref findDebugLoc (it also searches towards the 1101 /// end of this MBB) except that this function takes a reverse iterator to 1102 /// identify the starting MI. 1103 DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI); 1104 DebugLoc rfindDebugLoc(reverse_iterator MBBI) { 1105 return rfindDebugLoc(MBBI.getInstrIterator()); 1106 } 1107 1108 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1109 /// instructions. It is possible to find the last DebugLoc in the MBB using 1110 /// findPrevDebugLoc(instr_end()). Return UnknownLoc if there is none. 1111 DebugLoc findPrevDebugLoc(instr_iterator MBBI); 1112 DebugLoc findPrevDebugLoc(iterator MBBI) { 1113 return findPrevDebugLoc(MBBI.getInstrIterator()); 1114 } 1115 1116 /// Has exact same behavior as @ref findPrevDebugLoc (it also searches towards 1117 /// the beginning of this MBB) except that this function takes reverse 1118 /// iterator to identify the starting MI. A minor difference compared to 1119 /// findPrevDebugLoc is that we can't start scanning at "instr_end". 1120 DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI); 1121 DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) { 1122 return rfindPrevDebugLoc(MBBI.getInstrIterator()); 1123 } 1124 1125 /// Find and return the merged DebugLoc of the branch instructions of the 1126 /// block. Return UnknownLoc if there is none. 1127 DebugLoc findBranchDebugLoc(); 1128 1129 /// Possible outcome of a register liveness query to computeRegisterLiveness() 1130 enum LivenessQueryResult { 1131 LQR_Live, ///< Register is known to be (at least partially) live. 1132 LQR_Dead, ///< Register is known to be fully dead. 1133 LQR_Unknown ///< Register liveness not decidable from local neighborhood. 1134 }; 1135 1136 /// Return whether (physical) register \p Reg has been defined and not 1137 /// killed as of just before \p Before. 1138 /// 1139 /// Search is localised to a neighborhood of \p Neighborhood instructions 1140 /// before (searching for defs or kills) and \p Neighborhood instructions 1141 /// after (searching just for defs) \p Before. 1142 /// 1143 /// \p Reg must be a physical register. 1144 LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, 1145 MCRegister Reg, 1146 const_iterator Before, 1147 unsigned Neighborhood = 10) const; 1148 1149 // Debugging methods. 1150 void dump() const; 1151 void print(raw_ostream &OS, const SlotIndexes * = nullptr, 1152 bool IsStandalone = true) const; 1153 void print(raw_ostream &OS, ModuleSlotTracker &MST, 1154 const SlotIndexes * = nullptr, bool IsStandalone = true) const; 1155 1156 enum PrintNameFlag { 1157 PrintNameIr = (1 << 0), ///< Add IR name where available 1158 PrintNameAttributes = (1 << 1), ///< Print attributes 1159 }; 1160 1161 void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr, 1162 ModuleSlotTracker *moduleSlotTracker = nullptr) const; 1163 1164 // Printing method used by LoopInfo. 1165 void printAsOperand(raw_ostream &OS, bool PrintType = true) const; 1166 1167 /// MachineBasicBlocks are uniquely numbered at the function level, unless 1168 /// they're not in a MachineFunction yet, in which case this will return -1. 1169 int getNumber() const { return Number; } 1170 void setNumber(int N) { Number = N; } 1171 1172 /// Return the call frame size on entry to this basic block. 1173 unsigned getCallFrameSize() const { return CallFrameSize; } 1174 /// Set the call frame size on entry to this basic block. 1175 void setCallFrameSize(unsigned N) { CallFrameSize = N; } 1176 1177 /// Return the MCSymbol for this basic block. 1178 MCSymbol *getSymbol() const; 1179 1180 /// Return the EHCatchret Symbol for this basic block. 1181 MCSymbol *getEHCatchretSymbol() const; 1182 1183 std::optional<uint64_t> getIrrLoopHeaderWeight() const { 1184 return IrrLoopHeaderWeight; 1185 } 1186 1187 void setIrrLoopHeaderWeight(uint64_t Weight) { 1188 IrrLoopHeaderWeight = Weight; 1189 } 1190 1191 /// Return probability of the edge from this block to MBB. This method should 1192 /// NOT be called directly, but by using getEdgeProbability method from 1193 /// MachineBranchProbabilityInfo class. 1194 BranchProbability getSuccProbability(const_succ_iterator Succ) const; 1195 1196 private: 1197 /// Return probability iterator corresponding to the I successor iterator. 1198 probability_iterator getProbabilityIterator(succ_iterator I); 1199 const_probability_iterator 1200 getProbabilityIterator(const_succ_iterator I) const; 1201 1202 friend class MachineBranchProbabilityInfo; 1203 friend class MIPrinter; 1204 1205 // Methods used to maintain doubly linked list of blocks... 1206 friend struct ilist_callback_traits<MachineBasicBlock>; 1207 1208 // Machine-CFG mutators 1209 1210 /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this 1211 /// unless you know what you're doing, because it doesn't update Pred's 1212 /// successors list. Use Pred->addSuccessor instead. 1213 void addPredecessor(MachineBasicBlock *Pred); 1214 1215 /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this 1216 /// unless you know what you're doing, because it doesn't update Pred's 1217 /// successors list. Use Pred->removeSuccessor instead. 1218 void removePredecessor(MachineBasicBlock *Pred); 1219 }; 1220 1221 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); 1222 1223 /// Prints a machine basic block reference. 1224 /// 1225 /// The format is: 1226 /// %bb.5 - a machine basic block with MBB.getNumber() == 5. 1227 /// 1228 /// Usage: OS << printMBBReference(MBB) << '\n'; 1229 Printable printMBBReference(const MachineBasicBlock &MBB); 1230 1231 // This is useful when building IndexedMaps keyed on basic block pointers. 1232 struct MBB2NumberFunctor { 1233 using argument_type = const MachineBasicBlock *; 1234 unsigned operator()(const MachineBasicBlock *MBB) const { 1235 return MBB->getNumber(); 1236 } 1237 }; 1238 1239 //===--------------------------------------------------------------------===// 1240 // GraphTraits specializations for machine basic block graphs (machine-CFGs) 1241 //===--------------------------------------------------------------------===// 1242 1243 // Provide specializations of GraphTraits to be able to treat a 1244 // MachineFunction as a graph of MachineBasicBlocks. 1245 // 1246 1247 template <> struct GraphTraits<MachineBasicBlock *> { 1248 using NodeRef = MachineBasicBlock *; 1249 using ChildIteratorType = MachineBasicBlock::succ_iterator; 1250 1251 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 1252 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 1253 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 1254 }; 1255 1256 template <> struct GraphTraits<const MachineBasicBlock *> { 1257 using NodeRef = const MachineBasicBlock *; 1258 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 1259 1260 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 1261 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 1262 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 1263 }; 1264 1265 // Provide specializations of GraphTraits to be able to treat a 1266 // MachineFunction as a graph of MachineBasicBlocks and to walk it 1267 // in inverse order. Inverse order for a function is considered 1268 // to be when traversing the predecessor edges of a MBB 1269 // instead of the successor edges. 1270 // 1271 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> { 1272 using NodeRef = MachineBasicBlock *; 1273 using ChildIteratorType = MachineBasicBlock::pred_iterator; 1274 1275 static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) { 1276 return G.Graph; 1277 } 1278 1279 static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } 1280 static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } 1281 }; 1282 1283 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> { 1284 using NodeRef = const MachineBasicBlock *; 1285 using ChildIteratorType = MachineBasicBlock::const_pred_iterator; 1286 1287 static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) { 1288 return G.Graph; 1289 } 1290 1291 static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } 1292 static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } 1293 }; 1294 1295 // These accessors are handy for sharing templated code between IR and MIR. 1296 inline auto successors(const MachineBasicBlock *BB) { return BB->successors(); } 1297 inline auto predecessors(const MachineBasicBlock *BB) { 1298 return BB->predecessors(); 1299 } 1300 1301 /// MachineInstrSpan provides an interface to get an iteration range 1302 /// containing the instruction it was initialized with, along with all 1303 /// those instructions inserted prior to or following that instruction 1304 /// at some point after the MachineInstrSpan is constructed. 1305 class MachineInstrSpan { 1306 MachineBasicBlock &MBB; 1307 MachineBasicBlock::iterator I, B, E; 1308 1309 public: 1310 MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB) 1311 : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)), 1312 E(std::next(I)) { 1313 assert(I == BB->end() || I->getParent() == BB); 1314 } 1315 1316 MachineBasicBlock::iterator begin() { 1317 return B == MBB.end() ? MBB.begin() : std::next(B); 1318 } 1319 MachineBasicBlock::iterator end() { return E; } 1320 bool empty() { return begin() == end(); } 1321 1322 MachineBasicBlock::iterator getInitial() { return I; } 1323 }; 1324 1325 /// Increment \p It until it points to a non-debug instruction or to \p End 1326 /// and return the resulting iterator. This function should only be used 1327 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, 1328 /// const_instr_iterator} and the respective reverse iterators. 1329 template <typename IterT> 1330 inline IterT skipDebugInstructionsForward(IterT It, IterT End, 1331 bool SkipPseudoOp = true) { 1332 while (It != End && 1333 (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) 1334 ++It; 1335 return It; 1336 } 1337 1338 /// Decrement \p It until it points to a non-debug instruction or to \p Begin 1339 /// and return the resulting iterator. This function should only be used 1340 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, 1341 /// const_instr_iterator} and the respective reverse iterators. 1342 template <class IterT> 1343 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin, 1344 bool SkipPseudoOp = true) { 1345 while (It != Begin && 1346 (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) 1347 --It; 1348 return It; 1349 } 1350 1351 /// Increment \p It, then continue incrementing it while it points to a debug 1352 /// instruction. A replacement for std::next. 1353 template <typename IterT> 1354 inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) { 1355 return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp); 1356 } 1357 1358 /// Decrement \p It, then continue decrementing it while it points to a debug 1359 /// instruction. A replacement for std::prev. 1360 template <typename IterT> 1361 inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) { 1362 return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp); 1363 } 1364 1365 /// Construct a range iterator which begins at \p It and moves forwards until 1366 /// \p End is reached, skipping any debug instructions. 1367 template <typename IterT> 1368 inline auto instructionsWithoutDebug(IterT It, IterT End, 1369 bool SkipPseudoOp = true) { 1370 return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) { 1371 return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe()); 1372 }); 1373 } 1374 1375 } // end namespace llvm 1376 1377 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H 1378