1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the newly proposed standard C++ interfaces for hashing
10 // arbitrary data and building hash functions for user-defined types. This
11 // interface was originally proposed in N3333[1] and is currently under review
12 // for inclusion in a future TR and/or standard.
13 //
14 // The primary interfaces provide are comprised of one type and three functions:
15 //
16 // -- 'hash_code' class is an opaque type representing the hash code for some
17 // data. It is the intended product of hashing, and can be used to implement
18 // hash tables, checksumming, and other common uses of hashes. It is not an
19 // integer type (although it can be converted to one) because it is risky
20 // to assume much about the internals of a hash_code. In particular, each
21 // execution of the program has a high probability of producing a different
22 // hash_code for a given input. Thus their values are not stable to save or
23 // persist, and should only be used during the execution for the
24 // construction of hashing datastructures.
25 //
26 // -- 'hash_value' is a function designed to be overloaded for each
27 // user-defined type which wishes to be used within a hashing context. It
28 // should be overloaded within the user-defined type's namespace and found
29 // via ADL. Overloads for primitive types are provided by this library.
30 //
31 // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32 // programmers in easily and intuitively combining a set of data into
33 // a single hash_code for their object. They should only logically be used
34 // within the implementation of a 'hash_value' routine or similar context.
35 //
36 // Note that 'hash_combine_range' contains very special logic for hashing
37 // a contiguous array of integers or pointers. This logic is *extremely* fast,
38 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40 // under 32-bytes.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #ifndef LLVM_ADT_HASHING_H
45 #define LLVM_ADT_HASHING_H
46
47 #include "llvm/Support/DataTypes.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/type_traits.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <optional>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58
59 namespace llvm {
60 template <typename T, typename Enable> struct DenseMapInfo;
61
62 /// An opaque object representing a hash code.
63 ///
64 /// This object represents the result of hashing some entity. It is intended to
65 /// be used to implement hashtables or other hashing-based data structures.
66 /// While it wraps and exposes a numeric value, this value should not be
67 /// trusted to be stable or predictable across processes or executions.
68 ///
69 /// In order to obtain the hash_code for an object 'x':
70 /// \code
71 /// using llvm::hash_value;
72 /// llvm::hash_code code = hash_value(x);
73 /// \endcode
74 class hash_code {
75 size_t value;
76
77 public:
78 /// Default construct a hash_code.
79 /// Note that this leaves the value uninitialized.
80 hash_code() = default;
81
82 /// Form a hash code directly from a numerical value.
hash_code(size_t value)83 hash_code(size_t value) : value(value) {}
84
85 /// Convert the hash code to its numerical value for use.
size_t()86 /*explicit*/ operator size_t() const { return value; }
87
88 friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
89 return lhs.value == rhs.value;
90 }
91 friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
92 return lhs.value != rhs.value;
93 }
94
95 /// Allow a hash_code to be directly run through hash_value.
hash_value(const hash_code & code)96 friend size_t hash_value(const hash_code &code) { return code.value; }
97 };
98
99 /// Compute a hash_code for any integer value.
100 ///
101 /// Note that this function is intended to compute the same hash_code for
102 /// a particular value without regard to the pre-promotion type. This is in
103 /// contrast to hash_combine which may produce different hash_codes for
104 /// differing argument types even if they would implicit promote to a common
105 /// type without changing the value.
106 template <typename T>
107 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
108
109 /// Compute a hash_code for a pointer's address.
110 ///
111 /// N.B.: This hashes the *address*. Not the value and not the type.
112 template <typename T> hash_code hash_value(const T *ptr);
113
114 /// Compute a hash_code for a pair of objects.
115 template <typename T, typename U>
116 hash_code hash_value(const std::pair<T, U> &arg);
117
118 /// Compute a hash_code for a tuple.
119 template <typename... Ts>
120 hash_code hash_value(const std::tuple<Ts...> &arg);
121
122 /// Compute a hash_code for a standard string.
123 template <typename T>
124 hash_code hash_value(const std::basic_string<T> &arg);
125
126 /// Compute a hash_code for a standard string.
127 template <typename T> hash_code hash_value(const std::optional<T> &arg);
128
129 /// Override the execution seed with a fixed value.
130 ///
131 /// This hashing library uses a per-execution seed designed to change on each
132 /// run with high probability in order to ensure that the hash codes are not
133 /// attackable and to ensure that output which is intended to be stable does
134 /// not rely on the particulars of the hash codes produced.
135 ///
136 /// That said, there are use cases where it is important to be able to
137 /// reproduce *exactly* a specific behavior. To that end, we provide a function
138 /// which will forcibly set the seed to a fixed value. This must be done at the
139 /// start of the program, before any hashes are computed. Also, it cannot be
140 /// undone. This makes it thread-hostile and very hard to use outside of
141 /// immediately on start of a simple program designed for reproducible
142 /// behavior.
143 void set_fixed_execution_hash_seed(uint64_t fixed_value);
144
145
146 // All of the implementation details of actually computing the various hash
147 // code values are held within this namespace. These routines are included in
148 // the header file mainly to allow inlining and constant propagation.
149 namespace hashing {
150 namespace detail {
151
fetch64(const char * p)152 inline uint64_t fetch64(const char *p) {
153 uint64_t result;
154 memcpy(&result, p, sizeof(result));
155 if (sys::IsBigEndianHost)
156 sys::swapByteOrder(result);
157 return result;
158 }
159
fetch32(const char * p)160 inline uint32_t fetch32(const char *p) {
161 uint32_t result;
162 memcpy(&result, p, sizeof(result));
163 if (sys::IsBigEndianHost)
164 sys::swapByteOrder(result);
165 return result;
166 }
167
168 /// Some primes between 2^63 and 2^64 for various uses.
169 static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
170 static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
171 static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
172 static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
173
174 /// Bitwise right rotate.
175 /// Normally this will compile to a single instruction, especially if the
176 /// shift is a manifest constant.
rotate(uint64_t val,size_t shift)177 inline uint64_t rotate(uint64_t val, size_t shift) {
178 // Avoid shifting by 64: doing so yields an undefined result.
179 return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
180 }
181
shift_mix(uint64_t val)182 inline uint64_t shift_mix(uint64_t val) {
183 return val ^ (val >> 47);
184 }
185
hash_16_bytes(uint64_t low,uint64_t high)186 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
187 // Murmur-inspired hashing.
188 const uint64_t kMul = 0x9ddfea08eb382d69ULL;
189 uint64_t a = (low ^ high) * kMul;
190 a ^= (a >> 47);
191 uint64_t b = (high ^ a) * kMul;
192 b ^= (b >> 47);
193 b *= kMul;
194 return b;
195 }
196
hash_1to3_bytes(const char * s,size_t len,uint64_t seed)197 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
198 uint8_t a = s[0];
199 uint8_t b = s[len >> 1];
200 uint8_t c = s[len - 1];
201 uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
202 uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
203 return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
204 }
205
hash_4to8_bytes(const char * s,size_t len,uint64_t seed)206 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
207 uint64_t a = fetch32(s);
208 return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
209 }
210
hash_9to16_bytes(const char * s,size_t len,uint64_t seed)211 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
212 uint64_t a = fetch64(s);
213 uint64_t b = fetch64(s + len - 8);
214 return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
215 }
216
hash_17to32_bytes(const char * s,size_t len,uint64_t seed)217 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
218 uint64_t a = fetch64(s) * k1;
219 uint64_t b = fetch64(s + 8);
220 uint64_t c = fetch64(s + len - 8) * k2;
221 uint64_t d = fetch64(s + len - 16) * k0;
222 return hash_16_bytes(llvm::rotr<uint64_t>(a - b, 43) +
223 llvm::rotr<uint64_t>(c ^ seed, 30) + d,
224 a + llvm::rotr<uint64_t>(b ^ k3, 20) - c + len + seed);
225 }
226
hash_33to64_bytes(const char * s,size_t len,uint64_t seed)227 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
228 uint64_t z = fetch64(s + 24);
229 uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
230 uint64_t b = llvm::rotr<uint64_t>(a + z, 52);
231 uint64_t c = llvm::rotr<uint64_t>(a, 37);
232 a += fetch64(s + 8);
233 c += llvm::rotr<uint64_t>(a, 7);
234 a += fetch64(s + 16);
235 uint64_t vf = a + z;
236 uint64_t vs = b + llvm::rotr<uint64_t>(a, 31) + c;
237 a = fetch64(s + 16) + fetch64(s + len - 32);
238 z = fetch64(s + len - 8);
239 b = llvm::rotr<uint64_t>(a + z, 52);
240 c = llvm::rotr<uint64_t>(a, 37);
241 a += fetch64(s + len - 24);
242 c += llvm::rotr<uint64_t>(a, 7);
243 a += fetch64(s + len - 16);
244 uint64_t wf = a + z;
245 uint64_t ws = b + llvm::rotr<uint64_t>(a, 31) + c;
246 uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
247 return shift_mix((seed ^ (r * k0)) + vs) * k2;
248 }
249
hash_short(const char * s,size_t length,uint64_t seed)250 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
251 if (length >= 4 && length <= 8)
252 return hash_4to8_bytes(s, length, seed);
253 if (length > 8 && length <= 16)
254 return hash_9to16_bytes(s, length, seed);
255 if (length > 16 && length <= 32)
256 return hash_17to32_bytes(s, length, seed);
257 if (length > 32)
258 return hash_33to64_bytes(s, length, seed);
259 if (length != 0)
260 return hash_1to3_bytes(s, length, seed);
261
262 return k2 ^ seed;
263 }
264
265 /// The intermediate state used during hashing.
266 /// Currently, the algorithm for computing hash codes is based on CityHash and
267 /// keeps 56 bytes of arbitrary state.
268 struct hash_state {
269 uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
270
271 /// Create a new hash_state structure and initialize it based on the
272 /// seed and the first 64-byte chunk.
273 /// This effectively performs the initial mix.
createhash_state274 static hash_state create(const char *s, uint64_t seed) {
275 hash_state state = {0,
276 seed,
277 hash_16_bytes(seed, k1),
278 llvm::rotr<uint64_t>(seed ^ k1, 49),
279 seed * k1,
280 shift_mix(seed),
281 0};
282 state.h6 = hash_16_bytes(state.h4, state.h5);
283 state.mix(s);
284 return state;
285 }
286
287 /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
288 /// and 'b', including whatever is already in 'a' and 'b'.
mix_32_byteshash_state289 static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
290 a += fetch64(s);
291 uint64_t c = fetch64(s + 24);
292 b = llvm::rotr<uint64_t>(b + a + c, 21);
293 uint64_t d = a;
294 a += fetch64(s + 8) + fetch64(s + 16);
295 b += llvm::rotr<uint64_t>(a, 44) + d;
296 a += c;
297 }
298
299 /// Mix in a 64-byte buffer of data.
300 /// We mix all 64 bytes even when the chunk length is smaller, but we
301 /// record the actual length.
mixhash_state302 void mix(const char *s) {
303 h0 = llvm::rotr<uint64_t>(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
304 h1 = llvm::rotr<uint64_t>(h1 + h4 + fetch64(s + 48), 42) * k1;
305 h0 ^= h6;
306 h1 += h3 + fetch64(s + 40);
307 h2 = llvm::rotr<uint64_t>(h2 + h5, 33) * k1;
308 h3 = h4 * k1;
309 h4 = h0 + h5;
310 mix_32_bytes(s, h3, h4);
311 h5 = h2 + h6;
312 h6 = h1 + fetch64(s + 16);
313 mix_32_bytes(s + 32, h5, h6);
314 std::swap(h2, h0);
315 }
316
317 /// Compute the final 64-bit hash code value based on the current
318 /// state and the length of bytes hashed.
finalizehash_state319 uint64_t finalize(size_t length) {
320 return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
321 hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
322 }
323 };
324
325
326 /// A global, fixed seed-override variable.
327 ///
328 /// This variable can be set using the \see llvm::set_fixed_execution_seed
329 /// function. See that function for details. Do not, under any circumstances,
330 /// set or read this variable.
331 extern uint64_t fixed_seed_override;
332
get_execution_seed()333 inline uint64_t get_execution_seed() {
334 // FIXME: This needs to be a per-execution seed. This is just a placeholder
335 // implementation. Switching to a per-execution seed is likely to flush out
336 // instability bugs and so will happen as its own commit.
337 //
338 // However, if there is a fixed seed override set the first time this is
339 // called, return that instead of the per-execution seed.
340 const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
341 static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
342 return seed;
343 }
344
345
346 /// Trait to indicate whether a type's bits can be hashed directly.
347 ///
348 /// A type trait which is true if we want to combine values for hashing by
349 /// reading the underlying data. It is false if values of this type must
350 /// first be passed to hash_value, and the resulting hash_codes combined.
351 //
352 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
353 // a predicate which asserts that comparing the underlying storage of two
354 // values of the type for equality is equivalent to comparing the two values
355 // for equality. For all the platforms we care about, this holds for integers
356 // and pointers, but there are platforms where it doesn't and we would like to
357 // support user-defined types which happen to satisfy this property.
358 template <typename T> struct is_hashable_data
359 : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
360 std::is_pointer<T>::value) &&
361 64 % sizeof(T) == 0)> {};
362
363 // Special case std::pair to detect when both types are viable and when there
364 // is no alignment-derived padding in the pair. This is a bit of a lie because
365 // std::pair isn't truly POD, but it's close enough in all reasonable
366 // implementations for our use case of hashing the underlying data.
367 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
368 : std::integral_constant<bool, (is_hashable_data<T>::value &&
369 is_hashable_data<U>::value &&
370 (sizeof(T) + sizeof(U)) ==
371 sizeof(std::pair<T, U>))> {};
372
373 /// Helper to get the hashable data representation for a type.
374 /// This variant is enabled when the type itself can be used.
375 template <typename T>
376 std::enable_if_t<is_hashable_data<T>::value, T>
377 get_hashable_data(const T &value) {
378 return value;
379 }
380 /// Helper to get the hashable data representation for a type.
381 /// This variant is enabled when we must first call hash_value and use the
382 /// result as our data.
383 template <typename T>
384 std::enable_if_t<!is_hashable_data<T>::value, size_t>
385 get_hashable_data(const T &value) {
386 using ::llvm::hash_value;
387 return hash_value(value);
388 }
389
390 /// Helper to store data from a value into a buffer and advance the
391 /// pointer into that buffer.
392 ///
393 /// This routine first checks whether there is enough space in the provided
394 /// buffer, and if not immediately returns false. If there is space, it
395 /// copies the underlying bytes of value into the buffer, advances the
396 /// buffer_ptr past the copied bytes, and returns true.
397 template <typename T>
398 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
399 size_t offset = 0) {
400 size_t store_size = sizeof(value) - offset;
401 if (buffer_ptr + store_size > buffer_end)
402 return false;
403 const char *value_data = reinterpret_cast<const char *>(&value);
404 memcpy(buffer_ptr, value_data + offset, store_size);
405 buffer_ptr += store_size;
406 return true;
407 }
408
409 /// Implement the combining of integral values into a hash_code.
410 ///
411 /// This overload is selected when the value type of the iterator is
412 /// integral. Rather than computing a hash_code for each object and then
413 /// combining them, this (as an optimization) directly combines the integers.
414 template <typename InputIteratorT>
415 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
416 const uint64_t seed = get_execution_seed();
417 char buffer[64], *buffer_ptr = buffer;
418 char *const buffer_end = std::end(buffer);
419 while (first != last && store_and_advance(buffer_ptr, buffer_end,
420 get_hashable_data(*first)))
421 ++first;
422 if (first == last)
423 return hash_short(buffer, buffer_ptr - buffer, seed);
424 assert(buffer_ptr == buffer_end);
425
426 hash_state state = state.create(buffer, seed);
427 size_t length = 64;
428 while (first != last) {
429 // Fill up the buffer. We don't clear it, which re-mixes the last round
430 // when only a partial 64-byte chunk is left.
431 buffer_ptr = buffer;
432 while (first != last && store_and_advance(buffer_ptr, buffer_end,
433 get_hashable_data(*first)))
434 ++first;
435
436 // Rotate the buffer if we did a partial fill in order to simulate doing
437 // a mix of the last 64-bytes. That is how the algorithm works when we
438 // have a contiguous byte sequence, and we want to emulate that here.
439 std::rotate(buffer, buffer_ptr, buffer_end);
440
441 // Mix this chunk into the current state.
442 state.mix(buffer);
443 length += buffer_ptr - buffer;
444 };
445
446 return state.finalize(length);
447 }
448
449 /// Implement the combining of integral values into a hash_code.
450 ///
451 /// This overload is selected when the value type of the iterator is integral
452 /// and when the input iterator is actually a pointer. Rather than computing
453 /// a hash_code for each object and then combining them, this (as an
454 /// optimization) directly combines the integers. Also, because the integers
455 /// are stored in contiguous memory, this routine avoids copying each value
456 /// and directly reads from the underlying memory.
457 template <typename ValueT>
458 std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
459 hash_combine_range_impl(ValueT *first, ValueT *last) {
460 const uint64_t seed = get_execution_seed();
461 const char *s_begin = reinterpret_cast<const char *>(first);
462 const char *s_end = reinterpret_cast<const char *>(last);
463 const size_t length = std::distance(s_begin, s_end);
464 if (length <= 64)
465 return hash_short(s_begin, length, seed);
466
467 const char *s_aligned_end = s_begin + (length & ~63);
468 hash_state state = state.create(s_begin, seed);
469 s_begin += 64;
470 while (s_begin != s_aligned_end) {
471 state.mix(s_begin);
472 s_begin += 64;
473 }
474 if (length & 63)
475 state.mix(s_end - 64);
476
477 return state.finalize(length);
478 }
479
480 } // namespace detail
481 } // namespace hashing
482
483
484 /// Compute a hash_code for a sequence of values.
485 ///
486 /// This hashes a sequence of values. It produces the same hash_code as
487 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
488 /// and is significantly faster given pointers and types which can be hashed as
489 /// a sequence of bytes.
490 template <typename InputIteratorT>
491 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
492 return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
493 }
494
495
496 // Implementation details for hash_combine.
497 namespace hashing {
498 namespace detail {
499
500 /// Helper class to manage the recursive combining of hash_combine
501 /// arguments.
502 ///
503 /// This class exists to manage the state and various calls involved in the
504 /// recursive combining of arguments used in hash_combine. It is particularly
505 /// useful at minimizing the code in the recursive calls to ease the pain
506 /// caused by a lack of variadic functions.
507 struct hash_combine_recursive_helper {
508 char buffer[64] = {};
509 hash_state state;
510 const uint64_t seed;
511
512 public:
513 /// Construct a recursive hash combining helper.
514 ///
515 /// This sets up the state for a recursive hash combine, including getting
516 /// the seed and buffer setup.
517 hash_combine_recursive_helper()
518 : seed(get_execution_seed()) {}
519
520 /// Combine one chunk of data into the current in-flight hash.
521 ///
522 /// This merges one chunk of data into the hash. First it tries to buffer
523 /// the data. If the buffer is full, it hashes the buffer into its
524 /// hash_state, empties it, and then merges the new chunk in. This also
525 /// handles cases where the data straddles the end of the buffer.
526 template <typename T>
527 char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
528 if (!store_and_advance(buffer_ptr, buffer_end, data)) {
529 // Check for skew which prevents the buffer from being packed, and do
530 // a partial store into the buffer to fill it. This is only a concern
531 // with the variadic combine because that formation can have varying
532 // argument types.
533 size_t partial_store_size = buffer_end - buffer_ptr;
534 memcpy(buffer_ptr, &data, partial_store_size);
535
536 // If the store fails, our buffer is full and ready to hash. We have to
537 // either initialize the hash state (on the first full buffer) or mix
538 // this buffer into the existing hash state. Length tracks the *hashed*
539 // length, not the buffered length.
540 if (length == 0) {
541 state = state.create(buffer, seed);
542 length = 64;
543 } else {
544 // Mix this chunk into the current state and bump length up by 64.
545 state.mix(buffer);
546 length += 64;
547 }
548 // Reset the buffer_ptr to the head of the buffer for the next chunk of
549 // data.
550 buffer_ptr = buffer;
551
552 // Try again to store into the buffer -- this cannot fail as we only
553 // store types smaller than the buffer.
554 if (!store_and_advance(buffer_ptr, buffer_end, data,
555 partial_store_size))
556 llvm_unreachable("buffer smaller than stored type");
557 }
558 return buffer_ptr;
559 }
560
561 /// Recursive, variadic combining method.
562 ///
563 /// This function recurses through each argument, combining that argument
564 /// into a single hash.
565 template <typename T, typename ...Ts>
566 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
567 const T &arg, const Ts &...args) {
568 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
569
570 // Recurse to the next argument.
571 return combine(length, buffer_ptr, buffer_end, args...);
572 }
573
574 /// Base case for recursive, variadic combining.
575 ///
576 /// The base case when combining arguments recursively is reached when all
577 /// arguments have been handled. It flushes the remaining buffer and
578 /// constructs a hash_code.
579 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
580 // Check whether the entire set of values fit in the buffer. If so, we'll
581 // use the optimized short hashing routine and skip state entirely.
582 if (length == 0)
583 return hash_short(buffer, buffer_ptr - buffer, seed);
584
585 // Mix the final buffer, rotating it if we did a partial fill in order to
586 // simulate doing a mix of the last 64-bytes. That is how the algorithm
587 // works when we have a contiguous byte sequence, and we want to emulate
588 // that here.
589 std::rotate(buffer, buffer_ptr, buffer_end);
590
591 // Mix this chunk into the current state.
592 state.mix(buffer);
593 length += buffer_ptr - buffer;
594
595 return state.finalize(length);
596 }
597 };
598
599 } // namespace detail
600 } // namespace hashing
601
602 /// Combine values into a single hash_code.
603 ///
604 /// This routine accepts a varying number of arguments of any type. It will
605 /// attempt to combine them into a single hash_code. For user-defined types it
606 /// attempts to call a \see hash_value overload (via ADL) for the type. For
607 /// integer and pointer types it directly combines their data into the
608 /// resulting hash_code.
609 ///
610 /// The result is suitable for returning from a user's hash_value
611 /// *implementation* for their user-defined type. Consumers of a type should
612 /// *not* call this routine, they should instead call 'hash_value'.
613 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
614 // Recursively hash each argument using a helper class.
615 ::llvm::hashing::detail::hash_combine_recursive_helper helper;
616 return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
617 }
618
619 // Implementation details for implementations of hash_value overloads provided
620 // here.
621 namespace hashing {
622 namespace detail {
623
624 /// Helper to hash the value of a single integer.
625 ///
626 /// Overloads for smaller integer types are not provided to ensure consistent
627 /// behavior in the presence of integral promotions. Essentially,
628 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
629 inline hash_code hash_integer_value(uint64_t value) {
630 // Similar to hash_4to8_bytes but using a seed instead of length.
631 const uint64_t seed = get_execution_seed();
632 const char *s = reinterpret_cast<const char *>(&value);
633 const uint64_t a = fetch32(s);
634 return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
635 }
636
637 } // namespace detail
638 } // namespace hashing
639
640 // Declared and documented above, but defined here so that any of the hashing
641 // infrastructure is available.
642 template <typename T>
643 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
644 return ::llvm::hashing::detail::hash_integer_value(
645 static_cast<uint64_t>(value));
646 }
647
648 // Declared and documented above, but defined here so that any of the hashing
649 // infrastructure is available.
650 template <typename T> hash_code hash_value(const T *ptr) {
651 return ::llvm::hashing::detail::hash_integer_value(
652 reinterpret_cast<uintptr_t>(ptr));
653 }
654
655 // Declared and documented above, but defined here so that any of the hashing
656 // infrastructure is available.
657 template <typename T, typename U>
658 hash_code hash_value(const std::pair<T, U> &arg) {
659 return hash_combine(arg.first, arg.second);
660 }
661
662 template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) {
663 return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg);
664 }
665
666 // Declared and documented above, but defined here so that any of the hashing
667 // infrastructure is available.
668 template <typename T>
669 hash_code hash_value(const std::basic_string<T> &arg) {
670 return hash_combine_range(arg.begin(), arg.end());
671 }
672
673 template <typename T> hash_code hash_value(const std::optional<T> &arg) {
674 return arg ? hash_combine(true, *arg) : hash_value(false);
675 }
676
677 template <> struct DenseMapInfo<hash_code, void> {
678 static inline hash_code getEmptyKey() { return hash_code(-1); }
679 static inline hash_code getTombstoneKey() { return hash_code(-2); }
680 static unsigned getHashValue(hash_code val) { return val; }
681 static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
682 };
683
684 } // namespace llvm
685
686 /// Implement std::hash so that hash_code can be used in STL containers.
687 namespace std {
688
689 template<>
690 struct hash<llvm::hash_code> {
691 size_t operator()(llvm::hash_code const& Val) const {
692 return Val;
693 }
694 };
695
696 } // namespace std;
697
698 #endif
699