1 //===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines a hash set that can be used to remove duplication of nodes
11 /// in a graph. This code was originally created by Chris Lattner for use with
12 /// SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13 /// set.
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/STLForwardCompat.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator.h"
23 #include "llvm/Support/Allocator.h"
24 #include <cassert>
25 #include <cstddef>
26 #include <cstdint>
27 #include <type_traits>
28 #include <utility>
29
30 namespace llvm {
31
32 /// This folding set used for two purposes:
33 /// 1. Given information about a node we want to create, look up the unique
34 /// instance of the node in the set. If the node already exists, return
35 /// it, otherwise return the bucket it should be inserted into.
36 /// 2. Given a node that has already been created, remove it from the set.
37 ///
38 /// This class is implemented as a single-link chained hash table, where the
39 /// "buckets" are actually the nodes themselves (the next pointer is in the
40 /// node). The last node points back to the bucket to simplify node removal.
41 ///
42 /// Any node that is to be included in the folding set must be a subclass of
43 /// FoldingSetNode. The node class must also define a Profile method used to
44 /// establish the unique bits of data for the node. The Profile method is
45 /// passed a FoldingSetNodeID object which is used to gather the bits. Just
46 /// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
47 /// NOTE: That the folding set does not own the nodes and it is the
48 /// responsibility of the user to dispose of the nodes.
49 ///
50 /// Eg.
51 /// class MyNode : public FoldingSetNode {
52 /// private:
53 /// std::string Name;
54 /// unsigned Value;
55 /// public:
56 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
57 /// ...
58 /// void Profile(FoldingSetNodeID &ID) const {
59 /// ID.AddString(Name);
60 /// ID.AddInteger(Value);
61 /// }
62 /// ...
63 /// };
64 ///
65 /// To define the folding set itself use the FoldingSet template;
66 ///
67 /// Eg.
68 /// FoldingSet<MyNode> MyFoldingSet;
69 ///
70 /// Four public methods are available to manipulate the folding set;
71 ///
72 /// 1) If you have an existing node that you want add to the set but unsure
73 /// that the node might already exist then call;
74 ///
75 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
76 ///
77 /// If The result is equal to the input then the node has been inserted.
78 /// Otherwise, the result is the node existing in the folding set, and the
79 /// input can be discarded (use the result instead.)
80 ///
81 /// 2) If you are ready to construct a node but want to check if it already
82 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
83 /// check;
84 ///
85 /// FoldingSetNodeID ID;
86 /// ID.AddString(Name);
87 /// ID.AddInteger(Value);
88 /// void *InsertPoint;
89 ///
90 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
91 ///
92 /// If found then M will be non-NULL, else InsertPoint will point to where it
93 /// should be inserted using InsertNode.
94 ///
95 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can insert a
96 /// new node with InsertNode;
97 ///
98 /// MyFoldingSet.InsertNode(M, InsertPoint);
99 ///
100 /// 4) Finally, if you want to remove a node from the folding set call;
101 ///
102 /// bool WasRemoved = MyFoldingSet.RemoveNode(M);
103 ///
104 /// The result indicates whether the node existed in the folding set.
105
106 class FoldingSetNodeID;
107 class StringRef;
108
109 //===----------------------------------------------------------------------===//
110 /// FoldingSetBase - Implements the folding set functionality. The main
111 /// structure is an array of buckets. Each bucket is indexed by the hash of
112 /// the nodes it contains. The bucket itself points to the nodes contained
113 /// in the bucket via a singly linked list. The last node in the list points
114 /// back to the bucket to facilitate node removal.
115 ///
116 class FoldingSetBase {
117 protected:
118 /// Buckets - Array of bucket chains.
119 void **Buckets;
120
121 /// NumBuckets - Length of the Buckets array. Always a power of 2.
122 unsigned NumBuckets;
123
124 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
125 /// is greater than twice the number of buckets.
126 unsigned NumNodes;
127
128 explicit FoldingSetBase(unsigned Log2InitSize = 6);
129 FoldingSetBase(FoldingSetBase &&Arg);
130 FoldingSetBase &operator=(FoldingSetBase &&RHS);
131 ~FoldingSetBase();
132
133 public:
134 //===--------------------------------------------------------------------===//
135 /// Node - This class is used to maintain the singly linked bucket list in
136 /// a folding set.
137 class Node {
138 private:
139 // NextInFoldingSetBucket - next link in the bucket list.
140 void *NextInFoldingSetBucket = nullptr;
141
142 public:
143 Node() = default;
144
145 // Accessors
getNextInBucket()146 void *getNextInBucket() const { return NextInFoldingSetBucket; }
SetNextInBucket(void * N)147 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
148 };
149
150 /// clear - Remove all nodes from the folding set.
151 void clear();
152
153 /// size - Returns the number of nodes in the folding set.
size()154 unsigned size() const { return NumNodes; }
155
156 /// empty - Returns true if there are no nodes in the folding set.
empty()157 bool empty() const { return NumNodes == 0; }
158
159 /// capacity - Returns the number of nodes permitted in the folding set
160 /// before a rebucket operation is performed.
capacity()161 unsigned capacity() {
162 // We allow a load factor of up to 2.0,
163 // so that means our capacity is NumBuckets * 2
164 return NumBuckets * 2;
165 }
166
167 protected:
168 /// Functions provided by the derived class to compute folding properties.
169 /// This is effectively a vtable for FoldingSetBase, except that we don't
170 /// actually store a pointer to it in the object.
171 struct FoldingSetInfo {
172 /// GetNodeProfile - Instantiations of the FoldingSet template implement
173 /// this function to gather data bits for the given node.
174 void (*GetNodeProfile)(const FoldingSetBase *Self, Node *N,
175 FoldingSetNodeID &ID);
176
177 /// NodeEquals - Instantiations of the FoldingSet template implement
178 /// this function to compare the given node with the given ID.
179 bool (*NodeEquals)(const FoldingSetBase *Self, Node *N,
180 const FoldingSetNodeID &ID, unsigned IDHash,
181 FoldingSetNodeID &TempID);
182
183 /// ComputeNodeHash - Instantiations of the FoldingSet template implement
184 /// this function to compute a hash value for the given node.
185 unsigned (*ComputeNodeHash)(const FoldingSetBase *Self, Node *N,
186 FoldingSetNodeID &TempID);
187 };
188
189 private:
190 /// GrowHashTable - Double the size of the hash table and rehash everything.
191 void GrowHashTable(const FoldingSetInfo &Info);
192
193 /// GrowBucketCount - resize the hash table and rehash everything.
194 /// NewBucketCount must be a power of two, and must be greater than the old
195 /// bucket count.
196 void GrowBucketCount(unsigned NewBucketCount, const FoldingSetInfo &Info);
197
198 protected:
199 // The below methods are protected to encourage subclasses to provide a more
200 // type-safe API.
201
202 /// reserve - Increase the number of buckets such that adding the
203 /// EltCount-th node won't cause a rebucket operation. reserve is permitted
204 /// to allocate more space than requested by EltCount.
205 void reserve(unsigned EltCount, const FoldingSetInfo &Info);
206
207 /// RemoveNode - Remove a node from the folding set, returning true if one
208 /// was removed or false if the node was not in the folding set.
209 bool RemoveNode(Node *N);
210
211 /// GetOrInsertNode - If there is an existing simple Node exactly
212 /// equal to the specified node, return it. Otherwise, insert 'N' and return
213 /// it instead.
214 Node *GetOrInsertNode(Node *N, const FoldingSetInfo &Info);
215
216 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
217 /// return it. If not, return the insertion token that will make insertion
218 /// faster.
219 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos,
220 const FoldingSetInfo &Info);
221
222 /// InsertNode - Insert the specified node into the folding set, knowing that
223 /// it is not already in the folding set. InsertPos must be obtained from
224 /// FindNodeOrInsertPos.
225 void InsertNode(Node *N, void *InsertPos, const FoldingSetInfo &Info);
226 };
227
228 //===----------------------------------------------------------------------===//
229
230 /// DefaultFoldingSetTrait - This class provides default implementations
231 /// for FoldingSetTrait implementations.
232 template<typename T> struct DefaultFoldingSetTrait {
ProfileDefaultFoldingSetTrait233 static void Profile(const T &X, FoldingSetNodeID &ID) {
234 X.Profile(ID);
235 }
ProfileDefaultFoldingSetTrait236 static void Profile(T &X, FoldingSetNodeID &ID) {
237 X.Profile(ID);
238 }
239
240 // Equals - Test if the profile for X would match ID, using TempID
241 // to compute a temporary ID if necessary. The default implementation
242 // just calls Profile and does a regular comparison. Implementations
243 // can override this to provide more efficient implementations.
244 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
245 FoldingSetNodeID &TempID);
246
247 // ComputeHash - Compute a hash value for X, using TempID to
248 // compute a temporary ID if necessary. The default implementation
249 // just calls Profile and does a regular hash computation.
250 // Implementations can override this to provide more efficient
251 // implementations.
252 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
253 };
254
255 /// FoldingSetTrait - This trait class is used to define behavior of how
256 /// to "profile" (in the FoldingSet parlance) an object of a given type.
257 /// The default behavior is to invoke a 'Profile' method on an object, but
258 /// through template specialization the behavior can be tailored for specific
259 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects
260 /// to FoldingSets that were not originally designed to have that behavior.
261 template <typename T, typename Enable = void>
262 struct FoldingSetTrait : public DefaultFoldingSetTrait<T> {};
263
264 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
265 /// for ContextualFoldingSets.
266 template<typename T, typename Ctx>
267 struct DefaultContextualFoldingSetTrait {
ProfileDefaultContextualFoldingSetTrait268 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
269 X.Profile(ID, Context);
270 }
271
272 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
273 FoldingSetNodeID &TempID, Ctx Context);
274 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
275 Ctx Context);
276 };
277
278 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
279 /// ContextualFoldingSets.
280 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
281 : public DefaultContextualFoldingSetTrait<T, Ctx> {};
282
283 //===--------------------------------------------------------------------===//
284 /// FoldingSetNodeIDRef - This class describes a reference to an interned
285 /// FoldingSetNodeID, which can be a useful to store node id data rather
286 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
287 /// is often much larger than necessary, and the possibility of heap
288 /// allocation means it requires a non-trivial destructor call.
289 class FoldingSetNodeIDRef {
290 const unsigned *Data = nullptr;
291 size_t Size = 0;
292
293 public:
294 FoldingSetNodeIDRef() = default;
FoldingSetNodeIDRef(const unsigned * D,size_t S)295 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
296
297 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
298 /// used to lookup the node in the FoldingSetBase.
ComputeHash()299 unsigned ComputeHash() const {
300 return static_cast<unsigned>(hash_combine_range(Data, Data + Size));
301 }
302
303 bool operator==(FoldingSetNodeIDRef) const;
304
305 bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
306
307 /// Used to compare the "ordering" of two nodes as defined by the
308 /// profiled bits and their ordering defined by memcmp().
309 bool operator<(FoldingSetNodeIDRef) const;
310
getData()311 const unsigned *getData() const { return Data; }
getSize()312 size_t getSize() const { return Size; }
313 };
314
315 //===--------------------------------------------------------------------===//
316 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
317 /// a node. When all the bits are gathered this class is used to produce a
318 /// hash value for the node.
319 class FoldingSetNodeID {
320 /// Bits - Vector of all the data bits that make the node unique.
321 /// Use a SmallVector to avoid a heap allocation in the common case.
322 SmallVector<unsigned, 32> Bits;
323
324 public:
325 FoldingSetNodeID() = default;
326
FoldingSetNodeID(FoldingSetNodeIDRef Ref)327 FoldingSetNodeID(FoldingSetNodeIDRef Ref)
328 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
329
330 /// Add* - Add various data types to Bit data.
AddPointer(const void * Ptr)331 void AddPointer(const void *Ptr) {
332 // Note: this adds pointers to the hash using sizes and endianness that
333 // depend on the host. It doesn't matter, however, because hashing on
334 // pointer values is inherently unstable. Nothing should depend on the
335 // ordering of nodes in the folding set.
336 static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
337 "unexpected pointer size");
338 AddInteger(reinterpret_cast<uintptr_t>(Ptr));
339 }
AddInteger(signed I)340 void AddInteger(signed I) { Bits.push_back(I); }
AddInteger(unsigned I)341 void AddInteger(unsigned I) { Bits.push_back(I); }
AddInteger(long I)342 void AddInteger(long I) { AddInteger((unsigned long)I); }
AddInteger(unsigned long I)343 void AddInteger(unsigned long I) {
344 if (sizeof(long) == sizeof(int))
345 AddInteger(unsigned(I));
346 else if (sizeof(long) == sizeof(long long)) {
347 AddInteger((unsigned long long)I);
348 } else {
349 llvm_unreachable("unexpected sizeof(long)");
350 }
351 }
AddInteger(long long I)352 void AddInteger(long long I) { AddInteger((unsigned long long)I); }
AddInteger(unsigned long long I)353 void AddInteger(unsigned long long I) {
354 AddInteger(unsigned(I));
355 AddInteger(unsigned(I >> 32));
356 }
357
AddBoolean(bool B)358 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
359 void AddString(StringRef String);
360 void AddNodeID(const FoldingSetNodeID &ID);
361
362 template <typename T>
Add(const T & x)363 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
364
365 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
366 /// object to be used to compute a new profile.
clear()367 inline void clear() { Bits.clear(); }
368
369 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
370 /// to lookup the node in the FoldingSetBase.
ComputeHash()371 unsigned ComputeHash() const {
372 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
373 }
374
375 /// operator== - Used to compare two nodes to each other.
376 bool operator==(const FoldingSetNodeID &RHS) const;
377 bool operator==(const FoldingSetNodeIDRef RHS) const;
378
379 bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
380 bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
381
382 /// Used to compare the "ordering" of two nodes as defined by the
383 /// profiled bits and their ordering defined by memcmp().
384 bool operator<(const FoldingSetNodeID &RHS) const;
385 bool operator<(const FoldingSetNodeIDRef RHS) const;
386
387 /// Intern - Copy this node's data to a memory region allocated from the
388 /// given allocator and return a FoldingSetNodeIDRef describing the
389 /// interned data.
390 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
391 };
392
393 // Convenience type to hide the implementation of the folding set.
394 using FoldingSetNode = FoldingSetBase::Node;
395 template<class T> class FoldingSetIterator;
396 template<class T> class FoldingSetBucketIterator;
397
398 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
399 // require the definition of FoldingSetNodeID.
400 template<typename T>
401 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID)402 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
403 unsigned /*IDHash*/,
404 FoldingSetNodeID &TempID) {
405 FoldingSetTrait<T>::Profile(X, TempID);
406 return TempID == ID;
407 }
408 template<typename T>
409 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID)410 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
411 FoldingSetTrait<T>::Profile(X, TempID);
412 return TempID.ComputeHash();
413 }
414 template<typename T, typename Ctx>
415 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID,Ctx Context)416 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
417 const FoldingSetNodeID &ID,
418 unsigned /*IDHash*/,
419 FoldingSetNodeID &TempID,
420 Ctx Context) {
421 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
422 return TempID == ID;
423 }
424 template<typename T, typename Ctx>
425 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID,Ctx Context)426 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
427 FoldingSetNodeID &TempID,
428 Ctx Context) {
429 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
430 return TempID.ComputeHash();
431 }
432
433 //===----------------------------------------------------------------------===//
434 /// FoldingSetImpl - An implementation detail that lets us share code between
435 /// FoldingSet and ContextualFoldingSet.
436 template <class Derived, class T> class FoldingSetImpl : public FoldingSetBase {
437 protected:
FoldingSetImpl(unsigned Log2InitSize)438 explicit FoldingSetImpl(unsigned Log2InitSize)
439 : FoldingSetBase(Log2InitSize) {}
440
441 FoldingSetImpl(FoldingSetImpl &&Arg) = default;
442 FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
443 ~FoldingSetImpl() = default;
444
445 public:
446 using iterator = FoldingSetIterator<T>;
447
begin()448 iterator begin() { return iterator(Buckets); }
end()449 iterator end() { return iterator(Buckets+NumBuckets); }
450
451 using const_iterator = FoldingSetIterator<const T>;
452
begin()453 const_iterator begin() const { return const_iterator(Buckets); }
end()454 const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
455
456 using bucket_iterator = FoldingSetBucketIterator<T>;
457
bucket_begin(unsigned hash)458 bucket_iterator bucket_begin(unsigned hash) {
459 return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
460 }
461
bucket_end(unsigned hash)462 bucket_iterator bucket_end(unsigned hash) {
463 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
464 }
465
466 /// reserve - Increase the number of buckets such that adding the
467 /// EltCount-th node won't cause a rebucket operation. reserve is permitted
468 /// to allocate more space than requested by EltCount.
reserve(unsigned EltCount)469 void reserve(unsigned EltCount) {
470 return FoldingSetBase::reserve(EltCount, Derived::getFoldingSetInfo());
471 }
472
473 /// RemoveNode - Remove a node from the folding set, returning true if one
474 /// was removed or false if the node was not in the folding set.
RemoveNode(T * N)475 bool RemoveNode(T *N) {
476 return FoldingSetBase::RemoveNode(N);
477 }
478
479 /// GetOrInsertNode - If there is an existing simple Node exactly
480 /// equal to the specified node, return it. Otherwise, insert 'N' and
481 /// return it instead.
GetOrInsertNode(T * N)482 T *GetOrInsertNode(T *N) {
483 return static_cast<T *>(
484 FoldingSetBase::GetOrInsertNode(N, Derived::getFoldingSetInfo()));
485 }
486
487 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
488 /// return it. If not, return the insertion token that will make insertion
489 /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)490 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
491 return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(
492 ID, InsertPos, Derived::getFoldingSetInfo()));
493 }
494
495 /// InsertNode - Insert the specified node into the folding set, knowing that
496 /// it is not already in the folding set. InsertPos must be obtained from
497 /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)498 void InsertNode(T *N, void *InsertPos) {
499 FoldingSetBase::InsertNode(N, InsertPos, Derived::getFoldingSetInfo());
500 }
501
502 /// InsertNode - Insert the specified node into the folding set, knowing that
503 /// it is not already in the folding set.
InsertNode(T * N)504 void InsertNode(T *N) {
505 T *Inserted = GetOrInsertNode(N);
506 (void)Inserted;
507 assert(Inserted == N && "Node already inserted!");
508 }
509 };
510
511 //===----------------------------------------------------------------------===//
512 /// FoldingSet - This template class is used to instantiate a specialized
513 /// implementation of the folding set to the node class T. T must be a
514 /// subclass of FoldingSetNode and implement a Profile function.
515 ///
516 /// Note that this set type is movable and move-assignable. However, its
517 /// moved-from state is not a valid state for anything other than
518 /// move-assigning and destroying. This is primarily to enable movable APIs
519 /// that incorporate these objects.
520 template <class T>
521 class FoldingSet : public FoldingSetImpl<FoldingSet<T>, T> {
522 using Super = FoldingSetImpl<FoldingSet, T>;
523 using Node = typename Super::Node;
524
525 /// GetNodeProfile - Each instantiation of the FoldingSet needs to provide a
526 /// way to convert nodes into a unique specifier.
GetNodeProfile(const FoldingSetBase *,Node * N,FoldingSetNodeID & ID)527 static void GetNodeProfile(const FoldingSetBase *, Node *N,
528 FoldingSetNodeID &ID) {
529 T *TN = static_cast<T *>(N);
530 FoldingSetTrait<T>::Profile(*TN, ID);
531 }
532
533 /// NodeEquals - Instantiations may optionally provide a way to compare a
534 /// node with a specified ID.
NodeEquals(const FoldingSetBase *,Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)535 static bool NodeEquals(const FoldingSetBase *, Node *N,
536 const FoldingSetNodeID &ID, unsigned IDHash,
537 FoldingSetNodeID &TempID) {
538 T *TN = static_cast<T *>(N);
539 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
540 }
541
542 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
543 /// hash value directly from a node.
ComputeNodeHash(const FoldingSetBase *,Node * N,FoldingSetNodeID & TempID)544 static unsigned ComputeNodeHash(const FoldingSetBase *, Node *N,
545 FoldingSetNodeID &TempID) {
546 T *TN = static_cast<T *>(N);
547 return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
548 }
549
getFoldingSetInfo()550 static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
551 static constexpr FoldingSetBase::FoldingSetInfo Info = {
552 GetNodeProfile, NodeEquals, ComputeNodeHash};
553 return Info;
554 }
555 friend Super;
556
557 public:
Super(Log2InitSize)558 explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
559 FoldingSet(FoldingSet &&Arg) = default;
560 FoldingSet &operator=(FoldingSet &&RHS) = default;
561 };
562
563 //===----------------------------------------------------------------------===//
564 /// ContextualFoldingSet - This template class is a further refinement
565 /// of FoldingSet which provides a context argument when calling
566 /// Profile on its nodes. Currently, that argument is fixed at
567 /// initialization time.
568 ///
569 /// T must be a subclass of FoldingSetNode and implement a Profile
570 /// function with signature
571 /// void Profile(FoldingSetNodeID &, Ctx);
572 template <class T, class Ctx>
573 class ContextualFoldingSet
574 : public FoldingSetImpl<ContextualFoldingSet<T, Ctx>, T> {
575 // Unfortunately, this can't derive from FoldingSet<T> because the
576 // construction of the vtable for FoldingSet<T> requires
577 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
578 // requires a single-argument T::Profile().
579
580 using Super = FoldingSetImpl<ContextualFoldingSet, T>;
581 using Node = typename Super::Node;
582
583 Ctx Context;
584
getContext(const FoldingSetBase * Base)585 static const Ctx &getContext(const FoldingSetBase *Base) {
586 return static_cast<const ContextualFoldingSet*>(Base)->Context;
587 }
588
589 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
590 /// way to convert nodes into a unique specifier.
GetNodeProfile(const FoldingSetBase * Base,Node * N,FoldingSetNodeID & ID)591 static void GetNodeProfile(const FoldingSetBase *Base, Node *N,
592 FoldingSetNodeID &ID) {
593 T *TN = static_cast<T *>(N);
594 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, getContext(Base));
595 }
596
NodeEquals(const FoldingSetBase * Base,Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)597 static bool NodeEquals(const FoldingSetBase *Base, Node *N,
598 const FoldingSetNodeID &ID, unsigned IDHash,
599 FoldingSetNodeID &TempID) {
600 T *TN = static_cast<T *>(N);
601 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
602 getContext(Base));
603 }
604
ComputeNodeHash(const FoldingSetBase * Base,Node * N,FoldingSetNodeID & TempID)605 static unsigned ComputeNodeHash(const FoldingSetBase *Base, Node *N,
606 FoldingSetNodeID &TempID) {
607 T *TN = static_cast<T *>(N);
608 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID,
609 getContext(Base));
610 }
611
getFoldingSetInfo()612 static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
613 static constexpr FoldingSetBase::FoldingSetInfo Info = {
614 GetNodeProfile, NodeEquals, ComputeNodeHash};
615 return Info;
616 }
617 friend Super;
618
619 public:
620 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
Super(Log2InitSize)621 : Super(Log2InitSize), Context(Context) {}
622
getContext()623 Ctx getContext() const { return Context; }
624 };
625
626 //===----------------------------------------------------------------------===//
627 /// FoldingSetVector - This template class combines a FoldingSet and a vector
628 /// to provide the interface of FoldingSet but with deterministic iteration
629 /// order based on the insertion order. T must be a subclass of FoldingSetNode
630 /// and implement a Profile function.
631 template <class T, class VectorT = SmallVector<T*, 8>>
632 class FoldingSetVector {
633 FoldingSet<T> Set;
634 VectorT Vector;
635
636 public:
Set(Log2InitSize)637 explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
638
639 using iterator = pointee_iterator<typename VectorT::iterator>;
640
begin()641 iterator begin() { return Vector.begin(); }
end()642 iterator end() { return Vector.end(); }
643
644 using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
645
begin()646 const_iterator begin() const { return Vector.begin(); }
end()647 const_iterator end() const { return Vector.end(); }
648
649 /// clear - Remove all nodes from the folding set.
clear()650 void clear() { Set.clear(); Vector.clear(); }
651
652 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
653 /// return it. If not, return the insertion token that will make insertion
654 /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)655 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
656 return Set.FindNodeOrInsertPos(ID, InsertPos);
657 }
658
659 /// GetOrInsertNode - If there is an existing simple Node exactly
660 /// equal to the specified node, return it. Otherwise, insert 'N' and
661 /// return it instead.
GetOrInsertNode(T * N)662 T *GetOrInsertNode(T *N) {
663 T *Result = Set.GetOrInsertNode(N);
664 if (Result == N) Vector.push_back(N);
665 return Result;
666 }
667
668 /// InsertNode - Insert the specified node into the folding set, knowing that
669 /// it is not already in the folding set. InsertPos must be obtained from
670 /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)671 void InsertNode(T *N, void *InsertPos) {
672 Set.InsertNode(N, InsertPos);
673 Vector.push_back(N);
674 }
675
676 /// InsertNode - Insert the specified node into the folding set, knowing that
677 /// it is not already in the folding set.
InsertNode(T * N)678 void InsertNode(T *N) {
679 Set.InsertNode(N);
680 Vector.push_back(N);
681 }
682
683 /// size - Returns the number of nodes in the folding set.
size()684 unsigned size() const { return Set.size(); }
685
686 /// empty - Returns true if there are no nodes in the folding set.
empty()687 bool empty() const { return Set.empty(); }
688 };
689
690 //===----------------------------------------------------------------------===//
691 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
692 /// folding sets, which knows how to walk the folding set hash table.
693 class FoldingSetIteratorImpl {
694 protected:
695 FoldingSetNode *NodePtr;
696
697 FoldingSetIteratorImpl(void **Bucket);
698
699 void advance();
700
701 public:
702 bool operator==(const FoldingSetIteratorImpl &RHS) const {
703 return NodePtr == RHS.NodePtr;
704 }
705 bool operator!=(const FoldingSetIteratorImpl &RHS) const {
706 return NodePtr != RHS.NodePtr;
707 }
708 };
709
710 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
711 public:
FoldingSetIterator(void ** Bucket)712 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
713
714 T &operator*() const {
715 return *static_cast<T*>(NodePtr);
716 }
717
718 T *operator->() const {
719 return static_cast<T*>(NodePtr);
720 }
721
722 inline FoldingSetIterator &operator++() { // Preincrement
723 advance();
724 return *this;
725 }
726 FoldingSetIterator operator++(int) { // Postincrement
727 FoldingSetIterator tmp = *this; ++*this; return tmp;
728 }
729 };
730
731 //===----------------------------------------------------------------------===//
732 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
733 /// shared by all folding sets, which knows how to walk a particular bucket
734 /// of a folding set hash table.
735 class FoldingSetBucketIteratorImpl {
736 protected:
737 void *Ptr;
738
739 explicit FoldingSetBucketIteratorImpl(void **Bucket);
740
FoldingSetBucketIteratorImpl(void ** Bucket,bool)741 FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
742
advance()743 void advance() {
744 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
745 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
746 Ptr = reinterpret_cast<void*>(x);
747 }
748
749 public:
750 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
751 return Ptr == RHS.Ptr;
752 }
753 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
754 return Ptr != RHS.Ptr;
755 }
756 };
757
758 template <class T>
759 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
760 public:
FoldingSetBucketIterator(void ** Bucket)761 explicit FoldingSetBucketIterator(void **Bucket) :
762 FoldingSetBucketIteratorImpl(Bucket) {}
763
FoldingSetBucketIterator(void ** Bucket,bool)764 FoldingSetBucketIterator(void **Bucket, bool) :
765 FoldingSetBucketIteratorImpl(Bucket, true) {}
766
767 T &operator*() const { return *static_cast<T*>(Ptr); }
768 T *operator->() const { return static_cast<T*>(Ptr); }
769
770 inline FoldingSetBucketIterator &operator++() { // Preincrement
771 advance();
772 return *this;
773 }
774 FoldingSetBucketIterator operator++(int) { // Postincrement
775 FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
776 }
777 };
778
779 //===----------------------------------------------------------------------===//
780 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
781 /// types in an enclosing object so that they can be inserted into FoldingSets.
782 template <typename T>
783 class FoldingSetNodeWrapper : public FoldingSetNode {
784 T data;
785
786 public:
787 template <typename... Ts>
FoldingSetNodeWrapper(Ts &&...Args)788 explicit FoldingSetNodeWrapper(Ts &&... Args)
789 : data(std::forward<Ts>(Args)...) {}
790
Profile(FoldingSetNodeID & ID)791 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
792
getValue()793 T &getValue() { return data; }
getValue()794 const T &getValue() const { return data; }
795
796 operator T&() { return data; }
797 operator const T&() const { return data; }
798 };
799
800 //===----------------------------------------------------------------------===//
801 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
802 /// a FoldingSetNodeID value rather than requiring the node to recompute it
803 /// each time it is needed. This trades space for speed (which can be
804 /// significant if the ID is long), and it also permits nodes to drop
805 /// information that would otherwise only be required for recomputing an ID.
806 class FastFoldingSetNode : public FoldingSetNode {
807 FoldingSetNodeID FastID;
808
809 protected:
FastFoldingSetNode(const FoldingSetNodeID & ID)810 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
811
812 public:
Profile(FoldingSetNodeID & ID)813 void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
814 };
815
816 //===----------------------------------------------------------------------===//
817 // Partial specializations of FoldingSetTrait.
818
819 template<typename T> struct FoldingSetTrait<T*> {
820 static inline void Profile(T *X, FoldingSetNodeID &ID) {
821 ID.AddPointer(X);
822 }
823 };
824 template <typename T1, typename T2>
825 struct FoldingSetTrait<std::pair<T1, T2>> {
826 static inline void Profile(const std::pair<T1, T2> &P,
827 FoldingSetNodeID &ID) {
828 ID.Add(P.first);
829 ID.Add(P.second);
830 }
831 };
832
833 template <typename T>
834 struct FoldingSetTrait<T, std::enable_if_t<std::is_enum<T>::value>> {
835 static void Profile(const T &X, FoldingSetNodeID &ID) {
836 ID.AddInteger(llvm::to_underlying(X));
837 }
838 };
839
840 } // end namespace llvm
841
842 #endif // LLVM_ADT_FOLDINGSET_H
843