xref: /aosp_15_r20/prebuilts/build-tools/common/py3-stdlib/_pydecimal.py (revision cda5da8d549138a6648c5ee6d7a49cf8f4a657be)
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module should be kept in sync with the latest updates of the
11# IBM specification as it evolves.  Those updates will be treated
12# as bug fixes (deviation from the spec is a compatibility, usability
13# bug) and will be backported.  At this point the spec is stabilizing
14# and the updates are becoming fewer, smaller, and less significant.
15
16"""
17This is an implementation of decimal floating point arithmetic based on
18the General Decimal Arithmetic Specification:
19
20    http://speleotrove.com/decimal/decarith.html
21
22and IEEE standard 854-1987:
23
24    http://en.wikipedia.org/wiki/IEEE_854-1987
25
26Decimal floating point has finite precision with arbitrarily large bounds.
27
28The purpose of this module is to support arithmetic using familiar
29"schoolhouse" rules and to avoid some of the tricky representation
30issues associated with binary floating point.  The package is especially
31useful for financial applications or for contexts where users have
32expectations that are at odds with binary floating point (for instance,
33in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
34of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
35Decimal('0.00')).
36
37Here are some examples of using the decimal module:
38
39>>> from decimal import *
40>>> setcontext(ExtendedContext)
41>>> Decimal(0)
42Decimal('0')
43>>> Decimal('1')
44Decimal('1')
45>>> Decimal('-.0123')
46Decimal('-0.0123')
47>>> Decimal(123456)
48Decimal('123456')
49>>> Decimal('123.45e12345678')
50Decimal('1.2345E+12345680')
51>>> Decimal('1.33') + Decimal('1.27')
52Decimal('2.60')
53>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
54Decimal('-2.20')
55>>> dig = Decimal(1)
56>>> print(dig / Decimal(3))
570.333333333
58>>> getcontext().prec = 18
59>>> print(dig / Decimal(3))
600.333333333333333333
61>>> print(dig.sqrt())
621
63>>> print(Decimal(3).sqrt())
641.73205080756887729
65>>> print(Decimal(3) ** 123)
664.85192780976896427E+58
67>>> inf = Decimal(1) / Decimal(0)
68>>> print(inf)
69Infinity
70>>> neginf = Decimal(-1) / Decimal(0)
71>>> print(neginf)
72-Infinity
73>>> print(neginf + inf)
74NaN
75>>> print(neginf * inf)
76-Infinity
77>>> print(dig / 0)
78Infinity
79>>> getcontext().traps[DivisionByZero] = 1
80>>> print(dig / 0)
81Traceback (most recent call last):
82  ...
83  ...
84  ...
85decimal.DivisionByZero: x / 0
86>>> c = Context()
87>>> c.traps[InvalidOperation] = 0
88>>> print(c.flags[InvalidOperation])
890
90>>> c.divide(Decimal(0), Decimal(0))
91Decimal('NaN')
92>>> c.traps[InvalidOperation] = 1
93>>> print(c.flags[InvalidOperation])
941
95>>> c.flags[InvalidOperation] = 0
96>>> print(c.flags[InvalidOperation])
970
98>>> print(c.divide(Decimal(0), Decimal(0)))
99Traceback (most recent call last):
100  ...
101  ...
102  ...
103decimal.InvalidOperation: 0 / 0
104>>> print(c.flags[InvalidOperation])
1051
106>>> c.flags[InvalidOperation] = 0
107>>> c.traps[InvalidOperation] = 0
108>>> print(c.divide(Decimal(0), Decimal(0)))
109NaN
110>>> print(c.flags[InvalidOperation])
1111
112>>>
113"""
114
115__all__ = [
116    # Two major classes
117    'Decimal', 'Context',
118
119    # Named tuple representation
120    'DecimalTuple',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128    'FloatOperation',
129
130    # Exceptional conditions that trigger InvalidOperation
131    'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',
132
133    # Constants for use in setting up contexts
134    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
135    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
136
137    # Functions for manipulating contexts
138    'setcontext', 'getcontext', 'localcontext',
139
140    # Limits for the C version for compatibility
141    'MAX_PREC',  'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',
142
143    # C version: compile time choice that enables the thread local context (deprecated, now always true)
144    'HAVE_THREADS',
145
146    # C version: compile time choice that enables the coroutine local context
147    'HAVE_CONTEXTVAR'
148]
149
150__xname__ = __name__    # sys.modules lookup (--without-threads)
151__name__ = 'decimal'    # For pickling
152__version__ = '1.70'    # Highest version of the spec this complies with
153                        # See http://speleotrove.com/decimal/
154__libmpdec_version__ = "2.4.2" # compatible libmpdec version
155
156import math as _math
157import numbers as _numbers
158import sys
159
160try:
161    from collections import namedtuple as _namedtuple
162    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
163except ImportError:
164    DecimalTuple = lambda *args: args
165
166# Rounding
167ROUND_DOWN = 'ROUND_DOWN'
168ROUND_HALF_UP = 'ROUND_HALF_UP'
169ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
170ROUND_CEILING = 'ROUND_CEILING'
171ROUND_FLOOR = 'ROUND_FLOOR'
172ROUND_UP = 'ROUND_UP'
173ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
174ROUND_05UP = 'ROUND_05UP'
175
176# Compatibility with the C version
177HAVE_THREADS = True
178HAVE_CONTEXTVAR = True
179if sys.maxsize == 2**63-1:
180    MAX_PREC = 999999999999999999
181    MAX_EMAX = 999999999999999999
182    MIN_EMIN = -999999999999999999
183else:
184    MAX_PREC = 425000000
185    MAX_EMAX = 425000000
186    MIN_EMIN = -425000000
187
188MIN_ETINY = MIN_EMIN - (MAX_PREC-1)
189
190# Errors
191
192class DecimalException(ArithmeticError):
193    """Base exception class.
194
195    Used exceptions derive from this.
196    If an exception derives from another exception besides this (such as
197    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
198    called if the others are present.  This isn't actually used for
199    anything, though.
200
201    handle  -- Called when context._raise_error is called and the
202               trap_enabler is not set.  First argument is self, second is the
203               context.  More arguments can be given, those being after
204               the explanation in _raise_error (For example,
205               context._raise_error(NewError, '(-x)!', self._sign) would
206               call NewError().handle(context, self._sign).)
207
208    To define a new exception, it should be sufficient to have it derive
209    from DecimalException.
210    """
211    def handle(self, context, *args):
212        pass
213
214
215class Clamped(DecimalException):
216    """Exponent of a 0 changed to fit bounds.
217
218    This occurs and signals clamped if the exponent of a result has been
219    altered in order to fit the constraints of a specific concrete
220    representation.  This may occur when the exponent of a zero result would
221    be outside the bounds of a representation, or when a large normal
222    number would have an encoded exponent that cannot be represented.  In
223    this latter case, the exponent is reduced to fit and the corresponding
224    number of zero digits are appended to the coefficient ("fold-down").
225    """
226
227class InvalidOperation(DecimalException):
228    """An invalid operation was performed.
229
230    Various bad things cause this:
231
232    Something creates a signaling NaN
233    -INF + INF
234    0 * (+-)INF
235    (+-)INF / (+-)INF
236    x % 0
237    (+-)INF % x
238    x._rescale( non-integer )
239    sqrt(-x) , x > 0
240    0 ** 0
241    x ** (non-integer)
242    x ** (+-)INF
243    An operand is invalid
244
245    The result of the operation after these is a quiet positive NaN,
246    except when the cause is a signaling NaN, in which case the result is
247    also a quiet NaN, but with the original sign, and an optional
248    diagnostic information.
249    """
250    def handle(self, context, *args):
251        if args:
252            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
253            return ans._fix_nan(context)
254        return _NaN
255
256class ConversionSyntax(InvalidOperation):
257    """Trying to convert badly formed string.
258
259    This occurs and signals invalid-operation if a string is being
260    converted to a number and it does not conform to the numeric string
261    syntax.  The result is [0,qNaN].
262    """
263    def handle(self, context, *args):
264        return _NaN
265
266class DivisionByZero(DecimalException, ZeroDivisionError):
267    """Division by 0.
268
269    This occurs and signals division-by-zero if division of a finite number
270    by zero was attempted (during a divide-integer or divide operation, or a
271    power operation with negative right-hand operand), and the dividend was
272    not zero.
273
274    The result of the operation is [sign,inf], where sign is the exclusive
275    or of the signs of the operands for divide, or is 1 for an odd power of
276    -0, for power.
277    """
278
279    def handle(self, context, sign, *args):
280        return _SignedInfinity[sign]
281
282class DivisionImpossible(InvalidOperation):
283    """Cannot perform the division adequately.
284
285    This occurs and signals invalid-operation if the integer result of a
286    divide-integer or remainder operation had too many digits (would be
287    longer than precision).  The result is [0,qNaN].
288    """
289
290    def handle(self, context, *args):
291        return _NaN
292
293class DivisionUndefined(InvalidOperation, ZeroDivisionError):
294    """Undefined result of division.
295
296    This occurs and signals invalid-operation if division by zero was
297    attempted (during a divide-integer, divide, or remainder operation), and
298    the dividend is also zero.  The result is [0,qNaN].
299    """
300
301    def handle(self, context, *args):
302        return _NaN
303
304class Inexact(DecimalException):
305    """Had to round, losing information.
306
307    This occurs and signals inexact whenever the result of an operation is
308    not exact (that is, it needed to be rounded and any discarded digits
309    were non-zero), or if an overflow or underflow condition occurs.  The
310    result in all cases is unchanged.
311
312    The inexact signal may be tested (or trapped) to determine if a given
313    operation (or sequence of operations) was inexact.
314    """
315
316class InvalidContext(InvalidOperation):
317    """Invalid context.  Unknown rounding, for example.
318
319    This occurs and signals invalid-operation if an invalid context was
320    detected during an operation.  This can occur if contexts are not checked
321    on creation and either the precision exceeds the capability of the
322    underlying concrete representation or an unknown or unsupported rounding
323    was specified.  These aspects of the context need only be checked when
324    the values are required to be used.  The result is [0,qNaN].
325    """
326
327    def handle(self, context, *args):
328        return _NaN
329
330class Rounded(DecimalException):
331    """Number got rounded (not  necessarily changed during rounding).
332
333    This occurs and signals rounded whenever the result of an operation is
334    rounded (that is, some zero or non-zero digits were discarded from the
335    coefficient), or if an overflow or underflow condition occurs.  The
336    result in all cases is unchanged.
337
338    The rounded signal may be tested (or trapped) to determine if a given
339    operation (or sequence of operations) caused a loss of precision.
340    """
341
342class Subnormal(DecimalException):
343    """Exponent < Emin before rounding.
344
345    This occurs and signals subnormal whenever the result of a conversion or
346    operation is subnormal (that is, its adjusted exponent is less than
347    Emin, before any rounding).  The result in all cases is unchanged.
348
349    The subnormal signal may be tested (or trapped) to determine if a given
350    or operation (or sequence of operations) yielded a subnormal result.
351    """
352
353class Overflow(Inexact, Rounded):
354    """Numerical overflow.
355
356    This occurs and signals overflow if the adjusted exponent of a result
357    (from a conversion or from an operation that is not an attempt to divide
358    by zero), after rounding, would be greater than the largest value that
359    can be handled by the implementation (the value Emax).
360
361    The result depends on the rounding mode:
362
363    For round-half-up and round-half-even (and for round-half-down and
364    round-up, if implemented), the result of the operation is [sign,inf],
365    where sign is the sign of the intermediate result.  For round-down, the
366    result is the largest finite number that can be represented in the
367    current precision, with the sign of the intermediate result.  For
368    round-ceiling, the result is the same as for round-down if the sign of
369    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
370    the result is the same as for round-down if the sign of the intermediate
371    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
372    will also be raised.
373    """
374
375    def handle(self, context, sign, *args):
376        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
377                                ROUND_HALF_DOWN, ROUND_UP):
378            return _SignedInfinity[sign]
379        if sign == 0:
380            if context.rounding == ROUND_CEILING:
381                return _SignedInfinity[sign]
382            return _dec_from_triple(sign, '9'*context.prec,
383                            context.Emax-context.prec+1)
384        if sign == 1:
385            if context.rounding == ROUND_FLOOR:
386                return _SignedInfinity[sign]
387            return _dec_from_triple(sign, '9'*context.prec,
388                             context.Emax-context.prec+1)
389
390
391class Underflow(Inexact, Rounded, Subnormal):
392    """Numerical underflow with result rounded to 0.
393
394    This occurs and signals underflow if a result is inexact and the
395    adjusted exponent of the result would be smaller (more negative) than
396    the smallest value that can be handled by the implementation (the value
397    Emin).  That is, the result is both inexact and subnormal.
398
399    The result after an underflow will be a subnormal number rounded, if
400    necessary, so that its exponent is not less than Etiny.  This may result
401    in 0 with the sign of the intermediate result and an exponent of Etiny.
402
403    In all cases, Inexact, Rounded, and Subnormal will also be raised.
404    """
405
406class FloatOperation(DecimalException, TypeError):
407    """Enable stricter semantics for mixing floats and Decimals.
408
409    If the signal is not trapped (default), mixing floats and Decimals is
410    permitted in the Decimal() constructor, context.create_decimal() and
411    all comparison operators. Both conversion and comparisons are exact.
412    Any occurrence of a mixed operation is silently recorded by setting
413    FloatOperation in the context flags.  Explicit conversions with
414    Decimal.from_float() or context.create_decimal_from_float() do not
415    set the flag.
416
417    Otherwise (the signal is trapped), only equality comparisons and explicit
418    conversions are silent. All other mixed operations raise FloatOperation.
419    """
420
421# List of public traps and flags
422_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
423            Underflow, InvalidOperation, Subnormal, FloatOperation]
424
425# Map conditions (per the spec) to signals
426_condition_map = {ConversionSyntax:InvalidOperation,
427                  DivisionImpossible:InvalidOperation,
428                  DivisionUndefined:InvalidOperation,
429                  InvalidContext:InvalidOperation}
430
431# Valid rounding modes
432_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
433                   ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)
434
435##### Context Functions ##################################################
436
437# The getcontext() and setcontext() function manage access to a thread-local
438# current context.
439
440import contextvars
441
442_current_context_var = contextvars.ContextVar('decimal_context')
443
444_context_attributes = frozenset(
445    ['prec', 'Emin', 'Emax', 'capitals', 'clamp', 'rounding', 'flags', 'traps']
446)
447
448def getcontext():
449    """Returns this thread's context.
450
451    If this thread does not yet have a context, returns
452    a new context and sets this thread's context.
453    New contexts are copies of DefaultContext.
454    """
455    try:
456        return _current_context_var.get()
457    except LookupError:
458        context = Context()
459        _current_context_var.set(context)
460        return context
461
462def setcontext(context):
463    """Set this thread's context to context."""
464    if context in (DefaultContext, BasicContext, ExtendedContext):
465        context = context.copy()
466        context.clear_flags()
467    _current_context_var.set(context)
468
469del contextvars        # Don't contaminate the namespace
470
471def localcontext(ctx=None, **kwargs):
472    """Return a context manager for a copy of the supplied context
473
474    Uses a copy of the current context if no context is specified
475    The returned context manager creates a local decimal context
476    in a with statement:
477        def sin(x):
478             with localcontext() as ctx:
479                 ctx.prec += 2
480                 # Rest of sin calculation algorithm
481                 # uses a precision 2 greater than normal
482             return +s  # Convert result to normal precision
483
484         def sin(x):
485             with localcontext(ExtendedContext):
486                 # Rest of sin calculation algorithm
487                 # uses the Extended Context from the
488                 # General Decimal Arithmetic Specification
489             return +s  # Convert result to normal context
490
491    >>> setcontext(DefaultContext)
492    >>> print(getcontext().prec)
493    28
494    >>> with localcontext():
495    ...     ctx = getcontext()
496    ...     ctx.prec += 2
497    ...     print(ctx.prec)
498    ...
499    30
500    >>> with localcontext(ExtendedContext):
501    ...     print(getcontext().prec)
502    ...
503    9
504    >>> print(getcontext().prec)
505    28
506    """
507    if ctx is None:
508        ctx = getcontext()
509    ctx_manager = _ContextManager(ctx)
510    for key, value in kwargs.items():
511        if key not in _context_attributes:
512            raise TypeError(f"'{key}' is an invalid keyword argument for this function")
513        setattr(ctx_manager.new_context, key, value)
514    return ctx_manager
515
516
517##### Decimal class #######################################################
518
519# Do not subclass Decimal from numbers.Real and do not register it as such
520# (because Decimals are not interoperable with floats).  See the notes in
521# numbers.py for more detail.
522
523class Decimal(object):
524    """Floating point class for decimal arithmetic."""
525
526    __slots__ = ('_exp','_int','_sign', '_is_special')
527    # Generally, the value of the Decimal instance is given by
528    #  (-1)**_sign * _int * 10**_exp
529    # Special values are signified by _is_special == True
530
531    # We're immutable, so use __new__ not __init__
532    def __new__(cls, value="0", context=None):
533        """Create a decimal point instance.
534
535        >>> Decimal('3.14')              # string input
536        Decimal('3.14')
537        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
538        Decimal('3.14')
539        >>> Decimal(314)                 # int
540        Decimal('314')
541        >>> Decimal(Decimal(314))        # another decimal instance
542        Decimal('314')
543        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
544        Decimal('3.14')
545        """
546
547        # Note that the coefficient, self._int, is actually stored as
548        # a string rather than as a tuple of digits.  This speeds up
549        # the "digits to integer" and "integer to digits" conversions
550        # that are used in almost every arithmetic operation on
551        # Decimals.  This is an internal detail: the as_tuple function
552        # and the Decimal constructor still deal with tuples of
553        # digits.
554
555        self = object.__new__(cls)
556
557        # From a string
558        # REs insist on real strings, so we can too.
559        if isinstance(value, str):
560            m = _parser(value.strip().replace("_", ""))
561            if m is None:
562                if context is None:
563                    context = getcontext()
564                return context._raise_error(ConversionSyntax,
565                                "Invalid literal for Decimal: %r" % value)
566
567            if m.group('sign') == "-":
568                self._sign = 1
569            else:
570                self._sign = 0
571            intpart = m.group('int')
572            if intpart is not None:
573                # finite number
574                fracpart = m.group('frac') or ''
575                exp = int(m.group('exp') or '0')
576                self._int = str(int(intpart+fracpart))
577                self._exp = exp - len(fracpart)
578                self._is_special = False
579            else:
580                diag = m.group('diag')
581                if diag is not None:
582                    # NaN
583                    self._int = str(int(diag or '0')).lstrip('0')
584                    if m.group('signal'):
585                        self._exp = 'N'
586                    else:
587                        self._exp = 'n'
588                else:
589                    # infinity
590                    self._int = '0'
591                    self._exp = 'F'
592                self._is_special = True
593            return self
594
595        # From an integer
596        if isinstance(value, int):
597            if value >= 0:
598                self._sign = 0
599            else:
600                self._sign = 1
601            self._exp = 0
602            self._int = str(abs(value))
603            self._is_special = False
604            return self
605
606        # From another decimal
607        if isinstance(value, Decimal):
608            self._exp  = value._exp
609            self._sign = value._sign
610            self._int  = value._int
611            self._is_special  = value._is_special
612            return self
613
614        # From an internal working value
615        if isinstance(value, _WorkRep):
616            self._sign = value.sign
617            self._int = str(value.int)
618            self._exp = int(value.exp)
619            self._is_special = False
620            return self
621
622        # tuple/list conversion (possibly from as_tuple())
623        if isinstance(value, (list,tuple)):
624            if len(value) != 3:
625                raise ValueError('Invalid tuple size in creation of Decimal '
626                                 'from list or tuple.  The list or tuple '
627                                 'should have exactly three elements.')
628            # process sign.  The isinstance test rejects floats
629            if not (isinstance(value[0], int) and value[0] in (0,1)):
630                raise ValueError("Invalid sign.  The first value in the tuple "
631                                 "should be an integer; either 0 for a "
632                                 "positive number or 1 for a negative number.")
633            self._sign = value[0]
634            if value[2] == 'F':
635                # infinity: value[1] is ignored
636                self._int = '0'
637                self._exp = value[2]
638                self._is_special = True
639            else:
640                # process and validate the digits in value[1]
641                digits = []
642                for digit in value[1]:
643                    if isinstance(digit, int) and 0 <= digit <= 9:
644                        # skip leading zeros
645                        if digits or digit != 0:
646                            digits.append(digit)
647                    else:
648                        raise ValueError("The second value in the tuple must "
649                                         "be composed of integers in the range "
650                                         "0 through 9.")
651                if value[2] in ('n', 'N'):
652                    # NaN: digits form the diagnostic
653                    self._int = ''.join(map(str, digits))
654                    self._exp = value[2]
655                    self._is_special = True
656                elif isinstance(value[2], int):
657                    # finite number: digits give the coefficient
658                    self._int = ''.join(map(str, digits or [0]))
659                    self._exp = value[2]
660                    self._is_special = False
661                else:
662                    raise ValueError("The third value in the tuple must "
663                                     "be an integer, or one of the "
664                                     "strings 'F', 'n', 'N'.")
665            return self
666
667        if isinstance(value, float):
668            if context is None:
669                context = getcontext()
670            context._raise_error(FloatOperation,
671                "strict semantics for mixing floats and Decimals are "
672                "enabled")
673            value = Decimal.from_float(value)
674            self._exp  = value._exp
675            self._sign = value._sign
676            self._int  = value._int
677            self._is_special  = value._is_special
678            return self
679
680        raise TypeError("Cannot convert %r to Decimal" % value)
681
682    @classmethod
683    def from_float(cls, f):
684        """Converts a float to a decimal number, exactly.
685
686        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
687        Since 0.1 is not exactly representable in binary floating point, the
688        value is stored as the nearest representable value which is
689        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
690        is 0.1000000000000000055511151231257827021181583404541015625.
691
692        >>> Decimal.from_float(0.1)
693        Decimal('0.1000000000000000055511151231257827021181583404541015625')
694        >>> Decimal.from_float(float('nan'))
695        Decimal('NaN')
696        >>> Decimal.from_float(float('inf'))
697        Decimal('Infinity')
698        >>> Decimal.from_float(-float('inf'))
699        Decimal('-Infinity')
700        >>> Decimal.from_float(-0.0)
701        Decimal('-0')
702
703        """
704        if isinstance(f, int):                # handle integer inputs
705            sign = 0 if f >= 0 else 1
706            k = 0
707            coeff = str(abs(f))
708        elif isinstance(f, float):
709            if _math.isinf(f) or _math.isnan(f):
710                return cls(repr(f))
711            if _math.copysign(1.0, f) == 1.0:
712                sign = 0
713            else:
714                sign = 1
715            n, d = abs(f).as_integer_ratio()
716            k = d.bit_length() - 1
717            coeff = str(n*5**k)
718        else:
719            raise TypeError("argument must be int or float.")
720
721        result = _dec_from_triple(sign, coeff, -k)
722        if cls is Decimal:
723            return result
724        else:
725            return cls(result)
726
727    def _isnan(self):
728        """Returns whether the number is not actually one.
729
730        0 if a number
731        1 if NaN
732        2 if sNaN
733        """
734        if self._is_special:
735            exp = self._exp
736            if exp == 'n':
737                return 1
738            elif exp == 'N':
739                return 2
740        return 0
741
742    def _isinfinity(self):
743        """Returns whether the number is infinite
744
745        0 if finite or not a number
746        1 if +INF
747        -1 if -INF
748        """
749        if self._exp == 'F':
750            if self._sign:
751                return -1
752            return 1
753        return 0
754
755    def _check_nans(self, other=None, context=None):
756        """Returns whether the number is not actually one.
757
758        if self, other are sNaN, signal
759        if self, other are NaN return nan
760        return 0
761
762        Done before operations.
763        """
764
765        self_is_nan = self._isnan()
766        if other is None:
767            other_is_nan = False
768        else:
769            other_is_nan = other._isnan()
770
771        if self_is_nan or other_is_nan:
772            if context is None:
773                context = getcontext()
774
775            if self_is_nan == 2:
776                return context._raise_error(InvalidOperation, 'sNaN',
777                                        self)
778            if other_is_nan == 2:
779                return context._raise_error(InvalidOperation, 'sNaN',
780                                        other)
781            if self_is_nan:
782                return self._fix_nan(context)
783
784            return other._fix_nan(context)
785        return 0
786
787    def _compare_check_nans(self, other, context):
788        """Version of _check_nans used for the signaling comparisons
789        compare_signal, __le__, __lt__, __ge__, __gt__.
790
791        Signal InvalidOperation if either self or other is a (quiet
792        or signaling) NaN.  Signaling NaNs take precedence over quiet
793        NaNs.
794
795        Return 0 if neither operand is a NaN.
796
797        """
798        if context is None:
799            context = getcontext()
800
801        if self._is_special or other._is_special:
802            if self.is_snan():
803                return context._raise_error(InvalidOperation,
804                                            'comparison involving sNaN',
805                                            self)
806            elif other.is_snan():
807                return context._raise_error(InvalidOperation,
808                                            'comparison involving sNaN',
809                                            other)
810            elif self.is_qnan():
811                return context._raise_error(InvalidOperation,
812                                            'comparison involving NaN',
813                                            self)
814            elif other.is_qnan():
815                return context._raise_error(InvalidOperation,
816                                            'comparison involving NaN',
817                                            other)
818        return 0
819
820    def __bool__(self):
821        """Return True if self is nonzero; otherwise return False.
822
823        NaNs and infinities are considered nonzero.
824        """
825        return self._is_special or self._int != '0'
826
827    def _cmp(self, other):
828        """Compare the two non-NaN decimal instances self and other.
829
830        Returns -1 if self < other, 0 if self == other and 1
831        if self > other.  This routine is for internal use only."""
832
833        if self._is_special or other._is_special:
834            self_inf = self._isinfinity()
835            other_inf = other._isinfinity()
836            if self_inf == other_inf:
837                return 0
838            elif self_inf < other_inf:
839                return -1
840            else:
841                return 1
842
843        # check for zeros;  Decimal('0') == Decimal('-0')
844        if not self:
845            if not other:
846                return 0
847            else:
848                return -((-1)**other._sign)
849        if not other:
850            return (-1)**self._sign
851
852        # If different signs, neg one is less
853        if other._sign < self._sign:
854            return -1
855        if self._sign < other._sign:
856            return 1
857
858        self_adjusted = self.adjusted()
859        other_adjusted = other.adjusted()
860        if self_adjusted == other_adjusted:
861            self_padded = self._int + '0'*(self._exp - other._exp)
862            other_padded = other._int + '0'*(other._exp - self._exp)
863            if self_padded == other_padded:
864                return 0
865            elif self_padded < other_padded:
866                return -(-1)**self._sign
867            else:
868                return (-1)**self._sign
869        elif self_adjusted > other_adjusted:
870            return (-1)**self._sign
871        else: # self_adjusted < other_adjusted
872            return -((-1)**self._sign)
873
874    # Note: The Decimal standard doesn't cover rich comparisons for
875    # Decimals.  In particular, the specification is silent on the
876    # subject of what should happen for a comparison involving a NaN.
877    # We take the following approach:
878    #
879    #   == comparisons involving a quiet NaN always return False
880    #   != comparisons involving a quiet NaN always return True
881    #   == or != comparisons involving a signaling NaN signal
882    #      InvalidOperation, and return False or True as above if the
883    #      InvalidOperation is not trapped.
884    #   <, >, <= and >= comparisons involving a (quiet or signaling)
885    #      NaN signal InvalidOperation, and return False if the
886    #      InvalidOperation is not trapped.
887    #
888    # This behavior is designed to conform as closely as possible to
889    # that specified by IEEE 754.
890
891    def __eq__(self, other, context=None):
892        self, other = _convert_for_comparison(self, other, equality_op=True)
893        if other is NotImplemented:
894            return other
895        if self._check_nans(other, context):
896            return False
897        return self._cmp(other) == 0
898
899    def __lt__(self, other, context=None):
900        self, other = _convert_for_comparison(self, other)
901        if other is NotImplemented:
902            return other
903        ans = self._compare_check_nans(other, context)
904        if ans:
905            return False
906        return self._cmp(other) < 0
907
908    def __le__(self, other, context=None):
909        self, other = _convert_for_comparison(self, other)
910        if other is NotImplemented:
911            return other
912        ans = self._compare_check_nans(other, context)
913        if ans:
914            return False
915        return self._cmp(other) <= 0
916
917    def __gt__(self, other, context=None):
918        self, other = _convert_for_comparison(self, other)
919        if other is NotImplemented:
920            return other
921        ans = self._compare_check_nans(other, context)
922        if ans:
923            return False
924        return self._cmp(other) > 0
925
926    def __ge__(self, other, context=None):
927        self, other = _convert_for_comparison(self, other)
928        if other is NotImplemented:
929            return other
930        ans = self._compare_check_nans(other, context)
931        if ans:
932            return False
933        return self._cmp(other) >= 0
934
935    def compare(self, other, context=None):
936        """Compare self to other.  Return a decimal value:
937
938        a or b is a NaN ==> Decimal('NaN')
939        a < b           ==> Decimal('-1')
940        a == b          ==> Decimal('0')
941        a > b           ==> Decimal('1')
942        """
943        other = _convert_other(other, raiseit=True)
944
945        # Compare(NaN, NaN) = NaN
946        if (self._is_special or other and other._is_special):
947            ans = self._check_nans(other, context)
948            if ans:
949                return ans
950
951        return Decimal(self._cmp(other))
952
953    def __hash__(self):
954        """x.__hash__() <==> hash(x)"""
955
956        # In order to make sure that the hash of a Decimal instance
957        # agrees with the hash of a numerically equal integer, float
958        # or Fraction, we follow the rules for numeric hashes outlined
959        # in the documentation.  (See library docs, 'Built-in Types').
960        if self._is_special:
961            if self.is_snan():
962                raise TypeError('Cannot hash a signaling NaN value.')
963            elif self.is_nan():
964                return object.__hash__(self)
965            else:
966                if self._sign:
967                    return -_PyHASH_INF
968                else:
969                    return _PyHASH_INF
970
971        if self._exp >= 0:
972            exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
973        else:
974            exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
975        hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
976        ans = hash_ if self >= 0 else -hash_
977        return -2 if ans == -1 else ans
978
979    def as_tuple(self):
980        """Represents the number as a triple tuple.
981
982        To show the internals exactly as they are.
983        """
984        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
985
986    def as_integer_ratio(self):
987        """Express a finite Decimal instance in the form n / d.
988
989        Returns a pair (n, d) of integers.  When called on an infinity
990        or NaN, raises OverflowError or ValueError respectively.
991
992        >>> Decimal('3.14').as_integer_ratio()
993        (157, 50)
994        >>> Decimal('-123e5').as_integer_ratio()
995        (-12300000, 1)
996        >>> Decimal('0.00').as_integer_ratio()
997        (0, 1)
998
999        """
1000        if self._is_special:
1001            if self.is_nan():
1002                raise ValueError("cannot convert NaN to integer ratio")
1003            else:
1004                raise OverflowError("cannot convert Infinity to integer ratio")
1005
1006        if not self:
1007            return 0, 1
1008
1009        # Find n, d in lowest terms such that abs(self) == n / d;
1010        # we'll deal with the sign later.
1011        n = int(self._int)
1012        if self._exp >= 0:
1013            # self is an integer.
1014            n, d = n * 10**self._exp, 1
1015        else:
1016            # Find d2, d5 such that abs(self) = n / (2**d2 * 5**d5).
1017            d5 = -self._exp
1018            while d5 > 0 and n % 5 == 0:
1019                n //= 5
1020                d5 -= 1
1021
1022            # (n & -n).bit_length() - 1 counts trailing zeros in binary
1023            # representation of n (provided n is nonzero).
1024            d2 = -self._exp
1025            shift2 = min((n & -n).bit_length() - 1, d2)
1026            if shift2:
1027                n >>= shift2
1028                d2 -= shift2
1029
1030            d = 5**d5 << d2
1031
1032        if self._sign:
1033            n = -n
1034        return n, d
1035
1036    def __repr__(self):
1037        """Represents the number as an instance of Decimal."""
1038        # Invariant:  eval(repr(d)) == d
1039        return "Decimal('%s')" % str(self)
1040
1041    def __str__(self, eng=False, context=None):
1042        """Return string representation of the number in scientific notation.
1043
1044        Captures all of the information in the underlying representation.
1045        """
1046
1047        sign = ['', '-'][self._sign]
1048        if self._is_special:
1049            if self._exp == 'F':
1050                return sign + 'Infinity'
1051            elif self._exp == 'n':
1052                return sign + 'NaN' + self._int
1053            else: # self._exp == 'N'
1054                return sign + 'sNaN' + self._int
1055
1056        # number of digits of self._int to left of decimal point
1057        leftdigits = self._exp + len(self._int)
1058
1059        # dotplace is number of digits of self._int to the left of the
1060        # decimal point in the mantissa of the output string (that is,
1061        # after adjusting the exponent)
1062        if self._exp <= 0 and leftdigits > -6:
1063            # no exponent required
1064            dotplace = leftdigits
1065        elif not eng:
1066            # usual scientific notation: 1 digit on left of the point
1067            dotplace = 1
1068        elif self._int == '0':
1069            # engineering notation, zero
1070            dotplace = (leftdigits + 1) % 3 - 1
1071        else:
1072            # engineering notation, nonzero
1073            dotplace = (leftdigits - 1) % 3 + 1
1074
1075        if dotplace <= 0:
1076            intpart = '0'
1077            fracpart = '.' + '0'*(-dotplace) + self._int
1078        elif dotplace >= len(self._int):
1079            intpart = self._int+'0'*(dotplace-len(self._int))
1080            fracpart = ''
1081        else:
1082            intpart = self._int[:dotplace]
1083            fracpart = '.' + self._int[dotplace:]
1084        if leftdigits == dotplace:
1085            exp = ''
1086        else:
1087            if context is None:
1088                context = getcontext()
1089            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1090
1091        return sign + intpart + fracpart + exp
1092
1093    def to_eng_string(self, context=None):
1094        """Convert to a string, using engineering notation if an exponent is needed.
1095
1096        Engineering notation has an exponent which is a multiple of 3.  This
1097        can leave up to 3 digits to the left of the decimal place and may
1098        require the addition of either one or two trailing zeros.
1099        """
1100        return self.__str__(eng=True, context=context)
1101
1102    def __neg__(self, context=None):
1103        """Returns a copy with the sign switched.
1104
1105        Rounds, if it has reason.
1106        """
1107        if self._is_special:
1108            ans = self._check_nans(context=context)
1109            if ans:
1110                return ans
1111
1112        if context is None:
1113            context = getcontext()
1114
1115        if not self and context.rounding != ROUND_FLOOR:
1116            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
1117            # in ROUND_FLOOR rounding mode.
1118            ans = self.copy_abs()
1119        else:
1120            ans = self.copy_negate()
1121
1122        return ans._fix(context)
1123
1124    def __pos__(self, context=None):
1125        """Returns a copy, unless it is a sNaN.
1126
1127        Rounds the number (if more than precision digits)
1128        """
1129        if self._is_special:
1130            ans = self._check_nans(context=context)
1131            if ans:
1132                return ans
1133
1134        if context is None:
1135            context = getcontext()
1136
1137        if not self and context.rounding != ROUND_FLOOR:
1138            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
1139            ans = self.copy_abs()
1140        else:
1141            ans = Decimal(self)
1142
1143        return ans._fix(context)
1144
1145    def __abs__(self, round=True, context=None):
1146        """Returns the absolute value of self.
1147
1148        If the keyword argument 'round' is false, do not round.  The
1149        expression self.__abs__(round=False) is equivalent to
1150        self.copy_abs().
1151        """
1152        if not round:
1153            return self.copy_abs()
1154
1155        if self._is_special:
1156            ans = self._check_nans(context=context)
1157            if ans:
1158                return ans
1159
1160        if self._sign:
1161            ans = self.__neg__(context=context)
1162        else:
1163            ans = self.__pos__(context=context)
1164
1165        return ans
1166
1167    def __add__(self, other, context=None):
1168        """Returns self + other.
1169
1170        -INF + INF (or the reverse) cause InvalidOperation errors.
1171        """
1172        other = _convert_other(other)
1173        if other is NotImplemented:
1174            return other
1175
1176        if context is None:
1177            context = getcontext()
1178
1179        if self._is_special or other._is_special:
1180            ans = self._check_nans(other, context)
1181            if ans:
1182                return ans
1183
1184            if self._isinfinity():
1185                # If both INF, same sign => same as both, opposite => error.
1186                if self._sign != other._sign and other._isinfinity():
1187                    return context._raise_error(InvalidOperation, '-INF + INF')
1188                return Decimal(self)
1189            if other._isinfinity():
1190                return Decimal(other)  # Can't both be infinity here
1191
1192        exp = min(self._exp, other._exp)
1193        negativezero = 0
1194        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1195            # If the answer is 0, the sign should be negative, in this case.
1196            negativezero = 1
1197
1198        if not self and not other:
1199            sign = min(self._sign, other._sign)
1200            if negativezero:
1201                sign = 1
1202            ans = _dec_from_triple(sign, '0', exp)
1203            ans = ans._fix(context)
1204            return ans
1205        if not self:
1206            exp = max(exp, other._exp - context.prec-1)
1207            ans = other._rescale(exp, context.rounding)
1208            ans = ans._fix(context)
1209            return ans
1210        if not other:
1211            exp = max(exp, self._exp - context.prec-1)
1212            ans = self._rescale(exp, context.rounding)
1213            ans = ans._fix(context)
1214            return ans
1215
1216        op1 = _WorkRep(self)
1217        op2 = _WorkRep(other)
1218        op1, op2 = _normalize(op1, op2, context.prec)
1219
1220        result = _WorkRep()
1221        if op1.sign != op2.sign:
1222            # Equal and opposite
1223            if op1.int == op2.int:
1224                ans = _dec_from_triple(negativezero, '0', exp)
1225                ans = ans._fix(context)
1226                return ans
1227            if op1.int < op2.int:
1228                op1, op2 = op2, op1
1229                # OK, now abs(op1) > abs(op2)
1230            if op1.sign == 1:
1231                result.sign = 1
1232                op1.sign, op2.sign = op2.sign, op1.sign
1233            else:
1234                result.sign = 0
1235                # So we know the sign, and op1 > 0.
1236        elif op1.sign == 1:
1237            result.sign = 1
1238            op1.sign, op2.sign = (0, 0)
1239        else:
1240            result.sign = 0
1241        # Now, op1 > abs(op2) > 0
1242
1243        if op2.sign == 0:
1244            result.int = op1.int + op2.int
1245        else:
1246            result.int = op1.int - op2.int
1247
1248        result.exp = op1.exp
1249        ans = Decimal(result)
1250        ans = ans._fix(context)
1251        return ans
1252
1253    __radd__ = __add__
1254
1255    def __sub__(self, other, context=None):
1256        """Return self - other"""
1257        other = _convert_other(other)
1258        if other is NotImplemented:
1259            return other
1260
1261        if self._is_special or other._is_special:
1262            ans = self._check_nans(other, context=context)
1263            if ans:
1264                return ans
1265
1266        # self - other is computed as self + other.copy_negate()
1267        return self.__add__(other.copy_negate(), context=context)
1268
1269    def __rsub__(self, other, context=None):
1270        """Return other - self"""
1271        other = _convert_other(other)
1272        if other is NotImplemented:
1273            return other
1274
1275        return other.__sub__(self, context=context)
1276
1277    def __mul__(self, other, context=None):
1278        """Return self * other.
1279
1280        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1281        """
1282        other = _convert_other(other)
1283        if other is NotImplemented:
1284            return other
1285
1286        if context is None:
1287            context = getcontext()
1288
1289        resultsign = self._sign ^ other._sign
1290
1291        if self._is_special or other._is_special:
1292            ans = self._check_nans(other, context)
1293            if ans:
1294                return ans
1295
1296            if self._isinfinity():
1297                if not other:
1298                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1299                return _SignedInfinity[resultsign]
1300
1301            if other._isinfinity():
1302                if not self:
1303                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1304                return _SignedInfinity[resultsign]
1305
1306        resultexp = self._exp + other._exp
1307
1308        # Special case for multiplying by zero
1309        if not self or not other:
1310            ans = _dec_from_triple(resultsign, '0', resultexp)
1311            # Fixing in case the exponent is out of bounds
1312            ans = ans._fix(context)
1313            return ans
1314
1315        # Special case for multiplying by power of 10
1316        if self._int == '1':
1317            ans = _dec_from_triple(resultsign, other._int, resultexp)
1318            ans = ans._fix(context)
1319            return ans
1320        if other._int == '1':
1321            ans = _dec_from_triple(resultsign, self._int, resultexp)
1322            ans = ans._fix(context)
1323            return ans
1324
1325        op1 = _WorkRep(self)
1326        op2 = _WorkRep(other)
1327
1328        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1329        ans = ans._fix(context)
1330
1331        return ans
1332    __rmul__ = __mul__
1333
1334    def __truediv__(self, other, context=None):
1335        """Return self / other."""
1336        other = _convert_other(other)
1337        if other is NotImplemented:
1338            return NotImplemented
1339
1340        if context is None:
1341            context = getcontext()
1342
1343        sign = self._sign ^ other._sign
1344
1345        if self._is_special or other._is_special:
1346            ans = self._check_nans(other, context)
1347            if ans:
1348                return ans
1349
1350            if self._isinfinity() and other._isinfinity():
1351                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1352
1353            if self._isinfinity():
1354                return _SignedInfinity[sign]
1355
1356            if other._isinfinity():
1357                context._raise_error(Clamped, 'Division by infinity')
1358                return _dec_from_triple(sign, '0', context.Etiny())
1359
1360        # Special cases for zeroes
1361        if not other:
1362            if not self:
1363                return context._raise_error(DivisionUndefined, '0 / 0')
1364            return context._raise_error(DivisionByZero, 'x / 0', sign)
1365
1366        if not self:
1367            exp = self._exp - other._exp
1368            coeff = 0
1369        else:
1370            # OK, so neither = 0, INF or NaN
1371            shift = len(other._int) - len(self._int) + context.prec + 1
1372            exp = self._exp - other._exp - shift
1373            op1 = _WorkRep(self)
1374            op2 = _WorkRep(other)
1375            if shift >= 0:
1376                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1377            else:
1378                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1379            if remainder:
1380                # result is not exact; adjust to ensure correct rounding
1381                if coeff % 5 == 0:
1382                    coeff += 1
1383            else:
1384                # result is exact; get as close to ideal exponent as possible
1385                ideal_exp = self._exp - other._exp
1386                while exp < ideal_exp and coeff % 10 == 0:
1387                    coeff //= 10
1388                    exp += 1
1389
1390        ans = _dec_from_triple(sign, str(coeff), exp)
1391        return ans._fix(context)
1392
1393    def _divide(self, other, context):
1394        """Return (self // other, self % other), to context.prec precision.
1395
1396        Assumes that neither self nor other is a NaN, that self is not
1397        infinite and that other is nonzero.
1398        """
1399        sign = self._sign ^ other._sign
1400        if other._isinfinity():
1401            ideal_exp = self._exp
1402        else:
1403            ideal_exp = min(self._exp, other._exp)
1404
1405        expdiff = self.adjusted() - other.adjusted()
1406        if not self or other._isinfinity() or expdiff <= -2:
1407            return (_dec_from_triple(sign, '0', 0),
1408                    self._rescale(ideal_exp, context.rounding))
1409        if expdiff <= context.prec:
1410            op1 = _WorkRep(self)
1411            op2 = _WorkRep(other)
1412            if op1.exp >= op2.exp:
1413                op1.int *= 10**(op1.exp - op2.exp)
1414            else:
1415                op2.int *= 10**(op2.exp - op1.exp)
1416            q, r = divmod(op1.int, op2.int)
1417            if q < 10**context.prec:
1418                return (_dec_from_triple(sign, str(q), 0),
1419                        _dec_from_triple(self._sign, str(r), ideal_exp))
1420
1421        # Here the quotient is too large to be representable
1422        ans = context._raise_error(DivisionImpossible,
1423                                   'quotient too large in //, % or divmod')
1424        return ans, ans
1425
1426    def __rtruediv__(self, other, context=None):
1427        """Swaps self/other and returns __truediv__."""
1428        other = _convert_other(other)
1429        if other is NotImplemented:
1430            return other
1431        return other.__truediv__(self, context=context)
1432
1433    def __divmod__(self, other, context=None):
1434        """
1435        Return (self // other, self % other)
1436        """
1437        other = _convert_other(other)
1438        if other is NotImplemented:
1439            return other
1440
1441        if context is None:
1442            context = getcontext()
1443
1444        ans = self._check_nans(other, context)
1445        if ans:
1446            return (ans, ans)
1447
1448        sign = self._sign ^ other._sign
1449        if self._isinfinity():
1450            if other._isinfinity():
1451                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1452                return ans, ans
1453            else:
1454                return (_SignedInfinity[sign],
1455                        context._raise_error(InvalidOperation, 'INF % x'))
1456
1457        if not other:
1458            if not self:
1459                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1460                return ans, ans
1461            else:
1462                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1463                        context._raise_error(InvalidOperation, 'x % 0'))
1464
1465        quotient, remainder = self._divide(other, context)
1466        remainder = remainder._fix(context)
1467        return quotient, remainder
1468
1469    def __rdivmod__(self, other, context=None):
1470        """Swaps self/other and returns __divmod__."""
1471        other = _convert_other(other)
1472        if other is NotImplemented:
1473            return other
1474        return other.__divmod__(self, context=context)
1475
1476    def __mod__(self, other, context=None):
1477        """
1478        self % other
1479        """
1480        other = _convert_other(other)
1481        if other is NotImplemented:
1482            return other
1483
1484        if context is None:
1485            context = getcontext()
1486
1487        ans = self._check_nans(other, context)
1488        if ans:
1489            return ans
1490
1491        if self._isinfinity():
1492            return context._raise_error(InvalidOperation, 'INF % x')
1493        elif not other:
1494            if self:
1495                return context._raise_error(InvalidOperation, 'x % 0')
1496            else:
1497                return context._raise_error(DivisionUndefined, '0 % 0')
1498
1499        remainder = self._divide(other, context)[1]
1500        remainder = remainder._fix(context)
1501        return remainder
1502
1503    def __rmod__(self, other, context=None):
1504        """Swaps self/other and returns __mod__."""
1505        other = _convert_other(other)
1506        if other is NotImplemented:
1507            return other
1508        return other.__mod__(self, context=context)
1509
1510    def remainder_near(self, other, context=None):
1511        """
1512        Remainder nearest to 0-  abs(remainder-near) <= other/2
1513        """
1514        if context is None:
1515            context = getcontext()
1516
1517        other = _convert_other(other, raiseit=True)
1518
1519        ans = self._check_nans(other, context)
1520        if ans:
1521            return ans
1522
1523        # self == +/-infinity -> InvalidOperation
1524        if self._isinfinity():
1525            return context._raise_error(InvalidOperation,
1526                                        'remainder_near(infinity, x)')
1527
1528        # other == 0 -> either InvalidOperation or DivisionUndefined
1529        if not other:
1530            if self:
1531                return context._raise_error(InvalidOperation,
1532                                            'remainder_near(x, 0)')
1533            else:
1534                return context._raise_error(DivisionUndefined,
1535                                            'remainder_near(0, 0)')
1536
1537        # other = +/-infinity -> remainder = self
1538        if other._isinfinity():
1539            ans = Decimal(self)
1540            return ans._fix(context)
1541
1542        # self = 0 -> remainder = self, with ideal exponent
1543        ideal_exponent = min(self._exp, other._exp)
1544        if not self:
1545            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1546            return ans._fix(context)
1547
1548        # catch most cases of large or small quotient
1549        expdiff = self.adjusted() - other.adjusted()
1550        if expdiff >= context.prec + 1:
1551            # expdiff >= prec+1 => abs(self/other) > 10**prec
1552            return context._raise_error(DivisionImpossible)
1553        if expdiff <= -2:
1554            # expdiff <= -2 => abs(self/other) < 0.1
1555            ans = self._rescale(ideal_exponent, context.rounding)
1556            return ans._fix(context)
1557
1558        # adjust both arguments to have the same exponent, then divide
1559        op1 = _WorkRep(self)
1560        op2 = _WorkRep(other)
1561        if op1.exp >= op2.exp:
1562            op1.int *= 10**(op1.exp - op2.exp)
1563        else:
1564            op2.int *= 10**(op2.exp - op1.exp)
1565        q, r = divmod(op1.int, op2.int)
1566        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1567        # 10**ideal_exponent.   Apply correction to ensure that
1568        # abs(remainder) <= abs(other)/2
1569        if 2*r + (q&1) > op2.int:
1570            r -= op2.int
1571            q += 1
1572
1573        if q >= 10**context.prec:
1574            return context._raise_error(DivisionImpossible)
1575
1576        # result has same sign as self unless r is negative
1577        sign = self._sign
1578        if r < 0:
1579            sign = 1-sign
1580            r = -r
1581
1582        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1583        return ans._fix(context)
1584
1585    def __floordiv__(self, other, context=None):
1586        """self // other"""
1587        other = _convert_other(other)
1588        if other is NotImplemented:
1589            return other
1590
1591        if context is None:
1592            context = getcontext()
1593
1594        ans = self._check_nans(other, context)
1595        if ans:
1596            return ans
1597
1598        if self._isinfinity():
1599            if other._isinfinity():
1600                return context._raise_error(InvalidOperation, 'INF // INF')
1601            else:
1602                return _SignedInfinity[self._sign ^ other._sign]
1603
1604        if not other:
1605            if self:
1606                return context._raise_error(DivisionByZero, 'x // 0',
1607                                            self._sign ^ other._sign)
1608            else:
1609                return context._raise_error(DivisionUndefined, '0 // 0')
1610
1611        return self._divide(other, context)[0]
1612
1613    def __rfloordiv__(self, other, context=None):
1614        """Swaps self/other and returns __floordiv__."""
1615        other = _convert_other(other)
1616        if other is NotImplemented:
1617            return other
1618        return other.__floordiv__(self, context=context)
1619
1620    def __float__(self):
1621        """Float representation."""
1622        if self._isnan():
1623            if self.is_snan():
1624                raise ValueError("Cannot convert signaling NaN to float")
1625            s = "-nan" if self._sign else "nan"
1626        else:
1627            s = str(self)
1628        return float(s)
1629
1630    def __int__(self):
1631        """Converts self to an int, truncating if necessary."""
1632        if self._is_special:
1633            if self._isnan():
1634                raise ValueError("Cannot convert NaN to integer")
1635            elif self._isinfinity():
1636                raise OverflowError("Cannot convert infinity to integer")
1637        s = (-1)**self._sign
1638        if self._exp >= 0:
1639            return s*int(self._int)*10**self._exp
1640        else:
1641            return s*int(self._int[:self._exp] or '0')
1642
1643    __trunc__ = __int__
1644
1645    @property
1646    def real(self):
1647        return self
1648
1649    @property
1650    def imag(self):
1651        return Decimal(0)
1652
1653    def conjugate(self):
1654        return self
1655
1656    def __complex__(self):
1657        return complex(float(self))
1658
1659    def _fix_nan(self, context):
1660        """Decapitate the payload of a NaN to fit the context"""
1661        payload = self._int
1662
1663        # maximum length of payload is precision if clamp=0,
1664        # precision-1 if clamp=1.
1665        max_payload_len = context.prec - context.clamp
1666        if len(payload) > max_payload_len:
1667            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1668            return _dec_from_triple(self._sign, payload, self._exp, True)
1669        return Decimal(self)
1670
1671    def _fix(self, context):
1672        """Round if it is necessary to keep self within prec precision.
1673
1674        Rounds and fixes the exponent.  Does not raise on a sNaN.
1675
1676        Arguments:
1677        self - Decimal instance
1678        context - context used.
1679        """
1680
1681        if self._is_special:
1682            if self._isnan():
1683                # decapitate payload if necessary
1684                return self._fix_nan(context)
1685            else:
1686                # self is +/-Infinity; return unaltered
1687                return Decimal(self)
1688
1689        # if self is zero then exponent should be between Etiny and
1690        # Emax if clamp==0, and between Etiny and Etop if clamp==1.
1691        Etiny = context.Etiny()
1692        Etop = context.Etop()
1693        if not self:
1694            exp_max = [context.Emax, Etop][context.clamp]
1695            new_exp = min(max(self._exp, Etiny), exp_max)
1696            if new_exp != self._exp:
1697                context._raise_error(Clamped)
1698                return _dec_from_triple(self._sign, '0', new_exp)
1699            else:
1700                return Decimal(self)
1701
1702        # exp_min is the smallest allowable exponent of the result,
1703        # equal to max(self.adjusted()-context.prec+1, Etiny)
1704        exp_min = len(self._int) + self._exp - context.prec
1705        if exp_min > Etop:
1706            # overflow: exp_min > Etop iff self.adjusted() > Emax
1707            ans = context._raise_error(Overflow, 'above Emax', self._sign)
1708            context._raise_error(Inexact)
1709            context._raise_error(Rounded)
1710            return ans
1711
1712        self_is_subnormal = exp_min < Etiny
1713        if self_is_subnormal:
1714            exp_min = Etiny
1715
1716        # round if self has too many digits
1717        if self._exp < exp_min:
1718            digits = len(self._int) + self._exp - exp_min
1719            if digits < 0:
1720                self = _dec_from_triple(self._sign, '1', exp_min-1)
1721                digits = 0
1722            rounding_method = self._pick_rounding_function[context.rounding]
1723            changed = rounding_method(self, digits)
1724            coeff = self._int[:digits] or '0'
1725            if changed > 0:
1726                coeff = str(int(coeff)+1)
1727                if len(coeff) > context.prec:
1728                    coeff = coeff[:-1]
1729                    exp_min += 1
1730
1731            # check whether the rounding pushed the exponent out of range
1732            if exp_min > Etop:
1733                ans = context._raise_error(Overflow, 'above Emax', self._sign)
1734            else:
1735                ans = _dec_from_triple(self._sign, coeff, exp_min)
1736
1737            # raise the appropriate signals, taking care to respect
1738            # the precedence described in the specification
1739            if changed and self_is_subnormal:
1740                context._raise_error(Underflow)
1741            if self_is_subnormal:
1742                context._raise_error(Subnormal)
1743            if changed:
1744                context._raise_error(Inexact)
1745            context._raise_error(Rounded)
1746            if not ans:
1747                # raise Clamped on underflow to 0
1748                context._raise_error(Clamped)
1749            return ans
1750
1751        if self_is_subnormal:
1752            context._raise_error(Subnormal)
1753
1754        # fold down if clamp == 1 and self has too few digits
1755        if context.clamp == 1 and self._exp > Etop:
1756            context._raise_error(Clamped)
1757            self_padded = self._int + '0'*(self._exp - Etop)
1758            return _dec_from_triple(self._sign, self_padded, Etop)
1759
1760        # here self was representable to begin with; return unchanged
1761        return Decimal(self)
1762
1763    # for each of the rounding functions below:
1764    #   self is a finite, nonzero Decimal
1765    #   prec is an integer satisfying 0 <= prec < len(self._int)
1766    #
1767    # each function returns either -1, 0, or 1, as follows:
1768    #   1 indicates that self should be rounded up (away from zero)
1769    #   0 indicates that self should be truncated, and that all the
1770    #     digits to be truncated are zeros (so the value is unchanged)
1771    #  -1 indicates that there are nonzero digits to be truncated
1772
1773    def _round_down(self, prec):
1774        """Also known as round-towards-0, truncate."""
1775        if _all_zeros(self._int, prec):
1776            return 0
1777        else:
1778            return -1
1779
1780    def _round_up(self, prec):
1781        """Rounds away from 0."""
1782        return -self._round_down(prec)
1783
1784    def _round_half_up(self, prec):
1785        """Rounds 5 up (away from 0)"""
1786        if self._int[prec] in '56789':
1787            return 1
1788        elif _all_zeros(self._int, prec):
1789            return 0
1790        else:
1791            return -1
1792
1793    def _round_half_down(self, prec):
1794        """Round 5 down"""
1795        if _exact_half(self._int, prec):
1796            return -1
1797        else:
1798            return self._round_half_up(prec)
1799
1800    def _round_half_even(self, prec):
1801        """Round 5 to even, rest to nearest."""
1802        if _exact_half(self._int, prec) and \
1803                (prec == 0 or self._int[prec-1] in '02468'):
1804            return -1
1805        else:
1806            return self._round_half_up(prec)
1807
1808    def _round_ceiling(self, prec):
1809        """Rounds up (not away from 0 if negative.)"""
1810        if self._sign:
1811            return self._round_down(prec)
1812        else:
1813            return -self._round_down(prec)
1814
1815    def _round_floor(self, prec):
1816        """Rounds down (not towards 0 if negative)"""
1817        if not self._sign:
1818            return self._round_down(prec)
1819        else:
1820            return -self._round_down(prec)
1821
1822    def _round_05up(self, prec):
1823        """Round down unless digit prec-1 is 0 or 5."""
1824        if prec and self._int[prec-1] not in '05':
1825            return self._round_down(prec)
1826        else:
1827            return -self._round_down(prec)
1828
1829    _pick_rounding_function = dict(
1830        ROUND_DOWN = _round_down,
1831        ROUND_UP = _round_up,
1832        ROUND_HALF_UP = _round_half_up,
1833        ROUND_HALF_DOWN = _round_half_down,
1834        ROUND_HALF_EVEN = _round_half_even,
1835        ROUND_CEILING = _round_ceiling,
1836        ROUND_FLOOR = _round_floor,
1837        ROUND_05UP = _round_05up,
1838    )
1839
1840    def __round__(self, n=None):
1841        """Round self to the nearest integer, or to a given precision.
1842
1843        If only one argument is supplied, round a finite Decimal
1844        instance self to the nearest integer.  If self is infinite or
1845        a NaN then a Python exception is raised.  If self is finite
1846        and lies exactly halfway between two integers then it is
1847        rounded to the integer with even last digit.
1848
1849        >>> round(Decimal('123.456'))
1850        123
1851        >>> round(Decimal('-456.789'))
1852        -457
1853        >>> round(Decimal('-3.0'))
1854        -3
1855        >>> round(Decimal('2.5'))
1856        2
1857        >>> round(Decimal('3.5'))
1858        4
1859        >>> round(Decimal('Inf'))
1860        Traceback (most recent call last):
1861          ...
1862        OverflowError: cannot round an infinity
1863        >>> round(Decimal('NaN'))
1864        Traceback (most recent call last):
1865          ...
1866        ValueError: cannot round a NaN
1867
1868        If a second argument n is supplied, self is rounded to n
1869        decimal places using the rounding mode for the current
1870        context.
1871
1872        For an integer n, round(self, -n) is exactly equivalent to
1873        self.quantize(Decimal('1En')).
1874
1875        >>> round(Decimal('123.456'), 0)
1876        Decimal('123')
1877        >>> round(Decimal('123.456'), 2)
1878        Decimal('123.46')
1879        >>> round(Decimal('123.456'), -2)
1880        Decimal('1E+2')
1881        >>> round(Decimal('-Infinity'), 37)
1882        Decimal('NaN')
1883        >>> round(Decimal('sNaN123'), 0)
1884        Decimal('NaN123')
1885
1886        """
1887        if n is not None:
1888            # two-argument form: use the equivalent quantize call
1889            if not isinstance(n, int):
1890                raise TypeError('Second argument to round should be integral')
1891            exp = _dec_from_triple(0, '1', -n)
1892            return self.quantize(exp)
1893
1894        # one-argument form
1895        if self._is_special:
1896            if self.is_nan():
1897                raise ValueError("cannot round a NaN")
1898            else:
1899                raise OverflowError("cannot round an infinity")
1900        return int(self._rescale(0, ROUND_HALF_EVEN))
1901
1902    def __floor__(self):
1903        """Return the floor of self, as an integer.
1904
1905        For a finite Decimal instance self, return the greatest
1906        integer n such that n <= self.  If self is infinite or a NaN
1907        then a Python exception is raised.
1908
1909        """
1910        if self._is_special:
1911            if self.is_nan():
1912                raise ValueError("cannot round a NaN")
1913            else:
1914                raise OverflowError("cannot round an infinity")
1915        return int(self._rescale(0, ROUND_FLOOR))
1916
1917    def __ceil__(self):
1918        """Return the ceiling of self, as an integer.
1919
1920        For a finite Decimal instance self, return the least integer n
1921        such that n >= self.  If self is infinite or a NaN then a
1922        Python exception is raised.
1923
1924        """
1925        if self._is_special:
1926            if self.is_nan():
1927                raise ValueError("cannot round a NaN")
1928            else:
1929                raise OverflowError("cannot round an infinity")
1930        return int(self._rescale(0, ROUND_CEILING))
1931
1932    def fma(self, other, third, context=None):
1933        """Fused multiply-add.
1934
1935        Returns self*other+third with no rounding of the intermediate
1936        product self*other.
1937
1938        self and other are multiplied together, with no rounding of
1939        the result.  The third operand is then added to the result,
1940        and a single final rounding is performed.
1941        """
1942
1943        other = _convert_other(other, raiseit=True)
1944        third = _convert_other(third, raiseit=True)
1945
1946        # compute product; raise InvalidOperation if either operand is
1947        # a signaling NaN or if the product is zero times infinity.
1948        if self._is_special or other._is_special:
1949            if context is None:
1950                context = getcontext()
1951            if self._exp == 'N':
1952                return context._raise_error(InvalidOperation, 'sNaN', self)
1953            if other._exp == 'N':
1954                return context._raise_error(InvalidOperation, 'sNaN', other)
1955            if self._exp == 'n':
1956                product = self
1957            elif other._exp == 'n':
1958                product = other
1959            elif self._exp == 'F':
1960                if not other:
1961                    return context._raise_error(InvalidOperation,
1962                                                'INF * 0 in fma')
1963                product = _SignedInfinity[self._sign ^ other._sign]
1964            elif other._exp == 'F':
1965                if not self:
1966                    return context._raise_error(InvalidOperation,
1967                                                '0 * INF in fma')
1968                product = _SignedInfinity[self._sign ^ other._sign]
1969        else:
1970            product = _dec_from_triple(self._sign ^ other._sign,
1971                                       str(int(self._int) * int(other._int)),
1972                                       self._exp + other._exp)
1973
1974        return product.__add__(third, context)
1975
1976    def _power_modulo(self, other, modulo, context=None):
1977        """Three argument version of __pow__"""
1978
1979        other = _convert_other(other)
1980        if other is NotImplemented:
1981            return other
1982        modulo = _convert_other(modulo)
1983        if modulo is NotImplemented:
1984            return modulo
1985
1986        if context is None:
1987            context = getcontext()
1988
1989        # deal with NaNs: if there are any sNaNs then first one wins,
1990        # (i.e. behaviour for NaNs is identical to that of fma)
1991        self_is_nan = self._isnan()
1992        other_is_nan = other._isnan()
1993        modulo_is_nan = modulo._isnan()
1994        if self_is_nan or other_is_nan or modulo_is_nan:
1995            if self_is_nan == 2:
1996                return context._raise_error(InvalidOperation, 'sNaN',
1997                                        self)
1998            if other_is_nan == 2:
1999                return context._raise_error(InvalidOperation, 'sNaN',
2000                                        other)
2001            if modulo_is_nan == 2:
2002                return context._raise_error(InvalidOperation, 'sNaN',
2003                                        modulo)
2004            if self_is_nan:
2005                return self._fix_nan(context)
2006            if other_is_nan:
2007                return other._fix_nan(context)
2008            return modulo._fix_nan(context)
2009
2010        # check inputs: we apply same restrictions as Python's pow()
2011        if not (self._isinteger() and
2012                other._isinteger() and
2013                modulo._isinteger()):
2014            return context._raise_error(InvalidOperation,
2015                                        'pow() 3rd argument not allowed '
2016                                        'unless all arguments are integers')
2017        if other < 0:
2018            return context._raise_error(InvalidOperation,
2019                                        'pow() 2nd argument cannot be '
2020                                        'negative when 3rd argument specified')
2021        if not modulo:
2022            return context._raise_error(InvalidOperation,
2023                                        'pow() 3rd argument cannot be 0')
2024
2025        # additional restriction for decimal: the modulus must be less
2026        # than 10**prec in absolute value
2027        if modulo.adjusted() >= context.prec:
2028            return context._raise_error(InvalidOperation,
2029                                        'insufficient precision: pow() 3rd '
2030                                        'argument must not have more than '
2031                                        'precision digits')
2032
2033        # define 0**0 == NaN, for consistency with two-argument pow
2034        # (even though it hurts!)
2035        if not other and not self:
2036            return context._raise_error(InvalidOperation,
2037                                        'at least one of pow() 1st argument '
2038                                        'and 2nd argument must be nonzero; '
2039                                        '0**0 is not defined')
2040
2041        # compute sign of result
2042        if other._iseven():
2043            sign = 0
2044        else:
2045            sign = self._sign
2046
2047        # convert modulo to a Python integer, and self and other to
2048        # Decimal integers (i.e. force their exponents to be >= 0)
2049        modulo = abs(int(modulo))
2050        base = _WorkRep(self.to_integral_value())
2051        exponent = _WorkRep(other.to_integral_value())
2052
2053        # compute result using integer pow()
2054        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
2055        for i in range(exponent.exp):
2056            base = pow(base, 10, modulo)
2057        base = pow(base, exponent.int, modulo)
2058
2059        return _dec_from_triple(sign, str(base), 0)
2060
2061    def _power_exact(self, other, p):
2062        """Attempt to compute self**other exactly.
2063
2064        Given Decimals self and other and an integer p, attempt to
2065        compute an exact result for the power self**other, with p
2066        digits of precision.  Return None if self**other is not
2067        exactly representable in p digits.
2068
2069        Assumes that elimination of special cases has already been
2070        performed: self and other must both be nonspecial; self must
2071        be positive and not numerically equal to 1; other must be
2072        nonzero.  For efficiency, other._exp should not be too large,
2073        so that 10**abs(other._exp) is a feasible calculation."""
2074
2075        # In the comments below, we write x for the value of self and y for the
2076        # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
2077        # and yc positive integers not divisible by 10.
2078
2079        # The main purpose of this method is to identify the *failure*
2080        # of x**y to be exactly representable with as little effort as
2081        # possible.  So we look for cheap and easy tests that
2082        # eliminate the possibility of x**y being exact.  Only if all
2083        # these tests are passed do we go on to actually compute x**y.
2084
2085        # Here's the main idea.  Express y as a rational number m/n, with m and
2086        # n relatively prime and n>0.  Then for x**y to be exactly
2087        # representable (at *any* precision), xc must be the nth power of a
2088        # positive integer and xe must be divisible by n.  If y is negative
2089        # then additionally xc must be a power of either 2 or 5, hence a power
2090        # of 2**n or 5**n.
2091        #
2092        # There's a limit to how small |y| can be: if y=m/n as above
2093        # then:
2094        #
2095        #  (1) if xc != 1 then for the result to be representable we
2096        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
2097        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
2098        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
2099        #      representable.
2100        #
2101        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
2102        #      |y| < 1/|xe| then the result is not representable.
2103        #
2104        # Note that since x is not equal to 1, at least one of (1) and
2105        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
2106        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
2107        #
2108        # There's also a limit to how large y can be, at least if it's
2109        # positive: the normalized result will have coefficient xc**y,
2110        # so if it's representable then xc**y < 10**p, and y <
2111        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
2112        # not exactly representable.
2113
2114        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
2115        # so |y| < 1/xe and the result is not representable.
2116        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
2117        # < 1/nbits(xc).
2118
2119        x = _WorkRep(self)
2120        xc, xe = x.int, x.exp
2121        while xc % 10 == 0:
2122            xc //= 10
2123            xe += 1
2124
2125        y = _WorkRep(other)
2126        yc, ye = y.int, y.exp
2127        while yc % 10 == 0:
2128            yc //= 10
2129            ye += 1
2130
2131        # case where xc == 1: result is 10**(xe*y), with xe*y
2132        # required to be an integer
2133        if xc == 1:
2134            xe *= yc
2135            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
2136            while xe % 10 == 0:
2137                xe //= 10
2138                ye += 1
2139            if ye < 0:
2140                return None
2141            exponent = xe * 10**ye
2142            if y.sign == 1:
2143                exponent = -exponent
2144            # if other is a nonnegative integer, use ideal exponent
2145            if other._isinteger() and other._sign == 0:
2146                ideal_exponent = self._exp*int(other)
2147                zeros = min(exponent-ideal_exponent, p-1)
2148            else:
2149                zeros = 0
2150            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
2151
2152        # case where y is negative: xc must be either a power
2153        # of 2 or a power of 5.
2154        if y.sign == 1:
2155            last_digit = xc % 10
2156            if last_digit in (2,4,6,8):
2157                # quick test for power of 2
2158                if xc & -xc != xc:
2159                    return None
2160                # now xc is a power of 2; e is its exponent
2161                e = _nbits(xc)-1
2162
2163                # We now have:
2164                #
2165                #   x = 2**e * 10**xe, e > 0, and y < 0.
2166                #
2167                # The exact result is:
2168                #
2169                #   x**y = 5**(-e*y) * 10**(e*y + xe*y)
2170                #
2171                # provided that both e*y and xe*y are integers.  Note that if
2172                # 5**(-e*y) >= 10**p, then the result can't be expressed
2173                # exactly with p digits of precision.
2174                #
2175                # Using the above, we can guard against large values of ye.
2176                # 93/65 is an upper bound for log(10)/log(5), so if
2177                #
2178                #   ye >= len(str(93*p//65))
2179                #
2180                # then
2181                #
2182                #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
2183                #
2184                # so 5**(-e*y) >= 10**p, and the coefficient of the result
2185                # can't be expressed in p digits.
2186
2187                # emax >= largest e such that 5**e < 10**p.
2188                emax = p*93//65
2189                if ye >= len(str(emax)):
2190                    return None
2191
2192                # Find -e*y and -xe*y; both must be integers
2193                e = _decimal_lshift_exact(e * yc, ye)
2194                xe = _decimal_lshift_exact(xe * yc, ye)
2195                if e is None or xe is None:
2196                    return None
2197
2198                if e > emax:
2199                    return None
2200                xc = 5**e
2201
2202            elif last_digit == 5:
2203                # e >= log_5(xc) if xc is a power of 5; we have
2204                # equality all the way up to xc=5**2658
2205                e = _nbits(xc)*28//65
2206                xc, remainder = divmod(5**e, xc)
2207                if remainder:
2208                    return None
2209                while xc % 5 == 0:
2210                    xc //= 5
2211                    e -= 1
2212
2213                # Guard against large values of ye, using the same logic as in
2214                # the 'xc is a power of 2' branch.  10/3 is an upper bound for
2215                # log(10)/log(2).
2216                emax = p*10//3
2217                if ye >= len(str(emax)):
2218                    return None
2219
2220                e = _decimal_lshift_exact(e * yc, ye)
2221                xe = _decimal_lshift_exact(xe * yc, ye)
2222                if e is None or xe is None:
2223                    return None
2224
2225                if e > emax:
2226                    return None
2227                xc = 2**e
2228            else:
2229                return None
2230
2231            if xc >= 10**p:
2232                return None
2233            xe = -e-xe
2234            return _dec_from_triple(0, str(xc), xe)
2235
2236        # now y is positive; find m and n such that y = m/n
2237        if ye >= 0:
2238            m, n = yc*10**ye, 1
2239        else:
2240            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2241                return None
2242            xc_bits = _nbits(xc)
2243            if len(str(abs(yc)*xc_bits)) <= -ye:
2244                return None
2245            m, n = yc, 10**(-ye)
2246            while m % 2 == n % 2 == 0:
2247                m //= 2
2248                n //= 2
2249            while m % 5 == n % 5 == 0:
2250                m //= 5
2251                n //= 5
2252
2253        # compute nth root of xc*10**xe
2254        if n > 1:
2255            # if 1 < xc < 2**n then xc isn't an nth power
2256            if xc_bits <= n:
2257                return None
2258
2259            xe, rem = divmod(xe, n)
2260            if rem != 0:
2261                return None
2262
2263            # compute nth root of xc using Newton's method
2264            a = 1 << -(-_nbits(xc)//n) # initial estimate
2265            while True:
2266                q, r = divmod(xc, a**(n-1))
2267                if a <= q:
2268                    break
2269                else:
2270                    a = (a*(n-1) + q)//n
2271            if not (a == q and r == 0):
2272                return None
2273            xc = a
2274
2275        # now xc*10**xe is the nth root of the original xc*10**xe
2276        # compute mth power of xc*10**xe
2277
2278        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2279        # 10**p and the result is not representable.
2280        if xc > 1 and m > p*100//_log10_lb(xc):
2281            return None
2282        xc = xc**m
2283        xe *= m
2284        if xc > 10**p:
2285            return None
2286
2287        # by this point the result *is* exactly representable
2288        # adjust the exponent to get as close as possible to the ideal
2289        # exponent, if necessary
2290        str_xc = str(xc)
2291        if other._isinteger() and other._sign == 0:
2292            ideal_exponent = self._exp*int(other)
2293            zeros = min(xe-ideal_exponent, p-len(str_xc))
2294        else:
2295            zeros = 0
2296        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2297
2298    def __pow__(self, other, modulo=None, context=None):
2299        """Return self ** other [ % modulo].
2300
2301        With two arguments, compute self**other.
2302
2303        With three arguments, compute (self**other) % modulo.  For the
2304        three argument form, the following restrictions on the
2305        arguments hold:
2306
2307         - all three arguments must be integral
2308         - other must be nonnegative
2309         - either self or other (or both) must be nonzero
2310         - modulo must be nonzero and must have at most p digits,
2311           where p is the context precision.
2312
2313        If any of these restrictions is violated the InvalidOperation
2314        flag is raised.
2315
2316        The result of pow(self, other, modulo) is identical to the
2317        result that would be obtained by computing (self**other) %
2318        modulo with unbounded precision, but is computed more
2319        efficiently.  It is always exact.
2320        """
2321
2322        if modulo is not None:
2323            return self._power_modulo(other, modulo, context)
2324
2325        other = _convert_other(other)
2326        if other is NotImplemented:
2327            return other
2328
2329        if context is None:
2330            context = getcontext()
2331
2332        # either argument is a NaN => result is NaN
2333        ans = self._check_nans(other, context)
2334        if ans:
2335            return ans
2336
2337        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2338        if not other:
2339            if not self:
2340                return context._raise_error(InvalidOperation, '0 ** 0')
2341            else:
2342                return _One
2343
2344        # result has sign 1 iff self._sign is 1 and other is an odd integer
2345        result_sign = 0
2346        if self._sign == 1:
2347            if other._isinteger():
2348                if not other._iseven():
2349                    result_sign = 1
2350            else:
2351                # -ve**noninteger = NaN
2352                # (-0)**noninteger = 0**noninteger
2353                if self:
2354                    return context._raise_error(InvalidOperation,
2355                        'x ** y with x negative and y not an integer')
2356            # negate self, without doing any unwanted rounding
2357            self = self.copy_negate()
2358
2359        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2360        if not self:
2361            if other._sign == 0:
2362                return _dec_from_triple(result_sign, '0', 0)
2363            else:
2364                return _SignedInfinity[result_sign]
2365
2366        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2367        if self._isinfinity():
2368            if other._sign == 0:
2369                return _SignedInfinity[result_sign]
2370            else:
2371                return _dec_from_triple(result_sign, '0', 0)
2372
2373        # 1**other = 1, but the choice of exponent and the flags
2374        # depend on the exponent of self, and on whether other is a
2375        # positive integer, a negative integer, or neither
2376        if self == _One:
2377            if other._isinteger():
2378                # exp = max(self._exp*max(int(other), 0),
2379                # 1-context.prec) but evaluating int(other) directly
2380                # is dangerous until we know other is small (other
2381                # could be 1e999999999)
2382                if other._sign == 1:
2383                    multiplier = 0
2384                elif other > context.prec:
2385                    multiplier = context.prec
2386                else:
2387                    multiplier = int(other)
2388
2389                exp = self._exp * multiplier
2390                if exp < 1-context.prec:
2391                    exp = 1-context.prec
2392                    context._raise_error(Rounded)
2393            else:
2394                context._raise_error(Inexact)
2395                context._raise_error(Rounded)
2396                exp = 1-context.prec
2397
2398            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2399
2400        # compute adjusted exponent of self
2401        self_adj = self.adjusted()
2402
2403        # self ** infinity is infinity if self > 1, 0 if self < 1
2404        # self ** -infinity is infinity if self < 1, 0 if self > 1
2405        if other._isinfinity():
2406            if (other._sign == 0) == (self_adj < 0):
2407                return _dec_from_triple(result_sign, '0', 0)
2408            else:
2409                return _SignedInfinity[result_sign]
2410
2411        # from here on, the result always goes through the call
2412        # to _fix at the end of this function.
2413        ans = None
2414        exact = False
2415
2416        # crude test to catch cases of extreme overflow/underflow.  If
2417        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2418        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2419        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2420        # for underflow is similar.
2421        bound = self._log10_exp_bound() + other.adjusted()
2422        if (self_adj >= 0) == (other._sign == 0):
2423            # self > 1 and other +ve, or self < 1 and other -ve
2424            # possibility of overflow
2425            if bound >= len(str(context.Emax)):
2426                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2427        else:
2428            # self > 1 and other -ve, or self < 1 and other +ve
2429            # possibility of underflow to 0
2430            Etiny = context.Etiny()
2431            if bound >= len(str(-Etiny)):
2432                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2433
2434        # try for an exact result with precision +1
2435        if ans is None:
2436            ans = self._power_exact(other, context.prec + 1)
2437            if ans is not None:
2438                if result_sign == 1:
2439                    ans = _dec_from_triple(1, ans._int, ans._exp)
2440                exact = True
2441
2442        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2443        if ans is None:
2444            p = context.prec
2445            x = _WorkRep(self)
2446            xc, xe = x.int, x.exp
2447            y = _WorkRep(other)
2448            yc, ye = y.int, y.exp
2449            if y.sign == 1:
2450                yc = -yc
2451
2452            # compute correctly rounded result:  start with precision +3,
2453            # then increase precision until result is unambiguously roundable
2454            extra = 3
2455            while True:
2456                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2457                if coeff % (5*10**(len(str(coeff))-p-1)):
2458                    break
2459                extra += 3
2460
2461            ans = _dec_from_triple(result_sign, str(coeff), exp)
2462
2463        # unlike exp, ln and log10, the power function respects the
2464        # rounding mode; no need to switch to ROUND_HALF_EVEN here
2465
2466        # There's a difficulty here when 'other' is not an integer and
2467        # the result is exact.  In this case, the specification
2468        # requires that the Inexact flag be raised (in spite of
2469        # exactness), but since the result is exact _fix won't do this
2470        # for us.  (Correspondingly, the Underflow signal should also
2471        # be raised for subnormal results.)  We can't directly raise
2472        # these signals either before or after calling _fix, since
2473        # that would violate the precedence for signals.  So we wrap
2474        # the ._fix call in a temporary context, and reraise
2475        # afterwards.
2476        if exact and not other._isinteger():
2477            # pad with zeros up to length context.prec+1 if necessary; this
2478            # ensures that the Rounded signal will be raised.
2479            if len(ans._int) <= context.prec:
2480                expdiff = context.prec + 1 - len(ans._int)
2481                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2482                                       ans._exp-expdiff)
2483
2484            # create a copy of the current context, with cleared flags/traps
2485            newcontext = context.copy()
2486            newcontext.clear_flags()
2487            for exception in _signals:
2488                newcontext.traps[exception] = 0
2489
2490            # round in the new context
2491            ans = ans._fix(newcontext)
2492
2493            # raise Inexact, and if necessary, Underflow
2494            newcontext._raise_error(Inexact)
2495            if newcontext.flags[Subnormal]:
2496                newcontext._raise_error(Underflow)
2497
2498            # propagate signals to the original context; _fix could
2499            # have raised any of Overflow, Underflow, Subnormal,
2500            # Inexact, Rounded, Clamped.  Overflow needs the correct
2501            # arguments.  Note that the order of the exceptions is
2502            # important here.
2503            if newcontext.flags[Overflow]:
2504                context._raise_error(Overflow, 'above Emax', ans._sign)
2505            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
2506                if newcontext.flags[exception]:
2507                    context._raise_error(exception)
2508
2509        else:
2510            ans = ans._fix(context)
2511
2512        return ans
2513
2514    def __rpow__(self, other, context=None):
2515        """Swaps self/other and returns __pow__."""
2516        other = _convert_other(other)
2517        if other is NotImplemented:
2518            return other
2519        return other.__pow__(self, context=context)
2520
2521    def normalize(self, context=None):
2522        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2523
2524        if context is None:
2525            context = getcontext()
2526
2527        if self._is_special:
2528            ans = self._check_nans(context=context)
2529            if ans:
2530                return ans
2531
2532        dup = self._fix(context)
2533        if dup._isinfinity():
2534            return dup
2535
2536        if not dup:
2537            return _dec_from_triple(dup._sign, '0', 0)
2538        exp_max = [context.Emax, context.Etop()][context.clamp]
2539        end = len(dup._int)
2540        exp = dup._exp
2541        while dup._int[end-1] == '0' and exp < exp_max:
2542            exp += 1
2543            end -= 1
2544        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2545
2546    def quantize(self, exp, rounding=None, context=None):
2547        """Quantize self so its exponent is the same as that of exp.
2548
2549        Similar to self._rescale(exp._exp) but with error checking.
2550        """
2551        exp = _convert_other(exp, raiseit=True)
2552
2553        if context is None:
2554            context = getcontext()
2555        if rounding is None:
2556            rounding = context.rounding
2557
2558        if self._is_special or exp._is_special:
2559            ans = self._check_nans(exp, context)
2560            if ans:
2561                return ans
2562
2563            if exp._isinfinity() or self._isinfinity():
2564                if exp._isinfinity() and self._isinfinity():
2565                    return Decimal(self)  # if both are inf, it is OK
2566                return context._raise_error(InvalidOperation,
2567                                        'quantize with one INF')
2568
2569        # exp._exp should be between Etiny and Emax
2570        if not (context.Etiny() <= exp._exp <= context.Emax):
2571            return context._raise_error(InvalidOperation,
2572                   'target exponent out of bounds in quantize')
2573
2574        if not self:
2575            ans = _dec_from_triple(self._sign, '0', exp._exp)
2576            return ans._fix(context)
2577
2578        self_adjusted = self.adjusted()
2579        if self_adjusted > context.Emax:
2580            return context._raise_error(InvalidOperation,
2581                                        'exponent of quantize result too large for current context')
2582        if self_adjusted - exp._exp + 1 > context.prec:
2583            return context._raise_error(InvalidOperation,
2584                                        'quantize result has too many digits for current context')
2585
2586        ans = self._rescale(exp._exp, rounding)
2587        if ans.adjusted() > context.Emax:
2588            return context._raise_error(InvalidOperation,
2589                                        'exponent of quantize result too large for current context')
2590        if len(ans._int) > context.prec:
2591            return context._raise_error(InvalidOperation,
2592                                        'quantize result has too many digits for current context')
2593
2594        # raise appropriate flags
2595        if ans and ans.adjusted() < context.Emin:
2596            context._raise_error(Subnormal)
2597        if ans._exp > self._exp:
2598            if ans != self:
2599                context._raise_error(Inexact)
2600            context._raise_error(Rounded)
2601
2602        # call to fix takes care of any necessary folddown, and
2603        # signals Clamped if necessary
2604        ans = ans._fix(context)
2605        return ans
2606
2607    def same_quantum(self, other, context=None):
2608        """Return True if self and other have the same exponent; otherwise
2609        return False.
2610
2611        If either operand is a special value, the following rules are used:
2612           * return True if both operands are infinities
2613           * return True if both operands are NaNs
2614           * otherwise, return False.
2615        """
2616        other = _convert_other(other, raiseit=True)
2617        if self._is_special or other._is_special:
2618            return (self.is_nan() and other.is_nan() or
2619                    self.is_infinite() and other.is_infinite())
2620        return self._exp == other._exp
2621
2622    def _rescale(self, exp, rounding):
2623        """Rescale self so that the exponent is exp, either by padding with zeros
2624        or by truncating digits, using the given rounding mode.
2625
2626        Specials are returned without change.  This operation is
2627        quiet: it raises no flags, and uses no information from the
2628        context.
2629
2630        exp = exp to scale to (an integer)
2631        rounding = rounding mode
2632        """
2633        if self._is_special:
2634            return Decimal(self)
2635        if not self:
2636            return _dec_from_triple(self._sign, '0', exp)
2637
2638        if self._exp >= exp:
2639            # pad answer with zeros if necessary
2640            return _dec_from_triple(self._sign,
2641                                        self._int + '0'*(self._exp - exp), exp)
2642
2643        # too many digits; round and lose data.  If self.adjusted() <
2644        # exp-1, replace self by 10**(exp-1) before rounding
2645        digits = len(self._int) + self._exp - exp
2646        if digits < 0:
2647            self = _dec_from_triple(self._sign, '1', exp-1)
2648            digits = 0
2649        this_function = self._pick_rounding_function[rounding]
2650        changed = this_function(self, digits)
2651        coeff = self._int[:digits] or '0'
2652        if changed == 1:
2653            coeff = str(int(coeff)+1)
2654        return _dec_from_triple(self._sign, coeff, exp)
2655
2656    def _round(self, places, rounding):
2657        """Round a nonzero, nonspecial Decimal to a fixed number of
2658        significant figures, using the given rounding mode.
2659
2660        Infinities, NaNs and zeros are returned unaltered.
2661
2662        This operation is quiet: it raises no flags, and uses no
2663        information from the context.
2664
2665        """
2666        if places <= 0:
2667            raise ValueError("argument should be at least 1 in _round")
2668        if self._is_special or not self:
2669            return Decimal(self)
2670        ans = self._rescale(self.adjusted()+1-places, rounding)
2671        # it can happen that the rescale alters the adjusted exponent;
2672        # for example when rounding 99.97 to 3 significant figures.
2673        # When this happens we end up with an extra 0 at the end of
2674        # the number; a second rescale fixes this.
2675        if ans.adjusted() != self.adjusted():
2676            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2677        return ans
2678
2679    def to_integral_exact(self, rounding=None, context=None):
2680        """Rounds to a nearby integer.
2681
2682        If no rounding mode is specified, take the rounding mode from
2683        the context.  This method raises the Rounded and Inexact flags
2684        when appropriate.
2685
2686        See also: to_integral_value, which does exactly the same as
2687        this method except that it doesn't raise Inexact or Rounded.
2688        """
2689        if self._is_special:
2690            ans = self._check_nans(context=context)
2691            if ans:
2692                return ans
2693            return Decimal(self)
2694        if self._exp >= 0:
2695            return Decimal(self)
2696        if not self:
2697            return _dec_from_triple(self._sign, '0', 0)
2698        if context is None:
2699            context = getcontext()
2700        if rounding is None:
2701            rounding = context.rounding
2702        ans = self._rescale(0, rounding)
2703        if ans != self:
2704            context._raise_error(Inexact)
2705        context._raise_error(Rounded)
2706        return ans
2707
2708    def to_integral_value(self, rounding=None, context=None):
2709        """Rounds to the nearest integer, without raising inexact, rounded."""
2710        if context is None:
2711            context = getcontext()
2712        if rounding is None:
2713            rounding = context.rounding
2714        if self._is_special:
2715            ans = self._check_nans(context=context)
2716            if ans:
2717                return ans
2718            return Decimal(self)
2719        if self._exp >= 0:
2720            return Decimal(self)
2721        else:
2722            return self._rescale(0, rounding)
2723
2724    # the method name changed, but we provide also the old one, for compatibility
2725    to_integral = to_integral_value
2726
2727    def sqrt(self, context=None):
2728        """Return the square root of self."""
2729        if context is None:
2730            context = getcontext()
2731
2732        if self._is_special:
2733            ans = self._check_nans(context=context)
2734            if ans:
2735                return ans
2736
2737            if self._isinfinity() and self._sign == 0:
2738                return Decimal(self)
2739
2740        if not self:
2741            # exponent = self._exp // 2.  sqrt(-0) = -0
2742            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2743            return ans._fix(context)
2744
2745        if self._sign == 1:
2746            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2747
2748        # At this point self represents a positive number.  Let p be
2749        # the desired precision and express self in the form c*100**e
2750        # with c a positive real number and e an integer, c and e
2751        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2752        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2753        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2754        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2755        # the closest integer to sqrt(c) with the even integer chosen
2756        # in the case of a tie.
2757        #
2758        # To ensure correct rounding in all cases, we use the
2759        # following trick: we compute the square root to an extra
2760        # place (precision p+1 instead of precision p), rounding down.
2761        # Then, if the result is inexact and its last digit is 0 or 5,
2762        # we increase the last digit to 1 or 6 respectively; if it's
2763        # exact we leave the last digit alone.  Now the final round to
2764        # p places (or fewer in the case of underflow) will round
2765        # correctly and raise the appropriate flags.
2766
2767        # use an extra digit of precision
2768        prec = context.prec+1
2769
2770        # write argument in the form c*100**e where e = self._exp//2
2771        # is the 'ideal' exponent, to be used if the square root is
2772        # exactly representable.  l is the number of 'digits' of c in
2773        # base 100, so that 100**(l-1) <= c < 100**l.
2774        op = _WorkRep(self)
2775        e = op.exp >> 1
2776        if op.exp & 1:
2777            c = op.int * 10
2778            l = (len(self._int) >> 1) + 1
2779        else:
2780            c = op.int
2781            l = len(self._int)+1 >> 1
2782
2783        # rescale so that c has exactly prec base 100 'digits'
2784        shift = prec-l
2785        if shift >= 0:
2786            c *= 100**shift
2787            exact = True
2788        else:
2789            c, remainder = divmod(c, 100**-shift)
2790            exact = not remainder
2791        e -= shift
2792
2793        # find n = floor(sqrt(c)) using Newton's method
2794        n = 10**prec
2795        while True:
2796            q = c//n
2797            if n <= q:
2798                break
2799            else:
2800                n = n + q >> 1
2801        exact = exact and n*n == c
2802
2803        if exact:
2804            # result is exact; rescale to use ideal exponent e
2805            if shift >= 0:
2806                # assert n % 10**shift == 0
2807                n //= 10**shift
2808            else:
2809                n *= 10**-shift
2810            e += shift
2811        else:
2812            # result is not exact; fix last digit as described above
2813            if n % 5 == 0:
2814                n += 1
2815
2816        ans = _dec_from_triple(0, str(n), e)
2817
2818        # round, and fit to current context
2819        context = context._shallow_copy()
2820        rounding = context._set_rounding(ROUND_HALF_EVEN)
2821        ans = ans._fix(context)
2822        context.rounding = rounding
2823
2824        return ans
2825
2826    def max(self, other, context=None):
2827        """Returns the larger value.
2828
2829        Like max(self, other) except if one is not a number, returns
2830        NaN (and signals if one is sNaN).  Also rounds.
2831        """
2832        other = _convert_other(other, raiseit=True)
2833
2834        if context is None:
2835            context = getcontext()
2836
2837        if self._is_special or other._is_special:
2838            # If one operand is a quiet NaN and the other is number, then the
2839            # number is always returned
2840            sn = self._isnan()
2841            on = other._isnan()
2842            if sn or on:
2843                if on == 1 and sn == 0:
2844                    return self._fix(context)
2845                if sn == 1 and on == 0:
2846                    return other._fix(context)
2847                return self._check_nans(other, context)
2848
2849        c = self._cmp(other)
2850        if c == 0:
2851            # If both operands are finite and equal in numerical value
2852            # then an ordering is applied:
2853            #
2854            # If the signs differ then max returns the operand with the
2855            # positive sign and min returns the operand with the negative sign
2856            #
2857            # If the signs are the same then the exponent is used to select
2858            # the result.  This is exactly the ordering used in compare_total.
2859            c = self.compare_total(other)
2860
2861        if c == -1:
2862            ans = other
2863        else:
2864            ans = self
2865
2866        return ans._fix(context)
2867
2868    def min(self, other, context=None):
2869        """Returns the smaller value.
2870
2871        Like min(self, other) except if one is not a number, returns
2872        NaN (and signals if one is sNaN).  Also rounds.
2873        """
2874        other = _convert_other(other, raiseit=True)
2875
2876        if context is None:
2877            context = getcontext()
2878
2879        if self._is_special or other._is_special:
2880            # If one operand is a quiet NaN and the other is number, then the
2881            # number is always returned
2882            sn = self._isnan()
2883            on = other._isnan()
2884            if sn or on:
2885                if on == 1 and sn == 0:
2886                    return self._fix(context)
2887                if sn == 1 and on == 0:
2888                    return other._fix(context)
2889                return self._check_nans(other, context)
2890
2891        c = self._cmp(other)
2892        if c == 0:
2893            c = self.compare_total(other)
2894
2895        if c == -1:
2896            ans = self
2897        else:
2898            ans = other
2899
2900        return ans._fix(context)
2901
2902    def _isinteger(self):
2903        """Returns whether self is an integer"""
2904        if self._is_special:
2905            return False
2906        if self._exp >= 0:
2907            return True
2908        rest = self._int[self._exp:]
2909        return rest == '0'*len(rest)
2910
2911    def _iseven(self):
2912        """Returns True if self is even.  Assumes self is an integer."""
2913        if not self or self._exp > 0:
2914            return True
2915        return self._int[-1+self._exp] in '02468'
2916
2917    def adjusted(self):
2918        """Return the adjusted exponent of self"""
2919        try:
2920            return self._exp + len(self._int) - 1
2921        # If NaN or Infinity, self._exp is string
2922        except TypeError:
2923            return 0
2924
2925    def canonical(self):
2926        """Returns the same Decimal object.
2927
2928        As we do not have different encodings for the same number, the
2929        received object already is in its canonical form.
2930        """
2931        return self
2932
2933    def compare_signal(self, other, context=None):
2934        """Compares self to the other operand numerically.
2935
2936        It's pretty much like compare(), but all NaNs signal, with signaling
2937        NaNs taking precedence over quiet NaNs.
2938        """
2939        other = _convert_other(other, raiseit = True)
2940        ans = self._compare_check_nans(other, context)
2941        if ans:
2942            return ans
2943        return self.compare(other, context=context)
2944
2945    def compare_total(self, other, context=None):
2946        """Compares self to other using the abstract representations.
2947
2948        This is not like the standard compare, which use their numerical
2949        value. Note that a total ordering is defined for all possible abstract
2950        representations.
2951        """
2952        other = _convert_other(other, raiseit=True)
2953
2954        # if one is negative and the other is positive, it's easy
2955        if self._sign and not other._sign:
2956            return _NegativeOne
2957        if not self._sign and other._sign:
2958            return _One
2959        sign = self._sign
2960
2961        # let's handle both NaN types
2962        self_nan = self._isnan()
2963        other_nan = other._isnan()
2964        if self_nan or other_nan:
2965            if self_nan == other_nan:
2966                # compare payloads as though they're integers
2967                self_key = len(self._int), self._int
2968                other_key = len(other._int), other._int
2969                if self_key < other_key:
2970                    if sign:
2971                        return _One
2972                    else:
2973                        return _NegativeOne
2974                if self_key > other_key:
2975                    if sign:
2976                        return _NegativeOne
2977                    else:
2978                        return _One
2979                return _Zero
2980
2981            if sign:
2982                if self_nan == 1:
2983                    return _NegativeOne
2984                if other_nan == 1:
2985                    return _One
2986                if self_nan == 2:
2987                    return _NegativeOne
2988                if other_nan == 2:
2989                    return _One
2990            else:
2991                if self_nan == 1:
2992                    return _One
2993                if other_nan == 1:
2994                    return _NegativeOne
2995                if self_nan == 2:
2996                    return _One
2997                if other_nan == 2:
2998                    return _NegativeOne
2999
3000        if self < other:
3001            return _NegativeOne
3002        if self > other:
3003            return _One
3004
3005        if self._exp < other._exp:
3006            if sign:
3007                return _One
3008            else:
3009                return _NegativeOne
3010        if self._exp > other._exp:
3011            if sign:
3012                return _NegativeOne
3013            else:
3014                return _One
3015        return _Zero
3016
3017
3018    def compare_total_mag(self, other, context=None):
3019        """Compares self to other using abstract repr., ignoring sign.
3020
3021        Like compare_total, but with operand's sign ignored and assumed to be 0.
3022        """
3023        other = _convert_other(other, raiseit=True)
3024
3025        s = self.copy_abs()
3026        o = other.copy_abs()
3027        return s.compare_total(o)
3028
3029    def copy_abs(self):
3030        """Returns a copy with the sign set to 0. """
3031        return _dec_from_triple(0, self._int, self._exp, self._is_special)
3032
3033    def copy_negate(self):
3034        """Returns a copy with the sign inverted."""
3035        if self._sign:
3036            return _dec_from_triple(0, self._int, self._exp, self._is_special)
3037        else:
3038            return _dec_from_triple(1, self._int, self._exp, self._is_special)
3039
3040    def copy_sign(self, other, context=None):
3041        """Returns self with the sign of other."""
3042        other = _convert_other(other, raiseit=True)
3043        return _dec_from_triple(other._sign, self._int,
3044                                self._exp, self._is_special)
3045
3046    def exp(self, context=None):
3047        """Returns e ** self."""
3048
3049        if context is None:
3050            context = getcontext()
3051
3052        # exp(NaN) = NaN
3053        ans = self._check_nans(context=context)
3054        if ans:
3055            return ans
3056
3057        # exp(-Infinity) = 0
3058        if self._isinfinity() == -1:
3059            return _Zero
3060
3061        # exp(0) = 1
3062        if not self:
3063            return _One
3064
3065        # exp(Infinity) = Infinity
3066        if self._isinfinity() == 1:
3067            return Decimal(self)
3068
3069        # the result is now guaranteed to be inexact (the true
3070        # mathematical result is transcendental). There's no need to
3071        # raise Rounded and Inexact here---they'll always be raised as
3072        # a result of the call to _fix.
3073        p = context.prec
3074        adj = self.adjusted()
3075
3076        # we only need to do any computation for quite a small range
3077        # of adjusted exponents---for example, -29 <= adj <= 10 for
3078        # the default context.  For smaller exponent the result is
3079        # indistinguishable from 1 at the given precision, while for
3080        # larger exponent the result either overflows or underflows.
3081        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
3082            # overflow
3083            ans = _dec_from_triple(0, '1', context.Emax+1)
3084        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
3085            # underflow to 0
3086            ans = _dec_from_triple(0, '1', context.Etiny()-1)
3087        elif self._sign == 0 and adj < -p:
3088            # p+1 digits; final round will raise correct flags
3089            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
3090        elif self._sign == 1 and adj < -p-1:
3091            # p+1 digits; final round will raise correct flags
3092            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
3093        # general case
3094        else:
3095            op = _WorkRep(self)
3096            c, e = op.int, op.exp
3097            if op.sign == 1:
3098                c = -c
3099
3100            # compute correctly rounded result: increase precision by
3101            # 3 digits at a time until we get an unambiguously
3102            # roundable result
3103            extra = 3
3104            while True:
3105                coeff, exp = _dexp(c, e, p+extra)
3106                if coeff % (5*10**(len(str(coeff))-p-1)):
3107                    break
3108                extra += 3
3109
3110            ans = _dec_from_triple(0, str(coeff), exp)
3111
3112        # at this stage, ans should round correctly with *any*
3113        # rounding mode, not just with ROUND_HALF_EVEN
3114        context = context._shallow_copy()
3115        rounding = context._set_rounding(ROUND_HALF_EVEN)
3116        ans = ans._fix(context)
3117        context.rounding = rounding
3118
3119        return ans
3120
3121    def is_canonical(self):
3122        """Return True if self is canonical; otherwise return False.
3123
3124        Currently, the encoding of a Decimal instance is always
3125        canonical, so this method returns True for any Decimal.
3126        """
3127        return True
3128
3129    def is_finite(self):
3130        """Return True if self is finite; otherwise return False.
3131
3132        A Decimal instance is considered finite if it is neither
3133        infinite nor a NaN.
3134        """
3135        return not self._is_special
3136
3137    def is_infinite(self):
3138        """Return True if self is infinite; otherwise return False."""
3139        return self._exp == 'F'
3140
3141    def is_nan(self):
3142        """Return True if self is a qNaN or sNaN; otherwise return False."""
3143        return self._exp in ('n', 'N')
3144
3145    def is_normal(self, context=None):
3146        """Return True if self is a normal number; otherwise return False."""
3147        if self._is_special or not self:
3148            return False
3149        if context is None:
3150            context = getcontext()
3151        return context.Emin <= self.adjusted()
3152
3153    def is_qnan(self):
3154        """Return True if self is a quiet NaN; otherwise return False."""
3155        return self._exp == 'n'
3156
3157    def is_signed(self):
3158        """Return True if self is negative; otherwise return False."""
3159        return self._sign == 1
3160
3161    def is_snan(self):
3162        """Return True if self is a signaling NaN; otherwise return False."""
3163        return self._exp == 'N'
3164
3165    def is_subnormal(self, context=None):
3166        """Return True if self is subnormal; otherwise return False."""
3167        if self._is_special or not self:
3168            return False
3169        if context is None:
3170            context = getcontext()
3171        return self.adjusted() < context.Emin
3172
3173    def is_zero(self):
3174        """Return True if self is a zero; otherwise return False."""
3175        return not self._is_special and self._int == '0'
3176
3177    def _ln_exp_bound(self):
3178        """Compute a lower bound for the adjusted exponent of self.ln().
3179        In other words, compute r such that self.ln() >= 10**r.  Assumes
3180        that self is finite and positive and that self != 1.
3181        """
3182
3183        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
3184        adj = self._exp + len(self._int) - 1
3185        if adj >= 1:
3186            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
3187            return len(str(adj*23//10)) - 1
3188        if adj <= -2:
3189            # argument <= 0.1
3190            return len(str((-1-adj)*23//10)) - 1
3191        op = _WorkRep(self)
3192        c, e = op.int, op.exp
3193        if adj == 0:
3194            # 1 < self < 10
3195            num = str(c-10**-e)
3196            den = str(c)
3197            return len(num) - len(den) - (num < den)
3198        # adj == -1, 0.1 <= self < 1
3199        return e + len(str(10**-e - c)) - 1
3200
3201
3202    def ln(self, context=None):
3203        """Returns the natural (base e) logarithm of self."""
3204
3205        if context is None:
3206            context = getcontext()
3207
3208        # ln(NaN) = NaN
3209        ans = self._check_nans(context=context)
3210        if ans:
3211            return ans
3212
3213        # ln(0.0) == -Infinity
3214        if not self:
3215            return _NegativeInfinity
3216
3217        # ln(Infinity) = Infinity
3218        if self._isinfinity() == 1:
3219            return _Infinity
3220
3221        # ln(1.0) == 0.0
3222        if self == _One:
3223            return _Zero
3224
3225        # ln(negative) raises InvalidOperation
3226        if self._sign == 1:
3227            return context._raise_error(InvalidOperation,
3228                                        'ln of a negative value')
3229
3230        # result is irrational, so necessarily inexact
3231        op = _WorkRep(self)
3232        c, e = op.int, op.exp
3233        p = context.prec
3234
3235        # correctly rounded result: repeatedly increase precision by 3
3236        # until we get an unambiguously roundable result
3237        places = p - self._ln_exp_bound() + 2 # at least p+3 places
3238        while True:
3239            coeff = _dlog(c, e, places)
3240            # assert len(str(abs(coeff)))-p >= 1
3241            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3242                break
3243            places += 3
3244        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3245
3246        context = context._shallow_copy()
3247        rounding = context._set_rounding(ROUND_HALF_EVEN)
3248        ans = ans._fix(context)
3249        context.rounding = rounding
3250        return ans
3251
3252    def _log10_exp_bound(self):
3253        """Compute a lower bound for the adjusted exponent of self.log10().
3254        In other words, find r such that self.log10() >= 10**r.
3255        Assumes that self is finite and positive and that self != 1.
3256        """
3257
3258        # For x >= 10 or x < 0.1 we only need a bound on the integer
3259        # part of log10(self), and this comes directly from the
3260        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
3261        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3262        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3263
3264        adj = self._exp + len(self._int) - 1
3265        if adj >= 1:
3266            # self >= 10
3267            return len(str(adj))-1
3268        if adj <= -2:
3269            # self < 0.1
3270            return len(str(-1-adj))-1
3271        op = _WorkRep(self)
3272        c, e = op.int, op.exp
3273        if adj == 0:
3274            # 1 < self < 10
3275            num = str(c-10**-e)
3276            den = str(231*c)
3277            return len(num) - len(den) - (num < den) + 2
3278        # adj == -1, 0.1 <= self < 1
3279        num = str(10**-e-c)
3280        return len(num) + e - (num < "231") - 1
3281
3282    def log10(self, context=None):
3283        """Returns the base 10 logarithm of self."""
3284
3285        if context is None:
3286            context = getcontext()
3287
3288        # log10(NaN) = NaN
3289        ans = self._check_nans(context=context)
3290        if ans:
3291            return ans
3292
3293        # log10(0.0) == -Infinity
3294        if not self:
3295            return _NegativeInfinity
3296
3297        # log10(Infinity) = Infinity
3298        if self._isinfinity() == 1:
3299            return _Infinity
3300
3301        # log10(negative or -Infinity) raises InvalidOperation
3302        if self._sign == 1:
3303            return context._raise_error(InvalidOperation,
3304                                        'log10 of a negative value')
3305
3306        # log10(10**n) = n
3307        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3308            # answer may need rounding
3309            ans = Decimal(self._exp + len(self._int) - 1)
3310        else:
3311            # result is irrational, so necessarily inexact
3312            op = _WorkRep(self)
3313            c, e = op.int, op.exp
3314            p = context.prec
3315
3316            # correctly rounded result: repeatedly increase precision
3317            # until result is unambiguously roundable
3318            places = p-self._log10_exp_bound()+2
3319            while True:
3320                coeff = _dlog10(c, e, places)
3321                # assert len(str(abs(coeff)))-p >= 1
3322                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3323                    break
3324                places += 3
3325            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3326
3327        context = context._shallow_copy()
3328        rounding = context._set_rounding(ROUND_HALF_EVEN)
3329        ans = ans._fix(context)
3330        context.rounding = rounding
3331        return ans
3332
3333    def logb(self, context=None):
3334        """ Returns the exponent of the magnitude of self's MSD.
3335
3336        The result is the integer which is the exponent of the magnitude
3337        of the most significant digit of self (as though it were truncated
3338        to a single digit while maintaining the value of that digit and
3339        without limiting the resulting exponent).
3340        """
3341        # logb(NaN) = NaN
3342        ans = self._check_nans(context=context)
3343        if ans:
3344            return ans
3345
3346        if context is None:
3347            context = getcontext()
3348
3349        # logb(+/-Inf) = +Inf
3350        if self._isinfinity():
3351            return _Infinity
3352
3353        # logb(0) = -Inf, DivisionByZero
3354        if not self:
3355            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3356
3357        # otherwise, simply return the adjusted exponent of self, as a
3358        # Decimal.  Note that no attempt is made to fit the result
3359        # into the current context.
3360        ans = Decimal(self.adjusted())
3361        return ans._fix(context)
3362
3363    def _islogical(self):
3364        """Return True if self is a logical operand.
3365
3366        For being logical, it must be a finite number with a sign of 0,
3367        an exponent of 0, and a coefficient whose digits must all be
3368        either 0 or 1.
3369        """
3370        if self._sign != 0 or self._exp != 0:
3371            return False
3372        for dig in self._int:
3373            if dig not in '01':
3374                return False
3375        return True
3376
3377    def _fill_logical(self, context, opa, opb):
3378        dif = context.prec - len(opa)
3379        if dif > 0:
3380            opa = '0'*dif + opa
3381        elif dif < 0:
3382            opa = opa[-context.prec:]
3383        dif = context.prec - len(opb)
3384        if dif > 0:
3385            opb = '0'*dif + opb
3386        elif dif < 0:
3387            opb = opb[-context.prec:]
3388        return opa, opb
3389
3390    def logical_and(self, other, context=None):
3391        """Applies an 'and' operation between self and other's digits."""
3392        if context is None:
3393            context = getcontext()
3394
3395        other = _convert_other(other, raiseit=True)
3396
3397        if not self._islogical() or not other._islogical():
3398            return context._raise_error(InvalidOperation)
3399
3400        # fill to context.prec
3401        (opa, opb) = self._fill_logical(context, self._int, other._int)
3402
3403        # make the operation, and clean starting zeroes
3404        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3405        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3406
3407    def logical_invert(self, context=None):
3408        """Invert all its digits."""
3409        if context is None:
3410            context = getcontext()
3411        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3412                                context)
3413
3414    def logical_or(self, other, context=None):
3415        """Applies an 'or' operation between self and other's digits."""
3416        if context is None:
3417            context = getcontext()
3418
3419        other = _convert_other(other, raiseit=True)
3420
3421        if not self._islogical() or not other._islogical():
3422            return context._raise_error(InvalidOperation)
3423
3424        # fill to context.prec
3425        (opa, opb) = self._fill_logical(context, self._int, other._int)
3426
3427        # make the operation, and clean starting zeroes
3428        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3429        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3430
3431    def logical_xor(self, other, context=None):
3432        """Applies an 'xor' operation between self and other's digits."""
3433        if context is None:
3434            context = getcontext()
3435
3436        other = _convert_other(other, raiseit=True)
3437
3438        if not self._islogical() or not other._islogical():
3439            return context._raise_error(InvalidOperation)
3440
3441        # fill to context.prec
3442        (opa, opb) = self._fill_logical(context, self._int, other._int)
3443
3444        # make the operation, and clean starting zeroes
3445        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3446        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3447
3448    def max_mag(self, other, context=None):
3449        """Compares the values numerically with their sign ignored."""
3450        other = _convert_other(other, raiseit=True)
3451
3452        if context is None:
3453            context = getcontext()
3454
3455        if self._is_special or other._is_special:
3456            # If one operand is a quiet NaN and the other is number, then the
3457            # number is always returned
3458            sn = self._isnan()
3459            on = other._isnan()
3460            if sn or on:
3461                if on == 1 and sn == 0:
3462                    return self._fix(context)
3463                if sn == 1 and on == 0:
3464                    return other._fix(context)
3465                return self._check_nans(other, context)
3466
3467        c = self.copy_abs()._cmp(other.copy_abs())
3468        if c == 0:
3469            c = self.compare_total(other)
3470
3471        if c == -1:
3472            ans = other
3473        else:
3474            ans = self
3475
3476        return ans._fix(context)
3477
3478    def min_mag(self, other, context=None):
3479        """Compares the values numerically with their sign ignored."""
3480        other = _convert_other(other, raiseit=True)
3481
3482        if context is None:
3483            context = getcontext()
3484
3485        if self._is_special or other._is_special:
3486            # If one operand is a quiet NaN and the other is number, then the
3487            # number is always returned
3488            sn = self._isnan()
3489            on = other._isnan()
3490            if sn or on:
3491                if on == 1 and sn == 0:
3492                    return self._fix(context)
3493                if sn == 1 and on == 0:
3494                    return other._fix(context)
3495                return self._check_nans(other, context)
3496
3497        c = self.copy_abs()._cmp(other.copy_abs())
3498        if c == 0:
3499            c = self.compare_total(other)
3500
3501        if c == -1:
3502            ans = self
3503        else:
3504            ans = other
3505
3506        return ans._fix(context)
3507
3508    def next_minus(self, context=None):
3509        """Returns the largest representable number smaller than itself."""
3510        if context is None:
3511            context = getcontext()
3512
3513        ans = self._check_nans(context=context)
3514        if ans:
3515            return ans
3516
3517        if self._isinfinity() == -1:
3518            return _NegativeInfinity
3519        if self._isinfinity() == 1:
3520            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3521
3522        context = context.copy()
3523        context._set_rounding(ROUND_FLOOR)
3524        context._ignore_all_flags()
3525        new_self = self._fix(context)
3526        if new_self != self:
3527            return new_self
3528        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3529                            context)
3530
3531    def next_plus(self, context=None):
3532        """Returns the smallest representable number larger than itself."""
3533        if context is None:
3534            context = getcontext()
3535
3536        ans = self._check_nans(context=context)
3537        if ans:
3538            return ans
3539
3540        if self._isinfinity() == 1:
3541            return _Infinity
3542        if self._isinfinity() == -1:
3543            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3544
3545        context = context.copy()
3546        context._set_rounding(ROUND_CEILING)
3547        context._ignore_all_flags()
3548        new_self = self._fix(context)
3549        if new_self != self:
3550            return new_self
3551        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3552                            context)
3553
3554    def next_toward(self, other, context=None):
3555        """Returns the number closest to self, in the direction towards other.
3556
3557        The result is the closest representable number to self
3558        (excluding self) that is in the direction towards other,
3559        unless both have the same value.  If the two operands are
3560        numerically equal, then the result is a copy of self with the
3561        sign set to be the same as the sign of other.
3562        """
3563        other = _convert_other(other, raiseit=True)
3564
3565        if context is None:
3566            context = getcontext()
3567
3568        ans = self._check_nans(other, context)
3569        if ans:
3570            return ans
3571
3572        comparison = self._cmp(other)
3573        if comparison == 0:
3574            return self.copy_sign(other)
3575
3576        if comparison == -1:
3577            ans = self.next_plus(context)
3578        else: # comparison == 1
3579            ans = self.next_minus(context)
3580
3581        # decide which flags to raise using value of ans
3582        if ans._isinfinity():
3583            context._raise_error(Overflow,
3584                                 'Infinite result from next_toward',
3585                                 ans._sign)
3586            context._raise_error(Inexact)
3587            context._raise_error(Rounded)
3588        elif ans.adjusted() < context.Emin:
3589            context._raise_error(Underflow)
3590            context._raise_error(Subnormal)
3591            context._raise_error(Inexact)
3592            context._raise_error(Rounded)
3593            # if precision == 1 then we don't raise Clamped for a
3594            # result 0E-Etiny.
3595            if not ans:
3596                context._raise_error(Clamped)
3597
3598        return ans
3599
3600    def number_class(self, context=None):
3601        """Returns an indication of the class of self.
3602
3603        The class is one of the following strings:
3604          sNaN
3605          NaN
3606          -Infinity
3607          -Normal
3608          -Subnormal
3609          -Zero
3610          +Zero
3611          +Subnormal
3612          +Normal
3613          +Infinity
3614        """
3615        if self.is_snan():
3616            return "sNaN"
3617        if self.is_qnan():
3618            return "NaN"
3619        inf = self._isinfinity()
3620        if inf == 1:
3621            return "+Infinity"
3622        if inf == -1:
3623            return "-Infinity"
3624        if self.is_zero():
3625            if self._sign:
3626                return "-Zero"
3627            else:
3628                return "+Zero"
3629        if context is None:
3630            context = getcontext()
3631        if self.is_subnormal(context=context):
3632            if self._sign:
3633                return "-Subnormal"
3634            else:
3635                return "+Subnormal"
3636        # just a normal, regular, boring number, :)
3637        if self._sign:
3638            return "-Normal"
3639        else:
3640            return "+Normal"
3641
3642    def radix(self):
3643        """Just returns 10, as this is Decimal, :)"""
3644        return Decimal(10)
3645
3646    def rotate(self, other, context=None):
3647        """Returns a rotated copy of self, value-of-other times."""
3648        if context is None:
3649            context = getcontext()
3650
3651        other = _convert_other(other, raiseit=True)
3652
3653        ans = self._check_nans(other, context)
3654        if ans:
3655            return ans
3656
3657        if other._exp != 0:
3658            return context._raise_error(InvalidOperation)
3659        if not (-context.prec <= int(other) <= context.prec):
3660            return context._raise_error(InvalidOperation)
3661
3662        if self._isinfinity():
3663            return Decimal(self)
3664
3665        # get values, pad if necessary
3666        torot = int(other)
3667        rotdig = self._int
3668        topad = context.prec - len(rotdig)
3669        if topad > 0:
3670            rotdig = '0'*topad + rotdig
3671        elif topad < 0:
3672            rotdig = rotdig[-topad:]
3673
3674        # let's rotate!
3675        rotated = rotdig[torot:] + rotdig[:torot]
3676        return _dec_from_triple(self._sign,
3677                                rotated.lstrip('0') or '0', self._exp)
3678
3679    def scaleb(self, other, context=None):
3680        """Returns self operand after adding the second value to its exp."""
3681        if context is None:
3682            context = getcontext()
3683
3684        other = _convert_other(other, raiseit=True)
3685
3686        ans = self._check_nans(other, context)
3687        if ans:
3688            return ans
3689
3690        if other._exp != 0:
3691            return context._raise_error(InvalidOperation)
3692        liminf = -2 * (context.Emax + context.prec)
3693        limsup =  2 * (context.Emax + context.prec)
3694        if not (liminf <= int(other) <= limsup):
3695            return context._raise_error(InvalidOperation)
3696
3697        if self._isinfinity():
3698            return Decimal(self)
3699
3700        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3701        d = d._fix(context)
3702        return d
3703
3704    def shift(self, other, context=None):
3705        """Returns a shifted copy of self, value-of-other times."""
3706        if context is None:
3707            context = getcontext()
3708
3709        other = _convert_other(other, raiseit=True)
3710
3711        ans = self._check_nans(other, context)
3712        if ans:
3713            return ans
3714
3715        if other._exp != 0:
3716            return context._raise_error(InvalidOperation)
3717        if not (-context.prec <= int(other) <= context.prec):
3718            return context._raise_error(InvalidOperation)
3719
3720        if self._isinfinity():
3721            return Decimal(self)
3722
3723        # get values, pad if necessary
3724        torot = int(other)
3725        rotdig = self._int
3726        topad = context.prec - len(rotdig)
3727        if topad > 0:
3728            rotdig = '0'*topad + rotdig
3729        elif topad < 0:
3730            rotdig = rotdig[-topad:]
3731
3732        # let's shift!
3733        if torot < 0:
3734            shifted = rotdig[:torot]
3735        else:
3736            shifted = rotdig + '0'*torot
3737            shifted = shifted[-context.prec:]
3738
3739        return _dec_from_triple(self._sign,
3740                                    shifted.lstrip('0') or '0', self._exp)
3741
3742    # Support for pickling, copy, and deepcopy
3743    def __reduce__(self):
3744        return (self.__class__, (str(self),))
3745
3746    def __copy__(self):
3747        if type(self) is Decimal:
3748            return self     # I'm immutable; therefore I am my own clone
3749        return self.__class__(str(self))
3750
3751    def __deepcopy__(self, memo):
3752        if type(self) is Decimal:
3753            return self     # My components are also immutable
3754        return self.__class__(str(self))
3755
3756    # PEP 3101 support.  the _localeconv keyword argument should be
3757    # considered private: it's provided for ease of testing only.
3758    def __format__(self, specifier, context=None, _localeconv=None):
3759        """Format a Decimal instance according to the given specifier.
3760
3761        The specifier should be a standard format specifier, with the
3762        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3763        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
3764        type is omitted it defaults to 'g' or 'G', depending on the
3765        value of context.capitals.
3766        """
3767
3768        # Note: PEP 3101 says that if the type is not present then
3769        # there should be at least one digit after the decimal point.
3770        # We take the liberty of ignoring this requirement for
3771        # Decimal---it's presumably there to make sure that
3772        # format(float, '') behaves similarly to str(float).
3773        if context is None:
3774            context = getcontext()
3775
3776        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3777
3778        # special values don't care about the type or precision
3779        if self._is_special:
3780            sign = _format_sign(self._sign, spec)
3781            body = str(self.copy_abs())
3782            if spec['type'] == '%':
3783                body += '%'
3784            return _format_align(sign, body, spec)
3785
3786        # a type of None defaults to 'g' or 'G', depending on context
3787        if spec['type'] is None:
3788            spec['type'] = ['g', 'G'][context.capitals]
3789
3790        # if type is '%', adjust exponent of self accordingly
3791        if spec['type'] == '%':
3792            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3793
3794        # round if necessary, taking rounding mode from the context
3795        rounding = context.rounding
3796        precision = spec['precision']
3797        if precision is not None:
3798            if spec['type'] in 'eE':
3799                self = self._round(precision+1, rounding)
3800            elif spec['type'] in 'fF%':
3801                self = self._rescale(-precision, rounding)
3802            elif spec['type'] in 'gG' and len(self._int) > precision:
3803                self = self._round(precision, rounding)
3804        # special case: zeros with a positive exponent can't be
3805        # represented in fixed point; rescale them to 0e0.
3806        if not self and self._exp > 0 and spec['type'] in 'fF%':
3807            self = self._rescale(0, rounding)
3808        if not self and spec['no_neg_0'] and self._sign:
3809            adjusted_sign = 0
3810        else:
3811            adjusted_sign = self._sign
3812
3813        # figure out placement of the decimal point
3814        leftdigits = self._exp + len(self._int)
3815        if spec['type'] in 'eE':
3816            if not self and precision is not None:
3817                dotplace = 1 - precision
3818            else:
3819                dotplace = 1
3820        elif spec['type'] in 'fF%':
3821            dotplace = leftdigits
3822        elif spec['type'] in 'gG':
3823            if self._exp <= 0 and leftdigits > -6:
3824                dotplace = leftdigits
3825            else:
3826                dotplace = 1
3827
3828        # find digits before and after decimal point, and get exponent
3829        if dotplace < 0:
3830            intpart = '0'
3831            fracpart = '0'*(-dotplace) + self._int
3832        elif dotplace > len(self._int):
3833            intpart = self._int + '0'*(dotplace-len(self._int))
3834            fracpart = ''
3835        else:
3836            intpart = self._int[:dotplace] or '0'
3837            fracpart = self._int[dotplace:]
3838        exp = leftdigits-dotplace
3839
3840        # done with the decimal-specific stuff;  hand over the rest
3841        # of the formatting to the _format_number function
3842        return _format_number(adjusted_sign, intpart, fracpart, exp, spec)
3843
3844def _dec_from_triple(sign, coefficient, exponent, special=False):
3845    """Create a decimal instance directly, without any validation,
3846    normalization (e.g. removal of leading zeros) or argument
3847    conversion.
3848
3849    This function is for *internal use only*.
3850    """
3851
3852    self = object.__new__(Decimal)
3853    self._sign = sign
3854    self._int = coefficient
3855    self._exp = exponent
3856    self._is_special = special
3857
3858    return self
3859
3860# Register Decimal as a kind of Number (an abstract base class).
3861# However, do not register it as Real (because Decimals are not
3862# interoperable with floats).
3863_numbers.Number.register(Decimal)
3864
3865
3866##### Context class #######################################################
3867
3868class _ContextManager(object):
3869    """Context manager class to support localcontext().
3870
3871      Sets a copy of the supplied context in __enter__() and restores
3872      the previous decimal context in __exit__()
3873    """
3874    def __init__(self, new_context):
3875        self.new_context = new_context.copy()
3876    def __enter__(self):
3877        self.saved_context = getcontext()
3878        setcontext(self.new_context)
3879        return self.new_context
3880    def __exit__(self, t, v, tb):
3881        setcontext(self.saved_context)
3882
3883class Context(object):
3884    """Contains the context for a Decimal instance.
3885
3886    Contains:
3887    prec - precision (for use in rounding, division, square roots..)
3888    rounding - rounding type (how you round)
3889    traps - If traps[exception] = 1, then the exception is
3890                    raised when it is caused.  Otherwise, a value is
3891                    substituted in.
3892    flags  - When an exception is caused, flags[exception] is set.
3893             (Whether or not the trap_enabler is set)
3894             Should be reset by user of Decimal instance.
3895    Emin -   Minimum exponent
3896    Emax -   Maximum exponent
3897    capitals -      If 1, 1*10^1 is printed as 1E+1.
3898                    If 0, printed as 1e1
3899    clamp -  If 1, change exponents if too high (Default 0)
3900    """
3901
3902    def __init__(self, prec=None, rounding=None, Emin=None, Emax=None,
3903                       capitals=None, clamp=None, flags=None, traps=None,
3904                       _ignored_flags=None):
3905        # Set defaults; for everything except flags and _ignored_flags,
3906        # inherit from DefaultContext.
3907        try:
3908            dc = DefaultContext
3909        except NameError:
3910            pass
3911
3912        self.prec = prec if prec is not None else dc.prec
3913        self.rounding = rounding if rounding is not None else dc.rounding
3914        self.Emin = Emin if Emin is not None else dc.Emin
3915        self.Emax = Emax if Emax is not None else dc.Emax
3916        self.capitals = capitals if capitals is not None else dc.capitals
3917        self.clamp = clamp if clamp is not None else dc.clamp
3918
3919        if _ignored_flags is None:
3920            self._ignored_flags = []
3921        else:
3922            self._ignored_flags = _ignored_flags
3923
3924        if traps is None:
3925            self.traps = dc.traps.copy()
3926        elif not isinstance(traps, dict):
3927            self.traps = dict((s, int(s in traps)) for s in _signals + traps)
3928        else:
3929            self.traps = traps
3930
3931        if flags is None:
3932            self.flags = dict.fromkeys(_signals, 0)
3933        elif not isinstance(flags, dict):
3934            self.flags = dict((s, int(s in flags)) for s in _signals + flags)
3935        else:
3936            self.flags = flags
3937
3938    def _set_integer_check(self, name, value, vmin, vmax):
3939        if not isinstance(value, int):
3940            raise TypeError("%s must be an integer" % name)
3941        if vmin == '-inf':
3942            if value > vmax:
3943                raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value))
3944        elif vmax == 'inf':
3945            if value < vmin:
3946                raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value))
3947        else:
3948            if value < vmin or value > vmax:
3949                raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value))
3950        return object.__setattr__(self, name, value)
3951
3952    def _set_signal_dict(self, name, d):
3953        if not isinstance(d, dict):
3954            raise TypeError("%s must be a signal dict" % d)
3955        for key in d:
3956            if not key in _signals:
3957                raise KeyError("%s is not a valid signal dict" % d)
3958        for key in _signals:
3959            if not key in d:
3960                raise KeyError("%s is not a valid signal dict" % d)
3961        return object.__setattr__(self, name, d)
3962
3963    def __setattr__(self, name, value):
3964        if name == 'prec':
3965            return self._set_integer_check(name, value, 1, 'inf')
3966        elif name == 'Emin':
3967            return self._set_integer_check(name, value, '-inf', 0)
3968        elif name == 'Emax':
3969            return self._set_integer_check(name, value, 0, 'inf')
3970        elif name == 'capitals':
3971            return self._set_integer_check(name, value, 0, 1)
3972        elif name == 'clamp':
3973            return self._set_integer_check(name, value, 0, 1)
3974        elif name == 'rounding':
3975            if not value in _rounding_modes:
3976                # raise TypeError even for strings to have consistency
3977                # among various implementations.
3978                raise TypeError("%s: invalid rounding mode" % value)
3979            return object.__setattr__(self, name, value)
3980        elif name == 'flags' or name == 'traps':
3981            return self._set_signal_dict(name, value)
3982        elif name == '_ignored_flags':
3983            return object.__setattr__(self, name, value)
3984        else:
3985            raise AttributeError(
3986                "'decimal.Context' object has no attribute '%s'" % name)
3987
3988    def __delattr__(self, name):
3989        raise AttributeError("%s cannot be deleted" % name)
3990
3991    # Support for pickling, copy, and deepcopy
3992    def __reduce__(self):
3993        flags = [sig for sig, v in self.flags.items() if v]
3994        traps = [sig for sig, v in self.traps.items() if v]
3995        return (self.__class__,
3996                (self.prec, self.rounding, self.Emin, self.Emax,
3997                 self.capitals, self.clamp, flags, traps))
3998
3999    def __repr__(self):
4000        """Show the current context."""
4001        s = []
4002        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
4003                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, '
4004                 'clamp=%(clamp)d'
4005                 % vars(self))
4006        names = [f.__name__ for f, v in self.flags.items() if v]
4007        s.append('flags=[' + ', '.join(names) + ']')
4008        names = [t.__name__ for t, v in self.traps.items() if v]
4009        s.append('traps=[' + ', '.join(names) + ']')
4010        return ', '.join(s) + ')'
4011
4012    def clear_flags(self):
4013        """Reset all flags to zero"""
4014        for flag in self.flags:
4015            self.flags[flag] = 0
4016
4017    def clear_traps(self):
4018        """Reset all traps to zero"""
4019        for flag in self.traps:
4020            self.traps[flag] = 0
4021
4022    def _shallow_copy(self):
4023        """Returns a shallow copy from self."""
4024        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
4025                     self.capitals, self.clamp, self.flags, self.traps,
4026                     self._ignored_flags)
4027        return nc
4028
4029    def copy(self):
4030        """Returns a deep copy from self."""
4031        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
4032                     self.capitals, self.clamp,
4033                     self.flags.copy(), self.traps.copy(),
4034                     self._ignored_flags)
4035        return nc
4036    __copy__ = copy
4037
4038    def _raise_error(self, condition, explanation = None, *args):
4039        """Handles an error
4040
4041        If the flag is in _ignored_flags, returns the default response.
4042        Otherwise, it sets the flag, then, if the corresponding
4043        trap_enabler is set, it reraises the exception.  Otherwise, it returns
4044        the default value after setting the flag.
4045        """
4046        error = _condition_map.get(condition, condition)
4047        if error in self._ignored_flags:
4048            # Don't touch the flag
4049            return error().handle(self, *args)
4050
4051        self.flags[error] = 1
4052        if not self.traps[error]:
4053            # The errors define how to handle themselves.
4054            return condition().handle(self, *args)
4055
4056        # Errors should only be risked on copies of the context
4057        # self._ignored_flags = []
4058        raise error(explanation)
4059
4060    def _ignore_all_flags(self):
4061        """Ignore all flags, if they are raised"""
4062        return self._ignore_flags(*_signals)
4063
4064    def _ignore_flags(self, *flags):
4065        """Ignore the flags, if they are raised"""
4066        # Do not mutate-- This way, copies of a context leave the original
4067        # alone.
4068        self._ignored_flags = (self._ignored_flags + list(flags))
4069        return list(flags)
4070
4071    def _regard_flags(self, *flags):
4072        """Stop ignoring the flags, if they are raised"""
4073        if flags and isinstance(flags[0], (tuple,list)):
4074            flags = flags[0]
4075        for flag in flags:
4076            self._ignored_flags.remove(flag)
4077
4078    # We inherit object.__hash__, so we must deny this explicitly
4079    __hash__ = None
4080
4081    def Etiny(self):
4082        """Returns Etiny (= Emin - prec + 1)"""
4083        return int(self.Emin - self.prec + 1)
4084
4085    def Etop(self):
4086        """Returns maximum exponent (= Emax - prec + 1)"""
4087        return int(self.Emax - self.prec + 1)
4088
4089    def _set_rounding(self, type):
4090        """Sets the rounding type.
4091
4092        Sets the rounding type, and returns the current (previous)
4093        rounding type.  Often used like:
4094
4095        context = context.copy()
4096        # so you don't change the calling context
4097        # if an error occurs in the middle.
4098        rounding = context._set_rounding(ROUND_UP)
4099        val = self.__sub__(other, context=context)
4100        context._set_rounding(rounding)
4101
4102        This will make it round up for that operation.
4103        """
4104        rounding = self.rounding
4105        self.rounding = type
4106        return rounding
4107
4108    def create_decimal(self, num='0'):
4109        """Creates a new Decimal instance but using self as context.
4110
4111        This method implements the to-number operation of the
4112        IBM Decimal specification."""
4113
4114        if isinstance(num, str) and (num != num.strip() or '_' in num):
4115            return self._raise_error(ConversionSyntax,
4116                                     "trailing or leading whitespace and "
4117                                     "underscores are not permitted.")
4118
4119        d = Decimal(num, context=self)
4120        if d._isnan() and len(d._int) > self.prec - self.clamp:
4121            return self._raise_error(ConversionSyntax,
4122                                     "diagnostic info too long in NaN")
4123        return d._fix(self)
4124
4125    def create_decimal_from_float(self, f):
4126        """Creates a new Decimal instance from a float but rounding using self
4127        as the context.
4128
4129        >>> context = Context(prec=5, rounding=ROUND_DOWN)
4130        >>> context.create_decimal_from_float(3.1415926535897932)
4131        Decimal('3.1415')
4132        >>> context = Context(prec=5, traps=[Inexact])
4133        >>> context.create_decimal_from_float(3.1415926535897932)
4134        Traceback (most recent call last):
4135            ...
4136        decimal.Inexact: None
4137
4138        """
4139        d = Decimal.from_float(f)       # An exact conversion
4140        return d._fix(self)             # Apply the context rounding
4141
4142    # Methods
4143    def abs(self, a):
4144        """Returns the absolute value of the operand.
4145
4146        If the operand is negative, the result is the same as using the minus
4147        operation on the operand.  Otherwise, the result is the same as using
4148        the plus operation on the operand.
4149
4150        >>> ExtendedContext.abs(Decimal('2.1'))
4151        Decimal('2.1')
4152        >>> ExtendedContext.abs(Decimal('-100'))
4153        Decimal('100')
4154        >>> ExtendedContext.abs(Decimal('101.5'))
4155        Decimal('101.5')
4156        >>> ExtendedContext.abs(Decimal('-101.5'))
4157        Decimal('101.5')
4158        >>> ExtendedContext.abs(-1)
4159        Decimal('1')
4160        """
4161        a = _convert_other(a, raiseit=True)
4162        return a.__abs__(context=self)
4163
4164    def add(self, a, b):
4165        """Return the sum of the two operands.
4166
4167        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
4168        Decimal('19.00')
4169        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
4170        Decimal('1.02E+4')
4171        >>> ExtendedContext.add(1, Decimal(2))
4172        Decimal('3')
4173        >>> ExtendedContext.add(Decimal(8), 5)
4174        Decimal('13')
4175        >>> ExtendedContext.add(5, 5)
4176        Decimal('10')
4177        """
4178        a = _convert_other(a, raiseit=True)
4179        r = a.__add__(b, context=self)
4180        if r is NotImplemented:
4181            raise TypeError("Unable to convert %s to Decimal" % b)
4182        else:
4183            return r
4184
4185    def _apply(self, a):
4186        return str(a._fix(self))
4187
4188    def canonical(self, a):
4189        """Returns the same Decimal object.
4190
4191        As we do not have different encodings for the same number, the
4192        received object already is in its canonical form.
4193
4194        >>> ExtendedContext.canonical(Decimal('2.50'))
4195        Decimal('2.50')
4196        """
4197        if not isinstance(a, Decimal):
4198            raise TypeError("canonical requires a Decimal as an argument.")
4199        return a.canonical()
4200
4201    def compare(self, a, b):
4202        """Compares values numerically.
4203
4204        If the signs of the operands differ, a value representing each operand
4205        ('-1' if the operand is less than zero, '0' if the operand is zero or
4206        negative zero, or '1' if the operand is greater than zero) is used in
4207        place of that operand for the comparison instead of the actual
4208        operand.
4209
4210        The comparison is then effected by subtracting the second operand from
4211        the first and then returning a value according to the result of the
4212        subtraction: '-1' if the result is less than zero, '0' if the result is
4213        zero or negative zero, or '1' if the result is greater than zero.
4214
4215        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
4216        Decimal('-1')
4217        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
4218        Decimal('0')
4219        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
4220        Decimal('0')
4221        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
4222        Decimal('1')
4223        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
4224        Decimal('1')
4225        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
4226        Decimal('-1')
4227        >>> ExtendedContext.compare(1, 2)
4228        Decimal('-1')
4229        >>> ExtendedContext.compare(Decimal(1), 2)
4230        Decimal('-1')
4231        >>> ExtendedContext.compare(1, Decimal(2))
4232        Decimal('-1')
4233        """
4234        a = _convert_other(a, raiseit=True)
4235        return a.compare(b, context=self)
4236
4237    def compare_signal(self, a, b):
4238        """Compares the values of the two operands numerically.
4239
4240        It's pretty much like compare(), but all NaNs signal, with signaling
4241        NaNs taking precedence over quiet NaNs.
4242
4243        >>> c = ExtendedContext
4244        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
4245        Decimal('-1')
4246        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
4247        Decimal('0')
4248        >>> c.flags[InvalidOperation] = 0
4249        >>> print(c.flags[InvalidOperation])
4250        0
4251        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
4252        Decimal('NaN')
4253        >>> print(c.flags[InvalidOperation])
4254        1
4255        >>> c.flags[InvalidOperation] = 0
4256        >>> print(c.flags[InvalidOperation])
4257        0
4258        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
4259        Decimal('NaN')
4260        >>> print(c.flags[InvalidOperation])
4261        1
4262        >>> c.compare_signal(-1, 2)
4263        Decimal('-1')
4264        >>> c.compare_signal(Decimal(-1), 2)
4265        Decimal('-1')
4266        >>> c.compare_signal(-1, Decimal(2))
4267        Decimal('-1')
4268        """
4269        a = _convert_other(a, raiseit=True)
4270        return a.compare_signal(b, context=self)
4271
4272    def compare_total(self, a, b):
4273        """Compares two operands using their abstract representation.
4274
4275        This is not like the standard compare, which use their numerical
4276        value. Note that a total ordering is defined for all possible abstract
4277        representations.
4278
4279        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
4280        Decimal('-1')
4281        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
4282        Decimal('-1')
4283        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
4284        Decimal('-1')
4285        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
4286        Decimal('0')
4287        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
4288        Decimal('1')
4289        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
4290        Decimal('-1')
4291        >>> ExtendedContext.compare_total(1, 2)
4292        Decimal('-1')
4293        >>> ExtendedContext.compare_total(Decimal(1), 2)
4294        Decimal('-1')
4295        >>> ExtendedContext.compare_total(1, Decimal(2))
4296        Decimal('-1')
4297        """
4298        a = _convert_other(a, raiseit=True)
4299        return a.compare_total(b)
4300
4301    def compare_total_mag(self, a, b):
4302        """Compares two operands using their abstract representation ignoring sign.
4303
4304        Like compare_total, but with operand's sign ignored and assumed to be 0.
4305        """
4306        a = _convert_other(a, raiseit=True)
4307        return a.compare_total_mag(b)
4308
4309    def copy_abs(self, a):
4310        """Returns a copy of the operand with the sign set to 0.
4311
4312        >>> ExtendedContext.copy_abs(Decimal('2.1'))
4313        Decimal('2.1')
4314        >>> ExtendedContext.copy_abs(Decimal('-100'))
4315        Decimal('100')
4316        >>> ExtendedContext.copy_abs(-1)
4317        Decimal('1')
4318        """
4319        a = _convert_other(a, raiseit=True)
4320        return a.copy_abs()
4321
4322    def copy_decimal(self, a):
4323        """Returns a copy of the decimal object.
4324
4325        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
4326        Decimal('2.1')
4327        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
4328        Decimal('-1.00')
4329        >>> ExtendedContext.copy_decimal(1)
4330        Decimal('1')
4331        """
4332        a = _convert_other(a, raiseit=True)
4333        return Decimal(a)
4334
4335    def copy_negate(self, a):
4336        """Returns a copy of the operand with the sign inverted.
4337
4338        >>> ExtendedContext.copy_negate(Decimal('101.5'))
4339        Decimal('-101.5')
4340        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
4341        Decimal('101.5')
4342        >>> ExtendedContext.copy_negate(1)
4343        Decimal('-1')
4344        """
4345        a = _convert_other(a, raiseit=True)
4346        return a.copy_negate()
4347
4348    def copy_sign(self, a, b):
4349        """Copies the second operand's sign to the first one.
4350
4351        In detail, it returns a copy of the first operand with the sign
4352        equal to the sign of the second operand.
4353
4354        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
4355        Decimal('1.50')
4356        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
4357        Decimal('1.50')
4358        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
4359        Decimal('-1.50')
4360        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
4361        Decimal('-1.50')
4362        >>> ExtendedContext.copy_sign(1, -2)
4363        Decimal('-1')
4364        >>> ExtendedContext.copy_sign(Decimal(1), -2)
4365        Decimal('-1')
4366        >>> ExtendedContext.copy_sign(1, Decimal(-2))
4367        Decimal('-1')
4368        """
4369        a = _convert_other(a, raiseit=True)
4370        return a.copy_sign(b)
4371
4372    def divide(self, a, b):
4373        """Decimal division in a specified context.
4374
4375        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4376        Decimal('0.333333333')
4377        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4378        Decimal('0.666666667')
4379        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4380        Decimal('2.5')
4381        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4382        Decimal('0.1')
4383        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4384        Decimal('1')
4385        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4386        Decimal('4.00')
4387        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4388        Decimal('1.20')
4389        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4390        Decimal('10')
4391        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4392        Decimal('1000')
4393        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4394        Decimal('1.20E+6')
4395        >>> ExtendedContext.divide(5, 5)
4396        Decimal('1')
4397        >>> ExtendedContext.divide(Decimal(5), 5)
4398        Decimal('1')
4399        >>> ExtendedContext.divide(5, Decimal(5))
4400        Decimal('1')
4401        """
4402        a = _convert_other(a, raiseit=True)
4403        r = a.__truediv__(b, context=self)
4404        if r is NotImplemented:
4405            raise TypeError("Unable to convert %s to Decimal" % b)
4406        else:
4407            return r
4408
4409    def divide_int(self, a, b):
4410        """Divides two numbers and returns the integer part of the result.
4411
4412        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4413        Decimal('0')
4414        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4415        Decimal('3')
4416        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4417        Decimal('3')
4418        >>> ExtendedContext.divide_int(10, 3)
4419        Decimal('3')
4420        >>> ExtendedContext.divide_int(Decimal(10), 3)
4421        Decimal('3')
4422        >>> ExtendedContext.divide_int(10, Decimal(3))
4423        Decimal('3')
4424        """
4425        a = _convert_other(a, raiseit=True)
4426        r = a.__floordiv__(b, context=self)
4427        if r is NotImplemented:
4428            raise TypeError("Unable to convert %s to Decimal" % b)
4429        else:
4430            return r
4431
4432    def divmod(self, a, b):
4433        """Return (a // b, a % b).
4434
4435        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4436        (Decimal('2'), Decimal('2'))
4437        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4438        (Decimal('2'), Decimal('0'))
4439        >>> ExtendedContext.divmod(8, 4)
4440        (Decimal('2'), Decimal('0'))
4441        >>> ExtendedContext.divmod(Decimal(8), 4)
4442        (Decimal('2'), Decimal('0'))
4443        >>> ExtendedContext.divmod(8, Decimal(4))
4444        (Decimal('2'), Decimal('0'))
4445        """
4446        a = _convert_other(a, raiseit=True)
4447        r = a.__divmod__(b, context=self)
4448        if r is NotImplemented:
4449            raise TypeError("Unable to convert %s to Decimal" % b)
4450        else:
4451            return r
4452
4453    def exp(self, a):
4454        """Returns e ** a.
4455
4456        >>> c = ExtendedContext.copy()
4457        >>> c.Emin = -999
4458        >>> c.Emax = 999
4459        >>> c.exp(Decimal('-Infinity'))
4460        Decimal('0')
4461        >>> c.exp(Decimal('-1'))
4462        Decimal('0.367879441')
4463        >>> c.exp(Decimal('0'))
4464        Decimal('1')
4465        >>> c.exp(Decimal('1'))
4466        Decimal('2.71828183')
4467        >>> c.exp(Decimal('0.693147181'))
4468        Decimal('2.00000000')
4469        >>> c.exp(Decimal('+Infinity'))
4470        Decimal('Infinity')
4471        >>> c.exp(10)
4472        Decimal('22026.4658')
4473        """
4474        a =_convert_other(a, raiseit=True)
4475        return a.exp(context=self)
4476
4477    def fma(self, a, b, c):
4478        """Returns a multiplied by b, plus c.
4479
4480        The first two operands are multiplied together, using multiply,
4481        the third operand is then added to the result of that
4482        multiplication, using add, all with only one final rounding.
4483
4484        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4485        Decimal('22')
4486        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4487        Decimal('-8')
4488        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4489        Decimal('1.38435736E+12')
4490        >>> ExtendedContext.fma(1, 3, 4)
4491        Decimal('7')
4492        >>> ExtendedContext.fma(1, Decimal(3), 4)
4493        Decimal('7')
4494        >>> ExtendedContext.fma(1, 3, Decimal(4))
4495        Decimal('7')
4496        """
4497        a = _convert_other(a, raiseit=True)
4498        return a.fma(b, c, context=self)
4499
4500    def is_canonical(self, a):
4501        """Return True if the operand is canonical; otherwise return False.
4502
4503        Currently, the encoding of a Decimal instance is always
4504        canonical, so this method returns True for any Decimal.
4505
4506        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4507        True
4508        """
4509        if not isinstance(a, Decimal):
4510            raise TypeError("is_canonical requires a Decimal as an argument.")
4511        return a.is_canonical()
4512
4513    def is_finite(self, a):
4514        """Return True if the operand is finite; otherwise return False.
4515
4516        A Decimal instance is considered finite if it is neither
4517        infinite nor a NaN.
4518
4519        >>> ExtendedContext.is_finite(Decimal('2.50'))
4520        True
4521        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4522        True
4523        >>> ExtendedContext.is_finite(Decimal('0'))
4524        True
4525        >>> ExtendedContext.is_finite(Decimal('Inf'))
4526        False
4527        >>> ExtendedContext.is_finite(Decimal('NaN'))
4528        False
4529        >>> ExtendedContext.is_finite(1)
4530        True
4531        """
4532        a = _convert_other(a, raiseit=True)
4533        return a.is_finite()
4534
4535    def is_infinite(self, a):
4536        """Return True if the operand is infinite; otherwise return False.
4537
4538        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4539        False
4540        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4541        True
4542        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4543        False
4544        >>> ExtendedContext.is_infinite(1)
4545        False
4546        """
4547        a = _convert_other(a, raiseit=True)
4548        return a.is_infinite()
4549
4550    def is_nan(self, a):
4551        """Return True if the operand is a qNaN or sNaN;
4552        otherwise return False.
4553
4554        >>> ExtendedContext.is_nan(Decimal('2.50'))
4555        False
4556        >>> ExtendedContext.is_nan(Decimal('NaN'))
4557        True
4558        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4559        True
4560        >>> ExtendedContext.is_nan(1)
4561        False
4562        """
4563        a = _convert_other(a, raiseit=True)
4564        return a.is_nan()
4565
4566    def is_normal(self, a):
4567        """Return True if the operand is a normal number;
4568        otherwise return False.
4569
4570        >>> c = ExtendedContext.copy()
4571        >>> c.Emin = -999
4572        >>> c.Emax = 999
4573        >>> c.is_normal(Decimal('2.50'))
4574        True
4575        >>> c.is_normal(Decimal('0.1E-999'))
4576        False
4577        >>> c.is_normal(Decimal('0.00'))
4578        False
4579        >>> c.is_normal(Decimal('-Inf'))
4580        False
4581        >>> c.is_normal(Decimal('NaN'))
4582        False
4583        >>> c.is_normal(1)
4584        True
4585        """
4586        a = _convert_other(a, raiseit=True)
4587        return a.is_normal(context=self)
4588
4589    def is_qnan(self, a):
4590        """Return True if the operand is a quiet NaN; otherwise return False.
4591
4592        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4593        False
4594        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4595        True
4596        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4597        False
4598        >>> ExtendedContext.is_qnan(1)
4599        False
4600        """
4601        a = _convert_other(a, raiseit=True)
4602        return a.is_qnan()
4603
4604    def is_signed(self, a):
4605        """Return True if the operand is negative; otherwise return False.
4606
4607        >>> ExtendedContext.is_signed(Decimal('2.50'))
4608        False
4609        >>> ExtendedContext.is_signed(Decimal('-12'))
4610        True
4611        >>> ExtendedContext.is_signed(Decimal('-0'))
4612        True
4613        >>> ExtendedContext.is_signed(8)
4614        False
4615        >>> ExtendedContext.is_signed(-8)
4616        True
4617        """
4618        a = _convert_other(a, raiseit=True)
4619        return a.is_signed()
4620
4621    def is_snan(self, a):
4622        """Return True if the operand is a signaling NaN;
4623        otherwise return False.
4624
4625        >>> ExtendedContext.is_snan(Decimal('2.50'))
4626        False
4627        >>> ExtendedContext.is_snan(Decimal('NaN'))
4628        False
4629        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4630        True
4631        >>> ExtendedContext.is_snan(1)
4632        False
4633        """
4634        a = _convert_other(a, raiseit=True)
4635        return a.is_snan()
4636
4637    def is_subnormal(self, a):
4638        """Return True if the operand is subnormal; otherwise return False.
4639
4640        >>> c = ExtendedContext.copy()
4641        >>> c.Emin = -999
4642        >>> c.Emax = 999
4643        >>> c.is_subnormal(Decimal('2.50'))
4644        False
4645        >>> c.is_subnormal(Decimal('0.1E-999'))
4646        True
4647        >>> c.is_subnormal(Decimal('0.00'))
4648        False
4649        >>> c.is_subnormal(Decimal('-Inf'))
4650        False
4651        >>> c.is_subnormal(Decimal('NaN'))
4652        False
4653        >>> c.is_subnormal(1)
4654        False
4655        """
4656        a = _convert_other(a, raiseit=True)
4657        return a.is_subnormal(context=self)
4658
4659    def is_zero(self, a):
4660        """Return True if the operand is a zero; otherwise return False.
4661
4662        >>> ExtendedContext.is_zero(Decimal('0'))
4663        True
4664        >>> ExtendedContext.is_zero(Decimal('2.50'))
4665        False
4666        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4667        True
4668        >>> ExtendedContext.is_zero(1)
4669        False
4670        >>> ExtendedContext.is_zero(0)
4671        True
4672        """
4673        a = _convert_other(a, raiseit=True)
4674        return a.is_zero()
4675
4676    def ln(self, a):
4677        """Returns the natural (base e) logarithm of the operand.
4678
4679        >>> c = ExtendedContext.copy()
4680        >>> c.Emin = -999
4681        >>> c.Emax = 999
4682        >>> c.ln(Decimal('0'))
4683        Decimal('-Infinity')
4684        >>> c.ln(Decimal('1.000'))
4685        Decimal('0')
4686        >>> c.ln(Decimal('2.71828183'))
4687        Decimal('1.00000000')
4688        >>> c.ln(Decimal('10'))
4689        Decimal('2.30258509')
4690        >>> c.ln(Decimal('+Infinity'))
4691        Decimal('Infinity')
4692        >>> c.ln(1)
4693        Decimal('0')
4694        """
4695        a = _convert_other(a, raiseit=True)
4696        return a.ln(context=self)
4697
4698    def log10(self, a):
4699        """Returns the base 10 logarithm of the operand.
4700
4701        >>> c = ExtendedContext.copy()
4702        >>> c.Emin = -999
4703        >>> c.Emax = 999
4704        >>> c.log10(Decimal('0'))
4705        Decimal('-Infinity')
4706        >>> c.log10(Decimal('0.001'))
4707        Decimal('-3')
4708        >>> c.log10(Decimal('1.000'))
4709        Decimal('0')
4710        >>> c.log10(Decimal('2'))
4711        Decimal('0.301029996')
4712        >>> c.log10(Decimal('10'))
4713        Decimal('1')
4714        >>> c.log10(Decimal('70'))
4715        Decimal('1.84509804')
4716        >>> c.log10(Decimal('+Infinity'))
4717        Decimal('Infinity')
4718        >>> c.log10(0)
4719        Decimal('-Infinity')
4720        >>> c.log10(1)
4721        Decimal('0')
4722        """
4723        a = _convert_other(a, raiseit=True)
4724        return a.log10(context=self)
4725
4726    def logb(self, a):
4727        """ Returns the exponent of the magnitude of the operand's MSD.
4728
4729        The result is the integer which is the exponent of the magnitude
4730        of the most significant digit of the operand (as though the
4731        operand were truncated to a single digit while maintaining the
4732        value of that digit and without limiting the resulting exponent).
4733
4734        >>> ExtendedContext.logb(Decimal('250'))
4735        Decimal('2')
4736        >>> ExtendedContext.logb(Decimal('2.50'))
4737        Decimal('0')
4738        >>> ExtendedContext.logb(Decimal('0.03'))
4739        Decimal('-2')
4740        >>> ExtendedContext.logb(Decimal('0'))
4741        Decimal('-Infinity')
4742        >>> ExtendedContext.logb(1)
4743        Decimal('0')
4744        >>> ExtendedContext.logb(10)
4745        Decimal('1')
4746        >>> ExtendedContext.logb(100)
4747        Decimal('2')
4748        """
4749        a = _convert_other(a, raiseit=True)
4750        return a.logb(context=self)
4751
4752    def logical_and(self, a, b):
4753        """Applies the logical operation 'and' between each operand's digits.
4754
4755        The operands must be both logical numbers.
4756
4757        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4758        Decimal('0')
4759        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4760        Decimal('0')
4761        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4762        Decimal('0')
4763        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4764        Decimal('1')
4765        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4766        Decimal('1000')
4767        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4768        Decimal('10')
4769        >>> ExtendedContext.logical_and(110, 1101)
4770        Decimal('100')
4771        >>> ExtendedContext.logical_and(Decimal(110), 1101)
4772        Decimal('100')
4773        >>> ExtendedContext.logical_and(110, Decimal(1101))
4774        Decimal('100')
4775        """
4776        a = _convert_other(a, raiseit=True)
4777        return a.logical_and(b, context=self)
4778
4779    def logical_invert(self, a):
4780        """Invert all the digits in the operand.
4781
4782        The operand must be a logical number.
4783
4784        >>> ExtendedContext.logical_invert(Decimal('0'))
4785        Decimal('111111111')
4786        >>> ExtendedContext.logical_invert(Decimal('1'))
4787        Decimal('111111110')
4788        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4789        Decimal('0')
4790        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4791        Decimal('10101010')
4792        >>> ExtendedContext.logical_invert(1101)
4793        Decimal('111110010')
4794        """
4795        a = _convert_other(a, raiseit=True)
4796        return a.logical_invert(context=self)
4797
4798    def logical_or(self, a, b):
4799        """Applies the logical operation 'or' between each operand's digits.
4800
4801        The operands must be both logical numbers.
4802
4803        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4804        Decimal('0')
4805        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4806        Decimal('1')
4807        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4808        Decimal('1')
4809        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4810        Decimal('1')
4811        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4812        Decimal('1110')
4813        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4814        Decimal('1110')
4815        >>> ExtendedContext.logical_or(110, 1101)
4816        Decimal('1111')
4817        >>> ExtendedContext.logical_or(Decimal(110), 1101)
4818        Decimal('1111')
4819        >>> ExtendedContext.logical_or(110, Decimal(1101))
4820        Decimal('1111')
4821        """
4822        a = _convert_other(a, raiseit=True)
4823        return a.logical_or(b, context=self)
4824
4825    def logical_xor(self, a, b):
4826        """Applies the logical operation 'xor' between each operand's digits.
4827
4828        The operands must be both logical numbers.
4829
4830        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4831        Decimal('0')
4832        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4833        Decimal('1')
4834        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4835        Decimal('1')
4836        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4837        Decimal('0')
4838        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4839        Decimal('110')
4840        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4841        Decimal('1101')
4842        >>> ExtendedContext.logical_xor(110, 1101)
4843        Decimal('1011')
4844        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
4845        Decimal('1011')
4846        >>> ExtendedContext.logical_xor(110, Decimal(1101))
4847        Decimal('1011')
4848        """
4849        a = _convert_other(a, raiseit=True)
4850        return a.logical_xor(b, context=self)
4851
4852    def max(self, a, b):
4853        """max compares two values numerically and returns the maximum.
4854
4855        If either operand is a NaN then the general rules apply.
4856        Otherwise, the operands are compared as though by the compare
4857        operation.  If they are numerically equal then the left-hand operand
4858        is chosen as the result.  Otherwise the maximum (closer to positive
4859        infinity) of the two operands is chosen as the result.
4860
4861        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4862        Decimal('3')
4863        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4864        Decimal('3')
4865        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4866        Decimal('1')
4867        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4868        Decimal('7')
4869        >>> ExtendedContext.max(1, 2)
4870        Decimal('2')
4871        >>> ExtendedContext.max(Decimal(1), 2)
4872        Decimal('2')
4873        >>> ExtendedContext.max(1, Decimal(2))
4874        Decimal('2')
4875        """
4876        a = _convert_other(a, raiseit=True)
4877        return a.max(b, context=self)
4878
4879    def max_mag(self, a, b):
4880        """Compares the values numerically with their sign ignored.
4881
4882        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
4883        Decimal('7')
4884        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
4885        Decimal('-10')
4886        >>> ExtendedContext.max_mag(1, -2)
4887        Decimal('-2')
4888        >>> ExtendedContext.max_mag(Decimal(1), -2)
4889        Decimal('-2')
4890        >>> ExtendedContext.max_mag(1, Decimal(-2))
4891        Decimal('-2')
4892        """
4893        a = _convert_other(a, raiseit=True)
4894        return a.max_mag(b, context=self)
4895
4896    def min(self, a, b):
4897        """min compares two values numerically and returns the minimum.
4898
4899        If either operand is a NaN then the general rules apply.
4900        Otherwise, the operands are compared as though by the compare
4901        operation.  If they are numerically equal then the left-hand operand
4902        is chosen as the result.  Otherwise the minimum (closer to negative
4903        infinity) of the two operands is chosen as the result.
4904
4905        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4906        Decimal('2')
4907        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4908        Decimal('-10')
4909        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4910        Decimal('1.0')
4911        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4912        Decimal('7')
4913        >>> ExtendedContext.min(1, 2)
4914        Decimal('1')
4915        >>> ExtendedContext.min(Decimal(1), 2)
4916        Decimal('1')
4917        >>> ExtendedContext.min(1, Decimal(29))
4918        Decimal('1')
4919        """
4920        a = _convert_other(a, raiseit=True)
4921        return a.min(b, context=self)
4922
4923    def min_mag(self, a, b):
4924        """Compares the values numerically with their sign ignored.
4925
4926        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
4927        Decimal('-2')
4928        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
4929        Decimal('-3')
4930        >>> ExtendedContext.min_mag(1, -2)
4931        Decimal('1')
4932        >>> ExtendedContext.min_mag(Decimal(1), -2)
4933        Decimal('1')
4934        >>> ExtendedContext.min_mag(1, Decimal(-2))
4935        Decimal('1')
4936        """
4937        a = _convert_other(a, raiseit=True)
4938        return a.min_mag(b, context=self)
4939
4940    def minus(self, a):
4941        """Minus corresponds to unary prefix minus in Python.
4942
4943        The operation is evaluated using the same rules as subtract; the
4944        operation minus(a) is calculated as subtract('0', a) where the '0'
4945        has the same exponent as the operand.
4946
4947        >>> ExtendedContext.minus(Decimal('1.3'))
4948        Decimal('-1.3')
4949        >>> ExtendedContext.minus(Decimal('-1.3'))
4950        Decimal('1.3')
4951        >>> ExtendedContext.minus(1)
4952        Decimal('-1')
4953        """
4954        a = _convert_other(a, raiseit=True)
4955        return a.__neg__(context=self)
4956
4957    def multiply(self, a, b):
4958        """multiply multiplies two operands.
4959
4960        If either operand is a special value then the general rules apply.
4961        Otherwise, the operands are multiplied together
4962        ('long multiplication'), resulting in a number which may be as long as
4963        the sum of the lengths of the two operands.
4964
4965        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4966        Decimal('3.60')
4967        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4968        Decimal('21')
4969        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4970        Decimal('0.72')
4971        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4972        Decimal('-0.0')
4973        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4974        Decimal('4.28135971E+11')
4975        >>> ExtendedContext.multiply(7, 7)
4976        Decimal('49')
4977        >>> ExtendedContext.multiply(Decimal(7), 7)
4978        Decimal('49')
4979        >>> ExtendedContext.multiply(7, Decimal(7))
4980        Decimal('49')
4981        """
4982        a = _convert_other(a, raiseit=True)
4983        r = a.__mul__(b, context=self)
4984        if r is NotImplemented:
4985            raise TypeError("Unable to convert %s to Decimal" % b)
4986        else:
4987            return r
4988
4989    def next_minus(self, a):
4990        """Returns the largest representable number smaller than a.
4991
4992        >>> c = ExtendedContext.copy()
4993        >>> c.Emin = -999
4994        >>> c.Emax = 999
4995        >>> ExtendedContext.next_minus(Decimal('1'))
4996        Decimal('0.999999999')
4997        >>> c.next_minus(Decimal('1E-1007'))
4998        Decimal('0E-1007')
4999        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
5000        Decimal('-1.00000004')
5001        >>> c.next_minus(Decimal('Infinity'))
5002        Decimal('9.99999999E+999')
5003        >>> c.next_minus(1)
5004        Decimal('0.999999999')
5005        """
5006        a = _convert_other(a, raiseit=True)
5007        return a.next_minus(context=self)
5008
5009    def next_plus(self, a):
5010        """Returns the smallest representable number larger than a.
5011
5012        >>> c = ExtendedContext.copy()
5013        >>> c.Emin = -999
5014        >>> c.Emax = 999
5015        >>> ExtendedContext.next_plus(Decimal('1'))
5016        Decimal('1.00000001')
5017        >>> c.next_plus(Decimal('-1E-1007'))
5018        Decimal('-0E-1007')
5019        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
5020        Decimal('-1.00000002')
5021        >>> c.next_plus(Decimal('-Infinity'))
5022        Decimal('-9.99999999E+999')
5023        >>> c.next_plus(1)
5024        Decimal('1.00000001')
5025        """
5026        a = _convert_other(a, raiseit=True)
5027        return a.next_plus(context=self)
5028
5029    def next_toward(self, a, b):
5030        """Returns the number closest to a, in direction towards b.
5031
5032        The result is the closest representable number from the first
5033        operand (but not the first operand) that is in the direction
5034        towards the second operand, unless the operands have the same
5035        value.
5036
5037        >>> c = ExtendedContext.copy()
5038        >>> c.Emin = -999
5039        >>> c.Emax = 999
5040        >>> c.next_toward(Decimal('1'), Decimal('2'))
5041        Decimal('1.00000001')
5042        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
5043        Decimal('-0E-1007')
5044        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
5045        Decimal('-1.00000002')
5046        >>> c.next_toward(Decimal('1'), Decimal('0'))
5047        Decimal('0.999999999')
5048        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
5049        Decimal('0E-1007')
5050        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
5051        Decimal('-1.00000004')
5052        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
5053        Decimal('-0.00')
5054        >>> c.next_toward(0, 1)
5055        Decimal('1E-1007')
5056        >>> c.next_toward(Decimal(0), 1)
5057        Decimal('1E-1007')
5058        >>> c.next_toward(0, Decimal(1))
5059        Decimal('1E-1007')
5060        """
5061        a = _convert_other(a, raiseit=True)
5062        return a.next_toward(b, context=self)
5063
5064    def normalize(self, a):
5065        """normalize reduces an operand to its simplest form.
5066
5067        Essentially a plus operation with all trailing zeros removed from the
5068        result.
5069
5070        >>> ExtendedContext.normalize(Decimal('2.1'))
5071        Decimal('2.1')
5072        >>> ExtendedContext.normalize(Decimal('-2.0'))
5073        Decimal('-2')
5074        >>> ExtendedContext.normalize(Decimal('1.200'))
5075        Decimal('1.2')
5076        >>> ExtendedContext.normalize(Decimal('-120'))
5077        Decimal('-1.2E+2')
5078        >>> ExtendedContext.normalize(Decimal('120.00'))
5079        Decimal('1.2E+2')
5080        >>> ExtendedContext.normalize(Decimal('0.00'))
5081        Decimal('0')
5082        >>> ExtendedContext.normalize(6)
5083        Decimal('6')
5084        """
5085        a = _convert_other(a, raiseit=True)
5086        return a.normalize(context=self)
5087
5088    def number_class(self, a):
5089        """Returns an indication of the class of the operand.
5090
5091        The class is one of the following strings:
5092          -sNaN
5093          -NaN
5094          -Infinity
5095          -Normal
5096          -Subnormal
5097          -Zero
5098          +Zero
5099          +Subnormal
5100          +Normal
5101          +Infinity
5102
5103        >>> c = ExtendedContext.copy()
5104        >>> c.Emin = -999
5105        >>> c.Emax = 999
5106        >>> c.number_class(Decimal('Infinity'))
5107        '+Infinity'
5108        >>> c.number_class(Decimal('1E-10'))
5109        '+Normal'
5110        >>> c.number_class(Decimal('2.50'))
5111        '+Normal'
5112        >>> c.number_class(Decimal('0.1E-999'))
5113        '+Subnormal'
5114        >>> c.number_class(Decimal('0'))
5115        '+Zero'
5116        >>> c.number_class(Decimal('-0'))
5117        '-Zero'
5118        >>> c.number_class(Decimal('-0.1E-999'))
5119        '-Subnormal'
5120        >>> c.number_class(Decimal('-1E-10'))
5121        '-Normal'
5122        >>> c.number_class(Decimal('-2.50'))
5123        '-Normal'
5124        >>> c.number_class(Decimal('-Infinity'))
5125        '-Infinity'
5126        >>> c.number_class(Decimal('NaN'))
5127        'NaN'
5128        >>> c.number_class(Decimal('-NaN'))
5129        'NaN'
5130        >>> c.number_class(Decimal('sNaN'))
5131        'sNaN'
5132        >>> c.number_class(123)
5133        '+Normal'
5134        """
5135        a = _convert_other(a, raiseit=True)
5136        return a.number_class(context=self)
5137
5138    def plus(self, a):
5139        """Plus corresponds to unary prefix plus in Python.
5140
5141        The operation is evaluated using the same rules as add; the
5142        operation plus(a) is calculated as add('0', a) where the '0'
5143        has the same exponent as the operand.
5144
5145        >>> ExtendedContext.plus(Decimal('1.3'))
5146        Decimal('1.3')
5147        >>> ExtendedContext.plus(Decimal('-1.3'))
5148        Decimal('-1.3')
5149        >>> ExtendedContext.plus(-1)
5150        Decimal('-1')
5151        """
5152        a = _convert_other(a, raiseit=True)
5153        return a.__pos__(context=self)
5154
5155    def power(self, a, b, modulo=None):
5156        """Raises a to the power of b, to modulo if given.
5157
5158        With two arguments, compute a**b.  If a is negative then b
5159        must be integral.  The result will be inexact unless b is
5160        integral and the result is finite and can be expressed exactly
5161        in 'precision' digits.
5162
5163        With three arguments, compute (a**b) % modulo.  For the
5164        three argument form, the following restrictions on the
5165        arguments hold:
5166
5167         - all three arguments must be integral
5168         - b must be nonnegative
5169         - at least one of a or b must be nonzero
5170         - modulo must be nonzero and have at most 'precision' digits
5171
5172        The result of pow(a, b, modulo) is identical to the result
5173        that would be obtained by computing (a**b) % modulo with
5174        unbounded precision, but is computed more efficiently.  It is
5175        always exact.
5176
5177        >>> c = ExtendedContext.copy()
5178        >>> c.Emin = -999
5179        >>> c.Emax = 999
5180        >>> c.power(Decimal('2'), Decimal('3'))
5181        Decimal('8')
5182        >>> c.power(Decimal('-2'), Decimal('3'))
5183        Decimal('-8')
5184        >>> c.power(Decimal('2'), Decimal('-3'))
5185        Decimal('0.125')
5186        >>> c.power(Decimal('1.7'), Decimal('8'))
5187        Decimal('69.7575744')
5188        >>> c.power(Decimal('10'), Decimal('0.301029996'))
5189        Decimal('2.00000000')
5190        >>> c.power(Decimal('Infinity'), Decimal('-1'))
5191        Decimal('0')
5192        >>> c.power(Decimal('Infinity'), Decimal('0'))
5193        Decimal('1')
5194        >>> c.power(Decimal('Infinity'), Decimal('1'))
5195        Decimal('Infinity')
5196        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
5197        Decimal('-0')
5198        >>> c.power(Decimal('-Infinity'), Decimal('0'))
5199        Decimal('1')
5200        >>> c.power(Decimal('-Infinity'), Decimal('1'))
5201        Decimal('-Infinity')
5202        >>> c.power(Decimal('-Infinity'), Decimal('2'))
5203        Decimal('Infinity')
5204        >>> c.power(Decimal('0'), Decimal('0'))
5205        Decimal('NaN')
5206
5207        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
5208        Decimal('11')
5209        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
5210        Decimal('-11')
5211        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
5212        Decimal('1')
5213        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
5214        Decimal('11')
5215        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
5216        Decimal('11729830')
5217        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
5218        Decimal('-0')
5219        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
5220        Decimal('1')
5221        >>> ExtendedContext.power(7, 7)
5222        Decimal('823543')
5223        >>> ExtendedContext.power(Decimal(7), 7)
5224        Decimal('823543')
5225        >>> ExtendedContext.power(7, Decimal(7), 2)
5226        Decimal('1')
5227        """
5228        a = _convert_other(a, raiseit=True)
5229        r = a.__pow__(b, modulo, context=self)
5230        if r is NotImplemented:
5231            raise TypeError("Unable to convert %s to Decimal" % b)
5232        else:
5233            return r
5234
5235    def quantize(self, a, b):
5236        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
5237
5238        The coefficient of the result is derived from that of the left-hand
5239        operand.  It may be rounded using the current rounding setting (if the
5240        exponent is being increased), multiplied by a positive power of ten (if
5241        the exponent is being decreased), or is unchanged (if the exponent is
5242        already equal to that of the right-hand operand).
5243
5244        Unlike other operations, if the length of the coefficient after the
5245        quantize operation would be greater than precision then an Invalid
5246        operation condition is raised.  This guarantees that, unless there is
5247        an error condition, the exponent of the result of a quantize is always
5248        equal to that of the right-hand operand.
5249
5250        Also unlike other operations, quantize will never raise Underflow, even
5251        if the result is subnormal and inexact.
5252
5253        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
5254        Decimal('2.170')
5255        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
5256        Decimal('2.17')
5257        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
5258        Decimal('2.2')
5259        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
5260        Decimal('2')
5261        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
5262        Decimal('0E+1')
5263        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
5264        Decimal('-Infinity')
5265        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
5266        Decimal('NaN')
5267        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
5268        Decimal('-0')
5269        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
5270        Decimal('-0E+5')
5271        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
5272        Decimal('NaN')
5273        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
5274        Decimal('NaN')
5275        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
5276        Decimal('217.0')
5277        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
5278        Decimal('217')
5279        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
5280        Decimal('2.2E+2')
5281        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
5282        Decimal('2E+2')
5283        >>> ExtendedContext.quantize(1, 2)
5284        Decimal('1')
5285        >>> ExtendedContext.quantize(Decimal(1), 2)
5286        Decimal('1')
5287        >>> ExtendedContext.quantize(1, Decimal(2))
5288        Decimal('1')
5289        """
5290        a = _convert_other(a, raiseit=True)
5291        return a.quantize(b, context=self)
5292
5293    def radix(self):
5294        """Just returns 10, as this is Decimal, :)
5295
5296        >>> ExtendedContext.radix()
5297        Decimal('10')
5298        """
5299        return Decimal(10)
5300
5301    def remainder(self, a, b):
5302        """Returns the remainder from integer division.
5303
5304        The result is the residue of the dividend after the operation of
5305        calculating integer division as described for divide-integer, rounded
5306        to precision digits if necessary.  The sign of the result, if
5307        non-zero, is the same as that of the original dividend.
5308
5309        This operation will fail under the same conditions as integer division
5310        (that is, if integer division on the same two operands would fail, the
5311        remainder cannot be calculated).
5312
5313        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
5314        Decimal('2.1')
5315        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
5316        Decimal('1')
5317        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
5318        Decimal('-1')
5319        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
5320        Decimal('0.2')
5321        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
5322        Decimal('0.1')
5323        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
5324        Decimal('1.0')
5325        >>> ExtendedContext.remainder(22, 6)
5326        Decimal('4')
5327        >>> ExtendedContext.remainder(Decimal(22), 6)
5328        Decimal('4')
5329        >>> ExtendedContext.remainder(22, Decimal(6))
5330        Decimal('4')
5331        """
5332        a = _convert_other(a, raiseit=True)
5333        r = a.__mod__(b, context=self)
5334        if r is NotImplemented:
5335            raise TypeError("Unable to convert %s to Decimal" % b)
5336        else:
5337            return r
5338
5339    def remainder_near(self, a, b):
5340        """Returns to be "a - b * n", where n is the integer nearest the exact
5341        value of "x / b" (if two integers are equally near then the even one
5342        is chosen).  If the result is equal to 0 then its sign will be the
5343        sign of a.
5344
5345        This operation will fail under the same conditions as integer division
5346        (that is, if integer division on the same two operands would fail, the
5347        remainder cannot be calculated).
5348
5349        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
5350        Decimal('-0.9')
5351        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
5352        Decimal('-2')
5353        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
5354        Decimal('1')
5355        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
5356        Decimal('-1')
5357        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
5358        Decimal('0.2')
5359        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
5360        Decimal('0.1')
5361        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
5362        Decimal('-0.3')
5363        >>> ExtendedContext.remainder_near(3, 11)
5364        Decimal('3')
5365        >>> ExtendedContext.remainder_near(Decimal(3), 11)
5366        Decimal('3')
5367        >>> ExtendedContext.remainder_near(3, Decimal(11))
5368        Decimal('3')
5369        """
5370        a = _convert_other(a, raiseit=True)
5371        return a.remainder_near(b, context=self)
5372
5373    def rotate(self, a, b):
5374        """Returns a rotated copy of a, b times.
5375
5376        The coefficient of the result is a rotated copy of the digits in
5377        the coefficient of the first operand.  The number of places of
5378        rotation is taken from the absolute value of the second operand,
5379        with the rotation being to the left if the second operand is
5380        positive or to the right otherwise.
5381
5382        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
5383        Decimal('400000003')
5384        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
5385        Decimal('12')
5386        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
5387        Decimal('891234567')
5388        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
5389        Decimal('123456789')
5390        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
5391        Decimal('345678912')
5392        >>> ExtendedContext.rotate(1333333, 1)
5393        Decimal('13333330')
5394        >>> ExtendedContext.rotate(Decimal(1333333), 1)
5395        Decimal('13333330')
5396        >>> ExtendedContext.rotate(1333333, Decimal(1))
5397        Decimal('13333330')
5398        """
5399        a = _convert_other(a, raiseit=True)
5400        return a.rotate(b, context=self)
5401
5402    def same_quantum(self, a, b):
5403        """Returns True if the two operands have the same exponent.
5404
5405        The result is never affected by either the sign or the coefficient of
5406        either operand.
5407
5408        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
5409        False
5410        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
5411        True
5412        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
5413        False
5414        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
5415        True
5416        >>> ExtendedContext.same_quantum(10000, -1)
5417        True
5418        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
5419        True
5420        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
5421        True
5422        """
5423        a = _convert_other(a, raiseit=True)
5424        return a.same_quantum(b)
5425
5426    def scaleb (self, a, b):
5427        """Returns the first operand after adding the second value its exp.
5428
5429        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
5430        Decimal('0.0750')
5431        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
5432        Decimal('7.50')
5433        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
5434        Decimal('7.50E+3')
5435        >>> ExtendedContext.scaleb(1, 4)
5436        Decimal('1E+4')
5437        >>> ExtendedContext.scaleb(Decimal(1), 4)
5438        Decimal('1E+4')
5439        >>> ExtendedContext.scaleb(1, Decimal(4))
5440        Decimal('1E+4')
5441        """
5442        a = _convert_other(a, raiseit=True)
5443        return a.scaleb(b, context=self)
5444
5445    def shift(self, a, b):
5446        """Returns a shifted copy of a, b times.
5447
5448        The coefficient of the result is a shifted copy of the digits
5449        in the coefficient of the first operand.  The number of places
5450        to shift is taken from the absolute value of the second operand,
5451        with the shift being to the left if the second operand is
5452        positive or to the right otherwise.  Digits shifted into the
5453        coefficient are zeros.
5454
5455        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
5456        Decimal('400000000')
5457        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
5458        Decimal('0')
5459        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
5460        Decimal('1234567')
5461        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
5462        Decimal('123456789')
5463        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
5464        Decimal('345678900')
5465        >>> ExtendedContext.shift(88888888, 2)
5466        Decimal('888888800')
5467        >>> ExtendedContext.shift(Decimal(88888888), 2)
5468        Decimal('888888800')
5469        >>> ExtendedContext.shift(88888888, Decimal(2))
5470        Decimal('888888800')
5471        """
5472        a = _convert_other(a, raiseit=True)
5473        return a.shift(b, context=self)
5474
5475    def sqrt(self, a):
5476        """Square root of a non-negative number to context precision.
5477
5478        If the result must be inexact, it is rounded using the round-half-even
5479        algorithm.
5480
5481        >>> ExtendedContext.sqrt(Decimal('0'))
5482        Decimal('0')
5483        >>> ExtendedContext.sqrt(Decimal('-0'))
5484        Decimal('-0')
5485        >>> ExtendedContext.sqrt(Decimal('0.39'))
5486        Decimal('0.624499800')
5487        >>> ExtendedContext.sqrt(Decimal('100'))
5488        Decimal('10')
5489        >>> ExtendedContext.sqrt(Decimal('1'))
5490        Decimal('1')
5491        >>> ExtendedContext.sqrt(Decimal('1.0'))
5492        Decimal('1.0')
5493        >>> ExtendedContext.sqrt(Decimal('1.00'))
5494        Decimal('1.0')
5495        >>> ExtendedContext.sqrt(Decimal('7'))
5496        Decimal('2.64575131')
5497        >>> ExtendedContext.sqrt(Decimal('10'))
5498        Decimal('3.16227766')
5499        >>> ExtendedContext.sqrt(2)
5500        Decimal('1.41421356')
5501        >>> ExtendedContext.prec
5502        9
5503        """
5504        a = _convert_other(a, raiseit=True)
5505        return a.sqrt(context=self)
5506
5507    def subtract(self, a, b):
5508        """Return the difference between the two operands.
5509
5510        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
5511        Decimal('0.23')
5512        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
5513        Decimal('0.00')
5514        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
5515        Decimal('-0.77')
5516        >>> ExtendedContext.subtract(8, 5)
5517        Decimal('3')
5518        >>> ExtendedContext.subtract(Decimal(8), 5)
5519        Decimal('3')
5520        >>> ExtendedContext.subtract(8, Decimal(5))
5521        Decimal('3')
5522        """
5523        a = _convert_other(a, raiseit=True)
5524        r = a.__sub__(b, context=self)
5525        if r is NotImplemented:
5526            raise TypeError("Unable to convert %s to Decimal" % b)
5527        else:
5528            return r
5529
5530    def to_eng_string(self, a):
5531        """Convert to a string, using engineering notation if an exponent is needed.
5532
5533        Engineering notation has an exponent which is a multiple of 3.  This
5534        can leave up to 3 digits to the left of the decimal place and may
5535        require the addition of either one or two trailing zeros.
5536
5537        The operation is not affected by the context.
5538
5539        >>> ExtendedContext.to_eng_string(Decimal('123E+1'))
5540        '1.23E+3'
5541        >>> ExtendedContext.to_eng_string(Decimal('123E+3'))
5542        '123E+3'
5543        >>> ExtendedContext.to_eng_string(Decimal('123E-10'))
5544        '12.3E-9'
5545        >>> ExtendedContext.to_eng_string(Decimal('-123E-12'))
5546        '-123E-12'
5547        >>> ExtendedContext.to_eng_string(Decimal('7E-7'))
5548        '700E-9'
5549        >>> ExtendedContext.to_eng_string(Decimal('7E+1'))
5550        '70'
5551        >>> ExtendedContext.to_eng_string(Decimal('0E+1'))
5552        '0.00E+3'
5553
5554        """
5555        a = _convert_other(a, raiseit=True)
5556        return a.to_eng_string(context=self)
5557
5558    def to_sci_string(self, a):
5559        """Converts a number to a string, using scientific notation.
5560
5561        The operation is not affected by the context.
5562        """
5563        a = _convert_other(a, raiseit=True)
5564        return a.__str__(context=self)
5565
5566    def to_integral_exact(self, a):
5567        """Rounds to an integer.
5568
5569        When the operand has a negative exponent, the result is the same
5570        as using the quantize() operation using the given operand as the
5571        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5572        of the operand as the precision setting; Inexact and Rounded flags
5573        are allowed in this operation.  The rounding mode is taken from the
5574        context.
5575
5576        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
5577        Decimal('2')
5578        >>> ExtendedContext.to_integral_exact(Decimal('100'))
5579        Decimal('100')
5580        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
5581        Decimal('100')
5582        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
5583        Decimal('102')
5584        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
5585        Decimal('-102')
5586        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
5587        Decimal('1.0E+6')
5588        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
5589        Decimal('7.89E+77')
5590        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
5591        Decimal('-Infinity')
5592        """
5593        a = _convert_other(a, raiseit=True)
5594        return a.to_integral_exact(context=self)
5595
5596    def to_integral_value(self, a):
5597        """Rounds to an integer.
5598
5599        When the operand has a negative exponent, the result is the same
5600        as using the quantize() operation using the given operand as the
5601        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5602        of the operand as the precision setting, except that no flags will
5603        be set.  The rounding mode is taken from the context.
5604
5605        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
5606        Decimal('2')
5607        >>> ExtendedContext.to_integral_value(Decimal('100'))
5608        Decimal('100')
5609        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
5610        Decimal('100')
5611        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
5612        Decimal('102')
5613        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
5614        Decimal('-102')
5615        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
5616        Decimal('1.0E+6')
5617        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
5618        Decimal('7.89E+77')
5619        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
5620        Decimal('-Infinity')
5621        """
5622        a = _convert_other(a, raiseit=True)
5623        return a.to_integral_value(context=self)
5624
5625    # the method name changed, but we provide also the old one, for compatibility
5626    to_integral = to_integral_value
5627
5628class _WorkRep(object):
5629    __slots__ = ('sign','int','exp')
5630    # sign: 0 or 1
5631    # int:  int
5632    # exp:  None, int, or string
5633
5634    def __init__(self, value=None):
5635        if value is None:
5636            self.sign = None
5637            self.int = 0
5638            self.exp = None
5639        elif isinstance(value, Decimal):
5640            self.sign = value._sign
5641            self.int = int(value._int)
5642            self.exp = value._exp
5643        else:
5644            # assert isinstance(value, tuple)
5645            self.sign = value[0]
5646            self.int = value[1]
5647            self.exp = value[2]
5648
5649    def __repr__(self):
5650        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
5651
5652
5653
5654def _normalize(op1, op2, prec = 0):
5655    """Normalizes op1, op2 to have the same exp and length of coefficient.
5656
5657    Done during addition.
5658    """
5659    if op1.exp < op2.exp:
5660        tmp = op2
5661        other = op1
5662    else:
5663        tmp = op1
5664        other = op2
5665
5666    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
5667    # Then adding 10**exp to tmp has the same effect (after rounding)
5668    # as adding any positive quantity smaller than 10**exp; similarly
5669    # for subtraction.  So if other is smaller than 10**exp we replace
5670    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
5671    tmp_len = len(str(tmp.int))
5672    other_len = len(str(other.int))
5673    exp = tmp.exp + min(-1, tmp_len - prec - 2)
5674    if other_len + other.exp - 1 < exp:
5675        other.int = 1
5676        other.exp = exp
5677
5678    tmp.int *= 10 ** (tmp.exp - other.exp)
5679    tmp.exp = other.exp
5680    return op1, op2
5681
5682##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5683
5684_nbits = int.bit_length
5685
5686def _decimal_lshift_exact(n, e):
5687    """ Given integers n and e, return n * 10**e if it's an integer, else None.
5688
5689    The computation is designed to avoid computing large powers of 10
5690    unnecessarily.
5691
5692    >>> _decimal_lshift_exact(3, 4)
5693    30000
5694    >>> _decimal_lshift_exact(300, -999999999)  # returns None
5695
5696    """
5697    if n == 0:
5698        return 0
5699    elif e >= 0:
5700        return n * 10**e
5701    else:
5702        # val_n = largest power of 10 dividing n.
5703        str_n = str(abs(n))
5704        val_n = len(str_n) - len(str_n.rstrip('0'))
5705        return None if val_n < -e else n // 10**-e
5706
5707def _sqrt_nearest(n, a):
5708    """Closest integer to the square root of the positive integer n.  a is
5709    an initial approximation to the square root.  Any positive integer
5710    will do for a, but the closer a is to the square root of n the
5711    faster convergence will be.
5712
5713    """
5714    if n <= 0 or a <= 0:
5715        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5716
5717    b=0
5718    while a != b:
5719        b, a = a, a--n//a>>1
5720    return a
5721
5722def _rshift_nearest(x, shift):
5723    """Given an integer x and a nonnegative integer shift, return closest
5724    integer to x / 2**shift; use round-to-even in case of a tie.
5725
5726    """
5727    b, q = 1 << shift, x >> shift
5728    return q + (2*(x & (b-1)) + (q&1) > b)
5729
5730def _div_nearest(a, b):
5731    """Closest integer to a/b, a and b positive integers; rounds to even
5732    in the case of a tie.
5733
5734    """
5735    q, r = divmod(a, b)
5736    return q + (2*r + (q&1) > b)
5737
5738def _ilog(x, M, L = 8):
5739    """Integer approximation to M*log(x/M), with absolute error boundable
5740    in terms only of x/M.
5741
5742    Given positive integers x and M, return an integer approximation to
5743    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
5744    between the approximation and the exact result is at most 22.  For
5745    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
5746    both cases these are upper bounds on the error; it will usually be
5747    much smaller."""
5748
5749    # The basic algorithm is the following: let log1p be the function
5750    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
5751    # the reduction
5752    #
5753    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5754    #
5755    # repeatedly until the argument to log1p is small (< 2**-L in
5756    # absolute value).  For small y we can use the Taylor series
5757    # expansion
5758    #
5759    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5760    #
5761    # truncating at T such that y**T is small enough.  The whole
5762    # computation is carried out in a form of fixed-point arithmetic,
5763    # with a real number z being represented by an integer
5764    # approximation to z*M.  To avoid loss of precision, the y below
5765    # is actually an integer approximation to 2**R*y*M, where R is the
5766    # number of reductions performed so far.
5767
5768    y = x-M
5769    # argument reduction; R = number of reductions performed
5770    R = 0
5771    while (R <= L and abs(y) << L-R >= M or
5772           R > L and abs(y) >> R-L >= M):
5773        y = _div_nearest((M*y) << 1,
5774                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5775        R += 1
5776
5777    # Taylor series with T terms
5778    T = -int(-10*len(str(M))//(3*L))
5779    yshift = _rshift_nearest(y, R)
5780    w = _div_nearest(M, T)
5781    for k in range(T-1, 0, -1):
5782        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5783
5784    return _div_nearest(w*y, M)
5785
5786def _dlog10(c, e, p):
5787    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5788    approximation to 10**p * log10(c*10**e), with an absolute error of
5789    at most 1.  Assumes that c*10**e is not exactly 1."""
5790
5791    # increase precision by 2; compensate for this by dividing
5792    # final result by 100
5793    p += 2
5794
5795    # write c*10**e as d*10**f with either:
5796    #   f >= 0 and 1 <= d <= 10, or
5797    #   f <= 0 and 0.1 <= d <= 1.
5798    # Thus for c*10**e close to 1, f = 0
5799    l = len(str(c))
5800    f = e+l - (e+l >= 1)
5801
5802    if p > 0:
5803        M = 10**p
5804        k = e+p-f
5805        if k >= 0:
5806            c *= 10**k
5807        else:
5808            c = _div_nearest(c, 10**-k)
5809
5810        log_d = _ilog(c, M) # error < 5 + 22 = 27
5811        log_10 = _log10_digits(p) # error < 1
5812        log_d = _div_nearest(log_d*M, log_10)
5813        log_tenpower = f*M # exact
5814    else:
5815        log_d = 0  # error < 2.31
5816        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5817
5818    return _div_nearest(log_tenpower+log_d, 100)
5819
5820def _dlog(c, e, p):
5821    """Given integers c, e and p with c > 0, compute an integer
5822    approximation to 10**p * log(c*10**e), with an absolute error of
5823    at most 1.  Assumes that c*10**e is not exactly 1."""
5824
5825    # Increase precision by 2. The precision increase is compensated
5826    # for at the end with a division by 100.
5827    p += 2
5828
5829    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5830    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5831    # as 10**p * log(d) + 10**p*f * log(10).
5832    l = len(str(c))
5833    f = e+l - (e+l >= 1)
5834
5835    # compute approximation to 10**p*log(d), with error < 27
5836    if p > 0:
5837        k = e+p-f
5838        if k >= 0:
5839            c *= 10**k
5840        else:
5841            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5842
5843        # _ilog magnifies existing error in c by a factor of at most 10
5844        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5845    else:
5846        # p <= 0: just approximate the whole thing by 0; error < 2.31
5847        log_d = 0
5848
5849    # compute approximation to f*10**p*log(10), with error < 11.
5850    if f:
5851        extra = len(str(abs(f)))-1
5852        if p + extra >= 0:
5853            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5854            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5855            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5856        else:
5857            f_log_ten = 0
5858    else:
5859        f_log_ten = 0
5860
5861    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5862    return _div_nearest(f_log_ten + log_d, 100)
5863
5864class _Log10Memoize(object):
5865    """Class to compute, store, and allow retrieval of, digits of the
5866    constant log(10) = 2.302585....  This constant is needed by
5867    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5868    def __init__(self):
5869        self.digits = "23025850929940456840179914546843642076011014886"
5870
5871    def getdigits(self, p):
5872        """Given an integer p >= 0, return floor(10**p)*log(10).
5873
5874        For example, self.getdigits(3) returns 2302.
5875        """
5876        # digits are stored as a string, for quick conversion to
5877        # integer in the case that we've already computed enough
5878        # digits; the stored digits should always be correct
5879        # (truncated, not rounded to nearest).
5880        if p < 0:
5881            raise ValueError("p should be nonnegative")
5882
5883        if p >= len(self.digits):
5884            # compute p+3, p+6, p+9, ... digits; continue until at
5885            # least one of the extra digits is nonzero
5886            extra = 3
5887            while True:
5888                # compute p+extra digits, correct to within 1ulp
5889                M = 10**(p+extra+2)
5890                digits = str(_div_nearest(_ilog(10*M, M), 100))
5891                if digits[-extra:] != '0'*extra:
5892                    break
5893                extra += 3
5894            # keep all reliable digits so far; remove trailing zeros
5895            # and next nonzero digit
5896            self.digits = digits.rstrip('0')[:-1]
5897        return int(self.digits[:p+1])
5898
5899_log10_digits = _Log10Memoize().getdigits
5900
5901def _iexp(x, M, L=8):
5902    """Given integers x and M, M > 0, such that x/M is small in absolute
5903    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5904    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5905    is usually much smaller)."""
5906
5907    # Algorithm: to compute exp(z) for a real number z, first divide z
5908    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5909    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5910    # series
5911    #
5912    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5913    #
5914    # Now use the identity
5915    #
5916    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5917    #
5918    # R times to compute the sequence expm1(z/2**R),
5919    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5920
5921    # Find R such that x/2**R/M <= 2**-L
5922    R = _nbits((x<<L)//M)
5923
5924    # Taylor series.  (2**L)**T > M
5925    T = -int(-10*len(str(M))//(3*L))
5926    y = _div_nearest(x, T)
5927    Mshift = M<<R
5928    for i in range(T-1, 0, -1):
5929        y = _div_nearest(x*(Mshift + y), Mshift * i)
5930
5931    # Expansion
5932    for k in range(R-1, -1, -1):
5933        Mshift = M<<(k+2)
5934        y = _div_nearest(y*(y+Mshift), Mshift)
5935
5936    return M+y
5937
5938def _dexp(c, e, p):
5939    """Compute an approximation to exp(c*10**e), with p decimal places of
5940    precision.
5941
5942    Returns integers d, f such that:
5943
5944      10**(p-1) <= d <= 10**p, and
5945      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5946
5947    In other words, d*10**f is an approximation to exp(c*10**e) with p
5948    digits of precision, and with an error in d of at most 1.  This is
5949    almost, but not quite, the same as the error being < 1ulp: when d
5950    = 10**(p-1) the error could be up to 10 ulp."""
5951
5952    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5953    p += 2
5954
5955    # compute log(10) with extra precision = adjusted exponent of c*10**e
5956    extra = max(0, e + len(str(c)) - 1)
5957    q = p + extra
5958
5959    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5960    # rounding down
5961    shift = e+q
5962    if shift >= 0:
5963        cshift = c*10**shift
5964    else:
5965        cshift = c//10**-shift
5966    quot, rem = divmod(cshift, _log10_digits(q))
5967
5968    # reduce remainder back to original precision
5969    rem = _div_nearest(rem, 10**extra)
5970
5971    # error in result of _iexp < 120;  error after division < 0.62
5972    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5973
5974def _dpower(xc, xe, yc, ye, p):
5975    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5976    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5977
5978      10**(p-1) <= c <= 10**p, and
5979      (c-1)*10**e < x**y < (c+1)*10**e
5980
5981    in other words, c*10**e is an approximation to x**y with p digits
5982    of precision, and with an error in c of at most 1.  (This is
5983    almost, but not quite, the same as the error being < 1ulp: when c
5984    == 10**(p-1) we can only guarantee error < 10ulp.)
5985
5986    We assume that: x is positive and not equal to 1, and y is nonzero.
5987    """
5988
5989    # Find b such that 10**(b-1) <= |y| <= 10**b
5990    b = len(str(abs(yc))) + ye
5991
5992    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5993    lxc = _dlog(xc, xe, p+b+1)
5994
5995    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5996    shift = ye-b
5997    if shift >= 0:
5998        pc = lxc*yc*10**shift
5999    else:
6000        pc = _div_nearest(lxc*yc, 10**-shift)
6001
6002    if pc == 0:
6003        # we prefer a result that isn't exactly 1; this makes it
6004        # easier to compute a correctly rounded result in __pow__
6005        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
6006            coeff, exp = 10**(p-1)+1, 1-p
6007        else:
6008            coeff, exp = 10**p-1, -p
6009    else:
6010        coeff, exp = _dexp(pc, -(p+1), p+1)
6011        coeff = _div_nearest(coeff, 10)
6012        exp += 1
6013
6014    return coeff, exp
6015
6016def _log10_lb(c, correction = {
6017        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
6018        '6': 23, '7': 16, '8': 10, '9': 5}):
6019    """Compute a lower bound for 100*log10(c) for a positive integer c."""
6020    if c <= 0:
6021        raise ValueError("The argument to _log10_lb should be nonnegative.")
6022    str_c = str(c)
6023    return 100*len(str_c) - correction[str_c[0]]
6024
6025##### Helper Functions ####################################################
6026
6027def _convert_other(other, raiseit=False, allow_float=False):
6028    """Convert other to Decimal.
6029
6030    Verifies that it's ok to use in an implicit construction.
6031    If allow_float is true, allow conversion from float;  this
6032    is used in the comparison methods (__eq__ and friends).
6033
6034    """
6035    if isinstance(other, Decimal):
6036        return other
6037    if isinstance(other, int):
6038        return Decimal(other)
6039    if allow_float and isinstance(other, float):
6040        return Decimal.from_float(other)
6041
6042    if raiseit:
6043        raise TypeError("Unable to convert %s to Decimal" % other)
6044    return NotImplemented
6045
6046def _convert_for_comparison(self, other, equality_op=False):
6047    """Given a Decimal instance self and a Python object other, return
6048    a pair (s, o) of Decimal instances such that "s op o" is
6049    equivalent to "self op other" for any of the 6 comparison
6050    operators "op".
6051
6052    """
6053    if isinstance(other, Decimal):
6054        return self, other
6055
6056    # Comparison with a Rational instance (also includes integers):
6057    # self op n/d <=> self*d op n (for n and d integers, d positive).
6058    # A NaN or infinity can be left unchanged without affecting the
6059    # comparison result.
6060    if isinstance(other, _numbers.Rational):
6061        if not self._is_special:
6062            self = _dec_from_triple(self._sign,
6063                                    str(int(self._int) * other.denominator),
6064                                    self._exp)
6065        return self, Decimal(other.numerator)
6066
6067    # Comparisons with float and complex types.  == and != comparisons
6068    # with complex numbers should succeed, returning either True or False
6069    # as appropriate.  Other comparisons return NotImplemented.
6070    if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0:
6071        other = other.real
6072    if isinstance(other, float):
6073        context = getcontext()
6074        if equality_op:
6075            context.flags[FloatOperation] = 1
6076        else:
6077            context._raise_error(FloatOperation,
6078                "strict semantics for mixing floats and Decimals are enabled")
6079        return self, Decimal.from_float(other)
6080    return NotImplemented, NotImplemented
6081
6082
6083##### Setup Specific Contexts ############################################
6084
6085# The default context prototype used by Context()
6086# Is mutable, so that new contexts can have different default values
6087
6088DefaultContext = Context(
6089        prec=28, rounding=ROUND_HALF_EVEN,
6090        traps=[DivisionByZero, Overflow, InvalidOperation],
6091        flags=[],
6092        Emax=999999,
6093        Emin=-999999,
6094        capitals=1,
6095        clamp=0
6096)
6097
6098# Pre-made alternate contexts offered by the specification
6099# Don't change these; the user should be able to select these
6100# contexts and be able to reproduce results from other implementations
6101# of the spec.
6102
6103BasicContext = Context(
6104        prec=9, rounding=ROUND_HALF_UP,
6105        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
6106        flags=[],
6107)
6108
6109ExtendedContext = Context(
6110        prec=9, rounding=ROUND_HALF_EVEN,
6111        traps=[],
6112        flags=[],
6113)
6114
6115
6116##### crud for parsing strings #############################################
6117#
6118# Regular expression used for parsing numeric strings.  Additional
6119# comments:
6120#
6121# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
6122# whitespace.  But note that the specification disallows whitespace in
6123# a numeric string.
6124#
6125# 2. For finite numbers (not infinities and NaNs) the body of the
6126# number between the optional sign and the optional exponent must have
6127# at least one decimal digit, possibly after the decimal point.  The
6128# lookahead expression '(?=\d|\.\d)' checks this.
6129
6130import re
6131_parser = re.compile(r"""        # A numeric string consists of:
6132#    \s*
6133    (?P<sign>[-+])?              # an optional sign, followed by either...
6134    (
6135        (?=\d|\.\d)              # ...a number (with at least one digit)
6136        (?P<int>\d*)             # having a (possibly empty) integer part
6137        (\.(?P<frac>\d*))?       # followed by an optional fractional part
6138        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
6139    |
6140        Inf(inity)?              # ...an infinity, or...
6141    |
6142        (?P<signal>s)?           # ...an (optionally signaling)
6143        NaN                      # NaN
6144        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
6145    )
6146#    \s*
6147    \Z
6148""", re.VERBOSE | re.IGNORECASE).match
6149
6150_all_zeros = re.compile('0*$').match
6151_exact_half = re.compile('50*$').match
6152
6153##### PEP3101 support functions ##############################################
6154# The functions in this section have little to do with the Decimal
6155# class, and could potentially be reused or adapted for other pure
6156# Python numeric classes that want to implement __format__
6157#
6158# A format specifier for Decimal looks like:
6159#
6160#   [[fill]align][sign][z][#][0][minimumwidth][,][.precision][type]
6161
6162_parse_format_specifier_regex = re.compile(r"""\A
6163(?:
6164   (?P<fill>.)?
6165   (?P<align>[<>=^])
6166)?
6167(?P<sign>[-+ ])?
6168(?P<no_neg_0>z)?
6169(?P<alt>\#)?
6170(?P<zeropad>0)?
6171(?P<minimumwidth>(?!0)\d+)?
6172(?P<thousands_sep>,)?
6173(?:\.(?P<precision>0|(?!0)\d+))?
6174(?P<type>[eEfFgGn%])?
6175\Z
6176""", re.VERBOSE|re.DOTALL)
6177
6178del re
6179
6180# The locale module is only needed for the 'n' format specifier.  The
6181# rest of the PEP 3101 code functions quite happily without it, so we
6182# don't care too much if locale isn't present.
6183try:
6184    import locale as _locale
6185except ImportError:
6186    pass
6187
6188def _parse_format_specifier(format_spec, _localeconv=None):
6189    """Parse and validate a format specifier.
6190
6191    Turns a standard numeric format specifier into a dict, with the
6192    following entries:
6193
6194      fill: fill character to pad field to minimum width
6195      align: alignment type, either '<', '>', '=' or '^'
6196      sign: either '+', '-' or ' '
6197      minimumwidth: nonnegative integer giving minimum width
6198      zeropad: boolean, indicating whether to pad with zeros
6199      thousands_sep: string to use as thousands separator, or ''
6200      grouping: grouping for thousands separators, in format
6201        used by localeconv
6202      decimal_point: string to use for decimal point
6203      precision: nonnegative integer giving precision, or None
6204      type: one of the characters 'eEfFgG%', or None
6205
6206    """
6207    m = _parse_format_specifier_regex.match(format_spec)
6208    if m is None:
6209        raise ValueError("Invalid format specifier: " + format_spec)
6210
6211    # get the dictionary
6212    format_dict = m.groupdict()
6213
6214    # zeropad; defaults for fill and alignment.  If zero padding
6215    # is requested, the fill and align fields should be absent.
6216    fill = format_dict['fill']
6217    align = format_dict['align']
6218    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
6219    if format_dict['zeropad']:
6220        if fill is not None:
6221            raise ValueError("Fill character conflicts with '0'"
6222                             " in format specifier: " + format_spec)
6223        if align is not None:
6224            raise ValueError("Alignment conflicts with '0' in "
6225                             "format specifier: " + format_spec)
6226    format_dict['fill'] = fill or ' '
6227    # PEP 3101 originally specified that the default alignment should
6228    # be left;  it was later agreed that right-aligned makes more sense
6229    # for numeric types.  See http://bugs.python.org/issue6857.
6230    format_dict['align'] = align or '>'
6231
6232    # default sign handling: '-' for negative, '' for positive
6233    if format_dict['sign'] is None:
6234        format_dict['sign'] = '-'
6235
6236    # minimumwidth defaults to 0; precision remains None if not given
6237    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
6238    if format_dict['precision'] is not None:
6239        format_dict['precision'] = int(format_dict['precision'])
6240
6241    # if format type is 'g' or 'G' then a precision of 0 makes little
6242    # sense; convert it to 1.  Same if format type is unspecified.
6243    if format_dict['precision'] == 0:
6244        if format_dict['type'] is None or format_dict['type'] in 'gGn':
6245            format_dict['precision'] = 1
6246
6247    # determine thousands separator, grouping, and decimal separator, and
6248    # add appropriate entries to format_dict
6249    if format_dict['type'] == 'n':
6250        # apart from separators, 'n' behaves just like 'g'
6251        format_dict['type'] = 'g'
6252        if _localeconv is None:
6253            _localeconv = _locale.localeconv()
6254        if format_dict['thousands_sep'] is not None:
6255            raise ValueError("Explicit thousands separator conflicts with "
6256                             "'n' type in format specifier: " + format_spec)
6257        format_dict['thousands_sep'] = _localeconv['thousands_sep']
6258        format_dict['grouping'] = _localeconv['grouping']
6259        format_dict['decimal_point'] = _localeconv['decimal_point']
6260    else:
6261        if format_dict['thousands_sep'] is None:
6262            format_dict['thousands_sep'] = ''
6263        format_dict['grouping'] = [3, 0]
6264        format_dict['decimal_point'] = '.'
6265
6266    return format_dict
6267
6268def _format_align(sign, body, spec):
6269    """Given an unpadded, non-aligned numeric string 'body' and sign
6270    string 'sign', add padding and alignment conforming to the given
6271    format specifier dictionary 'spec' (as produced by
6272    parse_format_specifier).
6273
6274    """
6275    # how much extra space do we have to play with?
6276    minimumwidth = spec['minimumwidth']
6277    fill = spec['fill']
6278    padding = fill*(minimumwidth - len(sign) - len(body))
6279
6280    align = spec['align']
6281    if align == '<':
6282        result = sign + body + padding
6283    elif align == '>':
6284        result = padding + sign + body
6285    elif align == '=':
6286        result = sign + padding + body
6287    elif align == '^':
6288        half = len(padding)//2
6289        result = padding[:half] + sign + body + padding[half:]
6290    else:
6291        raise ValueError('Unrecognised alignment field')
6292
6293    return result
6294
6295def _group_lengths(grouping):
6296    """Convert a localeconv-style grouping into a (possibly infinite)
6297    iterable of integers representing group lengths.
6298
6299    """
6300    # The result from localeconv()['grouping'], and the input to this
6301    # function, should be a list of integers in one of the
6302    # following three forms:
6303    #
6304    #   (1) an empty list, or
6305    #   (2) nonempty list of positive integers + [0]
6306    #   (3) list of positive integers + [locale.CHAR_MAX], or
6307
6308    from itertools import chain, repeat
6309    if not grouping:
6310        return []
6311    elif grouping[-1] == 0 and len(grouping) >= 2:
6312        return chain(grouping[:-1], repeat(grouping[-2]))
6313    elif grouping[-1] == _locale.CHAR_MAX:
6314        return grouping[:-1]
6315    else:
6316        raise ValueError('unrecognised format for grouping')
6317
6318def _insert_thousands_sep(digits, spec, min_width=1):
6319    """Insert thousands separators into a digit string.
6320
6321    spec is a dictionary whose keys should include 'thousands_sep' and
6322    'grouping'; typically it's the result of parsing the format
6323    specifier using _parse_format_specifier.
6324
6325    The min_width keyword argument gives the minimum length of the
6326    result, which will be padded on the left with zeros if necessary.
6327
6328    If necessary, the zero padding adds an extra '0' on the left to
6329    avoid a leading thousands separator.  For example, inserting
6330    commas every three digits in '123456', with min_width=8, gives
6331    '0,123,456', even though that has length 9.
6332
6333    """
6334
6335    sep = spec['thousands_sep']
6336    grouping = spec['grouping']
6337
6338    groups = []
6339    for l in _group_lengths(grouping):
6340        if l <= 0:
6341            raise ValueError("group length should be positive")
6342        # max(..., 1) forces at least 1 digit to the left of a separator
6343        l = min(max(len(digits), min_width, 1), l)
6344        groups.append('0'*(l - len(digits)) + digits[-l:])
6345        digits = digits[:-l]
6346        min_width -= l
6347        if not digits and min_width <= 0:
6348            break
6349        min_width -= len(sep)
6350    else:
6351        l = max(len(digits), min_width, 1)
6352        groups.append('0'*(l - len(digits)) + digits[-l:])
6353    return sep.join(reversed(groups))
6354
6355def _format_sign(is_negative, spec):
6356    """Determine sign character."""
6357
6358    if is_negative:
6359        return '-'
6360    elif spec['sign'] in ' +':
6361        return spec['sign']
6362    else:
6363        return ''
6364
6365def _format_number(is_negative, intpart, fracpart, exp, spec):
6366    """Format a number, given the following data:
6367
6368    is_negative: true if the number is negative, else false
6369    intpart: string of digits that must appear before the decimal point
6370    fracpart: string of digits that must come after the point
6371    exp: exponent, as an integer
6372    spec: dictionary resulting from parsing the format specifier
6373
6374    This function uses the information in spec to:
6375      insert separators (decimal separator and thousands separators)
6376      format the sign
6377      format the exponent
6378      add trailing '%' for the '%' type
6379      zero-pad if necessary
6380      fill and align if necessary
6381    """
6382
6383    sign = _format_sign(is_negative, spec)
6384
6385    if fracpart or spec['alt']:
6386        fracpart = spec['decimal_point'] + fracpart
6387
6388    if exp != 0 or spec['type'] in 'eE':
6389        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
6390        fracpart += "{0}{1:+}".format(echar, exp)
6391    if spec['type'] == '%':
6392        fracpart += '%'
6393
6394    if spec['zeropad']:
6395        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
6396    else:
6397        min_width = 0
6398    intpart = _insert_thousands_sep(intpart, spec, min_width)
6399
6400    return _format_align(sign, intpart+fracpart, spec)
6401
6402
6403##### Useful Constants (internal use only) ################################
6404
6405# Reusable defaults
6406_Infinity = Decimal('Inf')
6407_NegativeInfinity = Decimal('-Inf')
6408_NaN = Decimal('NaN')
6409_Zero = Decimal(0)
6410_One = Decimal(1)
6411_NegativeOne = Decimal(-1)
6412
6413# _SignedInfinity[sign] is infinity w/ that sign
6414_SignedInfinity = (_Infinity, _NegativeInfinity)
6415
6416# Constants related to the hash implementation;  hash(x) is based
6417# on the reduction of x modulo _PyHASH_MODULUS
6418_PyHASH_MODULUS = sys.hash_info.modulus
6419# hash values to use for positive and negative infinities, and nans
6420_PyHASH_INF = sys.hash_info.inf
6421_PyHASH_NAN = sys.hash_info.nan
6422
6423# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
6424_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
6425del sys
6426