1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief Functions for generating partition tables on demand.
20 */
21
22 #include "astcenc_internal.h"
23
24 /**
25 * @brief Generate a canonical representation of a partition pattern.
26 *
27 * The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
28 * the remapped texel index. Remapping ensures that we only match on the partition pattern,
29 * independent of the partition order generated by the hash.
30 *
31 * @param texel_count The number of texels in the block.
32 * @param partition_of_texel The partition assignments, in hash order.
33 * @param[out] bit_pattern The output bit pattern representation.
34 */
generate_canonical_partitioning(unsigned int texel_count,const uint8_t * partition_of_texel,uint64_t bit_pattern[7])35 static void generate_canonical_partitioning(
36 unsigned int texel_count,
37 const uint8_t* partition_of_texel,
38 uint64_t bit_pattern[7]
39 ) {
40 // Clear the pattern
41 for (unsigned int i = 0; i < 7; i++)
42 {
43 bit_pattern[i] = 0;
44 }
45
46 // Store a mapping to reorder the raw partitions so that the the partitions are ordered such
47 // that the lowest texel index in partition N is smaller than the lowest texel index in
48 // partition N + 1.
49 int mapped_index[BLOCK_MAX_PARTITIONS];
50 int map_weight_count = 0;
51
52 for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
53 {
54 mapped_index[i] = -1;
55 }
56
57 for (unsigned int i = 0; i < texel_count; i++)
58 {
59 int index = partition_of_texel[i];
60 if (mapped_index[index] < 0)
61 {
62 mapped_index[index] = map_weight_count++;
63 }
64
65 uint64_t xlat_index = mapped_index[index];
66 bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
67 }
68 }
69
70 /**
71 * @brief Compare two canonical patterns to see if they are the same.
72 *
73 * @param part1 The first canonical bit pattern to check.
74 * @param part2 The second canonical bit pattern to check.
75 *
76 * @return @c true if the patterns are the same, @c false otherwise.
77 */
compare_canonical_partitionings(const uint64_t part1[7],const uint64_t part2[7])78 static bool compare_canonical_partitionings(
79 const uint64_t part1[7],
80 const uint64_t part2[7]
81 ) {
82 return (part1[0] == part2[0]) && (part1[1] == part2[1]) &&
83 (part1[2] == part2[2]) && (part1[3] == part2[3]) &&
84 (part1[4] == part2[4]) && (part1[5] == part2[5]) &&
85 (part1[6] == part2[6]);
86 }
87
88 /**
89 * @brief Hash function used for procedural partition assignment.
90 *
91 * @param inp The hash seed.
92 *
93 * @return The hashed value.
94 */
hash52(uint32_t inp)95 static uint32_t hash52(
96 uint32_t inp
97 ) {
98 inp ^= inp >> 15;
99
100 // (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
101 inp *= 0xEEDE0891;
102 inp ^= inp >> 5;
103 inp += inp << 16;
104 inp ^= inp >> 7;
105 inp ^= inp >> 3;
106 inp ^= inp << 6;
107 inp ^= inp >> 17;
108 return inp;
109 }
110
111 /**
112 * @brief Select texel assignment for a single coordinate.
113 *
114 * @param seed The seed - the partition index from the block.
115 * @param x The texel X coordinate in the block.
116 * @param y The texel Y coordinate in the block.
117 * @param z The texel Z coordinate in the block.
118 * @param partition_count The total partition count of this encoding.
119 * @param small_block @c true if the blockhas fewer than 32 texels.
120 *
121 * @return The assigned partition index for this texel.
122 */
select_partition(int seed,int x,int y,int z,int partition_count,bool small_block)123 static uint8_t select_partition(
124 int seed,
125 int x,
126 int y,
127 int z,
128 int partition_count,
129 bool small_block
130 ) {
131 // For small blocks bias the coordinates to get better distribution
132 if (small_block)
133 {
134 x <<= 1;
135 y <<= 1;
136 z <<= 1;
137 }
138
139 seed += (partition_count - 1) * 1024;
140
141 uint32_t rnum = hash52(seed);
142
143 uint8_t seed1 = rnum & 0xF;
144 uint8_t seed2 = (rnum >> 4) & 0xF;
145 uint8_t seed3 = (rnum >> 8) & 0xF;
146 uint8_t seed4 = (rnum >> 12) & 0xF;
147 uint8_t seed5 = (rnum >> 16) & 0xF;
148 uint8_t seed6 = (rnum >> 20) & 0xF;
149 uint8_t seed7 = (rnum >> 24) & 0xF;
150 uint8_t seed8 = (rnum >> 28) & 0xF;
151 uint8_t seed9 = (rnum >> 18) & 0xF;
152 uint8_t seed10 = (rnum >> 22) & 0xF;
153 uint8_t seed11 = (rnum >> 26) & 0xF;
154 uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
155
156 // Squaring all the seeds in order to bias their distribution towards lower values.
157 seed1 *= seed1;
158 seed2 *= seed2;
159 seed3 *= seed3;
160 seed4 *= seed4;
161 seed5 *= seed5;
162 seed6 *= seed6;
163 seed7 *= seed7;
164 seed8 *= seed8;
165 seed9 *= seed9;
166 seed10 *= seed10;
167 seed11 *= seed11;
168 seed12 *= seed12;
169
170 int sh1, sh2;
171 if (seed & 1)
172 {
173 sh1 = (seed & 2 ? 4 : 5);
174 sh2 = (partition_count == 3 ? 6 : 5);
175 }
176 else
177 {
178 sh1 = (partition_count == 3 ? 6 : 5);
179 sh2 = (seed & 2 ? 4 : 5);
180 }
181
182 int sh3 = (seed & 0x10) ? sh1 : sh2;
183
184 seed1 >>= sh1;
185 seed2 >>= sh2;
186 seed3 >>= sh1;
187 seed4 >>= sh2;
188 seed5 >>= sh1;
189 seed6 >>= sh2;
190 seed7 >>= sh1;
191 seed8 >>= sh2;
192
193 seed9 >>= sh3;
194 seed10 >>= sh3;
195 seed11 >>= sh3;
196 seed12 >>= sh3;
197
198 int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
199 int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
200 int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
201 int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
202
203 // Apply the saw
204 a &= 0x3F;
205 b &= 0x3F;
206 c &= 0x3F;
207 d &= 0x3F;
208
209 // Remove some of the components if we are to output < 4 partitions.
210 if (partition_count <= 3)
211 {
212 d = 0;
213 }
214
215 if (partition_count <= 2)
216 {
217 c = 0;
218 }
219
220 if (partition_count <= 1)
221 {
222 b = 0;
223 }
224
225 uint8_t partition;
226 if (a >= b && a >= c && a >= d)
227 {
228 partition = 0;
229 }
230 else if (b >= c && b >= d)
231 {
232 partition = 1;
233 }
234 else if (c >= d)
235 {
236 partition = 2;
237 }
238 else
239 {
240 partition = 3;
241 }
242
243 return partition;
244 }
245
246 /**
247 * @brief Generate a single partition info structure.
248 *
249 * @param[out] bsd The block size information.
250 * @param partition_count The partition count of this partitioning.
251 * @param partition_index The partition index / seed of this partitioning.
252 * @param partition_remap_index The remapped partition index of this partitioning.
253 * @param[out] pi The partition info structure to populate.
254 *
255 * @return True if this is a useful partition index, False if we can skip it.
256 */
generate_one_partition_info_entry(block_size_descriptor & bsd,unsigned int partition_count,unsigned int partition_index,unsigned int partition_remap_index,partition_info & pi)257 static bool generate_one_partition_info_entry(
258 block_size_descriptor& bsd,
259 unsigned int partition_count,
260 unsigned int partition_index,
261 unsigned int partition_remap_index,
262 partition_info& pi
263 ) {
264 int texels_per_block = bsd.texel_count;
265 bool small_block = texels_per_block < 32;
266
267 uint8_t *partition_of_texel = pi.partition_of_texel;
268
269 // Assign texels to partitions
270 int texel_idx = 0;
271 int counts[BLOCK_MAX_PARTITIONS] { 0 };
272 for (unsigned int z = 0; z < bsd.zdim; z++)
273 {
274 for (unsigned int y = 0; y < bsd.ydim; y++)
275 {
276 for (unsigned int x = 0; x < bsd.xdim; x++)
277 {
278 uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
279 pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++);
280 *partition_of_texel++ = part;
281 }
282 }
283 }
284
285 // Fill loop tail so we can overfetch later
286 for (unsigned int i = 0; i < partition_count; i++)
287 {
288 int ptex_count = counts[i];
289 int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
290 for (int j = ptex_count; j < ptex_count_simd; j++)
291 {
292 pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
293 }
294 }
295
296 // Populate the actual procedural partition count
297 if (counts[0] == 0)
298 {
299 pi.partition_count = 0;
300 }
301 else if (counts[1] == 0)
302 {
303 pi.partition_count = 1;
304 }
305 else if (counts[2] == 0)
306 {
307 pi.partition_count = 2;
308 }
309 else if (counts[3] == 0)
310 {
311 pi.partition_count = 3;
312 }
313 else
314 {
315 pi.partition_count = 4;
316 }
317
318 // Populate the partition index
319 pi.partition_index = static_cast<uint16_t>(partition_index);
320
321 // Populate the coverage bitmaps for 2/3/4 partitions
322 uint64_t* bitmaps { nullptr };
323 if (partition_count == 2)
324 {
325 bitmaps = bsd.coverage_bitmaps_2[partition_remap_index];
326 }
327 else if (partition_count == 3)
328 {
329 bitmaps = bsd.coverage_bitmaps_3[partition_remap_index];
330 }
331 else if (partition_count == 4)
332 {
333 bitmaps = bsd.coverage_bitmaps_4[partition_remap_index];
334 }
335
336 for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
337 {
338 pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]);
339 }
340
341 // Valid partitionings have texels in all of the requested partitions
342 bool valid = pi.partition_count == partition_count;
343
344 if (bitmaps)
345 {
346 // Populate the partition coverage bitmap
347 for (unsigned int i = 0; i < partition_count; i++)
348 {
349 bitmaps[i] = 0ULL;
350 }
351
352 unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
353 for (unsigned int i = 0; i < texels_to_process; i++)
354 {
355 unsigned int idx = bsd.kmeans_texels[i];
356 bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
357 }
358 }
359
360 return valid;
361 }
362
build_partition_table_for_one_partition_count(block_size_descriptor & bsd,bool can_omit_partitionings,unsigned int partition_count_cutoff,unsigned int partition_count,partition_info * ptab,uint64_t * canonical_patterns)363 static void build_partition_table_for_one_partition_count(
364 block_size_descriptor& bsd,
365 bool can_omit_partitionings,
366 unsigned int partition_count_cutoff,
367 unsigned int partition_count,
368 partition_info* ptab,
369 uint64_t* canonical_patterns
370 ) {
371 unsigned int next_index = 0;
372 bsd.partitioning_count_selected[partition_count - 1] = 0;
373 bsd.partitioning_count_all[partition_count - 1] = 0;
374
375 // Skip tables larger than config max partition count if we can omit modes
376 if (can_omit_partitionings && (partition_count > partition_count_cutoff))
377 {
378 return;
379 }
380
381 // Iterate through twice
382 // - Pass 0: Keep selected partitionings
383 // - Pass 1: Keep non-selected partitionings (skip if in omit mode)
384 unsigned int max_iter = can_omit_partitionings ? 1 : 2;
385
386 // Tracker for things we built in the first iteration
387 uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 };
388 for (unsigned int x = 0; x < max_iter; x++)
389 {
390 for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
391 {
392 // Don't include things we built in the first pass
393 if ((x == 1) && build[i])
394 {
395 continue;
396 }
397
398 bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]);
399 if ((x == 0) && !keep_useful)
400 {
401 continue;
402 }
403
404 generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * 7);
405 bool keep_canonical = true;
406 for (unsigned int j = 0; j < next_index; j++)
407 {
408 bool match = compare_canonical_partitionings(canonical_patterns + 7 * next_index, canonical_patterns + 7 * j);
409 if (match)
410 {
411 keep_canonical = false;
412 break;
413 }
414 }
415
416 if (keep_useful && keep_canonical)
417 {
418 if (x == 0)
419 {
420 bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
421 bsd.partitioning_count_selected[partition_count - 1]++;
422 bsd.partitioning_count_all[partition_count - 1]++;
423 build[i] = 1;
424 next_index++;
425 }
426 }
427 else
428 {
429 if (x == 1)
430 {
431 bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
432 bsd.partitioning_count_all[partition_count - 1]++;
433 next_index++;
434 }
435 }
436 }
437 }
438 }
439
440 /* See header for documentation. */
init_partition_tables(block_size_descriptor & bsd,bool can_omit_partitionings,unsigned int partition_count_cutoff)441 void init_partition_tables(
442 block_size_descriptor& bsd,
443 bool can_omit_partitionings,
444 unsigned int partition_count_cutoff
445 ) {
446 partition_info* par_tab2 = bsd.partitionings;
447 partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
448 partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
449 partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;
450
451 generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1);
452 bsd.partitioning_count_selected[0] = 1;
453 bsd.partitioning_count_all[0] = 1;
454
455 uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * 7];
456 build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns);
457 build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns);
458 build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns);
459
460 delete[] canonical_patterns;
461 }
462