xref: /aosp_15_r20/frameworks/native/services/inputflinger/reader/EventHub.cpp (revision 38e8c45f13ce32b0dcecb25141ffecaf386fa17f)
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <linux/ioctl.h>
23 #include <memory.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/capability.h>
29 #include <sys/epoll.h>
30 #include <sys/inotify.h>
31 #include <sys/ioctl.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35 
36 #include <android_companion_virtualdevice_flags.h>
37 
38 #define LOG_TAG "EventHub"
39 
40 // #define LOG_NDEBUG 0
41 #include <android-base/file.h>
42 #include <android-base/stringprintf.h>
43 #include <android-base/strings.h>
44 #include <cutils/properties.h>
45 #include <ftl/enum.h>
46 #include <input/InputEventLabels.h>
47 #include <input/KeyCharacterMap.h>
48 #include <input/KeyLayoutMap.h>
49 #include <input/PrintTools.h>
50 #include <input/VirtualKeyMap.h>
51 #include <openssl/sha.h>
52 #include <statslog.h>
53 #include <utils/Errors.h>
54 #include <utils/Log.h>
55 #include <utils/Timers.h>
56 
57 #include <filesystem>
58 #include <optional>
59 #include <regex>
60 #include <utility>
61 
62 #include "EventHub.h"
63 
64 #include "KeyCodeClassifications.h"
65 
66 #define INDENT "  "
67 #define INDENT2 "    "
68 #define INDENT3 "      "
69 
70 using android::base::StringPrintf;
71 
72 namespace android {
73 
74 namespace vd_flags = android::companion::virtualdevice::flags;
75 
76 using namespace ftl::flag_operators;
77 
78 static const char* DEVICE_INPUT_PATH = "/dev/input";
79 // v4l2 devices go directly into /dev
80 static const char* DEVICE_PATH = "/dev";
81 
82 static constexpr size_t OBFUSCATED_LENGTH = 8;
83 
84 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
85 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
86 
87 static constexpr size_t EVENT_BUFFER_SIZE = 256;
88 
89 // Mapping for input battery class node IDs lookup.
90 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
91 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
92         {{"capacity", InputBatteryClass::CAPACITY},
93          {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
94          {"status", InputBatteryClass::STATUS}};
95 
96 // Mapping for input battery class node names lookup.
97 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
98 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
99         {{InputBatteryClass::CAPACITY, "capacity"},
100          {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
101          {InputBatteryClass::STATUS, "status"}};
102 
103 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
104 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
105         {{"Unknown", BATTERY_STATUS_UNKNOWN},
106          {"Charging", BATTERY_STATUS_CHARGING},
107          {"Discharging", BATTERY_STATUS_DISCHARGING},
108          {"Not charging", BATTERY_STATUS_NOT_CHARGING},
109          {"Full", BATTERY_STATUS_FULL}};
110 
111 // Mapping taken from
112 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
113 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
114                                                                        {"Low", 10},
115                                                                        {"Normal", 55},
116                                                                        {"High", 70},
117                                                                        {"Full", 100},
118                                                                        {"Unknown", 50}};
119 
120 // Mapping for input led class node names lookup.
121 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
122 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
123         {{"red", InputLightClass::RED},
124          {"green", InputLightClass::GREEN},
125          {"blue", InputLightClass::BLUE},
126          {"global", InputLightClass::GLOBAL},
127          {"brightness", InputLightClass::BRIGHTNESS},
128          {"multi_index", InputLightClass::MULTI_INDEX},
129          {"multi_intensity", InputLightClass::MULTI_INTENSITY},
130          {"max_brightness", InputLightClass::MAX_BRIGHTNESS},
131          {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT},
132          {"mic_mute", InputLightClass::KEYBOARD_MIC_MUTE},
133          {"mute", InputLightClass::KEYBOARD_VOLUME_MUTE}};
134 
135 // Mapping for input multicolor led class node names.
136 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
137 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
138         {{InputLightClass::BRIGHTNESS, "brightness"},
139          {InputLightClass::MULTI_INDEX, "multi_index"},
140          {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
141 
142 // Mapping for light color name and the light color
143 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
144                                                                   {"green", LightColor::GREEN},
145                                                                   {"blue", LightColor::BLUE}};
146 
147 // Mapping for country code to Layout info.
148 // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf.
149 const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS =
150         {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}},             // NOT_SUPPORTED
151          {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}},      // ARABIC
152          {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}},        // BELGIAN
153          {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_BILINGUAL
154          {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_FRENCH
155          {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}},           // CZECH_REPUBLIC
156          {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}},           // DANISH
157          {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}},           // FINNISH
158          {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}},        // FRENCH
159          {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}},           // GERMAN
160          {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}},          // GREEK
161          {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}},          // HEBREW
162          {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}},          // HUNGARY
163          {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}},  // INTERNATIONAL (ISO)
164          {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}},          // ITALIAN
165          {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}},          // JAPAN
166          {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}},          // KOREAN
167          {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}},      // LATIN_AMERICA
168          {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}},          // DUTCH
169          {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}},          // NORWEGIAN
170          {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}},          // PERSIAN
171          {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}},          // POLAND
172          {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}},          // PORTUGUESE
173          {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}},          // RUSSIA
174          {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}},          // SLOVAKIA
175          {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}},       // SPANISH
176          {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}},          // SWEDISH
177          {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}},       // SWISS_FRENCH
178          {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWISS_GERMAN
179          {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWITZERLAND
180          {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}},       // TAIWAN
181          {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q
182          {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}},       // UK
183          {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}},       // US
184          {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}},            // YUGOSLAVIA
185          {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F
186 
sha1(const std::string & in)187 static std::string sha1(const std::string& in) {
188     SHA_CTX ctx;
189     SHA1_Init(&ctx);
190     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
191     u_char digest[SHA_DIGEST_LENGTH];
192     SHA1_Final(digest, &ctx);
193 
194     std::string out;
195     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
196         out += StringPrintf("%02x", digest[i]);
197     }
198     return out;
199 }
200 
201 /**
202  * Return true if name matches "v4l-touch*"
203  */
isV4lTouchNode(std::string name)204 static bool isV4lTouchNode(std::string name) {
205     return name.find("v4l-touch") != std::string::npos;
206 }
207 
208 /**
209  * Returns true if V4L devices should be scanned.
210  *
211  * The system property ro.input.video_enabled can be used to control whether
212  * EventHub scans and opens V4L devices. As V4L does not support multiple
213  * clients, EventHub effectively blocks access to these devices when it opens
214  * them.
215  *
216  * Setting this to "false" would prevent any video devices from being discovered and
217  * associated with input devices.
218  *
219  * This property can be used as follows:
220  * 1. To turn off features that are dependent on video device presence.
221  * 2. During testing and development, to allow other clients to read video devices
222  * directly from /dev.
223  */
isV4lScanningEnabled()224 static bool isV4lScanningEnabled() {
225     return property_get_bool("ro.input.video_enabled", /*default_value=*/true);
226 }
227 
processEventTimestamp(const struct input_event & event)228 static nsecs_t processEventTimestamp(const struct input_event& event) {
229     // Use the time specified in the event instead of the current time
230     // so that downstream code can get more accurate estimates of
231     // event dispatch latency from the time the event is enqueued onto
232     // the evdev client buffer.
233     //
234     // The event's timestamp fortuitously uses the same monotonic clock
235     // time base as the rest of Android. The kernel event device driver
236     // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
237     // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
238     // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
239     // system call that also queries ktime_get_ts().
240 
241     const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) +
242             microseconds_to_nanoseconds(event.input_event_usec);
243     return inputEventTime;
244 }
245 
246 /**
247  * Returns the sysfs root path of the input device.
248  */
getSysfsRootPath(const char * devicePath)249 static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
250     std::error_code errorCode;
251 
252     // Stat the device path to get the major and minor number of the character file
253     struct stat statbuf;
254     if (stat(devicePath, &statbuf) == -1) {
255         ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
256         return std::nullopt;
257     }
258 
259     unsigned int major_num = major(statbuf.st_rdev);
260     unsigned int minor_num = minor(statbuf.st_rdev);
261 
262     // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
263     auto sysfsPath = std::filesystem::path("/sys/dev/char/");
264     sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
265     sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
266 
267     // Make sure nothing went wrong in call to canonical()
268     if (errorCode) {
269         ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
270               errorCode.message().c_str());
271         return std::nullopt;
272     }
273 
274     // Continue to go up a directory until we reach a directory named "input"
275     while (sysfsPath != "/" && sysfsPath.filename() != "input") {
276         sysfsPath = sysfsPath.parent_path();
277     }
278 
279     // Then go up one more and you will be at the sysfs root of the device
280     sysfsPath = sysfsPath.parent_path();
281 
282     // Make sure we didn't reach root path and that directory actually exists
283     if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
284         if (errorCode) {
285             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
286                   errorCode.message().c_str());
287         }
288 
289         // Not found
290         return std::nullopt;
291     }
292 
293     return sysfsPath;
294 }
295 
296 /**
297  * Returns the list of files under a specified path.
298  */
allFilesInPath(const std::filesystem::path & path)299 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
300     std::vector<std::filesystem::path> nodes;
301     std::error_code errorCode;
302     auto iter = std::filesystem::directory_iterator(path, errorCode);
303     while (!errorCode && iter != std::filesystem::directory_iterator()) {
304         nodes.push_back(iter->path());
305         iter++;
306     }
307     return nodes;
308 }
309 
310 /**
311  * Returns the list of files under a specified directory in a sysfs path.
312  * Example:
313  * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
314  * in the sysfs path.
315  */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)316 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
317                                                          SysfsClass clazz) {
318     std::string nodeStr = ftl::enum_string(clazz);
319     std::for_each(nodeStr.begin(), nodeStr.end(),
320                   [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
321     std::vector<std::filesystem::path> nodes;
322     for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
323         nodes = allFilesInPath(path / nodeStr);
324     }
325     return nodes;
326 }
327 
getColorIndexArray(std::filesystem::path path)328 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
329         std::filesystem::path path) {
330     std::string indexStr;
331     if (!base::ReadFileToString(path, &indexStr)) {
332         return std::nullopt;
333     }
334 
335     // Parse the multi color LED index file, refer to kernel docs
336     // leds/leds-class-multicolor.html
337     std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
338     std::smatch results;
339     std::array<LightColor, COLOR_NUM> colors;
340     if (!std::regex_match(indexStr, results, indexPattern)) {
341         return std::nullopt;
342     }
343 
344     for (size_t i = 1; i < results.size(); i++) {
345         const auto it = LIGHT_COLORS.find(results[i].str());
346         if (it != LIGHT_COLORS.end()) {
347             // intensities.emplace(it->second, 0);
348             colors[i - 1] = it->second;
349         }
350     }
351     return colors;
352 }
353 
354 /**
355  * Read country code information exposed through the sysfs path and convert it to Layout info.
356  */
readLayoutConfiguration(const std::filesystem::path & sysfsRootPath)357 static std::optional<RawLayoutInfo> readLayoutConfiguration(
358         const std::filesystem::path& sysfsRootPath) {
359     // Check the sysfs root path
360     int32_t hidCountryCode = -1;
361     std::string str;
362     if (base::ReadFileToString(sysfsRootPath / "country", &str)) {
363         hidCountryCode = std::stoi(str, nullptr, 16);
364         // Update this condition if new supported country codes are added to HID spec.
365         if (hidCountryCode > 35 || hidCountryCode < 0) {
366             ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d",
367                   sysfsRootPath.c_str(), hidCountryCode);
368         }
369     }
370     const auto it = LAYOUT_INFOS.find(hidCountryCode);
371     if (it != LAYOUT_INFOS.end()) {
372         return it->second;
373     }
374 
375     return std::nullopt;
376 }
377 
378 /**
379  * Read information about batteries exposed through the sysfs path.
380  */
readBatteryConfiguration(const std::filesystem::path & sysfsRootPath)381 static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration(
382         const std::filesystem::path& sysfsRootPath) {
383     std::unordered_map<int32_t, RawBatteryInfo> batteryInfos;
384     int32_t nextBatteryId = 0;
385     // Check if device has any battery.
386     const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
387     for (const auto& nodePath : paths) {
388         RawBatteryInfo info;
389         info.id = ++nextBatteryId;
390         info.path = nodePath;
391         info.name = nodePath.filename();
392 
393         // Scan the path for all the files
394         // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
395         const auto& files = allFilesInPath(nodePath);
396         for (const auto& file : files) {
397             const auto it = BATTERY_CLASSES.find(file.filename().string());
398             if (it != BATTERY_CLASSES.end()) {
399                 info.flags |= it->second;
400             }
401         }
402         batteryInfos.insert_or_assign(info.id, info);
403         ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
404     }
405     return batteryInfos;
406 }
407 
408 /**
409  *  Read information about lights exposed through the sysfs path.
410  */
readLightsConfiguration(const std::filesystem::path & sysfsRootPath)411 static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration(
412         const std::filesystem::path& sysfsRootPath) {
413     std::unordered_map<int32_t, RawLightInfo> lightInfos;
414     int32_t nextLightId = 0;
415     // Check if device has any lights.
416     const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
417     for (const auto& nodePath : paths) {
418         RawLightInfo info;
419         info.id = ++nextLightId;
420         info.path = nodePath;
421         info.name = nodePath.filename();
422         info.maxBrightness = std::nullopt;
423 
424         // Light name should follow the naming pattern <name>:<color>:<function>
425         // Refer kernel docs /leds/leds-class.html for valid supported LED names.
426         std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)");
427         std::smatch results;
428 
429         if (std::regex_match(info.name, results, indexPattern)) {
430             // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo
431             // we only care about sections <color> and <function> which will be at index 2 and 3.
432             for (int i = 2; i <= 3; i++) {
433                 const auto it = LIGHT_CLASSES.find(results.str(i));
434                 if (it != LIGHT_CLASSES.end()) {
435                     info.flags |= it->second;
436                 }
437             }
438 
439             // Set name of the raw light to <function> which represents playerIDs for LEDs that
440             // turn on/off based on the current player ID (Refer to PeripheralController.cpp for
441             // player ID logic)
442             info.name = results.str(3);
443         }
444         // Scan the path for all the files
445         // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
446         const auto& files = allFilesInPath(nodePath);
447         for (const auto& file : files) {
448             const auto it = LIGHT_CLASSES.find(file.filename().string());
449             if (it != LIGHT_CLASSES.end()) {
450                 info.flags |= it->second;
451                 // If the node has maximum brightness, read it
452                 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
453                     std::string str;
454                     if (base::ReadFileToString(file, &str)) {
455                         info.maxBrightness = std::stoi(str);
456                     }
457                 }
458             }
459         }
460         lightInfos.insert_or_assign(info.id, info);
461         ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
462     }
463     return lightInfos;
464 }
465 
466 // --- Global Functions ---
467 
getAbsAxisUsage(int32_t axis,ftl::Flags<InputDeviceClass> deviceClasses)468 ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis,
469                                              ftl::Flags<InputDeviceClass> deviceClasses) {
470     // Touch devices get dibs on touch-related axes.
471     if (deviceClasses.test(InputDeviceClass::TOUCH)) {
472         switch (axis) {
473             case ABS_X:
474             case ABS_Y:
475             case ABS_PRESSURE:
476             case ABS_TOOL_WIDTH:
477             case ABS_DISTANCE:
478             case ABS_TILT_X:
479             case ABS_TILT_Y:
480             case ABS_MT_SLOT:
481             case ABS_MT_TOUCH_MAJOR:
482             case ABS_MT_TOUCH_MINOR:
483             case ABS_MT_WIDTH_MAJOR:
484             case ABS_MT_WIDTH_MINOR:
485             case ABS_MT_ORIENTATION:
486             case ABS_MT_POSITION_X:
487             case ABS_MT_POSITION_Y:
488             case ABS_MT_TOOL_TYPE:
489             case ABS_MT_BLOB_ID:
490             case ABS_MT_TRACKING_ID:
491             case ABS_MT_PRESSURE:
492             case ABS_MT_DISTANCE:
493                 return InputDeviceClass::TOUCH;
494         }
495     }
496 
497     if (deviceClasses.test(InputDeviceClass::SENSOR)) {
498         switch (axis) {
499             case ABS_X:
500             case ABS_Y:
501             case ABS_Z:
502             case ABS_RX:
503             case ABS_RY:
504             case ABS_RZ:
505                 return InputDeviceClass::SENSOR;
506         }
507     }
508 
509     // External stylus gets the pressure axis
510     if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
511         if (axis == ABS_PRESSURE) {
512             return InputDeviceClass::EXTERNAL_STYLUS;
513         }
514     }
515 
516     // Joystick devices get the rest.
517     return deviceClasses & InputDeviceClass::JOYSTICK;
518 }
519 
520 // --- RawAbsoluteAxisInfo ---
521 
operator <<(std::ostream & out,const std::optional<RawAbsoluteAxisInfo> & info)522 std::ostream& operator<<(std::ostream& out, const std::optional<RawAbsoluteAxisInfo>& info) {
523     if (info) {
524         out << "min=" << info->minValue << ", max=" << info->maxValue << ", flat=" << info->flat
525             << ", fuzz=" << info->fuzz << ", resolution=" << info->resolution;
526     } else {
527         out << "unknown range";
528     }
529     return out;
530 }
531 
532 // --- EventHub::Device ---
533 
Device(int fd,int32_t id,std::string path,InputDeviceIdentifier identifier,std::shared_ptr<const AssociatedDevice> assocDev)534 EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier,
535                          std::shared_ptr<const AssociatedDevice> assocDev)
536       : fd(fd),
537         id(id),
538         path(std::move(path)),
539         identifier(std::move(identifier)),
540         classes(0),
541         configuration(nullptr),
542         virtualKeyMap(nullptr),
543         ffEffectPlaying(false),
544         ffEffectId(-1),
545         associatedDevice(std::move(assocDev)),
546         controllerNumber(0),
547         enabled(true),
548         isVirtual(fd < 0),
549         currentFrameDropped(false) {}
550 
~Device()551 EventHub::Device::~Device() {
552     close();
553 }
554 
close()555 void EventHub::Device::close() {
556     if (fd >= 0) {
557         ::close(fd);
558         fd = -1;
559     }
560 }
561 
enable()562 status_t EventHub::Device::enable() {
563     fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
564     if (fd < 0) {
565         ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
566         return -errno;
567     }
568     enabled = true;
569     return OK;
570 }
571 
disable()572 status_t EventHub::Device::disable() {
573     close();
574     enabled = false;
575     return OK;
576 }
577 
hasValidFd() const578 bool EventHub::Device::hasValidFd() const {
579     return !isVirtual && enabled;
580 }
581 
getKeyCharacterMap() const582 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
583     return keyMap.keyCharacterMap;
584 }
585 
586 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)587 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
588     if (!hasValidFd()) {
589         return BAD_VALUE;
590     }
591     if ((_IOC_SIZE(ioctlCode) == 0)) {
592         ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
593     }
594 
595     typename BitArray<N>::Buffer buffer;
596     status_t ret = ioctl(fd, ioctlCode, buffer.data());
597     bitArray.loadFromBuffer(buffer);
598     return ret;
599 }
600 
configureFd()601 void EventHub::Device::configureFd() {
602     // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
603     if (classes.test(InputDeviceClass::KEYBOARD)) {
604         // Disable kernel key repeat since we handle it ourselves
605         unsigned int repeatRate[] = {0, 0};
606         if (ioctl(fd, EVIOCSREP, repeatRate)) {
607             ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
608         }
609     }
610 
611     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
612     // associated with input events.  This is important because the input system
613     // uses the timestamps extensively and assumes they were recorded using the monotonic
614     // clock.
615     int clockId = CLOCK_MONOTONIC;
616     if (classes.test(InputDeviceClass::SENSOR)) {
617         // Each new sensor event should use the same time base as
618         // SystemClock.elapsedRealtimeNanos().
619         clockId = CLOCK_BOOTTIME;
620     }
621     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
622     ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
623 
624     // Query the initial state of keys and switches, which is tracked by EventHub.
625     readDeviceState();
626 }
627 
readDeviceState()628 void EventHub::Device::readDeviceState() {
629     if (readDeviceBitMask(EVIOCGKEY(0), keyState) < 0) {
630         ALOGD("Unable to query the global key state for %s: %s", path.c_str(), strerror(errno));
631     }
632     if (readDeviceBitMask(EVIOCGSW(0), swState) < 0) {
633         ALOGD("Unable to query the global switch state for %s: %s", path.c_str(), strerror(errno));
634     }
635 
636     // Read absolute axis info and values for all available axes for the device.
637     populateAbsoluteAxisStates();
638 }
639 
populateAbsoluteAxisStates()640 void EventHub::Device::populateAbsoluteAxisStates() {
641     absState.clear();
642 
643     for (int axis = 0; axis <= ABS_MAX; axis++) {
644         if (!absBitmask.test(axis)) {
645             continue;
646         }
647         struct input_absinfo info {};
648         if (ioctl(fd, EVIOCGABS(axis), &info)) {
649             ALOGE("Error reading absolute controller %d for device %s fd %d: %s", axis,
650                   identifier.name.c_str(), fd, strerror(errno));
651             continue;
652         }
653         auto& [axisInfo, value] = absState[axis];
654         axisInfo.minValue = info.minimum;
655         axisInfo.maxValue = info.maximum;
656         axisInfo.flat = info.flat;
657         axisInfo.fuzz = info.fuzz;
658         axisInfo.resolution = info.resolution;
659         value = info.value;
660     }
661 }
662 
hasKeycodeLocked(int keycode) const663 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
664     if (hasKeycodeInternalLocked(keycode)) {
665         return true;
666     }
667     if (!keyMap.haveKeyCharacterMap()) {
668         return false;
669     }
670     for (auto& fromKey : getKeyCharacterMap()->findKeyCodesMappedToKeyCode(keycode)) {
671         if (hasKeycodeInternalLocked(fromKey)) {
672             return true;
673         }
674     }
675     return false;
676 }
677 
hasKeycodeInternalLocked(int keycode) const678 bool EventHub::Device::hasKeycodeInternalLocked(int keycode) const {
679     if (!keyMap.haveKeyLayout()) {
680         return false;
681     }
682 
683     std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode);
684     const size_t N = scanCodes.size();
685     for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
686         int32_t sc = scanCodes[i];
687         if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
688             return true;
689         }
690     }
691 
692     std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode);
693     if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) {
694         return true;
695     }
696     return false;
697 }
698 
loadConfigurationLocked()699 void EventHub::Device::loadConfigurationLocked() {
700     configurationFile =
701             getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
702                                                                   InputDeviceConfigurationFileType::
703                                                                           CONFIGURATION);
704     if (configurationFile.empty()) {
705         ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
706     } else {
707         android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
708                 PropertyMap::load(configurationFile.c_str());
709         if (!propertyMap.ok()) {
710             ALOGE("Error loading input device configuration file for device '%s'.  "
711                   "Using default configuration.",
712                   identifier.name.c_str());
713         } else {
714             configuration = std::move(*propertyMap);
715         }
716     }
717 }
718 
loadVirtualKeyMapLocked()719 bool EventHub::Device::loadVirtualKeyMapLocked() {
720     // The virtual key map is supplied by the kernel as a system board property file.
721     std::string propPath = "/sys/board_properties/virtualkeys.";
722     propPath += identifier.getCanonicalName();
723     if (access(propPath.c_str(), R_OK)) {
724         return false;
725     }
726     virtualKeyMap = VirtualKeyMap::load(propPath);
727     return virtualKeyMap != nullptr;
728 }
729 
loadKeyMapLocked()730 status_t EventHub::Device::loadKeyMapLocked() {
731     return keyMap.load(identifier, configuration.get());
732 }
733 
isExternalDeviceLocked()734 bool EventHub::Device::isExternalDeviceLocked() {
735     if (configuration) {
736         std::optional<bool> isInternal = configuration->getBool("device.internal");
737         if (isInternal.has_value()) {
738             return !isInternal.value();
739         }
740     }
741     return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
742 }
743 
deviceHasMicLocked()744 bool EventHub::Device::deviceHasMicLocked() {
745     if (configuration) {
746         std::optional<bool> hasMic = configuration->getBool("audio.mic");
747         if (hasMic.has_value()) {
748             return hasMic.value();
749         }
750     }
751     return false;
752 }
753 
setLedStateLocked(int32_t led,bool on)754 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
755     int32_t sc;
756     if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
757         struct input_event ev;
758         ev.input_event_sec = 0;
759         ev.input_event_usec = 0;
760         ev.type = EV_LED;
761         ev.code = sc;
762         ev.value = on ? 1 : 0;
763 
764         ssize_t nWrite;
765         do {
766             nWrite = write(fd, &ev, sizeof(struct input_event));
767         } while (nWrite == -1 && errno == EINTR);
768     }
769 }
770 
setLedForControllerLocked()771 void EventHub::Device::setLedForControllerLocked() {
772     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
773         setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
774     }
775 }
776 
mapLed(int32_t led,int32_t * outScanCode) const777 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
778     if (!keyMap.haveKeyLayout()) {
779         return NAME_NOT_FOUND;
780     }
781 
782     std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led);
783     if (scanCode.has_value()) {
784         if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) {
785             *outScanCode = *scanCode;
786             return NO_ERROR;
787         }
788     }
789     return NAME_NOT_FOUND;
790 }
791 
trackInputEvent(const struct input_event & event)792 void EventHub::Device::trackInputEvent(const struct input_event& event) {
793     switch (event.type) {
794         case EV_KEY: {
795             LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
796                                         !keyState.set(static_cast<size_t>(event.code),
797                                                       event.value != 0),
798                                 "%s: device '%s' received invalid EV_KEY event code: %s value: %d",
799                                 __func__, identifier.name.c_str(),
800                                 InputEventLookup::getLinuxEvdevLabel(EV_KEY, event.code, 1)
801                                         .code.c_str(),
802                                 event.value);
803             break;
804         }
805         case EV_SW: {
806             LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
807                                         !swState.set(static_cast<size_t>(event.code),
808                                                      event.value != 0),
809                                 "%s: device '%s' received invalid EV_SW event code: %s value: %d",
810                                 __func__, identifier.name.c_str(),
811                                 InputEventLookup::getLinuxEvdevLabel(EV_SW, event.code, 1)
812                                         .code.c_str(),
813                                 event.value);
814             break;
815         }
816         case EV_ABS: {
817             if (currentFrameDropped) {
818                 break;
819             }
820             auto it = absState.find(event.code);
821             LOG_ALWAYS_FATAL_IF(it == absState.end(),
822                                 "%s: device '%s' received invalid EV_ABS event code: %s value: %d",
823                                 __func__, identifier.name.c_str(),
824                                 InputEventLookup::getLinuxEvdevLabel(EV_ABS, event.code, 0)
825                                         .code.c_str(),
826                                 event.value);
827             it->second.value = event.value;
828             break;
829         }
830         case EV_SYN: {
831             switch (event.code) {
832                 case SYN_REPORT:
833                     if (currentFrameDropped) {
834                         // To recover after a SYN_DROPPED, we need to query the state of the device
835                         // to synchronize our device state with the kernel's to account for the
836                         // dropped events on receiving the next SYN_REPORT.
837                         // Note we don't drop the SYN_REPORT at this point but it is used by the
838                         // InputDevice to reset and repopulate mapper state
839                         readDeviceState();
840                         currentFrameDropped = false;
841                     }
842                     break;
843                 case SYN_DROPPED:
844                     // When we receive SYN_DROPPED, all events in the current frame should be
845                     // dropped up to and including next SYN_REPORT
846                     currentFrameDropped = true;
847                     break;
848                 default:
849                     break;
850             }
851             break;
852         }
853         default:
854             break;
855     }
856 }
857 
858 /**
859  * Get the capabilities for the current process.
860  * Crashes the system if unable to create / check / destroy the capabilities object.
861  */
862 class Capabilities final {
863 public:
Capabilities()864     explicit Capabilities() {
865         mCaps = cap_get_proc();
866         LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
867     }
868 
869     /**
870      * Check whether the current process has a specific capability
871      * in the set of effective capabilities.
872      * Return CAP_SET if the process has the requested capability
873      * Return CAP_CLEAR otherwise.
874      */
checkEffectiveCapability(cap_value_t capability)875     cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
876         cap_flag_value_t value;
877         const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
878         LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
879         return value;
880     }
881 
~Capabilities()882     ~Capabilities() {
883         const int result = cap_free(mCaps);
884         LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
885     }
886 
887 private:
888     cap_t mCaps;
889 };
890 
ensureProcessCanBlockSuspend()891 static void ensureProcessCanBlockSuspend() {
892     Capabilities capabilities;
893     const bool canBlockSuspend =
894             capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
895     LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
896                         "Input must be able to block suspend to properly process events");
897 }
898 
899 // --- EventHub ---
900 
901 const int EventHub::EPOLL_MAX_EVENTS;
902 
EventHub(void)903 EventHub::EventHub(void)
904       : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
905         mNextDeviceId(1),
906         mControllerNumbers(),
907         mNeedToReopenDevices(false),
908         mNeedToScanDevices(true),
909         mPendingEventCount(0),
910         mPendingEventIndex(0),
911         mPendingINotify(false) {
912     ensureProcessCanBlockSuspend();
913 
914     mEpollFd = epoll_create1(EPOLL_CLOEXEC);
915     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
916 
917     mINotifyFd = inotify_init1(IN_CLOEXEC);
918     LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno));
919 
920     std::error_code errorCode;
921     bool isDeviceInotifyAdded = false;
922     if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
923         addDeviceInputInotify();
924     } else {
925         addDeviceInotify();
926         isDeviceInotifyAdded = true;
927         if (errorCode) {
928             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
929                   errorCode.message().c_str());
930         }
931     }
932 
933     if (isV4lScanningEnabled() && !isDeviceInotifyAdded) {
934         addDeviceInotify();
935     } else {
936         ALOGI("Video device scanning disabled");
937     }
938 
939     struct epoll_event eventItem = {};
940     eventItem.events = EPOLLIN | EPOLLWAKEUP;
941     eventItem.data.fd = mINotifyFd;
942     int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
943     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
944 
945     int wakeFds[2];
946     result = pipe2(wakeFds, O_CLOEXEC);
947     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
948 
949     mWakeReadPipeFd = wakeFds[0];
950     mWakeWritePipeFd = wakeFds[1];
951 
952     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
953     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
954                         errno);
955 
956     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
957     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
958                         errno);
959 
960     eventItem.data.fd = mWakeReadPipeFd;
961     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
962     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
963                         errno);
964 }
965 
~EventHub(void)966 EventHub::~EventHub(void) {
967     closeAllDevicesLocked();
968 
969     ::close(mEpollFd);
970     ::close(mINotifyFd);
971     ::close(mWakeReadPipeFd);
972     ::close(mWakeWritePipeFd);
973 }
974 
975 /**
976  * On devices that don't have any input devices (like some development boards), the /dev/input
977  * directory will be absent. However, the user may still plug in an input device at a later time.
978  * Add watch for contents of /dev/input only when /dev/input appears.
979  */
addDeviceInputInotify()980 void EventHub::addDeviceInputInotify() {
981     mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE);
982     LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s",
983                         DEVICE_INPUT_PATH, strerror(errno));
984 }
985 
addDeviceInotify()986 void EventHub::addDeviceInotify() {
987     mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
988     LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
989                         strerror(errno));
990 }
991 
getDeviceIdentifier(int32_t deviceId) const992 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
993     std::scoped_lock _l(mLock);
994     Device* device = getDeviceLocked(deviceId);
995     return device != nullptr ? device->identifier : InputDeviceIdentifier();
996 }
997 
getDeviceClasses(int32_t deviceId) const998 ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
999     std::scoped_lock _l(mLock);
1000     Device* device = getDeviceLocked(deviceId);
1001     return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0);
1002 }
1003 
getDeviceControllerNumber(int32_t deviceId) const1004 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
1005     std::scoped_lock _l(mLock);
1006     Device* device = getDeviceLocked(deviceId);
1007     return device != nullptr ? device->controllerNumber : 0;
1008 }
1009 
getConfiguration(int32_t deviceId) const1010 std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const {
1011     std::scoped_lock _l(mLock);
1012     Device* device = getDeviceLocked(deviceId);
1013     if (device == nullptr || device->configuration == nullptr) {
1014         return {};
1015     }
1016     return *device->configuration;
1017 }
1018 
getAbsoluteAxisInfo(int32_t deviceId,int axis) const1019 std::optional<RawAbsoluteAxisInfo> EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis) const {
1020     if (axis < 0 || axis > ABS_MAX) {
1021         return std::nullopt;
1022     }
1023     std::scoped_lock _l(mLock);
1024     const Device* device = getDeviceLocked(deviceId);
1025     if (device == nullptr) {
1026         ALOGE("Couldn't find device with ID %d, so returning null axis info for axis %s", deviceId,
1027               InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0).code.c_str());
1028         return std::nullopt;
1029     }
1030     // We can read the RawAbsoluteAxisInfo even if the device is disabled and doesn't have a valid
1031     // fd, because the info is populated once when the device is first opened, and it doesn't change
1032     // throughout the device lifecycle.
1033     auto it = device->absState.find(axis);
1034     if (it == device->absState.end()) {
1035         return std::nullopt;
1036     }
1037     return it->second.info;
1038 }
1039 
hasRelativeAxis(int32_t deviceId,int axis) const1040 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
1041     if (axis >= 0 && axis <= REL_MAX) {
1042         std::scoped_lock _l(mLock);
1043         Device* device = getDeviceLocked(deviceId);
1044         return device != nullptr ? device->relBitmask.test(axis) : false;
1045     }
1046     return false;
1047 }
1048 
hasInputProperty(int32_t deviceId,int property) const1049 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
1050     std::scoped_lock _l(mLock);
1051 
1052     Device* device = getDeviceLocked(deviceId);
1053     return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
1054             ? device->propBitmask.test(property)
1055             : false;
1056 }
1057 
hasMscEvent(int32_t deviceId,int mscEvent) const1058 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
1059     std::scoped_lock _l(mLock);
1060 
1061     Device* device = getDeviceLocked(deviceId);
1062     return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
1063             ? device->mscBitmask.test(mscEvent)
1064             : false;
1065 }
1066 
getScanCodeState(int32_t deviceId,int32_t scanCode) const1067 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
1068     if (scanCode < 0 || scanCode > KEY_MAX) {
1069         return AKEY_STATE_UNKNOWN;
1070     }
1071     std::scoped_lock _l(mLock);
1072     const Device* device = getDeviceLocked(deviceId);
1073     if (device == nullptr || !device->hasValidFd() || !device->keyBitmask.test(scanCode)) {
1074         return AKEY_STATE_UNKNOWN;
1075     }
1076     return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1077 }
1078 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const1079 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
1080     std::scoped_lock _l(mLock);
1081     const Device* device = getDeviceLocked(deviceId);
1082     if (device == nullptr || !device->hasValidFd() || !device->keyMap.haveKeyLayout()) {
1083         return AKEY_STATE_UNKNOWN;
1084     }
1085     const std::vector<int32_t> scanCodes =
1086             device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode);
1087     if (scanCodes.empty()) {
1088         return AKEY_STATE_UNKNOWN;
1089     }
1090     return std::any_of(scanCodes.begin(), scanCodes.end(),
1091                        [&device](const int32_t sc) {
1092                            return sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc);
1093                        })
1094             ? AKEY_STATE_DOWN
1095             : AKEY_STATE_UP;
1096 }
1097 
getKeyCodeForKeyLocation(int32_t deviceId,int32_t locationKeyCode) const1098 int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
1099     std::scoped_lock _l(mLock);
1100 
1101     Device* device = getDeviceLocked(deviceId);
1102     if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr ||
1103         device->keyMap.keyLayoutMap == nullptr) {
1104         return AKEYCODE_UNKNOWN;
1105     }
1106     std::vector<int32_t> scanCodes =
1107             device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode);
1108     if (scanCodes.empty()) {
1109         ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input"
1110               "device %d",
1111               locationKeyCode, deviceId);
1112         return AKEYCODE_UNKNOWN;
1113     }
1114     if (scanCodes.size() > 1) {
1115         ALOGW("Multiple scan codes map to the same key code %d, returning only the first match",
1116               locationKeyCode);
1117     }
1118     int32_t outKeyCode;
1119     status_t mapKeyRes =
1120             device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode);
1121     switch (mapKeyRes) {
1122         case OK:
1123             break;
1124         case NAME_NOT_FOUND:
1125             // key character map doesn't re-map this scanCode, hence the keyCode remains the same
1126             outKeyCode = locationKeyCode;
1127             break;
1128         default:
1129             ALOGW("Failed to get key code for key location: Key character map returned error %s",
1130                   statusToString(mapKeyRes).c_str());
1131             outKeyCode = AKEYCODE_UNKNOWN;
1132             break;
1133     }
1134     // Remap if there is a Key remapping added to the KCM and return the remapped key
1135     return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode);
1136 }
1137 
getSwitchState(int32_t deviceId,int32_t sw) const1138 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
1139     if (sw < 0 || sw > SW_MAX) {
1140         return AKEY_STATE_UNKNOWN;
1141     }
1142     std::scoped_lock _l(mLock);
1143     const Device* device = getDeviceLocked(deviceId);
1144     if (device == nullptr || !device->hasValidFd() || !device->swBitmask.test(sw)) {
1145         return AKEY_STATE_UNKNOWN;
1146     }
1147     return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1148 }
1149 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis) const1150 std::optional<int32_t> EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis) const {
1151     if (axis < 0 || axis > ABS_MAX) {
1152         return std::nullopt;
1153     }
1154     std::scoped_lock _l(mLock);
1155     const Device* device = getDeviceLocked(deviceId);
1156     if (device == nullptr || !device->hasValidFd()) {
1157         return std::nullopt;
1158     }
1159     const auto it = device->absState.find(axis);
1160     if (it == device->absState.end()) {
1161         return std::nullopt;
1162     }
1163     return it->second.value;
1164 }
1165 
getMtSlotValues(int32_t deviceId,int32_t axis,size_t slotCount) const1166 base::Result<std::vector<int32_t>> EventHub::getMtSlotValues(int32_t deviceId, int32_t axis,
1167                                                              size_t slotCount) const {
1168     std::scoped_lock _l(mLock);
1169     const Device* device = getDeviceLocked(deviceId);
1170     if (device == nullptr || !device->hasValidFd() || !device->absBitmask.test(axis)) {
1171         return base::ResultError("device problem or axis not supported", NAME_NOT_FOUND);
1172     }
1173     std::vector<int32_t> outValues(slotCount + 1);
1174     outValues[0] = axis;
1175     const size_t bufferSize = outValues.size() * sizeof(int32_t);
1176     if (ioctl(device->fd, EVIOCGMTSLOTS(bufferSize), outValues.data()) != OK) {
1177         return base::ErrnoError();
1178     }
1179     return std::move(outValues);
1180 }
1181 
markSupportedKeyCodes(int32_t deviceId,const std::vector<int32_t> & keyCodes,uint8_t * outFlags) const1182 bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
1183                                      uint8_t* outFlags) const {
1184     std::scoped_lock _l(mLock);
1185 
1186     Device* device = getDeviceLocked(deviceId);
1187     if (device != nullptr && device->keyMap.haveKeyLayout()) {
1188         for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) {
1189             if (device->hasKeycodeLocked(keyCodes[codeIndex])) {
1190                 outFlags[codeIndex] = 1;
1191             }
1192         }
1193         return true;
1194     }
1195     return false;
1196 }
1197 
setKeyRemapping(int32_t deviceId,const std::map<int32_t,int32_t> & keyRemapping) const1198 void EventHub::setKeyRemapping(int32_t deviceId,
1199                                const std::map<int32_t, int32_t>& keyRemapping) const {
1200     std::scoped_lock _l(mLock);
1201     Device* device = getDeviceLocked(deviceId);
1202     if (device == nullptr) {
1203         return;
1204     }
1205     const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1206     if (kcm) {
1207         kcm->setKeyRemapping(keyRemapping);
1208     }
1209 }
1210 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const1211 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
1212                           int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
1213     std::scoped_lock _l(mLock);
1214     Device* device = getDeviceLocked(deviceId);
1215     status_t status = NAME_NOT_FOUND;
1216 
1217     if (device != nullptr) {
1218         // Check the key character map first.
1219         const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1220         if (kcm) {
1221             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
1222                 *outFlags = 0;
1223                 status = NO_ERROR;
1224             }
1225         }
1226 
1227         // Check the key layout next.
1228         if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
1229             if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
1230                 status = NO_ERROR;
1231             }
1232         }
1233 
1234         if (status == NO_ERROR) {
1235             if (kcm) {
1236                 // Remap keys based on user-defined key remappings and key behavior defined in the
1237                 // corresponding kcm file
1238                 *outKeycode = kcm->applyKeyRemapping(*outKeycode);
1239 
1240                 // Remap keys based on Key behavior defined in KCM file
1241                 std::tie(*outKeycode, *outMetaState) =
1242                         kcm->applyKeyBehavior(*outKeycode, metaState);
1243             } else {
1244                 *outMetaState = metaState;
1245             }
1246         }
1247     }
1248 
1249     if (status != NO_ERROR) {
1250         *outKeycode = 0;
1251         *outFlags = 0;
1252         *outMetaState = metaState;
1253     }
1254 
1255     return status;
1256 }
1257 
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const1258 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
1259     std::scoped_lock _l(mLock);
1260     Device* device = getDeviceLocked(deviceId);
1261 
1262     if (device == nullptr || !device->keyMap.haveKeyLayout()) {
1263         return NAME_NOT_FOUND;
1264     }
1265     std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode);
1266     if (!info.has_value()) {
1267         return NAME_NOT_FOUND;
1268     }
1269     *outAxisInfo = *info;
1270     return NO_ERROR;
1271 }
1272 
mapSensor(int32_t deviceId,int32_t absCode) const1273 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
1274                                                                             int32_t absCode) const {
1275     std::scoped_lock _l(mLock);
1276     Device* device = getDeviceLocked(deviceId);
1277 
1278     if (device != nullptr && device->keyMap.haveKeyLayout()) {
1279         return device->keyMap.keyLayoutMap->mapSensor(absCode);
1280     }
1281     return Errorf("Device not found or device has no key layout.");
1282 }
1283 
1284 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
1285 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const1286 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
1287         int32_t deviceId) const {
1288     static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
1289     Device* device = getDeviceLocked(deviceId);
1290     if (device == nullptr || !device->associatedDevice) {
1291         return EMPTY_BATTERY_INFO;
1292     }
1293     return device->associatedDevice->batteryInfos;
1294 }
1295 
getRawBatteryIds(int32_t deviceId) const1296 std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const {
1297     std::scoped_lock _l(mLock);
1298     std::vector<int32_t> batteryIds;
1299 
1300     for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) {
1301         batteryIds.push_back(id);
1302     }
1303 
1304     return batteryIds;
1305 }
1306 
getRawBatteryInfo(int32_t deviceId,int32_t batteryId) const1307 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId,
1308                                                           int32_t batteryId) const {
1309     std::scoped_lock _l(mLock);
1310 
1311     const auto infos = getBatteryInfoLocked(deviceId);
1312 
1313     auto it = infos.find(batteryId);
1314     if (it != infos.end()) {
1315         return it->second;
1316     }
1317 
1318     return std::nullopt;
1319 }
1320 
1321 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1322 // with the device ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1323 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1324         int32_t deviceId) const {
1325     static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1326     Device* device = getDeviceLocked(deviceId);
1327     if (device == nullptr || !device->associatedDevice) {
1328         return EMPTY_LIGHT_INFO;
1329     }
1330     return device->associatedDevice->lightInfos;
1331 }
1332 
getRawLightIds(int32_t deviceId) const1333 std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const {
1334     std::scoped_lock _l(mLock);
1335     std::vector<int32_t> lightIds;
1336 
1337     for (const auto& [id, info] : getLightInfoLocked(deviceId)) {
1338         lightIds.push_back(id);
1339     }
1340 
1341     return lightIds;
1342 }
1343 
getRawLightInfo(int32_t deviceId,int32_t lightId) const1344 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
1345     std::scoped_lock _l(mLock);
1346 
1347     const auto infos = getLightInfoLocked(deviceId);
1348 
1349     auto it = infos.find(lightId);
1350     if (it != infos.end()) {
1351         return it->second;
1352     }
1353 
1354     return std::nullopt;
1355 }
1356 
getLightBrightness(int32_t deviceId,int32_t lightId) const1357 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
1358     std::scoped_lock _l(mLock);
1359 
1360     const auto infos = getLightInfoLocked(deviceId);
1361     auto it = infos.find(lightId);
1362     if (it == infos.end()) {
1363         return std::nullopt;
1364     }
1365     std::string buffer;
1366     if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1367                                 &buffer)) {
1368         return std::nullopt;
1369     }
1370     return std::stoi(buffer);
1371 }
1372 
getLightIntensities(int32_t deviceId,int32_t lightId) const1373 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1374         int32_t deviceId, int32_t lightId) const {
1375     std::scoped_lock _l(mLock);
1376 
1377     const auto infos = getLightInfoLocked(deviceId);
1378     auto lightIt = infos.find(lightId);
1379     if (lightIt == infos.end()) {
1380         return std::nullopt;
1381     }
1382 
1383     auto ret =
1384             getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1385 
1386     if (!ret.has_value()) {
1387         return std::nullopt;
1388     }
1389     std::array<LightColor, COLOR_NUM> colors = ret.value();
1390 
1391     std::string intensityStr;
1392     if (!base::ReadFileToString(lightIt->second.path /
1393                                         LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1394                                 &intensityStr)) {
1395         return std::nullopt;
1396     }
1397 
1398     // Intensity node outputs 3 color values
1399     std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1400     std::smatch results;
1401 
1402     if (!std::regex_match(intensityStr, results, intensityPattern)) {
1403         return std::nullopt;
1404     }
1405     std::unordered_map<LightColor, int32_t> intensities;
1406     for (size_t i = 1; i < results.size(); i++) {
1407         int value = std::stoi(results[i].str());
1408         intensities.emplace(colors[i - 1], value);
1409     }
1410     return intensities;
1411 }
1412 
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1413 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1414     std::scoped_lock _l(mLock);
1415 
1416     const auto infos = getLightInfoLocked(deviceId);
1417     auto lightIt = infos.find(lightId);
1418     if (lightIt == infos.end()) {
1419         ALOGE("%s lightId %d not found ", __func__, lightId);
1420         return;
1421     }
1422 
1423     if (!base::WriteStringToFile(std::to_string(brightness),
1424                                  lightIt->second.path /
1425                                          LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1426         ALOGE("Can not write to file, error: %s", strerror(errno));
1427     }
1428 }
1429 
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1430 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1431                                    std::unordered_map<LightColor, int32_t> intensities) {
1432     std::scoped_lock _l(mLock);
1433 
1434     const auto infos = getLightInfoLocked(deviceId);
1435     auto lightIt = infos.find(lightId);
1436     if (lightIt == infos.end()) {
1437         ALOGE("Light Id %d does not exist.", lightId);
1438         return;
1439     }
1440 
1441     auto ret =
1442             getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1443 
1444     if (!ret.has_value()) {
1445         return;
1446     }
1447     std::array<LightColor, COLOR_NUM> colors = ret.value();
1448 
1449     std::string rgbStr;
1450     for (size_t i = 0; i < COLOR_NUM; i++) {
1451         auto it = intensities.find(colors[i]);
1452         if (it != intensities.end()) {
1453             rgbStr += std::to_string(it->second);
1454             // Insert space between colors
1455             if (i < COLOR_NUM - 1) {
1456                 rgbStr += " ";
1457             }
1458         }
1459     }
1460     // Append new line
1461     rgbStr += "\n";
1462 
1463     if (!base::WriteStringToFile(rgbStr,
1464                                  lightIt->second.path /
1465                                          LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1466         ALOGE("Can not write to file, error: %s", strerror(errno));
1467     }
1468 }
1469 
getRawLayoutInfo(int32_t deviceId) const1470 std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const {
1471     std::scoped_lock _l(mLock);
1472     Device* device = getDeviceLocked(deviceId);
1473     if (device == nullptr || !device->associatedDevice) {
1474         return std::nullopt;
1475     }
1476     return device->associatedDevice->layoutInfo;
1477 }
1478 
setExcludedDevices(const std::vector<std::string> & devices)1479 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1480     std::scoped_lock _l(mLock);
1481 
1482     mExcludedDevices = devices;
1483 }
1484 
hasScanCode(int32_t deviceId,int32_t scanCode) const1485 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1486     std::scoped_lock _l(mLock);
1487     Device* device = getDeviceLocked(deviceId);
1488     if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1489         return device->keyBitmask.test(scanCode);
1490     }
1491     return false;
1492 }
1493 
hasKeyCode(int32_t deviceId,int32_t keyCode) const1494 bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
1495     std::scoped_lock _l(mLock);
1496     Device* device = getDeviceLocked(deviceId);
1497     if (device != nullptr) {
1498         return device->hasKeycodeLocked(keyCode);
1499     }
1500     return false;
1501 }
1502 
hasLed(int32_t deviceId,int32_t led) const1503 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1504     std::scoped_lock _l(mLock);
1505     Device* device = getDeviceLocked(deviceId);
1506     int32_t sc;
1507     if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1508         return device->ledBitmask.test(sc);
1509     }
1510     return false;
1511 }
1512 
setLedState(int32_t deviceId,int32_t led,bool on)1513 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1514     std::scoped_lock _l(mLock);
1515     Device* device = getDeviceLocked(deviceId);
1516     if (device != nullptr && device->hasValidFd()) {
1517         device->setLedStateLocked(led, on);
1518     }
1519 }
1520 
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1521 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1522                                         std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1523     outVirtualKeys.clear();
1524 
1525     std::scoped_lock _l(mLock);
1526     Device* device = getDeviceLocked(deviceId);
1527     if (device != nullptr && device->virtualKeyMap) {
1528         const std::vector<VirtualKeyDefinition> virtualKeys =
1529                 device->virtualKeyMap->getVirtualKeys();
1530         outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1531     }
1532 }
1533 
getKeyCharacterMap(int32_t deviceId) const1534 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1535     std::scoped_lock _l(mLock);
1536     Device* device = getDeviceLocked(deviceId);
1537     if (device != nullptr) {
1538         return device->getKeyCharacterMap();
1539     }
1540     return nullptr;
1541 }
1542 
1543 // If provided map is null, it will reset key character map to default KCM.
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1544 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1545     std::scoped_lock _l(mLock);
1546     Device* device = getDeviceLocked(deviceId);
1547     if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) {
1548         return false;
1549     }
1550     if (map == nullptr) {
1551         device->keyMap.keyCharacterMap->clearLayoutOverlay();
1552         return true;
1553     }
1554     device->keyMap.keyCharacterMap->combine(*map);
1555     return true;
1556 }
1557 
generateDescriptor(InputDeviceIdentifier & identifier)1558 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1559     std::string rawDescriptor;
1560     rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1561     // TODO add handling for USB devices to not uniqueify kbs that show up twice
1562     if (!identifier.uniqueId.empty()) {
1563         rawDescriptor += "uniqueId:";
1564         rawDescriptor += identifier.uniqueId;
1565     }
1566     if (identifier.nonce != 0) {
1567         rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1568     }
1569 
1570     if (identifier.vendor == 0 && identifier.product == 0) {
1571         // If we don't know the vendor and product id, then the device is probably
1572         // built-in so we need to rely on other information to uniquely identify
1573         // the input device.  Usually we try to avoid relying on the device name or
1574         // location but for built-in input device, they are unlikely to ever change.
1575         if (!identifier.name.empty()) {
1576             rawDescriptor += "name:";
1577             rawDescriptor += identifier.name;
1578         } else if (!identifier.location.empty()) {
1579             rawDescriptor += "location:";
1580             rawDescriptor += identifier.location;
1581         }
1582     }
1583     identifier.descriptor = sha1(rawDescriptor);
1584     return rawDescriptor;
1585 }
1586 
assignDescriptorLocked(InputDeviceIdentifier & identifier)1587 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1588     // Compute a device descriptor that uniquely identifies the device.
1589     // The descriptor is assumed to be a stable identifier.  Its value should not
1590     // change between reboots, reconnections, firmware updates or new releases
1591     // of Android. In practice we sometimes get devices that cannot be uniquely
1592     // identified. In this case we enforce uniqueness between connected devices.
1593     // Ideally, we also want the descriptor to be short and relatively opaque.
1594     // Note that we explicitly do not use the path or location for external devices
1595     // as their path or location will change as they are plugged/unplugged or moved
1596     // to different ports. We do fallback to using name and location in the case of
1597     // internal devices which are detected by the vendor and product being 0 in
1598     // generateDescriptor. If two identical descriptors are detected we will fallback
1599     // to using a 'nonce' and incrementing it until the new descriptor no longer has
1600     // a match with any existing descriptors.
1601 
1602     identifier.nonce = 0;
1603     std::string rawDescriptor = generateDescriptor(identifier);
1604     // Enforce that the generated descriptor is unique.
1605     while (hasDeviceWithDescriptorLocked(identifier.descriptor)) {
1606         identifier.nonce++;
1607         rawDescriptor = generateDescriptor(identifier);
1608     }
1609     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1610           identifier.descriptor.c_str());
1611 }
1612 
obtainAssociatedDeviceLocked(const std::filesystem::path & devicePath) const1613 std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked(
1614         const std::filesystem::path& devicePath) const {
1615     const std::optional<std::filesystem::path> sysfsRootPathOpt =
1616             getSysfsRootPath(devicePath.c_str());
1617     if (!sysfsRootPathOpt) {
1618         return nullptr;
1619     }
1620 
1621     const auto& path = *sysfsRootPathOpt;
1622 
1623     std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>(
1624             AssociatedDevice{.sysfsRootPath = path,
1625                              .batteryInfos = readBatteryConfiguration(path),
1626                              .lightInfos = readLightsConfiguration(path),
1627                              .layoutInfo = readLayoutConfiguration(path)});
1628 
1629     bool associatedDeviceChanged = false;
1630     for (const auto& [id, dev] : mDevices) {
1631         if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) {
1632             if (*associatedDevice != *dev->associatedDevice) {
1633                 associatedDeviceChanged = true;
1634                 dev->associatedDevice = associatedDevice;
1635             }
1636             associatedDevice = dev->associatedDevice;
1637         }
1638     }
1639     ALOGI_IF(associatedDeviceChanged,
1640              "The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s",
1641              path.c_str(), associatedDevice->dump().c_str());
1642 
1643     return associatedDevice;
1644 }
1645 
isChanged() const1646 bool EventHub::AssociatedDevice::isChanged() const {
1647     std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos =
1648             readBatteryConfiguration(sysfsRootPath);
1649     std::unordered_map<int32_t, RawLightInfo> newLightInfos =
1650             readLightsConfiguration(sysfsRootPath);
1651     std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath);
1652 
1653     if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos &&
1654         newLayoutInfo == layoutInfo) {
1655         return false;
1656     }
1657     return true;
1658 }
1659 
vibrate(int32_t deviceId,const VibrationElement & element)1660 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1661     std::scoped_lock _l(mLock);
1662     Device* device = getDeviceLocked(deviceId);
1663     if (device != nullptr && device->hasValidFd()) {
1664         ff_effect effect;
1665         memset(&effect, 0, sizeof(effect));
1666         effect.type = FF_RUMBLE;
1667         effect.id = device->ffEffectId;
1668         // evdev FF_RUMBLE effect only supports two channels of vibration.
1669         effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1670         effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1671         effect.replay.length = element.duration.count();
1672         effect.replay.delay = 0;
1673         if (ioctl(device->fd, EVIOCSFF, &effect)) {
1674             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1675                   device->identifier.name.c_str(), errno);
1676             return;
1677         }
1678         device->ffEffectId = effect.id;
1679 
1680         struct input_event ev;
1681         ev.input_event_sec = 0;
1682         ev.input_event_usec = 0;
1683         ev.type = EV_FF;
1684         ev.code = device->ffEffectId;
1685         ev.value = 1;
1686         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1687             ALOGW("Could not start force feedback effect on device %s due to error %d.",
1688                   device->identifier.name.c_str(), errno);
1689             return;
1690         }
1691         device->ffEffectPlaying = true;
1692     }
1693 }
1694 
cancelVibrate(int32_t deviceId)1695 void EventHub::cancelVibrate(int32_t deviceId) {
1696     std::scoped_lock _l(mLock);
1697     Device* device = getDeviceLocked(deviceId);
1698     if (device != nullptr && device->hasValidFd()) {
1699         if (device->ffEffectPlaying) {
1700             device->ffEffectPlaying = false;
1701 
1702             struct input_event ev;
1703             ev.input_event_sec = 0;
1704             ev.input_event_usec = 0;
1705             ev.type = EV_FF;
1706             ev.code = device->ffEffectId;
1707             ev.value = 0;
1708             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1709                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1710                       device->identifier.name.c_str(), errno);
1711                 return;
1712             }
1713         }
1714     }
1715 }
1716 
getVibratorIds(int32_t deviceId) const1717 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const {
1718     std::scoped_lock _l(mLock);
1719     std::vector<int32_t> vibrators;
1720     Device* device = getDeviceLocked(deviceId);
1721     if (device != nullptr && device->hasValidFd() &&
1722         device->classes.test(InputDeviceClass::VIBRATOR)) {
1723         vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1724         vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1725     }
1726     return vibrators;
1727 }
1728 
1729 /**
1730  * Checks both mDevices and mOpeningDevices for a device with the descriptor passed.
1731  */
hasDeviceWithDescriptorLocked(const std::string & descriptor) const1732 bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const {
1733     for (const auto& device : mOpeningDevices) {
1734         if (descriptor == device->identifier.descriptor) {
1735             return true;
1736         }
1737     }
1738 
1739     for (const auto& [id, device] : mDevices) {
1740         if (descriptor == device->identifier.descriptor) {
1741             return true;
1742         }
1743     }
1744     return false;
1745 }
1746 
getDeviceLocked(int32_t deviceId) const1747 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1748     if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1749         deviceId = mBuiltInKeyboardId;
1750     }
1751     const auto& it = mDevices.find(deviceId);
1752     return it != mDevices.end() ? it->second.get() : nullptr;
1753 }
1754 
getDeviceByPathLocked(const std::string & devicePath) const1755 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1756     for (const auto& [id, device] : mDevices) {
1757         if (device->path == devicePath) {
1758             return device.get();
1759         }
1760     }
1761     return nullptr;
1762 }
1763 
1764 /**
1765  * The file descriptor could be either input device, or a video device (associated with a
1766  * specific input device). Check both cases here, and return the device that this event
1767  * belongs to. Caller can compare the fd's once more to determine event type.
1768  * Looks through all input devices, and only attached video devices. Unattached video
1769  * devices are ignored.
1770  */
getDeviceByFdLocked(int fd) const1771 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1772     for (const auto& [id, device] : mDevices) {
1773         if (device->fd == fd) {
1774             // This is an input device event
1775             return device.get();
1776         }
1777         if (device->videoDevice && device->videoDevice->getFd() == fd) {
1778             // This is a video device event
1779             return device.get();
1780         }
1781     }
1782     // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1783     // and therefore should never be looked up by fd.
1784     return nullptr;
1785 }
1786 
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1787 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1788     std::filesystem::path batteryPath;
1789     {
1790         // Do not read the sysfs node to get the battery state while holding
1791         // the EventHub lock. For some peripheral devices, reading battery state
1792         // can be broken and take 5+ seconds. Holding the lock in this case would
1793         // block all other event processing during this time. For now, we assume this
1794         // call never happens on the InputReader thread and read the sysfs node outside
1795         // the lock to prevent event processing from being blocked by this call.
1796         std::scoped_lock _l(mLock);
1797 
1798         const auto& infos = getBatteryInfoLocked(deviceId);
1799         auto it = infos.find(batteryId);
1800         if (it == infos.end()) {
1801             return std::nullopt;
1802         }
1803         batteryPath = it->second.path;
1804     } // release lock
1805 
1806     std::string buffer;
1807 
1808     // Some devices report battery capacity as an integer through the "capacity" file
1809     if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1810                                &buffer)) {
1811         return std::stoi(base::Trim(buffer));
1812     }
1813 
1814     // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1815     // These values are taken from kernel source code include/linux/power_supply.h
1816     if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1817                                &buffer)) {
1818         // Remove any white space such as trailing new line
1819         const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1820         if (levelIt != BATTERY_LEVEL.end()) {
1821             return levelIt->second;
1822         }
1823     }
1824 
1825     return std::nullopt;
1826 }
1827 
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1828 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1829     std::filesystem::path batteryPath;
1830     {
1831         // Do not read the sysfs node to get the battery state while holding
1832         // the EventHub lock. For some peripheral devices, reading battery state
1833         // can be broken and take 5+ seconds. Holding the lock in this case would
1834         // block all other event processing during this time. For now, we assume this
1835         // call never happens on the InputReader thread and read the sysfs node outside
1836         // the lock to prevent event processing from being blocked by this call.
1837         std::scoped_lock _l(mLock);
1838 
1839         const auto& infos = getBatteryInfoLocked(deviceId);
1840         auto it = infos.find(batteryId);
1841         if (it == infos.end()) {
1842             return std::nullopt;
1843         }
1844         batteryPath = it->second.path;
1845     } // release lock
1846 
1847     std::string buffer;
1848 
1849     if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS),
1850                                 &buffer)) {
1851         ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1852         return std::nullopt;
1853     }
1854 
1855     // Remove white space like trailing new line
1856     const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1857     if (statusIt != BATTERY_STATUS.end()) {
1858         return statusIt->second;
1859     }
1860 
1861     return std::nullopt;
1862 }
1863 
getEvents(int timeoutMillis)1864 std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) {
1865     std::scoped_lock _l(mLock);
1866 
1867     std::array<input_event, EVENT_BUFFER_SIZE> readBuffer;
1868 
1869     std::vector<RawEvent> events;
1870     bool awoken = false;
1871     for (;;) {
1872         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1873 
1874         // Reopen input devices if needed.
1875         if (mNeedToReopenDevices) {
1876             mNeedToReopenDevices = false;
1877 
1878             ALOGI("Reopening all input devices due to a configuration change.");
1879 
1880             closeAllDevicesLocked();
1881             mNeedToScanDevices = true;
1882             break; // return to the caller before we actually rescan
1883         }
1884 
1885         // Report any devices that had last been added/removed.
1886         for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1887             std::unique_ptr<Device> device = std::move(*it);
1888             ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
1889             const int32_t deviceId = (device->id == mBuiltInKeyboardId)
1890                     ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1891                     : device->id;
1892             events.push_back({
1893                     .when = now,
1894                     .deviceId = deviceId,
1895                     .type = DEVICE_REMOVED,
1896             });
1897             it = mClosingDevices.erase(it);
1898             if (events.size() == EVENT_BUFFER_SIZE) {
1899                 break;
1900             }
1901         }
1902 
1903         if (mNeedToScanDevices) {
1904             mNeedToScanDevices = false;
1905             scanDevicesLocked();
1906         }
1907 
1908         while (!mOpeningDevices.empty()) {
1909             std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1910             mOpeningDevices.pop_back();
1911             ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
1912             const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1913             events.push_back({
1914                     .when = now,
1915                     .deviceId = deviceId,
1916                     .type = DEVICE_ADDED,
1917             });
1918 
1919             // Try to find a matching video device by comparing device names
1920             for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1921                  it++) {
1922                 std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1923                 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1924                     // videoDevice was transferred to 'device'
1925                     it = mUnattachedVideoDevices.erase(it);
1926                     break;
1927                 }
1928             }
1929 
1930             auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1931             if (!inserted) {
1932                 ALOGW("Device id %d exists, replaced.", device->id);
1933             }
1934             if (events.size() == EVENT_BUFFER_SIZE) {
1935                 break;
1936             }
1937         }
1938 
1939         // Grab the next input event.
1940         bool deviceChanged = false;
1941         while (mPendingEventIndex < mPendingEventCount) {
1942             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1943             if (eventItem.data.fd == mINotifyFd) {
1944                 if (eventItem.events & EPOLLIN) {
1945                     mPendingINotify = true;
1946                 } else {
1947                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1948                 }
1949                 continue;
1950             }
1951 
1952             if (eventItem.data.fd == mWakeReadPipeFd) {
1953                 if (eventItem.events & EPOLLIN) {
1954                     ALOGV("awoken after wake()");
1955                     awoken = true;
1956                     char wakeReadBuffer[16];
1957                     ssize_t nRead;
1958                     do {
1959                         nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
1960                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
1961                 } else {
1962                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
1963                           eventItem.events);
1964                 }
1965                 continue;
1966             }
1967 
1968             Device* device = getDeviceByFdLocked(eventItem.data.fd);
1969             if (device == nullptr) {
1970                 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
1971                       eventItem.data.fd);
1972                 ALOG_ASSERT(!DEBUG);
1973                 continue;
1974             }
1975             if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
1976                 if (eventItem.events & EPOLLIN) {
1977                     size_t numFrames = device->videoDevice->readAndQueueFrames();
1978                     if (numFrames == 0) {
1979                         ALOGE("Received epoll event for video device %s, but could not read frame",
1980                               device->videoDevice->getName().c_str());
1981                     }
1982                 } else if (eventItem.events & EPOLLHUP) {
1983                     // TODO(b/121395353) - consider adding EPOLLRDHUP
1984                     ALOGI("Removing video device %s due to epoll hang-up event.",
1985                           device->videoDevice->getName().c_str());
1986                     unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
1987                     device->videoDevice = nullptr;
1988                 } else {
1989                     ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1990                           device->videoDevice->getName().c_str());
1991                     ALOG_ASSERT(!DEBUG);
1992                 }
1993                 continue;
1994             }
1995             // This must be an input event
1996             if (eventItem.events & EPOLLIN) {
1997                 int32_t readSize =
1998                         read(device->fd, readBuffer.data(),
1999                              sizeof(decltype(readBuffer)::value_type) * readBuffer.size());
2000                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
2001                     // Device was removed before INotify noticed.
2002                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
2003                           " capacity: %zu errno: %d)\n",
2004                           device->fd, readSize, readBuffer.size(), errno);
2005                     deviceChanged = true;
2006                     closeDeviceLocked(*device);
2007                 } else if (readSize < 0) {
2008                     if (errno != EAGAIN && errno != EINTR) {
2009                         ALOGW("could not get event (errno=%d)", errno);
2010                     }
2011                 } else if ((readSize % sizeof(struct input_event)) != 0) {
2012                     ALOGE("could not get event (wrong size: %d)", readSize);
2013                 } else {
2014                     const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
2015 
2016                     const size_t count = size_t(readSize) / sizeof(struct input_event);
2017                     for (size_t i = 0; i < count; i++) {
2018                         struct input_event& iev = readBuffer[i];
2019                         device->trackInputEvent(iev);
2020                         events.push_back({
2021                                 .when = processEventTimestamp(iev),
2022                                 .readTime = systemTime(SYSTEM_TIME_MONOTONIC),
2023                                 .deviceId = deviceId,
2024                                 .type = iev.type,
2025                                 .code = iev.code,
2026                                 .value = iev.value,
2027                         });
2028                     }
2029                     if (events.size() >= EVENT_BUFFER_SIZE) {
2030                         // The result buffer is full.  Reset the pending event index
2031                         // so we will try to read the device again on the next iteration.
2032                         mPendingEventIndex -= 1;
2033                         break;
2034                     }
2035                 }
2036             } else if (eventItem.events & EPOLLHUP) {
2037                 ALOGI("Removing device %s due to epoll hang-up event.",
2038                       device->identifier.name.c_str());
2039                 deviceChanged = true;
2040                 closeDeviceLocked(*device);
2041             } else {
2042                 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
2043                       device->identifier.name.c_str());
2044             }
2045         }
2046 
2047         // readNotify() will modify the list of devices so this must be done after
2048         // processing all other events to ensure that we read all remaining events
2049         // before closing the devices.
2050         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
2051             mPendingINotify = false;
2052             const auto res = readNotifyLocked();
2053             if (!res.ok()) {
2054                 ALOGW("Failed to read from inotify: %s", res.error().message().c_str());
2055             }
2056             deviceChanged = true;
2057         }
2058 
2059         // Report added or removed devices immediately.
2060         if (deviceChanged) {
2061             continue;
2062         }
2063 
2064         // Return now if we have collected any events or if we were explicitly awoken.
2065         if (!events.empty() || awoken) {
2066             break;
2067         }
2068 
2069         // Poll for events.
2070         // When a device driver has pending (unread) events, it acquires
2071         // a kernel wake lock.  Once the last pending event has been read, the device
2072         // driver will release the kernel wake lock, but the epoll will hold the wakelock,
2073         // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
2074         // is called again for the same fd that produced the event.
2075         // Thus the system can only sleep if there are no events pending or
2076         // currently being processed.
2077         //
2078         // The timeout is advisory only.  If the device is asleep, it will not wake just to
2079         // service the timeout.
2080         mPendingEventIndex = 0;
2081 
2082         mLock.unlock(); // release lock before poll
2083 
2084         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
2085 
2086         mLock.lock(); // reacquire lock after poll
2087 
2088         if (pollResult == 0) {
2089             // Timed out.
2090             mPendingEventCount = 0;
2091             break;
2092         }
2093 
2094         if (pollResult < 0) {
2095             // An error occurred.
2096             mPendingEventCount = 0;
2097 
2098             // Sleep after errors to avoid locking up the system.
2099             // Hopefully the error is transient.
2100             if (errno != EINTR) {
2101                 ALOGW("poll failed (errno=%d)\n", errno);
2102                 usleep(100000);
2103             }
2104         } else {
2105             // Some events occurred.
2106             mPendingEventCount = size_t(pollResult);
2107         }
2108     }
2109 
2110     // All done, return the number of events we read.
2111     return events;
2112 }
2113 
getVideoFrames(int32_t deviceId)2114 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
2115     std::scoped_lock _l(mLock);
2116 
2117     Device* device = getDeviceLocked(deviceId);
2118     if (device == nullptr || !device->videoDevice) {
2119         return {};
2120     }
2121     return device->videoDevice->consumeFrames();
2122 }
2123 
wake()2124 void EventHub::wake() {
2125     ALOGV("wake() called");
2126 
2127     ssize_t nWrite;
2128     do {
2129         nWrite = write(mWakeWritePipeFd, "W", 1);
2130     } while (nWrite == -1 && errno == EINTR);
2131 
2132     if (nWrite != 1 && errno != EAGAIN) {
2133         ALOGW("Could not write wake signal: %s", strerror(errno));
2134     }
2135 }
2136 
scanDevicesLocked()2137 void EventHub::scanDevicesLocked() {
2138     status_t result;
2139     std::error_code errorCode;
2140 
2141     if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
2142         result = scanDirLocked(DEVICE_INPUT_PATH);
2143         if (result < 0) {
2144             ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH);
2145         }
2146     } else {
2147         if (errorCode) {
2148             ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
2149                   errorCode.message().c_str());
2150         }
2151     }
2152     if (isV4lScanningEnabled()) {
2153         result = scanVideoDirLocked(DEVICE_PATH);
2154         if (result != OK) {
2155             ALOGE("scan video dir failed for %s", DEVICE_PATH);
2156         }
2157     }
2158     if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
2159         createVirtualKeyboardLocked();
2160     }
2161 }
2162 
2163 // ----------------------------------------------------------------------------
2164 
registerFdForEpoll(int fd)2165 status_t EventHub::registerFdForEpoll(int fd) {
2166     // TODO(b/121395353) - consider adding EPOLLRDHUP
2167     struct epoll_event eventItem = {};
2168     eventItem.events = EPOLLIN | EPOLLWAKEUP;
2169     eventItem.data.fd = fd;
2170     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
2171         ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
2172         return -errno;
2173     }
2174     return OK;
2175 }
2176 
unregisterFdFromEpoll(int fd)2177 status_t EventHub::unregisterFdFromEpoll(int fd) {
2178     if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
2179         ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
2180         return -errno;
2181     }
2182     return OK;
2183 }
2184 
registerDeviceForEpollLocked(Device & device)2185 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
2186     status_t result = registerFdForEpoll(device.fd);
2187     if (result != OK) {
2188         ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
2189         return result;
2190     }
2191     if (device.videoDevice) {
2192         registerVideoDeviceForEpollLocked(*device.videoDevice);
2193     }
2194     return result;
2195 }
2196 
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)2197 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
2198     status_t result = registerFdForEpoll(videoDevice.getFd());
2199     if (result != OK) {
2200         ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
2201     }
2202 }
2203 
unregisterDeviceFromEpollLocked(Device & device)2204 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
2205     if (device.hasValidFd()) {
2206         status_t result = unregisterFdFromEpoll(device.fd);
2207         if (result != OK) {
2208             ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
2209             return result;
2210         }
2211     }
2212     if (device.videoDevice) {
2213         unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
2214     }
2215     return OK;
2216 }
2217 
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)2218 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
2219     if (videoDevice.hasValidFd()) {
2220         status_t result = unregisterFdFromEpoll(videoDevice.getFd());
2221         if (result != OK) {
2222             ALOGW("Could not remove video device fd from epoll for device: %s",
2223                   videoDevice.getName().c_str());
2224         }
2225     }
2226 }
2227 
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,ftl::Flags<InputDeviceClass> classes)2228 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
2229                                                     ftl::Flags<InputDeviceClass> classes) {
2230     SHA256_CTX ctx;
2231     SHA256_Init(&ctx);
2232     SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
2233                   identifier.uniqueId.size());
2234     std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
2235     SHA256_Final(digest.data(), &ctx);
2236 
2237     std::string obfuscatedId;
2238     for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
2239         obfuscatedId += StringPrintf("%02x", digest[i]);
2240     }
2241 
2242     android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
2243                                identifier.vendor, identifier.product, identifier.version,
2244                                identifier.bus, obfuscatedId.c_str(), classes.get());
2245 }
2246 
openDeviceLocked(const std::string & devicePath)2247 void EventHub::openDeviceLocked(const std::string& devicePath) {
2248     // If an input device happens to register around the time when EventHub's constructor runs, it
2249     // is possible that the same input event node (for example, /dev/input/event3) will be noticed
2250     // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
2251     // from getting registered, ensure that this path is not already covered by an existing device.
2252     for (const auto& [deviceId, device] : mDevices) {
2253         if (device->path == devicePath) {
2254             return; // device was already registered
2255         }
2256     }
2257 
2258     char buffer[80];
2259 
2260     ALOGV("Opening device: %s", devicePath.c_str());
2261 
2262     int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
2263     if (fd < 0) {
2264         ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
2265         return;
2266     }
2267 
2268     InputDeviceIdentifier identifier;
2269 
2270     // Get device name.
2271     if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
2272         ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
2273     } else {
2274         buffer[sizeof(buffer) - 1] = '\0';
2275         identifier.name = buffer;
2276     }
2277 
2278     // Check to see if the device is on our excluded list
2279     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
2280         const std::string& item = mExcludedDevices[i];
2281         if (identifier.name == item) {
2282             ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
2283             close(fd);
2284             return;
2285         }
2286     }
2287 
2288     // Get device driver version.
2289     int driverVersion;
2290     if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
2291         ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
2292         close(fd);
2293         return;
2294     }
2295 
2296     // Get device identifier.
2297     struct input_id inputId;
2298     if (ioctl(fd, EVIOCGID, &inputId)) {
2299         ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
2300         close(fd);
2301         return;
2302     }
2303     identifier.bus = inputId.bustype;
2304     identifier.product = inputId.product;
2305     identifier.vendor = inputId.vendor;
2306     identifier.version = inputId.version;
2307 
2308     // Get device physical location.
2309     if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
2310         // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
2311     } else {
2312         buffer[sizeof(buffer) - 1] = '\0';
2313         identifier.location = buffer;
2314     }
2315 
2316     // Get device unique id.
2317     if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
2318         // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
2319     } else {
2320         buffer[sizeof(buffer) - 1] = '\0';
2321         identifier.uniqueId = buffer;
2322     }
2323 
2324     // Attempt to get the bluetooth address of an input device from the uniqueId.
2325     if (identifier.bus == BUS_BLUETOOTH &&
2326         std::regex_match(identifier.uniqueId,
2327                          std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) {
2328         identifier.bluetoothAddress = identifier.uniqueId;
2329         // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address.
2330         for (auto& c : *identifier.bluetoothAddress) {
2331             c = ::toupper(c);
2332         }
2333     }
2334 
2335     // Fill in the descriptor.
2336     assignDescriptorLocked(identifier);
2337 
2338     // Allocate device.  (The device object takes ownership of the fd at this point.)
2339     int32_t deviceId = mNextDeviceId++;
2340     std::unique_ptr<Device> device =
2341             std::make_unique<Device>(fd, deviceId, devicePath, identifier,
2342                                      obtainAssociatedDeviceLocked(devicePath));
2343 
2344     ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
2345     ALOGV("  bus:        %04x\n"
2346           "  vendor      %04x\n"
2347           "  product     %04x\n"
2348           "  version     %04x\n",
2349           identifier.bus, identifier.vendor, identifier.product, identifier.version);
2350     ALOGV("  name:       \"%s\"\n", identifier.name.c_str());
2351     ALOGV("  location:   \"%s\"\n", identifier.location.c_str());
2352     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.c_str());
2353     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.c_str());
2354     ALOGV("  driver:     v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
2355           driverVersion & 0xff);
2356 
2357     // Load the configuration file for the device.
2358     device->loadConfigurationLocked();
2359 
2360     // Figure out the kinds of events the device reports.
2361     device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
2362     device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
2363     device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
2364     device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
2365     device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
2366     device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
2367     device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
2368     device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
2369 
2370     // See if this is a device with keys. This could be full keyboard, or other devices like
2371     // gamepads, joysticks, and styluses with buttons that should generate key presses.
2372     bool haveKeyboardKeys =
2373             device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
2374     bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
2375             device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
2376     bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) ||
2377             device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3);
2378     if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) {
2379         device->classes |= InputDeviceClass::KEYBOARD;
2380     }
2381 
2382     // See if this is a cursor device such as a trackball or mouse.
2383     if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
2384         device->relBitmask.test(REL_Y)) {
2385         device->classes |= InputDeviceClass::CURSOR;
2386     }
2387 
2388     // See if the device is specially configured to be of a certain type.
2389     if (device->configuration) {
2390         std::string deviceType = device->configuration->getString("device.type").value_or("");
2391         if (deviceType == "rotaryEncoder") {
2392             device->classes |= InputDeviceClass::ROTARY_ENCODER;
2393         } else if (deviceType == "externalStylus") {
2394             device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2395         }
2396     }
2397 
2398     // See if this is a touch pad.
2399     // Is this a new modern multi-touch driver?
2400     if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2401         // Some joysticks such as the PS3 controller report axes that conflict
2402         // with the ABS_MT range.  Try to confirm that the device really is
2403         // a touch screen.
2404         if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2405             device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2406             if (device->propBitmask.test(INPUT_PROP_POINTER) &&
2407                 !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) {
2408                 device->classes |= InputDeviceClass::TOUCHPAD;
2409             }
2410         }
2411         // Is this an old style single-touch driver?
2412     } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2413                device->absBitmask.test(ABS_Y)) {
2414         device->classes |= InputDeviceClass::TOUCH;
2415         // Is this a stylus that reports contact/pressure independently of touch coordinates?
2416     } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2417                !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2418         device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2419     }
2420 
2421     // See if this device is a joystick.
2422     // Assumes that joysticks always have gamepad buttons in order to distinguish them
2423     // from other devices such as accelerometers that also have absolute axes.
2424     if (haveGamepadButtons) {
2425         auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2426         for (int i = 0; i <= ABS_MAX; i++) {
2427             if (device->absBitmask.test(i) &&
2428                 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2429                 device->classes = assumedClasses;
2430                 break;
2431             }
2432         }
2433     }
2434 
2435     // Check whether this device is an accelerometer.
2436     if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2437         device->classes |= InputDeviceClass::SENSOR;
2438     }
2439 
2440     // Check whether this device has switches.
2441     for (int i = 0; i <= SW_MAX; i++) {
2442         if (device->swBitmask.test(i)) {
2443             device->classes |= InputDeviceClass::SWITCH;
2444             break;
2445         }
2446     }
2447 
2448     // Check whether this device supports the vibrator.
2449     if (device->ffBitmask.test(FF_RUMBLE)) {
2450         device->classes |= InputDeviceClass::VIBRATOR;
2451     }
2452 
2453     // Configure virtual keys.
2454     if ((device->classes.test(InputDeviceClass::TOUCH))) {
2455         // Load the virtual keys for the touch screen, if any.
2456         // We do this now so that we can make sure to load the keymap if necessary.
2457         bool success = device->loadVirtualKeyMapLocked();
2458         if (success) {
2459             device->classes |= InputDeviceClass::KEYBOARD;
2460         }
2461     }
2462 
2463     // Load the key map.
2464     // We need to do this for joysticks too because the key layout may specify axes, and for
2465     // sensor as well because the key layout may specify the axes to sensor data mapping.
2466     status_t keyMapStatus = NAME_NOT_FOUND;
2467     if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2468                             InputDeviceClass::SENSOR)) {
2469         // Load the keymap for the device.
2470         keyMapStatus = device->loadKeyMapLocked();
2471     }
2472 
2473     // Configure the keyboard, gamepad or virtual keyboard.
2474     if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2475         // Register the keyboard as a built-in keyboard if it is eligible.
2476         if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2477             isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2478                                       &device->keyMap)) {
2479             mBuiltInKeyboardId = device->id;
2480         }
2481 
2482         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2483         if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2484             device->classes |= InputDeviceClass::ALPHAKEY;
2485         }
2486 
2487         // See if this device has a D-pad.
2488         if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(),
2489                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2490             device->classes |= InputDeviceClass::DPAD;
2491         }
2492 
2493         // See if this device has a gamepad.
2494         if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(),
2495                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2496             device->classes |= InputDeviceClass::GAMEPAD;
2497         }
2498 
2499         // See if this device has any stylus buttons that we would want to fuse with touch data.
2500         if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) &&
2501             !device->classes.any(InputDeviceClass::ALPHAKEY) &&
2502             std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(),
2503                         [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2504             device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2505         }
2506     }
2507 
2508     // See if the device is a rotary encoder with a single scroll axis and nothing else.
2509     if (vd_flags::virtual_rotary() && device->classes == ftl::Flags<InputDeviceClass>(0) &&
2510         device->relBitmask.test(REL_WHEEL) && !device->relBitmask.test(REL_HWHEEL)) {
2511         device->classes |= InputDeviceClass::ROTARY_ENCODER;
2512     }
2513 
2514     // If the device isn't recognized as something we handle, don't monitor it.
2515     if (device->classes == ftl::Flags<InputDeviceClass>(0)) {
2516         ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2517               device->identifier.name.c_str());
2518         return;
2519     }
2520 
2521     // Classify InputDeviceClass::BATTERY.
2522     if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) {
2523         device->classes |= InputDeviceClass::BATTERY;
2524     }
2525 
2526     // Classify InputDeviceClass::LIGHT.
2527     if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) {
2528         device->classes |= InputDeviceClass::LIGHT;
2529     }
2530 
2531     // Determine whether the device has a mic.
2532     if (device->deviceHasMicLocked()) {
2533         device->classes |= InputDeviceClass::MIC;
2534     }
2535 
2536     // Determine whether the device is external or internal.
2537     if (device->isExternalDeviceLocked()) {
2538         device->classes |= InputDeviceClass::EXTERNAL;
2539     }
2540 
2541     if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2542         device->classes.test(InputDeviceClass::GAMEPAD)) {
2543         device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2544         device->setLedForControllerLocked();
2545     }
2546 
2547     if (registerDeviceForEpollLocked(*device) != OK) {
2548         return;
2549     }
2550 
2551     device->configureFd();
2552 
2553     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2554           "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2555           deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2556           device->classes.string().c_str(), device->configurationFile.c_str(),
2557           device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2558           toString(mBuiltInKeyboardId == deviceId));
2559 
2560     addDeviceLocked(std::move(device));
2561 }
2562 
openVideoDeviceLocked(const std::string & devicePath)2563 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2564     std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2565     if (!videoDevice) {
2566         ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2567         return;
2568     }
2569     // Transfer ownership of this video device to a matching input device
2570     for (const auto& [id, device] : mDevices) {
2571         if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2572             return; // 'device' now owns 'videoDevice'
2573         }
2574     }
2575 
2576     // Couldn't find a matching input device, so just add it to a temporary holding queue.
2577     // A matching input device may appear later.
2578     ALOGI("Adding video device %s to list of unattached video devices",
2579           videoDevice->getName().c_str());
2580     mUnattachedVideoDevices.push_back(std::move(videoDevice));
2581 }
2582 
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2583 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2584                                        std::unique_ptr<TouchVideoDevice>& videoDevice) {
2585     if (videoDevice->getName() != device.identifier.name) {
2586         return false;
2587     }
2588     device.videoDevice = std::move(videoDevice);
2589     if (device.enabled) {
2590         registerVideoDeviceForEpollLocked(*device.videoDevice);
2591     }
2592     return true;
2593 }
2594 
isDeviceEnabled(int32_t deviceId) const2595 bool EventHub::isDeviceEnabled(int32_t deviceId) const {
2596     std::scoped_lock _l(mLock);
2597     Device* device = getDeviceLocked(deviceId);
2598     if (device == nullptr) {
2599         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2600         return false;
2601     }
2602     return device->enabled;
2603 }
2604 
enableDevice(int32_t deviceId)2605 status_t EventHub::enableDevice(int32_t deviceId) {
2606     std::scoped_lock _l(mLock);
2607     Device* device = getDeviceLocked(deviceId);
2608     if (device == nullptr) {
2609         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2610         return BAD_VALUE;
2611     }
2612     if (device->enabled) {
2613         ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2614         return OK;
2615     }
2616     status_t result = device->enable();
2617     if (result != OK) {
2618         ALOGE("Failed to enable device %" PRId32, deviceId);
2619         return result;
2620     }
2621 
2622     device->configureFd();
2623 
2624     return registerDeviceForEpollLocked(*device);
2625 }
2626 
disableDevice(int32_t deviceId)2627 status_t EventHub::disableDevice(int32_t deviceId) {
2628     std::scoped_lock _l(mLock);
2629     Device* device = getDeviceLocked(deviceId);
2630     if (device == nullptr) {
2631         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2632         return BAD_VALUE;
2633     }
2634     if (!device->enabled) {
2635         ALOGW("Duplicate call to %s, input device already disabled", __func__);
2636         return OK;
2637     }
2638     unregisterDeviceFromEpollLocked(*device);
2639     return device->disable();
2640 }
2641 
2642 // TODO(b/274755573): Shift to uevent handling on native side and remove this method
2643 // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a
2644 // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to
2645 // directly observe UEvents instead of triggering from Java side.
sysfsNodeChanged(const std::string & sysfsNodePath)2646 void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
2647     std::scoped_lock _l(mLock);
2648 
2649     // Check in opening devices
2650     for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) {
2651         std::unique_ptr<Device>& device = *it;
2652         if (device->associatedDevice &&
2653             sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2654                     std::string::npos &&
2655             device->associatedDevice->isChanged()) {
2656             it = mOpeningDevices.erase(it);
2657             openDeviceLocked(device->path);
2658         }
2659     }
2660 
2661     // Check in already added device
2662     std::vector<Device*> devicesToReopen;
2663     for (const auto& [id, device] : mDevices) {
2664         if (device->associatedDevice &&
2665             sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2666                     std::string::npos &&
2667             device->associatedDevice->isChanged()) {
2668             devicesToReopen.push_back(device.get());
2669         }
2670     }
2671     for (const auto& device : devicesToReopen) {
2672         closeDeviceLocked(*device);
2673         openDeviceLocked(device->path);
2674     }
2675     devicesToReopen.clear();
2676 }
2677 
createVirtualKeyboardLocked()2678 void EventHub::createVirtualKeyboardLocked() {
2679     InputDeviceIdentifier identifier;
2680     identifier.name = "Virtual";
2681     identifier.uniqueId = "<virtual>";
2682     assignDescriptorLocked(identifier);
2683 
2684     std::unique_ptr<Device> device =
2685             std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2686                                      identifier, /*associatedDevice=*/nullptr);
2687     device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2688             InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2689     device->loadKeyMapLocked();
2690     addDeviceLocked(std::move(device));
2691 }
2692 
addDeviceLocked(std::unique_ptr<Device> device)2693 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2694     reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2695     mOpeningDevices.push_back(std::move(device));
2696 }
2697 
getNextControllerNumberLocked(const std::string & name)2698 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2699     if (mControllerNumbers.isFull()) {
2700         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2701               name.c_str());
2702         return 0;
2703     }
2704     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2705     // one
2706     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2707 }
2708 
releaseControllerNumberLocked(int32_t num)2709 void EventHub::releaseControllerNumberLocked(int32_t num) {
2710     if (num > 0) {
2711         mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2712     }
2713 }
2714 
closeDeviceByPathLocked(const std::string & devicePath)2715 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2716     Device* device = getDeviceByPathLocked(devicePath);
2717     if (device != nullptr) {
2718         closeDeviceLocked(*device);
2719         return;
2720     }
2721     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2722 }
2723 
2724 /**
2725  * Find the video device by filename, and close it.
2726  * The video device is closed by path during an inotify event, where we don't have the
2727  * additional context about the video device fd, or the associated input device.
2728  */
closeVideoDeviceByPathLocked(const std::string & devicePath)2729 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2730     // A video device may be owned by an existing input device, or it may be stored in
2731     // the mUnattachedVideoDevices queue. Check both locations.
2732     for (const auto& [id, device] : mDevices) {
2733         if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2734             unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2735             device->videoDevice = nullptr;
2736             return;
2737         }
2738     }
2739     std::erase_if(mUnattachedVideoDevices,
2740                   [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2741                       return videoDevice->getPath() == devicePath;
2742                   });
2743 }
2744 
closeAllDevicesLocked()2745 void EventHub::closeAllDevicesLocked() {
2746     mUnattachedVideoDevices.clear();
2747     while (!mDevices.empty()) {
2748         closeDeviceLocked(*(mDevices.begin()->second));
2749     }
2750 }
2751 
closeDeviceLocked(Device & device)2752 void EventHub::closeDeviceLocked(Device& device) {
2753     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2754           device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2755 
2756     if (device.id == mBuiltInKeyboardId) {
2757         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2758               device.path.c_str(), mBuiltInKeyboardId);
2759         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2760     }
2761 
2762     unregisterDeviceFromEpollLocked(device);
2763     if (device.videoDevice) {
2764         // This must be done after the video device is removed from epoll
2765         mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2766     }
2767 
2768     releaseControllerNumberLocked(device.controllerNumber);
2769     device.controllerNumber = 0;
2770     device.close();
2771     mClosingDevices.push_back(std::move(mDevices[device.id]));
2772 
2773     mDevices.erase(device.id);
2774 }
2775 
readNotifyLocked()2776 base::Result<void> EventHub::readNotifyLocked() {
2777     static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event));
2778     uint8_t eventBuffer[512];
2779     ssize_t sizeRead;
2780 
2781     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2782     do {
2783         sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer));
2784     } while (sizeRead < 0 && errno == EINTR);
2785 
2786     if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno));
2787 
2788     for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) {
2789         const inotify_event* event;
2790         event = (const inotify_event*)(eventBuffer + eventPos);
2791         if (event->len == 0) continue;
2792 
2793         handleNotifyEventLocked(*event);
2794 
2795         const ssize_t eventSize = EVENT_SIZE + event->len;
2796         sizeRead -= eventSize;
2797         eventPos += eventSize;
2798     }
2799     return {};
2800 }
2801 
handleNotifyEventLocked(const inotify_event & event)2802 void EventHub::handleNotifyEventLocked(const inotify_event& event) {
2803     if (event.wd == mDeviceInputWd) {
2804         std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name;
2805         if (event.mask & IN_CREATE) {
2806             openDeviceLocked(filename);
2807         } else {
2808             ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2809             closeDeviceByPathLocked(filename);
2810         }
2811     } else if (event.wd == mDeviceWd) {
2812         if (isV4lTouchNode(event.name)) {
2813             std::string filename = std::string(DEVICE_PATH) + "/" + event.name;
2814             if (event.mask & IN_CREATE) {
2815                 openVideoDeviceLocked(filename);
2816             } else {
2817                 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2818                 closeVideoDeviceByPathLocked(filename);
2819             }
2820         } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) {
2821             addDeviceInputInotify();
2822         }
2823     } else {
2824         LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd);
2825     }
2826 }
2827 
scanDirLocked(const std::string & dirname)2828 status_t EventHub::scanDirLocked(const std::string& dirname) {
2829     for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2830         openDeviceLocked(entry.path());
2831     }
2832     return 0;
2833 }
2834 
2835 /**
2836  * Look for all dirname/v4l-touch* devices, and open them.
2837  */
scanVideoDirLocked(const std::string & dirname)2838 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2839     for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2840         if (isV4lTouchNode(entry.path())) {
2841             ALOGI("Found touch video device %s", entry.path().c_str());
2842             openVideoDeviceLocked(entry.path());
2843         }
2844     }
2845     return OK;
2846 }
2847 
requestReopenDevices()2848 void EventHub::requestReopenDevices() {
2849     ALOGV("requestReopenDevices() called");
2850 
2851     std::scoped_lock _l(mLock);
2852     mNeedToReopenDevices = true;
2853 }
2854 
setKernelWakeEnabled(int32_t deviceId,bool enabled)2855 bool EventHub::setKernelWakeEnabled(int32_t deviceId, bool enabled) {
2856     std::scoped_lock _l(mLock);
2857     std::string enabledStr = enabled ? "enabled" : "disabled";
2858     Device* device = getDeviceLocked(deviceId);
2859     if (device == nullptr) {
2860         ALOGE("Device Id %d does not exist for setting power wakeup", deviceId);
2861         return false;
2862     }
2863     if (device->associatedDevice == nullptr) {
2864         return false;
2865     }
2866     std::filesystem::path currentPath = device->associatedDevice->sysfsRootPath;
2867     while (!currentPath.empty() && currentPath != "/") {
2868         std::string nodePath = currentPath / "power/wakeup";
2869         if (std::filesystem::exists(nodePath)) {
2870             if (base::WriteStringToFile(enabledStr, nodePath)) {
2871                 return true;
2872 
2873             }
2874             // No need to continue searching in parent directories as power/wakeup nodes
2875             // higher up may control other subdevices.
2876             ALOGW("Failed to set power/wakeup node at %s", nodePath.c_str());
2877             return false;
2878         }
2879         currentPath = currentPath.parent_path();
2880     }
2881     return false;
2882 }
2883 
dump(std::string & dump) const2884 void EventHub::dump(std::string& dump) const {
2885     dump += "Event Hub State:\n";
2886 
2887     { // acquire lock
2888         std::scoped_lock _l(mLock);
2889 
2890         dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
2891 
2892         dump += INDENT "Devices:\n";
2893 
2894         for (const auto& [id, device] : mDevices) {
2895             if (mBuiltInKeyboardId == device->id) {
2896                 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
2897                                      device->id, device->identifier.name.c_str());
2898             } else {
2899                 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
2900                                      device->identifier.name.c_str());
2901             }
2902             dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
2903             dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
2904             dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
2905             dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
2906             dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
2907             dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
2908             dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
2909             dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
2910                                          "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n",
2911                                  device->identifier.bus, device->identifier.vendor,
2912                                  device->identifier.product, device->identifier.version,
2913                                  toString(device->identifier.bluetoothAddress).c_str());
2914             dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
2915                                  device->keyMap.keyLayoutFile.c_str());
2916             dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
2917                                  device->keyMap.keyCharacterMapFile.c_str());
2918             if (device->associatedDevice && device->associatedDevice->layoutInfo) {
2919                 dump += StringPrintf(INDENT3 "LanguageTag: %s\n",
2920                                      device->associatedDevice->layoutInfo->languageTag.c_str());
2921                 dump += StringPrintf(INDENT3 "LayoutType: %s\n",
2922                                      device->associatedDevice->layoutInfo->layoutType.c_str());
2923             }
2924             dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
2925                                  device->configurationFile.c_str());
2926             dump += StringPrintf(INDENT3 "VideoDevice: %s\n",
2927                                  device->videoDevice ? device->videoDevice->dump().c_str()
2928                                                      : "<none>");
2929             dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n",
2930                                  device->associatedDevice
2931                                          ? device->associatedDevice->sysfsRootPath.c_str()
2932                                          : "<none>");
2933             if (device->keyBitmask.any(0, KEY_MAX + 1)) {
2934                 const auto pressedKeys = device->keyState.dumpSetIndices(", ", [](int i) {
2935                     return InputEventLookup::getLinuxEvdevLabel(EV_KEY, i, 1).code;
2936                 });
2937                 dump += StringPrintf(INDENT3 "KeyState (pressed): %s\n", pressedKeys.c_str());
2938             }
2939             if (device->swBitmask.any(0, SW_MAX + 1)) {
2940                 const auto pressedSwitches = device->swState.dumpSetIndices(", ", [](int i) {
2941                     return InputEventLookup::getLinuxEvdevLabel(EV_SW, i, 1).code;
2942                 });
2943                 dump += StringPrintf(INDENT3 "SwState (pressed): %s\n", pressedSwitches.c_str());
2944             }
2945             if (!device->absState.empty()) {
2946                 std::string axisValues;
2947                 for (const auto& [axis, state] : device->absState) {
2948                     if (!axisValues.empty()) {
2949                         axisValues += ", ";
2950                     }
2951                     axisValues += StringPrintf("%s=%d",
2952                                                InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0)
2953                                                        .code.c_str(),
2954                                                state.value);
2955                 }
2956                 dump += INDENT3 "AbsState: " + axisValues + "\n";
2957             }
2958         }
2959 
2960         dump += INDENT "Unattached video devices:\n";
2961         for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
2962             dump += INDENT2 + videoDevice->dump() + "\n";
2963         }
2964         if (mUnattachedVideoDevices.empty()) {
2965             dump += INDENT2 "<none>\n";
2966         }
2967     } // release lock
2968 }
2969 
monitor() const2970 void EventHub::monitor() const {
2971     // Acquire and release the lock to ensure that the event hub has not deadlocked.
2972     std::unique_lock<std::mutex> lock(mLock);
2973 }
2974 
dump() const2975 std::string EventHub::AssociatedDevice::dump() const {
2976     return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(),
2977                         batteryInfos.size(), lightInfos.size());
2978 }
2979 
2980 } // namespace android
2981