1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ResourceValues.h"
18
19 #include <algorithm>
20 #include <cinttypes>
21 #include <limits>
22 #include <set>
23 #include <sstream>
24
25 #include "android-base/stringprintf.h"
26 #include "androidfw/ResourceTypes.h"
27
28 #include "Resource.h"
29 #include "ResourceUtils.h"
30 #include "ValueVisitor.h"
31 #include "util/Util.h"
32
33 using ::aapt::text::Printer;
34 using ::android::StringPiece;
35 using ::android::base::StringPrintf;
36
37 namespace aapt {
38
PrettyPrint(Printer * printer) const39 void Value::PrettyPrint(Printer* printer) const {
40 std::ostringstream str_stream;
41 Print(&str_stream);
42 printer->Print(str_stream.str());
43 }
44
operator <<(std::ostream & out,const Value & value)45 std::ostream& operator<<(std::ostream& out, const Value& value) {
46 value.Print(&out);
47 return out;
48 }
49
Transform(ValueTransformer & transformer) const50 std::unique_ptr<Value> Value::Transform(ValueTransformer& transformer) const {
51 return std::unique_ptr<Value>(this->TransformValueImpl(transformer));
52 }
53
Transform(ValueTransformer & transformer) const54 std::unique_ptr<Item> Item::Transform(ValueTransformer& transformer) const {
55 return std::unique_ptr<Item>(this->TransformItemImpl(transformer));
56 }
57
58 template <typename Derived>
Accept(ValueVisitor * visitor)59 void BaseValue<Derived>::Accept(ValueVisitor* visitor) {
60 visitor->Visit(static_cast<Derived*>(this));
61 }
62
63 template <typename Derived>
Accept(ConstValueVisitor * visitor) const64 void BaseValue<Derived>::Accept(ConstValueVisitor* visitor) const {
65 visitor->Visit(static_cast<const Derived*>(this));
66 }
67
68 template <typename Derived>
Accept(ValueVisitor * visitor)69 void BaseItem<Derived>::Accept(ValueVisitor* visitor) {
70 visitor->Visit(static_cast<Derived*>(this));
71 }
72
73 template <typename Derived>
Accept(ConstValueVisitor * visitor) const74 void BaseItem<Derived>::Accept(ConstValueVisitor* visitor) const {
75 visitor->Visit(static_cast<const Derived*>(this));
76 }
77
RawString(const android::StringPool::Ref & ref)78 RawString::RawString(const android::StringPool::Ref& ref) : value(ref) {
79 }
80
Equals(const Value * value) const81 bool RawString::Equals(const Value* value) const {
82 const RawString* other = ValueCast<RawString>(value);
83 if (!other) {
84 return false;
85 }
86 return *this->value == *other->value;
87 }
88
Flatten(android::Res_value * out_value) const89 bool RawString::Flatten(android::Res_value* out_value) const {
90 out_value->dataType = android::Res_value::TYPE_STRING;
91 out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
92 return true;
93 }
94
Print(std::ostream * out) const95 void RawString::Print(std::ostream* out) const {
96 *out << "(raw string) " << *value;
97 }
98
Reference()99 Reference::Reference() : reference_type(Type::kResource) {}
100
Reference(const ResourceNameRef & n,Type t)101 Reference::Reference(const ResourceNameRef& n, Type t)
102 : name(n.ToResourceName()), reference_type(t) {}
103
Reference(const ResourceId & i,Type type)104 Reference::Reference(const ResourceId& i, Type type)
105 : id(i), reference_type(type) {}
106
Reference(const ResourceNameRef & n,const ResourceId & i)107 Reference::Reference(const ResourceNameRef& n, const ResourceId& i)
108 : name(n.ToResourceName()), id(i), reference_type(Type::kResource) {}
109
Equals(const Value * value) const110 bool Reference::Equals(const Value* value) const {
111 const Reference* other = ValueCast<Reference>(value);
112 if (!other) {
113 return false;
114 }
115 return reference_type == other->reference_type && private_reference == other->private_reference &&
116 id == other->id && name == other->name && type_flags == other->type_flags;
117 }
118
Flatten(android::Res_value * out_value) const119 bool Reference::Flatten(android::Res_value* out_value) const {
120 if (name && name.value().type.type == ResourceType::kMacro) {
121 return false;
122 }
123
124 const ResourceId resid = id.value_or(ResourceId(0));
125 const bool dynamic = resid.is_valid() && is_dynamic;
126
127 if (reference_type == Reference::Type::kResource) {
128 if (dynamic) {
129 out_value->dataType = android::Res_value::TYPE_DYNAMIC_REFERENCE;
130 } else {
131 out_value->dataType = android::Res_value::TYPE_REFERENCE;
132 }
133 } else {
134 if (dynamic) {
135 out_value->dataType = android::Res_value::TYPE_DYNAMIC_ATTRIBUTE;
136 } else {
137 out_value->dataType = android::Res_value::TYPE_ATTRIBUTE;
138 }
139 }
140 out_value->data = android::util::HostToDevice32(resid.id);
141 return true;
142 }
143
Print(std::ostream * out) const144 void Reference::Print(std::ostream* out) const {
145 if (reference_type == Type::kResource) {
146 *out << "(reference) @";
147 if (!name && !id) {
148 *out << "null";
149 return;
150 }
151 } else {
152 *out << "(attr-reference) ?";
153 }
154
155 if (private_reference) {
156 *out << "*";
157 }
158
159 if (name) {
160 *out << name.value();
161 }
162
163 if (id && id.value().is_valid()) {
164 if (name) {
165 *out << " ";
166 }
167 *out << id.value();
168 }
169 }
170
PrettyPrintReferenceImpl(const Reference & ref,bool print_package,Printer * printer)171 static void PrettyPrintReferenceImpl(const Reference& ref, bool print_package, Printer* printer) {
172 switch (ref.reference_type) {
173 case Reference::Type::kResource:
174 printer->Print("@");
175 break;
176
177 case Reference::Type::kAttribute:
178 printer->Print("?");
179 break;
180 }
181
182 if (!ref.name && !ref.id) {
183 printer->Print("null");
184 return;
185 }
186
187 if (ref.private_reference) {
188 printer->Print("*");
189 }
190
191 if (ref.name) {
192 const ResourceName& name = ref.name.value();
193 if (print_package) {
194 printer->Print(name.to_string());
195 } else {
196 printer->Print(name.type.to_string());
197 printer->Print("/");
198 printer->Print(name.entry);
199 }
200 } else if (ref.id && ref.id.value().is_valid()) {
201 printer->Print(ref.id.value().to_string());
202 }
203 }
204
PrettyPrint(Printer * printer) const205 void Reference::PrettyPrint(Printer* printer) const {
206 PrettyPrintReferenceImpl(*this, true /*print_package*/, printer);
207 }
208
PrettyPrint(StringPiece package,Printer * printer) const209 void Reference::PrettyPrint(StringPiece package, Printer* printer) const {
210 const bool print_package = name ? package != name.value().package : true;
211 PrettyPrintReferenceImpl(*this, print_package, printer);
212 }
213
Equals(const Value * value) const214 bool Id::Equals(const Value* value) const {
215 return ValueCast<Id>(value) != nullptr;
216 }
217
Flatten(android::Res_value * out) const218 bool Id::Flatten(android::Res_value* out) const {
219 out->dataType = android::Res_value::TYPE_INT_BOOLEAN;
220 out->data = android::util::HostToDevice32(0);
221 return true;
222 }
223
Print(std::ostream * out) const224 void Id::Print(std::ostream* out) const {
225 *out << "(id)";
226 }
227
String(const android::StringPool::Ref & ref)228 String::String(const android::StringPool::Ref& ref) : value(ref) {
229 }
230
Equals(const Value * value) const231 bool String::Equals(const Value* value) const {
232 const String* other = ValueCast<String>(value);
233 if (!other) {
234 return false;
235 }
236
237 if (this->value != other->value) {
238 return false;
239 }
240
241 if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
242 return false;
243 }
244
245 auto other_iter = other->untranslatable_sections.begin();
246 for (const UntranslatableSection& this_section : untranslatable_sections) {
247 if (this_section != *other_iter) {
248 return false;
249 }
250 ++other_iter;
251 }
252 return true;
253 }
254
Flatten(android::Res_value * out_value) const255 bool String::Flatten(android::Res_value* out_value) const {
256 // Verify that our StringPool index is within encode-able limits.
257 if (value.index() > std::numeric_limits<uint32_t>::max()) {
258 return false;
259 }
260
261 out_value->dataType = android::Res_value::TYPE_STRING;
262 out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
263 return true;
264 }
265
Print(std::ostream * out) const266 void String::Print(std::ostream* out) const {
267 *out << "(string) \"" << *value << "\"";
268 }
269
PrettyPrint(Printer * printer) const270 void String::PrettyPrint(Printer* printer) const {
271 printer->Print("\"");
272 printer->Print(*value);
273 printer->Print("\"");
274 }
275
StyledString(const android::StringPool::StyleRef & ref)276 StyledString::StyledString(const android::StringPool::StyleRef& ref) : value(ref) {
277 }
278
Equals(const Value * value) const279 bool StyledString::Equals(const Value* value) const {
280 const StyledString* other = ValueCast<StyledString>(value);
281 if (!other) {
282 return false;
283 }
284
285 if (this->value != other->value) {
286 return false;
287 }
288
289 if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
290 return false;
291 }
292
293 auto other_iter = other->untranslatable_sections.begin();
294 for (const UntranslatableSection& this_section : untranslatable_sections) {
295 if (this_section != *other_iter) {
296 return false;
297 }
298 ++other_iter;
299 }
300 return true;
301 }
302
Flatten(android::Res_value * out_value) const303 bool StyledString::Flatten(android::Res_value* out_value) const {
304 if (value.index() > std::numeric_limits<uint32_t>::max()) {
305 return false;
306 }
307
308 out_value->dataType = android::Res_value::TYPE_STRING;
309 out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
310 return true;
311 }
312
Print(std::ostream * out) const313 void StyledString::Print(std::ostream* out) const {
314 *out << "(styled string) \"" << value->value << "\"";
315 for (const android::StringPool::Span& span : value->spans) {
316 *out << " " << *span.name << ":" << span.first_char << "," << span.last_char;
317 }
318 }
319
FileReference(const android::StringPool::Ref & _path)320 FileReference::FileReference(const android::StringPool::Ref& _path) : path(_path) {
321 }
322
Equals(const Value * value) const323 bool FileReference::Equals(const Value* value) const {
324 const FileReference* other = ValueCast<FileReference>(value);
325 if (!other) {
326 return false;
327 }
328 return path == other->path;
329 }
330
Flatten(android::Res_value * out_value) const331 bool FileReference::Flatten(android::Res_value* out_value) const {
332 if (path.index() > std::numeric_limits<uint32_t>::max()) {
333 return false;
334 }
335
336 out_value->dataType = android::Res_value::TYPE_STRING;
337 out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(path.index()));
338 return true;
339 }
340
Print(std::ostream * out) const341 void FileReference::Print(std::ostream* out) const {
342 *out << "(file) " << *path;
343 switch (type) {
344 case ResourceFile::Type::kBinaryXml:
345 *out << " type=XML";
346 break;
347 case ResourceFile::Type::kProtoXml:
348 *out << " type=protoXML";
349 break;
350 case ResourceFile::Type::kPng:
351 *out << " type=PNG";
352 break;
353 default:
354 break;
355 }
356 }
357
BinaryPrimitive(const android::Res_value & val)358 BinaryPrimitive::BinaryPrimitive(const android::Res_value& val) : value(val) {
359 }
360
BinaryPrimitive(uint8_t dataType,uint32_t data)361 BinaryPrimitive::BinaryPrimitive(uint8_t dataType, uint32_t data) {
362 value.dataType = dataType;
363 value.data = data;
364 }
365
Equals(const Value * value) const366 bool BinaryPrimitive::Equals(const Value* value) const {
367 const BinaryPrimitive* other = ValueCast<BinaryPrimitive>(value);
368 if (!other) {
369 return false;
370 }
371 return this->value.dataType == other->value.dataType &&
372 this->value.data == other->value.data;
373 }
374
Flatten(::android::Res_value * out_value) const375 bool BinaryPrimitive::Flatten(::android::Res_value* out_value) const {
376 out_value->dataType = value.dataType;
377 out_value->data = android::util::HostToDevice32(value.data);
378 return true;
379 }
380
Print(std::ostream * out) const381 void BinaryPrimitive::Print(std::ostream* out) const {
382 *out << StringPrintf("(primitive) type=0x%02x data=0x%08x", value.dataType, value.data);
383 }
384
ComplexToString(uint32_t complex_value,bool fraction)385 static std::string ComplexToString(uint32_t complex_value, bool fraction) {
386 using ::android::Res_value;
387
388 constexpr std::array<int, 4> kRadixShifts = {{23, 16, 8, 0}};
389
390 // Determine the radix that was used.
391 const uint32_t radix =
392 (complex_value >> Res_value::COMPLEX_RADIX_SHIFT) & Res_value::COMPLEX_RADIX_MASK;
393 const uint64_t mantissa = uint64_t{(complex_value >> Res_value::COMPLEX_MANTISSA_SHIFT) &
394 Res_value::COMPLEX_MANTISSA_MASK}
395 << kRadixShifts[radix];
396 const float value = mantissa * (1.0f / (1 << 23));
397
398 std::string str = StringPrintf("%f", value);
399
400 const int unit_type =
401 (complex_value >> Res_value::COMPLEX_UNIT_SHIFT) & Res_value::COMPLEX_UNIT_MASK;
402 if (fraction) {
403 switch (unit_type) {
404 case Res_value::COMPLEX_UNIT_FRACTION:
405 str += "%";
406 break;
407 case Res_value::COMPLEX_UNIT_FRACTION_PARENT:
408 str += "%p";
409 break;
410 default:
411 str += "???";
412 break;
413 }
414 } else {
415 switch (unit_type) {
416 case Res_value::COMPLEX_UNIT_PX:
417 str += "px";
418 break;
419 case Res_value::COMPLEX_UNIT_DIP:
420 str += "dp";
421 break;
422 case Res_value::COMPLEX_UNIT_SP:
423 str += "sp";
424 break;
425 case Res_value::COMPLEX_UNIT_PT:
426 str += "pt";
427 break;
428 case Res_value::COMPLEX_UNIT_IN:
429 str += "in";
430 break;
431 case Res_value::COMPLEX_UNIT_MM:
432 str += "mm";
433 break;
434 default:
435 str += "???";
436 break;
437 }
438 }
439 return str;
440 }
441
442 // This function is designed to using different specifier to print different floats,
443 // which can print more accurate format rather than using %g only.
DecideFormat(float f)444 const char* BinaryPrimitive::DecideFormat(float f) {
445 // if the float is either too big or too tiny, print it in scientific notation.
446 // eg: "10995116277760000000000" to 1.099512e+22, "0.00000000001" to 1.000000e-11
447 if (fabs(f) > std::numeric_limits<int64_t>::max() || fabs(f) < 1e-10) {
448 return "%e";
449 // Else if the number is an integer exactly, print it without trailing zeros.
450 // eg: "1099511627776" to 1099511627776
451 } else if (int64_t(f) == f) {
452 return "%.0f";
453 }
454 return "%g";
455 }
456
PrettyPrint(Printer * printer) const457 void BinaryPrimitive::PrettyPrint(Printer* printer) const {
458 using ::android::Res_value;
459 switch (value.dataType) {
460 case Res_value::TYPE_NULL:
461 if (value.data == Res_value::DATA_NULL_EMPTY) {
462 printer->Print("@empty");
463 } else {
464 printer->Print("@null");
465 }
466 break;
467
468 case Res_value::TYPE_INT_DEC:
469 printer->Print(StringPrintf("%" PRIi32, static_cast<int32_t>(value.data)));
470 break;
471
472 case Res_value::TYPE_INT_HEX:
473 printer->Print(StringPrintf("0x%08x", value.data));
474 break;
475
476 case Res_value::TYPE_INT_BOOLEAN:
477 printer->Print(value.data != 0 ? "true" : "false");
478 break;
479
480 case Res_value::TYPE_INT_COLOR_ARGB8:
481 case Res_value::TYPE_INT_COLOR_RGB8:
482 case Res_value::TYPE_INT_COLOR_ARGB4:
483 case Res_value::TYPE_INT_COLOR_RGB4:
484 printer->Print(StringPrintf("#%08x", value.data));
485 break;
486
487 case Res_value::TYPE_FLOAT:
488 float f;
489 f = *reinterpret_cast<const float*>(&value.data);
490 printer->Print(StringPrintf(DecideFormat(f), f));
491 break;
492
493 case Res_value::TYPE_DIMENSION:
494 printer->Print(ComplexToString(value.data, false /*fraction*/));
495 break;
496
497 case Res_value::TYPE_FRACTION:
498 printer->Print(ComplexToString(value.data, true /*fraction*/));
499 break;
500
501 default:
502 printer->Print(StringPrintf("(unknown 0x%02x) 0x%08x", value.dataType, value.data));
503 break;
504 }
505 }
506
Attribute(uint32_t t)507 Attribute::Attribute(uint32_t t)
508 : type_mask(t),
509 min_int(std::numeric_limits<int32_t>::min()),
510 max_int(std::numeric_limits<int32_t>::max()) {
511 }
512
operator <<(std::ostream & out,const Attribute::Symbol & s)513 std::ostream& operator<<(std::ostream& out, const Attribute::Symbol& s) {
514 if (s.symbol.name) {
515 out << s.symbol.name.value().entry;
516 } else {
517 out << "???";
518 }
519 return out << "=" << s.value;
520 }
521
522 template <typename T>
add_pointer(T & val)523 constexpr T* add_pointer(T& val) {
524 return &val;
525 }
526
Equals(const Value * value) const527 bool Attribute::Equals(const Value* value) const {
528 const Attribute* other = ValueCast<Attribute>(value);
529 if (!other) {
530 return false;
531 }
532
533 if (symbols.size() != other->symbols.size()) {
534 return false;
535 }
536
537 if (type_mask != other->type_mask || min_int != other->min_int || max_int != other->max_int) {
538 return false;
539 }
540
541 std::vector<const Symbol*> sorted_a;
542 std::transform(symbols.begin(), symbols.end(), std::back_inserter(sorted_a),
543 add_pointer<const Symbol>);
544 std::sort(sorted_a.begin(), sorted_a.end(), [](const Symbol* a, const Symbol* b) -> bool {
545 return a->symbol.name < b->symbol.name;
546 });
547
548 std::vector<const Symbol*> sorted_b;
549 std::transform(other->symbols.begin(), other->symbols.end(), std::back_inserter(sorted_b),
550 add_pointer<const Symbol>);
551 std::sort(sorted_b.begin(), sorted_b.end(), [](const Symbol* a, const Symbol* b) -> bool {
552 return a->symbol.name < b->symbol.name;
553 });
554
555 return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
556 [](const Symbol* a, const Symbol* b) -> bool {
557 return a->symbol.Equals(&b->symbol) && a->value == b->value;
558 });
559 }
560
IsCompatibleWith(const Attribute & attr) const561 bool Attribute::IsCompatibleWith(const Attribute& attr) const {
562 // If the high bits are set on any of these attribute type masks, then they are incompatible.
563 // We don't check that flags and enums are identical.
564 if ((type_mask & ~android::ResTable_map::TYPE_ANY) != 0 ||
565 (attr.type_mask & ~android::ResTable_map::TYPE_ANY) != 0) {
566 return false;
567 }
568
569 // Every attribute accepts a reference.
570 uint32_t this_type_mask = type_mask | android::ResTable_map::TYPE_REFERENCE;
571 uint32_t that_type_mask = attr.type_mask | android::ResTable_map::TYPE_REFERENCE;
572 return this_type_mask == that_type_mask;
573 }
574
MaskString(uint32_t type_mask)575 std::string Attribute::MaskString(uint32_t type_mask) {
576 if (type_mask == android::ResTable_map::TYPE_ANY) {
577 return "any";
578 }
579
580 std::ostringstream out;
581 bool set = false;
582 if ((type_mask & android::ResTable_map::TYPE_REFERENCE) != 0) {
583 if (!set) {
584 set = true;
585 } else {
586 out << "|";
587 }
588 out << "reference";
589 }
590
591 if ((type_mask & android::ResTable_map::TYPE_STRING) != 0) {
592 if (!set) {
593 set = true;
594 } else {
595 out << "|";
596 }
597 out << "string";
598 }
599
600 if ((type_mask & android::ResTable_map::TYPE_INTEGER) != 0) {
601 if (!set) {
602 set = true;
603 } else {
604 out << "|";
605 }
606 out << "integer";
607 }
608
609 if ((type_mask & android::ResTable_map::TYPE_BOOLEAN) != 0) {
610 if (!set) {
611 set = true;
612 } else {
613 out << "|";
614 }
615 out << "boolean";
616 }
617
618 if ((type_mask & android::ResTable_map::TYPE_COLOR) != 0) {
619 if (!set) {
620 set = true;
621 } else {
622 out << "|";
623 }
624 out << "color";
625 }
626
627 if ((type_mask & android::ResTable_map::TYPE_FLOAT) != 0) {
628 if (!set) {
629 set = true;
630 } else {
631 out << "|";
632 }
633 out << "float";
634 }
635
636 if ((type_mask & android::ResTable_map::TYPE_DIMENSION) != 0) {
637 if (!set) {
638 set = true;
639 } else {
640 out << "|";
641 }
642 out << "dimension";
643 }
644
645 if ((type_mask & android::ResTable_map::TYPE_FRACTION) != 0) {
646 if (!set) {
647 set = true;
648 } else {
649 out << "|";
650 }
651 out << "fraction";
652 }
653
654 if ((type_mask & android::ResTable_map::TYPE_ENUM) != 0) {
655 if (!set) {
656 set = true;
657 } else {
658 out << "|";
659 }
660 out << "enum";
661 }
662
663 if ((type_mask & android::ResTable_map::TYPE_FLAGS) != 0) {
664 if (!set) {
665 set = true;
666 } else {
667 out << "|";
668 }
669 out << "flags";
670 }
671 return out.str();
672 }
673
MaskString() const674 std::string Attribute::MaskString() const {
675 return MaskString(type_mask);
676 }
677
Print(std::ostream * out) const678 void Attribute::Print(std::ostream* out) const {
679 *out << "(attr) " << MaskString();
680
681 if (!symbols.empty()) {
682 *out << " [" << util::Joiner(symbols, ", ") << "]";
683 }
684
685 if (min_int != std::numeric_limits<int32_t>::min()) {
686 *out << " min=" << min_int;
687 }
688
689 if (max_int != std::numeric_limits<int32_t>::max()) {
690 *out << " max=" << max_int;
691 }
692
693 if (IsWeak()) {
694 *out << " [weak]";
695 }
696 }
697
BuildAttributeMismatchMessage(const Attribute & attr,const Item & value,android::DiagMessage * out_msg)698 static void BuildAttributeMismatchMessage(const Attribute& attr, const Item& value,
699 android::DiagMessage* out_msg) {
700 *out_msg << "expected";
701 if (attr.type_mask & android::ResTable_map::TYPE_BOOLEAN) {
702 *out_msg << " boolean";
703 }
704
705 if (attr.type_mask & android::ResTable_map::TYPE_COLOR) {
706 *out_msg << " color";
707 }
708
709 if (attr.type_mask & android::ResTable_map::TYPE_DIMENSION) {
710 *out_msg << " dimension";
711 }
712
713 if (attr.type_mask & android::ResTable_map::TYPE_ENUM) {
714 *out_msg << " enum";
715 }
716
717 if (attr.type_mask & android::ResTable_map::TYPE_FLAGS) {
718 *out_msg << " flags";
719 }
720
721 if (attr.type_mask & android::ResTable_map::TYPE_FLOAT) {
722 *out_msg << " float";
723 }
724
725 if (attr.type_mask & android::ResTable_map::TYPE_FRACTION) {
726 *out_msg << " fraction";
727 }
728
729 if (attr.type_mask & android::ResTable_map::TYPE_INTEGER) {
730 *out_msg << " integer";
731 }
732
733 if (attr.type_mask & android::ResTable_map::TYPE_REFERENCE) {
734 *out_msg << " reference";
735 }
736
737 if (attr.type_mask & android::ResTable_map::TYPE_STRING) {
738 *out_msg << " string";
739 }
740
741 *out_msg << " but got " << value;
742 }
743
Matches(const Item & item,android::DiagMessage * out_msg) const744 bool Attribute::Matches(const Item& item, android::DiagMessage* out_msg) const {
745 constexpr const uint32_t TYPE_ENUM = android::ResTable_map::TYPE_ENUM;
746 constexpr const uint32_t TYPE_FLAGS = android::ResTable_map::TYPE_FLAGS;
747 constexpr const uint32_t TYPE_INTEGER = android::ResTable_map::TYPE_INTEGER;
748 constexpr const uint32_t TYPE_REFERENCE = android::ResTable_map::TYPE_REFERENCE;
749
750 android::Res_value val = {};
751 item.Flatten(&val);
752
753 const uint32_t flattened_data = android::util::DeviceToHost32(val.data);
754
755 // Always allow references.
756 const uint32_t actual_type = ResourceUtils::AndroidTypeToAttributeTypeMask(val.dataType);
757
758 // Only one type must match between the actual and expected.
759 if ((actual_type & (type_mask | TYPE_REFERENCE)) == 0) {
760 if (out_msg) {
761 BuildAttributeMismatchMessage(*this, item, out_msg);
762 }
763 return false;
764 }
765
766 // Enums and flags are encoded as integers, so check them first before doing any range checks.
767 if ((type_mask & TYPE_ENUM) != 0 && (actual_type & TYPE_ENUM) != 0) {
768 for (const Symbol& s : symbols) {
769 if (flattened_data == s.value) {
770 return true;
771 }
772 }
773
774 // If the attribute accepts integers, we can't fail here.
775 if ((type_mask & TYPE_INTEGER) == 0) {
776 if (out_msg) {
777 *out_msg << item << " is not a valid enum";
778 }
779 return false;
780 }
781 }
782
783 if ((type_mask & TYPE_FLAGS) != 0 && (actual_type & TYPE_FLAGS) != 0) {
784 uint32_t mask = 0u;
785 for (const Symbol& s : symbols) {
786 mask |= s.value;
787 }
788
789 // Check if the flattened data is covered by the flag bit mask.
790 // If the attribute accepts integers, we can't fail here.
791 if ((mask & flattened_data) == flattened_data) {
792 return true;
793 } else if ((type_mask & TYPE_INTEGER) == 0) {
794 if (out_msg) {
795 *out_msg << item << " is not a valid flag";
796 }
797 return false;
798 }
799 }
800
801 // Finally check the integer range of the value.
802 if ((type_mask & TYPE_INTEGER) != 0 && (actual_type & TYPE_INTEGER) != 0) {
803 if (static_cast<int32_t>(flattened_data) < min_int) {
804 if (out_msg) {
805 *out_msg << item << " is less than minimum integer " << min_int;
806 }
807 return false;
808 } else if (static_cast<int32_t>(flattened_data) > max_int) {
809 if (out_msg) {
810 *out_msg << item << " is greater than maximum integer " << max_int;
811 }
812 return false;
813 }
814 }
815 return true;
816 }
817
operator <<(std::ostream & out,const Style::Entry & entry)818 std::ostream& operator<<(std::ostream& out, const Style::Entry& entry) {
819 if (entry.key.name) {
820 out << entry.key.name.value();
821 } else if (entry.key.id) {
822 out << entry.key.id.value();
823 } else {
824 out << "???";
825 }
826 out << " = " << entry.value;
827 return out;
828 }
829
830 template <typename T>
ToPointerVec(std::vector<T> & src)831 std::vector<T*> ToPointerVec(std::vector<T>& src) {
832 std::vector<T*> dst;
833 dst.reserve(src.size());
834 for (T& in : src) {
835 dst.push_back(&in);
836 }
837 return dst;
838 }
839
840 template <typename T>
ToPointerVec(const std::vector<T> & src)841 std::vector<const T*> ToPointerVec(const std::vector<T>& src) {
842 std::vector<const T*> dst;
843 dst.reserve(src.size());
844 for (const T& in : src) {
845 dst.push_back(&in);
846 }
847 return dst;
848 }
849
KeyNameComparator(const Style::Entry * a,const Style::Entry * b)850 static bool KeyNameComparator(const Style::Entry* a, const Style::Entry* b) {
851 return a->key.name < b->key.name;
852 }
853
Equals(const Value * value) const854 bool Style::Equals(const Value* value) const {
855 const Style* other = ValueCast<Style>(value);
856 if (!other) {
857 return false;
858 }
859
860 if (bool(parent) != bool(other->parent) ||
861 (parent && other->parent && !parent.value().Equals(&other->parent.value()))) {
862 return false;
863 }
864
865 if (entries.size() != other->entries.size()) {
866 return false;
867 }
868
869 std::vector<const Entry*> sorted_a = ToPointerVec(entries);
870 std::sort(sorted_a.begin(), sorted_a.end(), KeyNameComparator);
871
872 std::vector<const Entry*> sorted_b = ToPointerVec(other->entries);
873 std::sort(sorted_b.begin(), sorted_b.end(), KeyNameComparator);
874
875 return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
876 [](const Entry* a, const Entry* b) -> bool {
877 return a->key.Equals(&b->key) && a->value->Equals(b->value.get());
878 });
879 }
880
Print(std::ostream * out) const881 void Style::Print(std::ostream* out) const {
882 *out << "(style) ";
883 if (parent && parent.value().name) {
884 const Reference& parent_ref = parent.value();
885 if (parent_ref.private_reference) {
886 *out << "*";
887 }
888 *out << parent_ref.name.value();
889 }
890 *out << " [" << util::Joiner(entries, ", ") << "]";
891 }
892
CloneEntry(const Style::Entry & entry,android::StringPool * pool)893 Style::Entry CloneEntry(const Style::Entry& entry, android::StringPool* pool) {
894 Style::Entry cloned_entry{entry.key};
895 if (entry.value != nullptr) {
896 CloningValueTransformer cloner(pool);
897 cloned_entry.value = entry.value->Transform(cloner);
898 }
899 return cloned_entry;
900 }
901
MergeWith(Style * other,android::StringPool * pool)902 void Style::MergeWith(Style* other, android::StringPool* pool) {
903 if (other->parent) {
904 parent = other->parent;
905 }
906
907 // We can't assume that the entries are sorted alphabetically since they're supposed to be
908 // sorted by Resource Id. Not all Resource Ids may be set though, so we can't sort and merge
909 // them keying off that.
910 //
911 // Instead, sort the entries of each Style by their name in a separate structure. Then merge
912 // those.
913
914 std::vector<Entry*> this_sorted = ToPointerVec(entries);
915 std::sort(this_sorted.begin(), this_sorted.end(), KeyNameComparator);
916
917 std::vector<Entry*> other_sorted = ToPointerVec(other->entries);
918 std::sort(other_sorted.begin(), other_sorted.end(), KeyNameComparator);
919
920 auto this_iter = this_sorted.begin();
921 const auto this_end = this_sorted.end();
922
923 auto other_iter = other_sorted.begin();
924 const auto other_end = other_sorted.end();
925
926 std::vector<Entry> merged_entries;
927 while (this_iter != this_end) {
928 if (other_iter != other_end) {
929 if ((*this_iter)->key.name < (*other_iter)->key.name) {
930 merged_entries.push_back(std::move(**this_iter));
931 ++this_iter;
932 } else {
933 // The other overrides.
934 merged_entries.push_back(CloneEntry(**other_iter, pool));
935 if ((*this_iter)->key.name == (*other_iter)->key.name) {
936 ++this_iter;
937 }
938 ++other_iter;
939 }
940 } else {
941 merged_entries.push_back(std::move(**this_iter));
942 ++this_iter;
943 }
944 }
945
946 while (other_iter != other_end) {
947 merged_entries.push_back(CloneEntry(**other_iter, pool));
948 ++other_iter;
949 }
950
951 entries = std::move(merged_entries);
952 }
953
Equals(const Value * value) const954 bool Array::Equals(const Value* value) const {
955 const Array* other = ValueCast<Array>(value);
956 if (!other) {
957 return false;
958 }
959
960 if (elements.size() != other->elements.size()) {
961 return false;
962 }
963
964 return std::equal(elements.begin(), elements.end(), other->elements.begin(),
965 [](const std::unique_ptr<Item>& a, const std::unique_ptr<Item>& b) -> bool {
966 return a->Equals(b.get());
967 });
968 }
969
Print(std::ostream * out) const970 void Array::Print(std::ostream* out) const {
971 *out << "(array) [" << util::Joiner(elements, ", ") << "]";
972 }
973
RemoveFlagDisabledElements()974 void Array::RemoveFlagDisabledElements() {
975 const auto end_iter = elements.end();
976 const auto remove_iter = std::stable_partition(
977 elements.begin(), end_iter, [](const std::unique_ptr<Item>& item) -> bool {
978 return item->GetFlagStatus() != FlagStatus::Disabled;
979 });
980
981 elements.erase(remove_iter, end_iter);
982 }
983
Equals(const Value * value) const984 bool Plural::Equals(const Value* value) const {
985 const Plural* other = ValueCast<Plural>(value);
986 if (!other) {
987 return false;
988 }
989
990 auto one_iter = values.begin();
991 auto one_end_iter = values.end();
992 auto two_iter = other->values.begin();
993 for (; one_iter != one_end_iter; ++one_iter, ++two_iter) {
994 const std::unique_ptr<Item>& a = *one_iter;
995 const std::unique_ptr<Item>& b = *two_iter;
996 if (a != nullptr && b != nullptr) {
997 if (!a->Equals(b.get())) {
998 return false;
999 }
1000 } else if (a != b) {
1001 return false;
1002 }
1003 }
1004 return true;
1005 }
1006
Print(std::ostream * out) const1007 void Plural::Print(std::ostream* out) const {
1008 *out << "(plural)";
1009 if (values[Zero]) {
1010 *out << " zero=" << *values[Zero];
1011 }
1012
1013 if (values[One]) {
1014 *out << " one=" << *values[One];
1015 }
1016
1017 if (values[Two]) {
1018 *out << " two=" << *values[Two];
1019 }
1020
1021 if (values[Few]) {
1022 *out << " few=" << *values[Few];
1023 }
1024
1025 if (values[Many]) {
1026 *out << " many=" << *values[Many];
1027 }
1028
1029 if (values[Other]) {
1030 *out << " other=" << *values[Other];
1031 }
1032 }
1033
Equals(const Value * value) const1034 bool Styleable::Equals(const Value* value) const {
1035 const Styleable* other = ValueCast<Styleable>(value);
1036 if (!other) {
1037 return false;
1038 }
1039
1040 if (entries.size() != other->entries.size()) {
1041 return false;
1042 }
1043
1044 return std::equal(entries.begin(), entries.end(), other->entries.begin(),
1045 [](const Reference& a, const Reference& b) -> bool {
1046 return a.Equals(&b);
1047 });
1048 }
1049
Print(std::ostream * out) const1050 void Styleable::Print(std::ostream* out) const {
1051 *out << "(styleable) "
1052 << " [" << util::Joiner(entries, ", ") << "]";
1053 }
1054
Equals(const Value * value) const1055 bool Macro::Equals(const Value* value) const {
1056 const Macro* other = ValueCast<Macro>(value);
1057 if (!other) {
1058 return false;
1059 }
1060 return other->raw_value == raw_value && other->style_string.spans == style_string.spans &&
1061 other->style_string.str == style_string.str &&
1062 other->untranslatable_sections == untranslatable_sections &&
1063 other->alias_namespaces == alias_namespaces;
1064 }
1065
Print(std::ostream * out) const1066 void Macro::Print(std::ostream* out) const {
1067 *out << "(macro) ";
1068 }
1069
operator <(const Reference & a,const Reference & b)1070 bool operator<(const Reference& a, const Reference& b) {
1071 int cmp = a.name.value_or(ResourceName{}).compare(b.name.value_or(ResourceName{}));
1072 if (cmp != 0) return cmp < 0;
1073 return a.id < b.id;
1074 }
1075
operator ==(const Reference & a,const Reference & b)1076 bool operator==(const Reference& a, const Reference& b) {
1077 return a.name == b.name && a.id == b.id;
1078 }
1079
operator !=(const Reference & a,const Reference & b)1080 bool operator!=(const Reference& a, const Reference& b) {
1081 return a.name != b.name || a.id != b.id;
1082 }
1083
1084 struct NameOnlyComparator {
operator ()aapt::NameOnlyComparator1085 bool operator()(const Reference& a, const Reference& b) const {
1086 return a.name < b.name;
1087 }
1088 };
1089
MergeWith(Styleable * other)1090 void Styleable::MergeWith(Styleable* other) {
1091 // Compare only names, because some References may already have their IDs
1092 // assigned (framework IDs that don't change).
1093 std::set<Reference, NameOnlyComparator> references;
1094 references.insert(entries.begin(), entries.end());
1095 references.insert(other->entries.begin(), other->entries.end());
1096 entries.clear();
1097 entries.reserve(references.size());
1098 entries.insert(entries.end(), references.begin(), references.end());
1099 }
1100
1101 template <typename T>
CopyValueFields(std::unique_ptr<T> new_value,const T * value)1102 std::unique_ptr<T> CopyValueFields(std::unique_ptr<T> new_value, const T* value) {
1103 new_value->SetSource(value->GetSource());
1104 new_value->SetComment(value->GetComment());
1105 new_value->SetFlag(value->GetFlag());
1106 new_value->SetFlagStatus(value->GetFlagStatus());
1107 return new_value;
1108 }
1109
CloningValueTransformer(android::StringPool * new_pool)1110 CloningValueTransformer::CloningValueTransformer(android::StringPool* new_pool)
1111 : ValueTransformer(new_pool) {
1112 }
1113
TransformDerived(const Reference * value)1114 std::unique_ptr<Reference> CloningValueTransformer::TransformDerived(const Reference* value) {
1115 return std::make_unique<Reference>(*value);
1116 }
1117
TransformDerived(const Id * value)1118 std::unique_ptr<Id> CloningValueTransformer::TransformDerived(const Id* value) {
1119 return std::make_unique<Id>(*value);
1120 }
1121
TransformDerived(const RawString * value)1122 std::unique_ptr<RawString> CloningValueTransformer::TransformDerived(const RawString* value) {
1123 auto new_value = std::make_unique<RawString>(pool_->MakeRef(value->value));
1124 return CopyValueFields(std::move(new_value), value);
1125 }
1126
TransformDerived(const String * value)1127 std::unique_ptr<String> CloningValueTransformer::TransformDerived(const String* value) {
1128 auto new_value = std::make_unique<String>(pool_->MakeRef(value->value));
1129 new_value->untranslatable_sections = value->untranslatable_sections;
1130 return CopyValueFields(std::move(new_value), value);
1131 }
1132
TransformDerived(const StyledString * value)1133 std::unique_ptr<StyledString> CloningValueTransformer::TransformDerived(const StyledString* value) {
1134 auto new_value = std::make_unique<StyledString>(pool_->MakeRef(value->value));
1135 new_value->untranslatable_sections = value->untranslatable_sections;
1136 return CopyValueFields(std::move(new_value), value);
1137 }
1138
TransformDerived(const FileReference * value)1139 std::unique_ptr<FileReference> CloningValueTransformer::TransformDerived(
1140 const FileReference* value) {
1141 auto new_value = std::make_unique<FileReference>(pool_->MakeRef(value->path));
1142 new_value->file = value->file;
1143 new_value->type = value->type;
1144 return CopyValueFields(std::move(new_value), value);
1145 }
1146
TransformDerived(const BinaryPrimitive * value)1147 std::unique_ptr<BinaryPrimitive> CloningValueTransformer::TransformDerived(
1148 const BinaryPrimitive* value) {
1149 return std::make_unique<BinaryPrimitive>(*value);
1150 }
1151
TransformDerived(const Attribute * value)1152 std::unique_ptr<Attribute> CloningValueTransformer::TransformDerived(const Attribute* value) {
1153 auto new_value = std::make_unique<Attribute>();
1154 new_value->type_mask = value->type_mask;
1155 new_value->min_int = value->min_int;
1156 new_value->max_int = value->max_int;
1157 for (const Attribute::Symbol& s : value->symbols) {
1158 new_value->symbols.emplace_back(Attribute::Symbol{
1159 .symbol = *s.symbol.Transform(*this),
1160 .value = s.value,
1161 .type = s.type,
1162 });
1163 }
1164 return CopyValueFields(std::move(new_value), value);
1165 }
1166
TransformDerived(const Style * value)1167 std::unique_ptr<Style> CloningValueTransformer::TransformDerived(const Style* value) {
1168 auto new_value = std::make_unique<Style>();
1169 new_value->parent = value->parent;
1170 new_value->parent_inferred = value->parent_inferred;
1171 for (auto& entry : value->entries) {
1172 new_value->entries.push_back(Style::Entry{entry.key, entry.value->Transform(*this)});
1173 }
1174 return CopyValueFields(std::move(new_value), value);
1175 }
1176
TransformDerived(const Array * value)1177 std::unique_ptr<Array> CloningValueTransformer::TransformDerived(const Array* value) {
1178 auto new_value = std::make_unique<Array>();
1179 for (auto& item : value->elements) {
1180 new_value->elements.emplace_back(item->Transform(*this));
1181 }
1182 return CopyValueFields(std::move(new_value), value);
1183 }
1184
TransformDerived(const Plural * value)1185 std::unique_ptr<Plural> CloningValueTransformer::TransformDerived(const Plural* value) {
1186 auto new_value = std::make_unique<Plural>();
1187 const size_t count = value->values.size();
1188 for (size_t i = 0; i < count; i++) {
1189 if (value->values[i]) {
1190 new_value->values[i] = value->values[i]->Transform(*this);
1191 }
1192 }
1193 return CopyValueFields(std::move(new_value), value);
1194 }
1195
TransformDerived(const Styleable * value)1196 std::unique_ptr<Styleable> CloningValueTransformer::TransformDerived(const Styleable* value) {
1197 auto new_value = std::make_unique<Styleable>();
1198 for (const Reference& s : value->entries) {
1199 new_value->entries.emplace_back(*s.Transform(*this));
1200 }
1201 return CopyValueFields(std::move(new_value), value);
1202 }
1203
TransformDerived(const Macro * value)1204 std::unique_ptr<Macro> CloningValueTransformer::TransformDerived(const Macro* value) {
1205 auto new_value = std::make_unique<Macro>(*value);
1206 return CopyValueFields(std::move(new_value), value);
1207 }
1208
1209 } // namespace aapt
1210