1# ################################################################ 2# Copyright (c) Meta Platforms, Inc. and affiliates. 3# All rights reserved. 4# 5# This source code is licensed under both the BSD-style license (found in the 6# LICENSE file in the root directory of this source tree) and the GPLv2 (found 7# in the COPYING file in the root directory of this source tree). 8# You may select, at your option, one of the above-listed licenses. 9# ########################################################################## 10 11import argparse 12import glob 13import json 14import os 15import time 16import pickle as pk 17import subprocess 18import urllib.request 19 20 21GITHUB_API_PR_URL = "https://api.github.com/repos/facebook/zstd/pulls?state=open" 22GITHUB_URL_TEMPLATE = "https://github.com/{}/zstd" 23RELEASE_BUILD = {"user": "facebook", "branch": "dev", "hash": None} 24 25# check to see if there are any new PRs every minute 26DEFAULT_MAX_API_CALL_FREQUENCY_SEC = 60 27PREVIOUS_PRS_FILENAME = "prev_prs.pk" 28 29# Not sure what the threshold for triggering alarms should be 30# 1% regression sounds like a little too sensitive but the desktop 31# that I'm running it on is pretty stable so I think this is fine 32CSPEED_REGRESSION_TOLERANCE = 0.01 33DSPEED_REGRESSION_TOLERANCE = 0.01 34 35 36def get_new_open_pr_builds(prev_state=True): 37 prev_prs = None 38 if os.path.exists(PREVIOUS_PRS_FILENAME): 39 with open(PREVIOUS_PRS_FILENAME, "rb") as f: 40 prev_prs = pk.load(f) 41 data = json.loads(urllib.request.urlopen(GITHUB_API_PR_URL).read().decode("utf-8")) 42 prs = { 43 d["url"]: { 44 "user": d["user"]["login"], 45 "branch": d["head"]["ref"], 46 "hash": d["head"]["sha"].strip(), 47 } 48 for d in data 49 } 50 with open(PREVIOUS_PRS_FILENAME, "wb") as f: 51 pk.dump(prs, f) 52 if not prev_state or prev_prs == None: 53 return list(prs.values()) 54 return [pr for url, pr in prs.items() if url not in prev_prs or prev_prs[url] != pr] 55 56 57def get_latest_hashes(): 58 tmp = subprocess.run(["git", "log", "-1"], stdout=subprocess.PIPE).stdout.decode( 59 "utf-8" 60 ) 61 sha1 = tmp.split("\n")[0].split(" ")[1] 62 tmp = subprocess.run( 63 ["git", "show", "{}^1".format(sha1)], stdout=subprocess.PIPE 64 ).stdout.decode("utf-8") 65 sha2 = tmp.split("\n")[0].split(" ")[1] 66 tmp = subprocess.run( 67 ["git", "show", "{}^2".format(sha1)], stdout=subprocess.PIPE 68 ).stdout.decode("utf-8") 69 sha3 = "" if len(tmp) == 0 else tmp.split("\n")[0].split(" ")[1] 70 return [sha1.strip(), sha2.strip(), sha3.strip()] 71 72 73def get_builds_for_latest_hash(): 74 hashes = get_latest_hashes() 75 for b in get_new_open_pr_builds(False): 76 if b["hash"] in hashes: 77 return [b] 78 return [] 79 80 81def clone_and_build(build): 82 if build["user"] != None: 83 github_url = GITHUB_URL_TEMPLATE.format(build["user"]) 84 os.system( 85 """ 86 rm -rf zstd-{user}-{sha} && 87 git clone {github_url} zstd-{user}-{sha} && 88 cd zstd-{user}-{sha} && 89 {checkout_command} 90 make -j && 91 cd ../ 92 """.format( 93 user=build["user"], 94 github_url=github_url, 95 sha=build["hash"], 96 checkout_command="git checkout {} &&".format(build["hash"]) 97 if build["hash"] != None 98 else "", 99 ) 100 ) 101 return "zstd-{user}-{sha}/zstd".format(user=build["user"], sha=build["hash"]) 102 else: 103 os.system("cd ../ && make -j && cd tests") 104 return "../zstd" 105 106 107def parse_benchmark_output(output): 108 idx = [i for i, d in enumerate(output) if d == "MB/s"] 109 return [float(output[idx[0] - 1]), float(output[idx[1] - 1])] 110 111 112def benchmark_single(executable, level, filename): 113 return parse_benchmark_output(( 114 subprocess.run( 115 [executable, "-qb{}".format(level), filename], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, 116 ) 117 .stdout.decode("utf-8") 118 .split(" ") 119 )) 120 121 122def benchmark_n(executable, level, filename, n): 123 speeds_arr = [benchmark_single(executable, level, filename) for _ in range(n)] 124 cspeed, dspeed = max(b[0] for b in speeds_arr), max(b[1] for b in speeds_arr) 125 print( 126 "Bench (executable={} level={} filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format( 127 os.path.basename(executable), 128 level, 129 os.path.basename(filename), 130 n, 131 cspeed, 132 dspeed, 133 ) 134 ) 135 return (cspeed, dspeed) 136 137 138def benchmark(build, filenames, levels, iterations): 139 executable = clone_and_build(build) 140 return [ 141 [benchmark_n(executable, l, f, iterations) for f in filenames] for l in levels 142 ] 143 144 145def benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, level, iterations): 146 cspeeds, dspeeds = [], [] 147 for _ in range(iterations): 148 output = subprocess.run([executable, "-qb{}".format(level), "-D", dictionary_filename, "-r", filenames_directory], stdout=subprocess.PIPE).stdout.decode("utf-8").split(" ") 149 cspeed, dspeed = parse_benchmark_output(output) 150 cspeeds.append(cspeed) 151 dspeeds.append(dspeed) 152 max_cspeed, max_dspeed = max(cspeeds), max(dspeeds) 153 print( 154 "Bench (executable={} level={} filenames_directory={}, dictionary_filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format( 155 os.path.basename(executable), 156 level, 157 os.path.basename(filenames_directory), 158 os.path.basename(dictionary_filename), 159 iterations, 160 max_cspeed, 161 max_dspeed, 162 ) 163 ) 164 return (max_cspeed, max_dspeed) 165 166 167def benchmark_dictionary(build, filenames_directory, dictionary_filename, levels, iterations): 168 executable = clone_and_build(build) 169 return [benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, l, iterations) for l in levels] 170 171 172def parse_regressions_and_labels(old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build): 173 cspeed_reg = (old_cspeed - new_cspeed) / old_cspeed 174 dspeed_reg = (old_dspeed - new_dspeed) / old_dspeed 175 baseline_label = "{}:{} ({})".format( 176 baseline_build["user"], baseline_build["branch"], baseline_build["hash"] 177 ) 178 test_label = "{}:{} ({})".format( 179 test_build["user"], test_build["branch"], test_build["hash"] 180 ) 181 return cspeed_reg, dspeed_reg, baseline_label, test_label 182 183 184def get_regressions(baseline_build, test_build, iterations, filenames, levels): 185 old = benchmark(baseline_build, filenames, levels, iterations) 186 new = benchmark(test_build, filenames, levels, iterations) 187 regressions = [] 188 for j, level in enumerate(levels): 189 for k, filename in enumerate(filenames): 190 old_cspeed, old_dspeed = old[j][k] 191 new_cspeed, new_dspeed = new[j][k] 192 cspeed_reg, dspeed_reg, baseline_label, test_label = parse_regressions_and_labels( 193 old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build 194 ) 195 if cspeed_reg > CSPEED_REGRESSION_TOLERANCE: 196 regressions.append( 197 "[COMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format( 198 level, 199 filename, 200 baseline_label, 201 test_label, 202 old_cspeed, 203 new_cspeed, 204 cspeed_reg * 100.0, 205 ) 206 ) 207 if dspeed_reg > DSPEED_REGRESSION_TOLERANCE: 208 regressions.append( 209 "[DECOMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format( 210 level, 211 filename, 212 baseline_label, 213 test_label, 214 old_dspeed, 215 new_dspeed, 216 dspeed_reg * 100.0, 217 ) 218 ) 219 return regressions 220 221def get_regressions_dictionary(baseline_build, test_build, filenames_directory, dictionary_filename, levels, iterations): 222 old = benchmark_dictionary(baseline_build, filenames_directory, dictionary_filename, levels, iterations) 223 new = benchmark_dictionary(test_build, filenames_directory, dictionary_filename, levels, iterations) 224 regressions = [] 225 for j, level in enumerate(levels): 226 old_cspeed, old_dspeed = old[j] 227 new_cspeed, new_dspeed = new[j] 228 cspeed_reg, dspeed_reg, baesline_label, test_label = parse_regressions_and_labels( 229 old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build 230 ) 231 if cspeed_reg > CSPEED_REGRESSION_TOLERANCE: 232 regressions.append( 233 "[COMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format( 234 level, 235 filenames_directory, 236 dictionary_filename, 237 baseline_label, 238 test_label, 239 old_cspeed, 240 new_cspeed, 241 cspeed_reg * 100.0, 242 ) 243 ) 244 if dspeed_reg > DSPEED_REGRESSION_TOLERANCE: 245 regressions.append( 246 "[DECOMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format( 247 level, 248 filenames_directory, 249 dictionary_filename, 250 baseline_label, 251 test_label, 252 old_dspeed, 253 new_dspeed, 254 dspeed_reg * 100.0, 255 ) 256 ) 257 return regressions 258 259 260def main(filenames, levels, iterations, builds=None, emails=None, continuous=False, frequency=DEFAULT_MAX_API_CALL_FREQUENCY_SEC, dictionary_filename=None): 261 if builds == None: 262 builds = get_new_open_pr_builds() 263 while True: 264 for test_build in builds: 265 if dictionary_filename == None: 266 regressions = get_regressions( 267 RELEASE_BUILD, test_build, iterations, filenames, levels 268 ) 269 else: 270 regressions = get_regressions_dictionary( 271 RELEASE_BUILD, test_build, filenames, dictionary_filename, levels, iterations 272 ) 273 body = "\n".join(regressions) 274 if len(regressions) > 0: 275 if emails != None: 276 os.system( 277 """ 278 echo "{}" | mutt -s "[zstd regression] caused by new pr" {} 279 """.format( 280 body, emails 281 ) 282 ) 283 print("Emails sent to {}".format(emails)) 284 print(body) 285 if not continuous: 286 break 287 time.sleep(frequency) 288 289 290if __name__ == "__main__": 291 parser = argparse.ArgumentParser() 292 293 parser.add_argument("--directory", help="directory with files to benchmark", default="golden-compression") 294 parser.add_argument("--levels", help="levels to test e.g. ('1,2,3')", default="1") 295 parser.add_argument("--iterations", help="number of benchmark iterations to run", default="1") 296 parser.add_argument("--emails", help="email addresses of people who will be alerted upon regression. Only for continuous mode", default=None) 297 parser.add_argument("--frequency", help="specifies the number of seconds to wait before each successive check for new PRs in continuous mode", default=DEFAULT_MAX_API_CALL_FREQUENCY_SEC) 298 parser.add_argument("--mode", help="'fastmode', 'onetime', 'current', or 'continuous' (see README.md for details)", default="current") 299 parser.add_argument("--dict", help="filename of dictionary to use (when set, this dictionary will be used to compress the files provided inside --directory)", default=None) 300 301 args = parser.parse_args() 302 filenames = args.directory 303 levels = [int(l) for l in args.levels.split(",")] 304 mode = args.mode 305 iterations = int(args.iterations) 306 emails = args.emails 307 frequency = int(args.frequency) 308 dictionary_filename = args.dict 309 310 if dictionary_filename == None: 311 filenames = glob.glob("{}/**".format(filenames)) 312 313 if (len(filenames) == 0): 314 print("0 files found") 315 quit() 316 317 if mode == "onetime": 318 main(filenames, levels, iterations, frequency=frequenc, dictionary_filename=dictionary_filename) 319 elif mode == "current": 320 builds = [{"user": None, "branch": "None", "hash": None}] 321 main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename) 322 elif mode == "fastmode": 323 builds = [{"user": "facebook", "branch": "release", "hash": None}] 324 main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename) 325 else: 326 main(filenames, levels, iterations, None, emails, True, frequency=frequency, dictionary_filename=dictionary_filename) 327