1 /*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 #ifndef ZSTD_CWKSP_H
12 #define ZSTD_CWKSP_H
13
14 /*-*************************************
15 * Dependencies
16 ***************************************/
17 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
18 #include "../common/zstd_internal.h"
19 #include "../common/portability_macros.h"
20
21 #if defined (__cplusplus)
22 extern "C" {
23 #endif
24
25 /*-*************************************
26 * Constants
27 ***************************************/
28
29 /* Since the workspace is effectively its own little malloc implementation /
30 * arena, when we run under ASAN, we should similarly insert redzones between
31 * each internal element of the workspace, so ASAN will catch overruns that
32 * reach outside an object but that stay inside the workspace.
33 *
34 * This defines the size of that redzone.
35 */
36 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
37 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
38 #endif
39
40
41 /* Set our tables and aligneds to align by 64 bytes */
42 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64
43
44 /*-*************************************
45 * Structures
46 ***************************************/
47 typedef enum {
48 ZSTD_cwksp_alloc_objects,
49 ZSTD_cwksp_alloc_aligned_init_once,
50 ZSTD_cwksp_alloc_aligned,
51 ZSTD_cwksp_alloc_buffers
52 } ZSTD_cwksp_alloc_phase_e;
53
54 /**
55 * Used to describe whether the workspace is statically allocated (and will not
56 * necessarily ever be freed), or if it's dynamically allocated and we can
57 * expect a well-formed caller to free this.
58 */
59 typedef enum {
60 ZSTD_cwksp_dynamic_alloc,
61 ZSTD_cwksp_static_alloc
62 } ZSTD_cwksp_static_alloc_e;
63
64 /**
65 * Zstd fits all its internal datastructures into a single continuous buffer,
66 * so that it only needs to perform a single OS allocation (or so that a buffer
67 * can be provided to it and it can perform no allocations at all). This buffer
68 * is called the workspace.
69 *
70 * Several optimizations complicate that process of allocating memory ranges
71 * from this workspace for each internal datastructure:
72 *
73 * - These different internal datastructures have different setup requirements:
74 *
75 * - The static objects need to be cleared once and can then be trivially
76 * reused for each compression.
77 *
78 * - Various buffers don't need to be initialized at all--they are always
79 * written into before they're read.
80 *
81 * - The matchstate tables have a unique requirement that they don't need
82 * their memory to be totally cleared, but they do need the memory to have
83 * some bound, i.e., a guarantee that all values in the memory they've been
84 * allocated is less than some maximum value (which is the starting value
85 * for the indices that they will then use for compression). When this
86 * guarantee is provided to them, they can use the memory without any setup
87 * work. When it can't, they have to clear the area.
88 *
89 * - These buffers also have different alignment requirements.
90 *
91 * - We would like to reuse the objects in the workspace for multiple
92 * compressions without having to perform any expensive reallocation or
93 * reinitialization work.
94 *
95 * - We would like to be able to efficiently reuse the workspace across
96 * multiple compressions **even when the compression parameters change** and
97 * we need to resize some of the objects (where possible).
98 *
99 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
100 * abstraction was created. It works as follows:
101 *
102 * Workspace Layout:
103 *
104 * [ ... workspace ... ]
105 * [objects][tables ->] free space [<- buffers][<- aligned][<- init once]
106 *
107 * The various objects that live in the workspace are divided into the
108 * following categories, and are allocated separately:
109 *
110 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
111 * so that literally everything fits in a single buffer. Note: if present,
112 * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
113 * CDict}() rely on a pointer comparison to see whether one or two frees are
114 * required.
115 *
116 * - Fixed size objects: these are fixed-size, fixed-count objects that are
117 * nonetheless "dynamically" allocated in the workspace so that we can
118 * control how they're initialized separately from the broader ZSTD_CCtx.
119 * Examples:
120 * - Entropy Workspace
121 * - 2 x ZSTD_compressedBlockState_t
122 * - CDict dictionary contents
123 *
124 * - Tables: these are any of several different datastructures (hash tables,
125 * chain tables, binary trees) that all respect a common format: they are
126 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
127 * Their sizes depend on the cparams. These tables are 64-byte aligned.
128 *
129 * - Init once: these buffers require to be initialized at least once before
130 * use. They should be used when we want to skip memory initialization
131 * while not triggering memory checkers (like Valgrind) when reading from
132 * from this memory without writing to it first.
133 * These buffers should be used carefully as they might contain data
134 * from previous compressions.
135 * Buffers are aligned to 64 bytes.
136 *
137 * - Aligned: these buffers don't require any initialization before they're
138 * used. The user of the buffer should make sure they write into a buffer
139 * location before reading from it.
140 * Buffers are aligned to 64 bytes.
141 *
142 * - Buffers: these buffers are used for various purposes that don't require
143 * any alignment or initialization before they're used. This means they can
144 * be moved around at no cost for a new compression.
145 *
146 * Allocating Memory:
147 *
148 * The various types of objects must be allocated in order, so they can be
149 * correctly packed into the workspace buffer. That order is:
150 *
151 * 1. Objects
152 * 2. Init once / Tables
153 * 3. Aligned / Tables
154 * 4. Buffers / Tables
155 *
156 * Attempts to reserve objects of different types out of order will fail.
157 */
158 typedef struct {
159 void* workspace;
160 void* workspaceEnd;
161
162 void* objectEnd;
163 void* tableEnd;
164 void* tableValidEnd;
165 void* allocStart;
166 void* initOnceStart;
167
168 BYTE allocFailed;
169 int workspaceOversizedDuration;
170 ZSTD_cwksp_alloc_phase_e phase;
171 ZSTD_cwksp_static_alloc_e isStatic;
172 } ZSTD_cwksp;
173
174 /*-*************************************
175 * Functions
176 ***************************************/
177
178 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
179 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws);
180
ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp * ws)181 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
182 (void)ws;
183 assert(ws->workspace <= ws->objectEnd);
184 assert(ws->objectEnd <= ws->tableEnd);
185 assert(ws->objectEnd <= ws->tableValidEnd);
186 assert(ws->tableEnd <= ws->allocStart);
187 assert(ws->tableValidEnd <= ws->allocStart);
188 assert(ws->allocStart <= ws->workspaceEnd);
189 assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws));
190 assert(ws->workspace <= ws->initOnceStart);
191 #if ZSTD_MEMORY_SANITIZER
192 {
193 intptr_t const offset = __msan_test_shadow(ws->initOnceStart,
194 (U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart);
195 (void)offset;
196 #if defined(ZSTD_MSAN_PRINT)
197 if(offset!=-1) {
198 __msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32);
199 }
200 #endif
201 assert(offset==-1);
202 };
203 #endif
204 }
205
206 /**
207 * Align must be a power of 2.
208 */
ZSTD_cwksp_align(size_t size,size_t const align)209 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
210 size_t const mask = align - 1;
211 assert((align & mask) == 0);
212 return (size + mask) & ~mask;
213 }
214
215 /**
216 * Use this to determine how much space in the workspace we will consume to
217 * allocate this object. (Normally it should be exactly the size of the object,
218 * but under special conditions, like ASAN, where we pad each object, it might
219 * be larger.)
220 *
221 * Since tables aren't currently redzoned, you don't need to call through this
222 * to figure out how much space you need for the matchState tables. Everything
223 * else is though.
224 *
225 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
226 */
ZSTD_cwksp_alloc_size(size_t size)227 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
228 if (size == 0)
229 return 0;
230 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
231 return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
232 #else
233 return size;
234 #endif
235 }
236
237 /**
238 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
239 * Used to determine the number of bytes required for a given "aligned".
240 */
ZSTD_cwksp_aligned_alloc_size(size_t size)241 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
242 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
243 }
244
245 /**
246 * Returns the amount of additional space the cwksp must allocate
247 * for internal purposes (currently only alignment).
248 */
ZSTD_cwksp_slack_space_required(void)249 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
250 /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES
251 * bytes to align the beginning of tables section and end of buffers;
252 */
253 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2;
254 return slackSpace;
255 }
256
257
258 /**
259 * Return the number of additional bytes required to align a pointer to the given number of bytes.
260 * alignBytes must be a power of two.
261 */
ZSTD_cwksp_bytes_to_align_ptr(void * ptr,const size_t alignBytes)262 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
263 size_t const alignBytesMask = alignBytes - 1;
264 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
265 assert((alignBytes & alignBytesMask) == 0);
266 assert(bytes < alignBytes);
267 return bytes;
268 }
269
270 /**
271 * Returns the initial value for allocStart which is used to determine the position from
272 * which we can allocate from the end of the workspace.
273 */
ZSTD_cwksp_initialAllocStart(ZSTD_cwksp * ws)274 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) {
275 return (void*)((size_t)ws->workspaceEnd & ~(ZSTD_CWKSP_ALIGNMENT_BYTES-1));
276 }
277
278 /**
279 * Internal function. Do not use directly.
280 * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
281 * which counts from the end of the wksp (as opposed to the object/table segment).
282 *
283 * Returns a pointer to the beginning of that space.
284 */
285 MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp * ws,size_t const bytes)286 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
287 {
288 void* const alloc = (BYTE*)ws->allocStart - bytes;
289 void* const bottom = ws->tableEnd;
290 DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
291 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
292 ZSTD_cwksp_assert_internal_consistency(ws);
293 assert(alloc >= bottom);
294 if (alloc < bottom) {
295 DEBUGLOG(4, "cwksp: alloc failed!");
296 ws->allocFailed = 1;
297 return NULL;
298 }
299 /* the area is reserved from the end of wksp.
300 * If it overlaps with tableValidEnd, it voids guarantees on values' range */
301 if (alloc < ws->tableValidEnd) {
302 ws->tableValidEnd = alloc;
303 }
304 ws->allocStart = alloc;
305 return alloc;
306 }
307
308 /**
309 * Moves the cwksp to the next phase, and does any necessary allocations.
310 * cwksp initialization must necessarily go through each phase in order.
311 * Returns a 0 on success, or zstd error
312 */
313 MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp * ws,ZSTD_cwksp_alloc_phase_e phase)314 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
315 {
316 assert(phase >= ws->phase);
317 if (phase > ws->phase) {
318 /* Going from allocating objects to allocating initOnce / tables */
319 if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once &&
320 phase >= ZSTD_cwksp_alloc_aligned_init_once) {
321 ws->tableValidEnd = ws->objectEnd;
322 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
323
324 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
325 void *const alloc = ws->objectEnd;
326 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
327 void *const objectEnd = (BYTE *) alloc + bytesToAlign;
328 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
329 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
330 "table phase - alignment initial allocation failed!");
331 ws->objectEnd = objectEnd;
332 ws->tableEnd = objectEnd; /* table area starts being empty */
333 if (ws->tableValidEnd < ws->tableEnd) {
334 ws->tableValidEnd = ws->tableEnd;
335 }
336 }
337 }
338 ws->phase = phase;
339 ZSTD_cwksp_assert_internal_consistency(ws);
340 }
341 return 0;
342 }
343
344 /**
345 * Returns whether this object/buffer/etc was allocated in this workspace.
346 */
ZSTD_cwksp_owns_buffer(const ZSTD_cwksp * ws,const void * ptr)347 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
348 {
349 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd);
350 }
351
352 /**
353 * Internal function. Do not use directly.
354 */
355 MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp * ws,size_t bytes,ZSTD_cwksp_alloc_phase_e phase)356 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
357 {
358 void* alloc;
359 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
360 return NULL;
361 }
362
363 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
364 /* over-reserve space */
365 bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
366 #endif
367
368 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
369
370 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
371 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
372 * either size. */
373 if (alloc) {
374 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
375 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
376 /* We need to keep the redzone poisoned while unpoisoning the bytes that
377 * are actually allocated. */
378 __asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE);
379 }
380 }
381 #endif
382
383 return alloc;
384 }
385
386 /**
387 * Reserves and returns unaligned memory.
388 */
ZSTD_cwksp_reserve_buffer(ZSTD_cwksp * ws,size_t bytes)389 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
390 {
391 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
392 }
393
394 /**
395 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
396 * This memory has been initialized at least once in the past.
397 * This doesn't mean it has been initialized this time, and it might contain data from previous
398 * operations.
399 * The main usage is for algorithms that might need read access into uninitialized memory.
400 * The algorithm must maintain safety under these conditions and must make sure it doesn't
401 * leak any of the past data (directly or in side channels).
402 */
ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp * ws,size_t bytes)403 MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes)
404 {
405 size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES);
406 void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once);
407 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
408 if(ptr && ptr < ws->initOnceStart) {
409 /* We assume the memory following the current allocation is either:
410 * 1. Not usable as initOnce memory (end of workspace)
411 * 2. Another initOnce buffer that has been allocated before (and so was previously memset)
412 * 3. An ASAN redzone, in which case we don't want to write on it
413 * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart.
414 * Note that we assume here that MSAN and ASAN cannot run in the same time. */
415 ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes));
416 ws->initOnceStart = ptr;
417 }
418 #if ZSTD_MEMORY_SANITIZER
419 assert(__msan_test_shadow(ptr, bytes) == -1);
420 #endif
421 return ptr;
422 }
423
424 /**
425 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
426 */
ZSTD_cwksp_reserve_aligned(ZSTD_cwksp * ws,size_t bytes)427 MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
428 {
429 void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
430 ZSTD_cwksp_alloc_aligned);
431 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
432 return ptr;
433 }
434
435 /**
436 * Aligned on 64 bytes. These buffers have the special property that
437 * their values remain constrained, allowing us to reuse them without
438 * memset()-ing them.
439 */
ZSTD_cwksp_reserve_table(ZSTD_cwksp * ws,size_t bytes)440 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
441 {
442 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once;
443 void* alloc;
444 void* end;
445 void* top;
446
447 /* We can only start allocating tables after we are done reserving space for objects at the
448 * start of the workspace */
449 if(ws->phase < phase) {
450 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
451 return NULL;
452 }
453 }
454 alloc = ws->tableEnd;
455 end = (BYTE *)alloc + bytes;
456 top = ws->allocStart;
457
458 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
459 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
460 assert((bytes & (sizeof(U32)-1)) == 0);
461 ZSTD_cwksp_assert_internal_consistency(ws);
462 assert(end <= top);
463 if (end > top) {
464 DEBUGLOG(4, "cwksp: table alloc failed!");
465 ws->allocFailed = 1;
466 return NULL;
467 }
468 ws->tableEnd = end;
469
470 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
471 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
472 __asan_unpoison_memory_region(alloc, bytes);
473 }
474 #endif
475
476 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
477 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
478 return alloc;
479 }
480
481 /**
482 * Aligned on sizeof(void*).
483 * Note : should happen only once, at workspace first initialization
484 */
ZSTD_cwksp_reserve_object(ZSTD_cwksp * ws,size_t bytes)485 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
486 {
487 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
488 void* alloc = ws->objectEnd;
489 void* end = (BYTE*)alloc + roundedBytes;
490
491 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
492 /* over-reserve space */
493 end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
494 #endif
495
496 DEBUGLOG(4,
497 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
498 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
499 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
500 assert(bytes % ZSTD_ALIGNOF(void*) == 0);
501 ZSTD_cwksp_assert_internal_consistency(ws);
502 /* we must be in the first phase, no advance is possible */
503 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
504 DEBUGLOG(3, "cwksp: object alloc failed!");
505 ws->allocFailed = 1;
506 return NULL;
507 }
508 ws->objectEnd = end;
509 ws->tableEnd = end;
510 ws->tableValidEnd = end;
511
512 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
513 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
514 * either size. */
515 alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
516 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
517 __asan_unpoison_memory_region(alloc, bytes);
518 }
519 #endif
520
521 return alloc;
522 }
523
ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp * ws)524 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
525 {
526 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
527
528 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
529 /* To validate that the table reuse logic is sound, and that we don't
530 * access table space that we haven't cleaned, we re-"poison" the table
531 * space every time we mark it dirty.
532 * Since tableValidEnd space and initOnce space may overlap we don't poison
533 * the initOnce portion as it break its promise. This means that this poisoning
534 * check isn't always applied fully. */
535 {
536 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
537 assert(__msan_test_shadow(ws->objectEnd, size) == -1);
538 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
539 __msan_poison(ws->objectEnd, size);
540 } else {
541 assert(ws->initOnceStart >= ws->objectEnd);
542 __msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd);
543 }
544 }
545 #endif
546
547 assert(ws->tableValidEnd >= ws->objectEnd);
548 assert(ws->tableValidEnd <= ws->allocStart);
549 ws->tableValidEnd = ws->objectEnd;
550 ZSTD_cwksp_assert_internal_consistency(ws);
551 }
552
ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp * ws)553 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
554 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
555 assert(ws->tableValidEnd >= ws->objectEnd);
556 assert(ws->tableValidEnd <= ws->allocStart);
557 if (ws->tableValidEnd < ws->tableEnd) {
558 ws->tableValidEnd = ws->tableEnd;
559 }
560 ZSTD_cwksp_assert_internal_consistency(ws);
561 }
562
563 /**
564 * Zero the part of the allocated tables not already marked clean.
565 */
ZSTD_cwksp_clean_tables(ZSTD_cwksp * ws)566 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
567 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
568 assert(ws->tableValidEnd >= ws->objectEnd);
569 assert(ws->tableValidEnd <= ws->allocStart);
570 if (ws->tableValidEnd < ws->tableEnd) {
571 ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
572 }
573 ZSTD_cwksp_mark_tables_clean(ws);
574 }
575
576 /**
577 * Invalidates table allocations.
578 * All other allocations remain valid.
579 */
ZSTD_cwksp_clear_tables(ZSTD_cwksp * ws)580 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
581 DEBUGLOG(4, "cwksp: clearing tables!");
582
583 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
584 /* We don't do this when the workspace is statically allocated, because
585 * when that is the case, we have no capability to hook into the end of the
586 * workspace's lifecycle to unpoison the memory.
587 */
588 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
589 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
590 __asan_poison_memory_region(ws->objectEnd, size);
591 }
592 #endif
593
594 ws->tableEnd = ws->objectEnd;
595 ZSTD_cwksp_assert_internal_consistency(ws);
596 }
597
598 /**
599 * Invalidates all buffer, aligned, and table allocations.
600 * Object allocations remain valid.
601 */
ZSTD_cwksp_clear(ZSTD_cwksp * ws)602 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
603 DEBUGLOG(4, "cwksp: clearing!");
604
605 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
606 /* To validate that the context reuse logic is sound, and that we don't
607 * access stuff that this compression hasn't initialized, we re-"poison"
608 * the workspace except for the areas in which we expect memory reuse
609 * without initialization (objects, valid tables area and init once
610 * memory). */
611 {
612 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
613 size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd;
614 __msan_poison(ws->tableValidEnd, size);
615 }
616 }
617 #endif
618
619 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
620 /* We don't do this when the workspace is statically allocated, because
621 * when that is the case, we have no capability to hook into the end of the
622 * workspace's lifecycle to unpoison the memory.
623 */
624 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
625 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
626 __asan_poison_memory_region(ws->objectEnd, size);
627 }
628 #endif
629
630 ws->tableEnd = ws->objectEnd;
631 ws->allocStart = ZSTD_cwksp_initialAllocStart(ws);
632 ws->allocFailed = 0;
633 if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) {
634 ws->phase = ZSTD_cwksp_alloc_aligned_init_once;
635 }
636 ZSTD_cwksp_assert_internal_consistency(ws);
637 }
638
ZSTD_cwksp_sizeof(const ZSTD_cwksp * ws)639 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
640 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
641 }
642
ZSTD_cwksp_used(const ZSTD_cwksp * ws)643 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
644 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
645 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
646 }
647
648 /**
649 * The provided workspace takes ownership of the buffer [start, start+size).
650 * Any existing values in the workspace are ignored (the previously managed
651 * buffer, if present, must be separately freed).
652 */
ZSTD_cwksp_init(ZSTD_cwksp * ws,void * start,size_t size,ZSTD_cwksp_static_alloc_e isStatic)653 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
654 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
655 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
656 ws->workspace = start;
657 ws->workspaceEnd = (BYTE*)start + size;
658 ws->objectEnd = ws->workspace;
659 ws->tableValidEnd = ws->objectEnd;
660 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
661 ws->phase = ZSTD_cwksp_alloc_objects;
662 ws->isStatic = isStatic;
663 ZSTD_cwksp_clear(ws);
664 ws->workspaceOversizedDuration = 0;
665 ZSTD_cwksp_assert_internal_consistency(ws);
666 }
667
ZSTD_cwksp_create(ZSTD_cwksp * ws,size_t size,ZSTD_customMem customMem)668 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
669 void* workspace = ZSTD_customMalloc(size, customMem);
670 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
671 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
672 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
673 return 0;
674 }
675
ZSTD_cwksp_free(ZSTD_cwksp * ws,ZSTD_customMem customMem)676 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
677 void *ptr = ws->workspace;
678 DEBUGLOG(4, "cwksp: freeing workspace");
679 #if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
680 if (ptr != NULL && customMem.customFree != NULL) {
681 __msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws));
682 }
683 #endif
684 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
685 ZSTD_customFree(ptr, customMem);
686 }
687
688 /**
689 * Moves the management of a workspace from one cwksp to another. The src cwksp
690 * is left in an invalid state (src must be re-init()'ed before it's used again).
691 */
ZSTD_cwksp_move(ZSTD_cwksp * dst,ZSTD_cwksp * src)692 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
693 *dst = *src;
694 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
695 }
696
ZSTD_cwksp_reserve_failed(const ZSTD_cwksp * ws)697 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
698 return ws->allocFailed;
699 }
700
701 /*-*************************************
702 * Functions Checking Free Space
703 ***************************************/
704
705 /* ZSTD_alignmentSpaceWithinBounds() :
706 * Returns if the estimated space needed for a wksp is within an acceptable limit of the
707 * actual amount of space used.
708 */
ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp * const ws,size_t const estimatedSpace)709 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) {
710 /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice
711 * the alignment bytes difference between estimation and actual usage */
712 return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) &&
713 ZSTD_cwksp_used(ws) <= estimatedSpace;
714 }
715
716
ZSTD_cwksp_available_space(ZSTD_cwksp * ws)717 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
718 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
719 }
720
ZSTD_cwksp_check_available(ZSTD_cwksp * ws,size_t additionalNeededSpace)721 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
722 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
723 }
724
ZSTD_cwksp_check_too_large(ZSTD_cwksp * ws,size_t additionalNeededSpace)725 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
726 return ZSTD_cwksp_check_available(
727 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
728 }
729
ZSTD_cwksp_check_wasteful(ZSTD_cwksp * ws,size_t additionalNeededSpace)730 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
731 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
732 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
733 }
734
ZSTD_cwksp_bump_oversized_duration(ZSTD_cwksp * ws,size_t additionalNeededSpace)735 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
736 ZSTD_cwksp* ws, size_t additionalNeededSpace) {
737 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
738 ws->workspaceOversizedDuration++;
739 } else {
740 ws->workspaceOversizedDuration = 0;
741 }
742 }
743
744 #if defined (__cplusplus)
745 }
746 #endif
747
748 #endif /* ZSTD_CWKSP_H */
749