1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/synchronization/mutex.h"
16
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <algorithm>
37 #include <atomic>
38 #include <cinttypes>
39 #include <cstddef>
40 #include <thread> // NOLINT(build/c++11)
41
42 #include "absl/base/attributes.h"
43 #include "absl/base/call_once.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/atomic_hook.h"
47 #include "absl/base/internal/cycleclock.h"
48 #include "absl/base/internal/hide_ptr.h"
49 #include "absl/base/internal/low_level_alloc.h"
50 #include "absl/base/internal/raw_logging.h"
51 #include "absl/base/internal/spinlock.h"
52 #include "absl/base/internal/sysinfo.h"
53 #include "absl/base/internal/thread_identity.h"
54 #include "absl/base/internal/tsan_mutex_interface.h"
55 #include "absl/base/port.h"
56 #include "absl/debugging/stacktrace.h"
57 #include "absl/debugging/symbolize.h"
58 #include "absl/synchronization/internal/graphcycles.h"
59 #include "absl/synchronization/internal/per_thread_sem.h"
60 #include "absl/time/time.h"
61
62 using absl::base_internal::CurrentThreadIdentityIfPresent;
63 using absl::base_internal::PerThreadSynch;
64 using absl::base_internal::SchedulingGuard;
65 using absl::base_internal::ThreadIdentity;
66 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
67 using absl::synchronization_internal::GraphCycles;
68 using absl::synchronization_internal::GraphId;
69 using absl::synchronization_internal::InvalidGraphId;
70 using absl::synchronization_internal::KernelTimeout;
71 using absl::synchronization_internal::PerThreadSem;
72
73 extern "C" {
ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)74 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() {
75 std::this_thread::yield();
76 }
77 } // extern "C"
78
79 namespace absl {
80 ABSL_NAMESPACE_BEGIN
81
82 namespace {
83
84 #if defined(ABSL_HAVE_THREAD_SANITIZER)
85 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
86 #else
87 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
88 #endif
89
90 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
91 kDeadlockDetectionDefault);
92 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
93
94 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
95 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
96 submit_profile_data;
97 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
98 const char *msg, const void *obj, int64_t wait_cycles)>
99 mutex_tracer;
100 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
101 absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
102 cond_var_tracer;
103 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
104 bool (*)(const void *pc, char *out, int out_size)>
105 symbolizer(absl::Symbolize);
106
107 } // namespace
108
109 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
110 bool locking, bool trylock,
111 bool read_lock);
112
RegisterMutexProfiler(void (* fn)(int64_t wait_cycles))113 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) {
114 submit_profile_data.Store(fn);
115 }
116
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))117 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
118 int64_t wait_cycles)) {
119 mutex_tracer.Store(fn);
120 }
121
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))122 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
123 cond_var_tracer.Store(fn);
124 }
125
RegisterSymbolizer(bool (* fn)(const void * pc,char * out,int out_size))126 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
127 symbolizer.Store(fn);
128 }
129
130 namespace {
131 // Represents the strategy for spin and yield.
132 // See the comment in GetMutexGlobals() for more information.
133 enum DelayMode { AGGRESSIVE, GENTLE };
134
135 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
136 absl::once_flag once;
137 int spinloop_iterations = 0;
138 int32_t mutex_sleep_spins[2] = {};
139 absl::Duration mutex_sleep_time;
140 };
141
MeasureTimeToYield()142 absl::Duration MeasureTimeToYield() {
143 absl::Time before = absl::Now();
144 ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
145 return absl::Now() - before;
146 }
147
GetMutexGlobals()148 const MutexGlobals &GetMutexGlobals() {
149 ABSL_CONST_INIT static MutexGlobals data;
150 absl::base_internal::LowLevelCallOnce(&data.once, [&]() {
151 const int num_cpus = absl::base_internal::NumCPUs();
152 data.spinloop_iterations = num_cpus > 1 ? 1500 : 0;
153 // If this a uniprocessor, only yield/sleep.
154 // Real-time threads are often unable to yield, so the sleep time needs
155 // to be long enough to keep the calling thread asleep until scheduling
156 // happens.
157 // If this is multiprocessor, allow spinning. If the mode is
158 // aggressive then spin many times before yielding. If the mode is
159 // gentle then spin only a few times before yielding. Aggressive spinning
160 // is used to ensure that an Unlock() call, which must get the spin lock
161 // for any thread to make progress gets it without undue delay.
162 if (num_cpus > 1) {
163 data.mutex_sleep_spins[AGGRESSIVE] = 5000;
164 data.mutex_sleep_spins[GENTLE] = 250;
165 data.mutex_sleep_time = absl::Microseconds(10);
166 } else {
167 data.mutex_sleep_spins[AGGRESSIVE] = 0;
168 data.mutex_sleep_spins[GENTLE] = 0;
169 data.mutex_sleep_time = MeasureTimeToYield() * 5;
170 data.mutex_sleep_time =
171 std::min(data.mutex_sleep_time, absl::Milliseconds(1));
172 data.mutex_sleep_time =
173 std::max(data.mutex_sleep_time, absl::Microseconds(10));
174 }
175 });
176 return data;
177 }
178 } // namespace
179
180 namespace synchronization_internal {
181 // Returns the Mutex delay on iteration `c` depending on the given `mode`.
182 // The returned value should be used as `c` for the next call to `MutexDelay`.
MutexDelay(int32_t c,int mode)183 int MutexDelay(int32_t c, int mode) {
184 const int32_t limit = GetMutexGlobals().mutex_sleep_spins[mode];
185 const absl::Duration sleep_time = GetMutexGlobals().mutex_sleep_time;
186 if (c < limit) {
187 // Spin.
188 c++;
189 } else {
190 SchedulingGuard::ScopedEnable enable_rescheduling;
191 ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
192 if (c == limit) {
193 // Yield once.
194 ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
195 c++;
196 } else {
197 // Then wait.
198 absl::SleepFor(sleep_time);
199 c = 0;
200 }
201 ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
202 }
203 return c;
204 }
205 } // namespace synchronization_internal
206
207 // --------------------------Generic atomic ops
208 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
209 // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
210 // before making any change.
211 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)212 static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
213 intptr_t wait_until_clear) {
214 intptr_t v;
215 do {
216 v = pv->load(std::memory_order_relaxed);
217 } while ((v & bits) != bits &&
218 ((v & wait_until_clear) != 0 ||
219 !pv->compare_exchange_weak(v, v | bits,
220 std::memory_order_release,
221 std::memory_order_relaxed)));
222 }
223
224 // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
225 // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
226 // before making any change.
227 // This is used to unset flags in mutex and condition variable words.
AtomicClearBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)228 static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
229 intptr_t wait_until_clear) {
230 intptr_t v;
231 do {
232 v = pv->load(std::memory_order_relaxed);
233 } while ((v & bits) != 0 &&
234 ((v & wait_until_clear) != 0 ||
235 !pv->compare_exchange_weak(v, v & ~bits,
236 std::memory_order_release,
237 std::memory_order_relaxed)));
238 }
239
240 //------------------------------------------------------------------
241
242 // Data for doing deadlock detection.
243 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
244 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
245
246 // Graph used to detect deadlocks.
247 ABSL_CONST_INIT static GraphCycles *deadlock_graph
248 ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
249
250 //------------------------------------------------------------------
251 // An event mechanism for debugging mutex use.
252 // It also allows mutexes to be given names for those who can't handle
253 // addresses, and instead like to give their data structures names like
254 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
255
256 namespace { // to prevent name pollution
257 enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
258 // Mutex events
259 SYNCH_EV_TRYLOCK_SUCCESS,
260 SYNCH_EV_TRYLOCK_FAILED,
261 SYNCH_EV_READERTRYLOCK_SUCCESS,
262 SYNCH_EV_READERTRYLOCK_FAILED,
263 SYNCH_EV_LOCK,
264 SYNCH_EV_LOCK_RETURNING,
265 SYNCH_EV_READERLOCK,
266 SYNCH_EV_READERLOCK_RETURNING,
267 SYNCH_EV_UNLOCK,
268 SYNCH_EV_READERUNLOCK,
269
270 // CondVar events
271 SYNCH_EV_WAIT,
272 SYNCH_EV_WAIT_RETURNING,
273 SYNCH_EV_SIGNAL,
274 SYNCH_EV_SIGNALALL,
275 };
276
277 enum { // Event flags
278 SYNCH_F_R = 0x01, // reader event
279 SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
280 SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock
281 SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock
282
283 SYNCH_F_LCK_W = SYNCH_F_LCK,
284 SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
285 };
286 } // anonymous namespace
287
288 // Properties of the events.
289 static const struct {
290 int flags;
291 const char *msg;
292 } event_properties[] = {
293 {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
294 {0, "TryLock failed "},
295 {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
296 {0, "ReaderTryLock failed "},
297 {0, "Lock blocking "},
298 {SYNCH_F_LCK_W, "Lock returning "},
299 {0, "ReaderLock blocking "},
300 {SYNCH_F_LCK_R, "ReaderLock returning "},
301 {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
302 {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
303 {0, "Wait on "},
304 {0, "Wait unblocked "},
305 {0, "Signal on "},
306 {0, "SignalAll on "},
307 };
308
309 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
310 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
311
312 // Hash table size; should be prime > 2.
313 // Can't be too small, as it's used for deadlock detection information.
314 static constexpr uint32_t kNSynchEvent = 1031;
315
316 static struct SynchEvent { // this is a trivial hash table for the events
317 // struct is freed when refcount reaches 0
318 int refcount ABSL_GUARDED_BY(synch_event_mu);
319
320 // buckets have linear, 0-terminated chains
321 SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
322
323 // Constant after initialization
324 uintptr_t masked_addr; // object at this address is called "name"
325
326 // No explicit synchronization used. Instead we assume that the
327 // client who enables/disables invariants/logging on a Mutex does so
328 // while the Mutex is not being concurrently accessed by others.
329 void (*invariant)(void *arg); // called on each event
330 void *arg; // first arg to (*invariant)()
331 bool log; // logging turned on
332
333 // Constant after initialization
334 char name[1]; // actually longer---NUL-terminated string
335 } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
336
337 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
338 // set "bits" in the word there (waiting until lockbit is clear before doing
339 // so), and return a refcounted reference that will remain valid until
340 // UnrefSynchEvent() is called. If a new SynchEvent is allocated,
341 // the string name is copied into it.
342 // When used with a mutex, the caller should also ensure that kMuEvent
343 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)344 static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
345 const char *name, intptr_t bits,
346 intptr_t lockbit) {
347 uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
348 SynchEvent *e;
349 // first look for existing SynchEvent struct..
350 synch_event_mu.Lock();
351 for (e = synch_event[h];
352 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
353 e = e->next) {
354 }
355 if (e == nullptr) { // no SynchEvent struct found; make one.
356 if (name == nullptr) {
357 name = "";
358 }
359 size_t l = strlen(name);
360 e = reinterpret_cast<SynchEvent *>(
361 base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
362 e->refcount = 2; // one for return value, one for linked list
363 e->masked_addr = base_internal::HidePtr(addr);
364 e->invariant = nullptr;
365 e->arg = nullptr;
366 e->log = false;
367 strcpy(e->name, name); // NOLINT(runtime/printf)
368 e->next = synch_event[h];
369 AtomicSetBits(addr, bits, lockbit);
370 synch_event[h] = e;
371 } else {
372 e->refcount++; // for return value
373 }
374 synch_event_mu.Unlock();
375 return e;
376 }
377
378 // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
DeleteSynchEvent(SynchEvent * e)379 static void DeleteSynchEvent(SynchEvent *e) {
380 base_internal::LowLevelAlloc::Free(e);
381 }
382
383 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)384 static void UnrefSynchEvent(SynchEvent *e) {
385 if (e != nullptr) {
386 synch_event_mu.Lock();
387 bool del = (--(e->refcount) == 0);
388 synch_event_mu.Unlock();
389 if (del) {
390 DeleteSynchEvent(e);
391 }
392 }
393 }
394
395 // Forget the mapping from the object (Mutex or CondVar) at address addr
396 // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
397 // is clear before doing so).
ForgetSynchEvent(std::atomic<intptr_t> * addr,intptr_t bits,intptr_t lockbit)398 static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
399 intptr_t lockbit) {
400 uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
401 SynchEvent **pe;
402 SynchEvent *e;
403 synch_event_mu.Lock();
404 for (pe = &synch_event[h];
405 (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
406 pe = &e->next) {
407 }
408 bool del = false;
409 if (e != nullptr) {
410 *pe = e->next;
411 del = (--(e->refcount) == 0);
412 }
413 AtomicClearBits(addr, bits, lockbit);
414 synch_event_mu.Unlock();
415 if (del) {
416 DeleteSynchEvent(e);
417 }
418 }
419
420 // Return a refcounted reference to the SynchEvent of the object at address
421 // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
422 // called.
GetSynchEvent(const void * addr)423 static SynchEvent *GetSynchEvent(const void *addr) {
424 uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
425 SynchEvent *e;
426 synch_event_mu.Lock();
427 for (e = synch_event[h];
428 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
429 e = e->next) {
430 }
431 if (e != nullptr) {
432 e->refcount++;
433 }
434 synch_event_mu.Unlock();
435 return e;
436 }
437
438 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
439 // if event recording is on
PostSynchEvent(void * obj,int ev)440 static void PostSynchEvent(void *obj, int ev) {
441 SynchEvent *e = GetSynchEvent(obj);
442 // logging is on if event recording is on and either there's no event struct,
443 // or it explicitly says to log
444 if (e == nullptr || e->log) {
445 void *pcs[40];
446 int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
447 // A buffer with enough space for the ASCII for all the PCs, even on a
448 // 64-bit machine.
449 char buffer[ABSL_ARRAYSIZE(pcs) * 24];
450 int pos = snprintf(buffer, sizeof (buffer), " @");
451 for (int i = 0; i != n; i++) {
452 int b = snprintf(&buffer[pos], sizeof(buffer) - static_cast<size_t>(pos),
453 " %p", pcs[i]);
454 if (b < 0 ||
455 static_cast<size_t>(b) >= sizeof(buffer) - static_cast<size_t>(pos)) {
456 break;
457 }
458 pos += b;
459 }
460 ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
461 (e == nullptr ? "" : e->name), buffer);
462 }
463 const int flags = event_properties[ev].flags;
464 if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
465 // Calling the invariant as is causes problems under ThreadSanitizer.
466 // We are currently inside of Mutex Lock/Unlock and are ignoring all
467 // memory accesses and synchronization. If the invariant transitively
468 // synchronizes something else and we ignore the synchronization, we will
469 // get false positive race reports later.
470 // Reuse EvalConditionAnnotated to properly call into user code.
471 struct local {
472 static bool pred(SynchEvent *ev) {
473 (*ev->invariant)(ev->arg);
474 return false;
475 }
476 };
477 Condition cond(&local::pred, e);
478 Mutex *mu = static_cast<Mutex *>(obj);
479 const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
480 const bool trylock = (flags & SYNCH_F_TRY) != 0;
481 const bool read_lock = (flags & SYNCH_F_R) != 0;
482 EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
483 }
484 UnrefSynchEvent(e);
485 }
486
487 //------------------------------------------------------------------
488
489 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
490 // whether it has a timeout, the condition, exclusive/shared, and whether a
491 // condition variable wait has an associated Mutex (as opposed to another
492 // type of lock). It also points to the PerThreadSynch struct of its thread.
493 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
494 //
495 // This structure is held on the stack rather than directly in
496 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
497 // while waiting on one Mutex, the implementation calls a client callback
498 // (such as a Condition function) that acquires another Mutex. We don't
499 // strictly need to allow this, but programmers become confused if we do not
500 // allow them to use functions such a LOG() within Condition functions. The
501 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
502 // the thread is on a Mutex's waiter queue.
503 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams504 SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
505 KernelTimeout timeout_arg, Mutex *cvmu_arg,
506 PerThreadSynch *thread_arg,
507 std::atomic<intptr_t> *cv_word_arg)
508 : how(how_arg),
509 cond(cond_arg),
510 timeout(timeout_arg),
511 cvmu(cvmu_arg),
512 thread(thread_arg),
513 cv_word(cv_word_arg),
514 contention_start_cycles(base_internal::CycleClock::Now()),
515 should_submit_contention_data(false) {}
516
517 const Mutex::MuHow how; // How this thread needs to wait.
518 const Condition *cond; // The condition that this thread is waiting for.
519 // In Mutex, this field is set to zero if a timeout
520 // expires.
521 KernelTimeout timeout; // timeout expiry---absolute time
522 // In Mutex, this field is set to zero if a timeout
523 // expires.
524 Mutex *const cvmu; // used for transfer from cond var to mutex
525 PerThreadSynch *const thread; // thread that is waiting
526
527 // If not null, thread should be enqueued on the CondVar whose state
528 // word is cv_word instead of queueing normally on the Mutex.
529 std::atomic<intptr_t> *cv_word;
530
531 int64_t contention_start_cycles; // Time (in cycles) when this thread started
532 // to contend for the mutex.
533 bool should_submit_contention_data;
534 };
535
536 struct SynchLocksHeld {
537 int n; // number of valid entries in locks[]
538 bool overflow; // true iff we overflowed the array at some point
539 struct {
540 Mutex *mu; // lock acquired
541 int32_t count; // times acquired
542 GraphId id; // deadlock_graph id of acquired lock
543 } locks[40];
544 // If a thread overfills the array during deadlock detection, we
545 // continue, discarding information as needed. If no overflow has
546 // taken place, we can provide more error checking, such as
547 // detecting when a thread releases a lock it does not hold.
548 };
549
550 // A sentinel value in lists that is not 0.
551 // A 0 value is used to mean "not on a list".
552 static PerThreadSynch *const kPerThreadSynchNull =
553 reinterpret_cast<PerThreadSynch *>(1);
554
LocksHeldAlloc()555 static SynchLocksHeld *LocksHeldAlloc() {
556 SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
557 base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
558 ret->n = 0;
559 ret->overflow = false;
560 return ret;
561 }
562
563 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()564 static PerThreadSynch *Synch_GetPerThread() {
565 ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
566 return &identity->per_thread_synch;
567 }
568
Synch_GetPerThreadAnnotated(Mutex * mu)569 static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
570 if (mu) {
571 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
572 }
573 PerThreadSynch *w = Synch_GetPerThread();
574 if (mu) {
575 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
576 }
577 return w;
578 }
579
Synch_GetAllLocks()580 static SynchLocksHeld *Synch_GetAllLocks() {
581 PerThreadSynch *s = Synch_GetPerThread();
582 if (s->all_locks == nullptr) {
583 s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
584 }
585 return s->all_locks;
586 }
587
588 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)589 void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
590 if (mu) {
591 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
592 }
593 PerThreadSem::Post(w->thread_identity());
594 if (mu) {
595 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
596 }
597 }
598
599 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)600 bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
601 if (mu) {
602 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
603 }
604 assert(w == Synch_GetPerThread());
605 static_cast<void>(w);
606 bool res = PerThreadSem::Wait(t);
607 if (mu) {
608 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
609 }
610 return res;
611 }
612
613 // We're in a fatal signal handler that hopes to use Mutex and to get
614 // lucky by not deadlocking. We try to improve its chances of success
615 // by effectively disabling some of the consistency checks. This will
616 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
617 // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
618 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()619 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
620 // Fix the per-thread state only if it exists.
621 ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
622 if (identity != nullptr) {
623 identity->per_thread_synch.suppress_fatal_errors = true;
624 }
625 // Don't do deadlock detection when we are already failing.
626 synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
627 std::memory_order_release);
628 }
629
630 // --------------------------time support
631
632 // Return the current time plus the timeout. Use the same clock as
633 // PerThreadSem::Wait() for consistency. Unfortunately, we don't have
634 // such a choice when a deadline is given directly.
DeadlineFromTimeout(absl::Duration timeout)635 static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
636 #ifndef _WIN32
637 struct timeval tv;
638 gettimeofday(&tv, nullptr);
639 return absl::TimeFromTimeval(tv) + timeout;
640 #else
641 return absl::Now() + timeout;
642 #endif
643 }
644
645 // --------------------------Mutexes
646
647 // In the layout below, the msb of the bottom byte is currently unused. Also,
648 // the following constraints were considered in choosing the layout:
649 // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
650 // 0xcd) are illegal: reader and writer lock both held.
651 // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
652 // bit-twiddling trick in Mutex::Unlock().
653 // o kMuWriter / kMuReader == kMuWrWait / kMuWait,
654 // to enable the bit-twiddling trick in CheckForMutexCorruption().
655 static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
656 static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
657 static const intptr_t kMuWait = 0x0004L; // threads are waiting
658 static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
659 static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
660 // INVARIANT1: there's a thread that was blocked on the mutex, is
661 // no longer, yet has not yet acquired the mutex. If there's a
662 // designated waker, all threads can avoid taking the slow path in
663 // unlock because the designated waker will subsequently acquire
664 // the lock and wake someone. To maintain INVARIANT1 the bit is
665 // set when a thread is unblocked(INV1a), and threads that were
666 // unblocked reset the bit when they either acquire or re-block
667 // (INV1b).
668 static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
669 // for a reader
670 static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
671 static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
672 static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
673
674 // Hack to make constant values available to gdb pretty printer
675 enum {
676 kGdbMuSpin = kMuSpin,
677 kGdbMuEvent = kMuEvent,
678 kGdbMuWait = kMuWait,
679 kGdbMuWriter = kMuWriter,
680 kGdbMuDesig = kMuDesig,
681 kGdbMuWrWait = kMuWrWait,
682 kGdbMuReader = kMuReader,
683 kGdbMuLow = kMuLow,
684 };
685
686 // kMuWrWait implies kMuWait.
687 // kMuReader and kMuWriter are mutually exclusive.
688 // If kMuReader is zero, there are no readers.
689 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
690 // number of readers. Otherwise, the reader count is held in
691 // PerThreadSynch::readers of the most recently queued waiter, again in the
692 // bits above kMuLow.
693 static const intptr_t kMuOne = 0x0100; // a count of one reader
694
695 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
696 static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
697 static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
698
699 static_assert(PerThreadSynch::kAlignment > kMuLow,
700 "PerThreadSynch::kAlignment must be greater than kMuLow");
701
702 // This struct contains various bitmasks to be used in
703 // acquiring and releasing a mutex in a particular mode.
704 struct MuHowS {
705 // if all the bits in fast_need_zero are zero, the lock can be acquired by
706 // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
707 // this is the designated waker.
708 intptr_t fast_need_zero;
709 intptr_t fast_or;
710 intptr_t fast_add;
711
712 intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
713
714 intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
715 // zero a reader can acquire a read share by
716 // setting the reader bit and incrementing
717 // the reader count (in last waiter since
718 // we're now slow-path). kMuWrWait be may
719 // be ignored if we already waited once.
720 };
721
722 static const MuHowS kSharedS = {
723 // shared or read lock
724 kMuWriter | kMuWait | kMuEvent, // fast_need_zero
725 kMuReader, // fast_or
726 kMuOne, // fast_add
727 kMuWriter | kMuWait, // slow_need_zero
728 kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
729 };
730 static const MuHowS kExclusiveS = {
731 // exclusive or write lock
732 kMuWriter | kMuReader | kMuEvent, // fast_need_zero
733 kMuWriter, // fast_or
734 0, // fast_add
735 kMuWriter | kMuReader, // slow_need_zero
736 ~static_cast<intptr_t>(0), // slow_inc_need_zero
737 };
738 static const Mutex::MuHow kShared = &kSharedS; // shared lock
739 static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
740
741 #ifdef NDEBUG
742 static constexpr bool kDebugMode = false;
743 #else
744 static constexpr bool kDebugMode = true;
745 #endif
746
747 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)748 static unsigned TsanFlags(Mutex::MuHow how) {
749 return how == kShared ? __tsan_mutex_read_lock : 0;
750 }
751 #endif
752
DebugOnlyIsExiting()753 static bool DebugOnlyIsExiting() {
754 return false;
755 }
756
~Mutex()757 Mutex::~Mutex() {
758 intptr_t v = mu_.load(std::memory_order_relaxed);
759 if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
760 ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
761 }
762 if (kDebugMode) {
763 this->ForgetDeadlockInfo();
764 }
765 ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
766 }
767
EnableDebugLog(const char * name)768 void Mutex::EnableDebugLog(const char *name) {
769 SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
770 e->log = true;
771 UnrefSynchEvent(e);
772 }
773
EnableMutexInvariantDebugging(bool enabled)774 void EnableMutexInvariantDebugging(bool enabled) {
775 synch_check_invariants.store(enabled, std::memory_order_release);
776 }
777
EnableInvariantDebugging(void (* invariant)(void *),void * arg)778 void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
779 void *arg) {
780 if (synch_check_invariants.load(std::memory_order_acquire) &&
781 invariant != nullptr) {
782 SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
783 e->invariant = invariant;
784 e->arg = arg;
785 UnrefSynchEvent(e);
786 }
787 }
788
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)789 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
790 synch_deadlock_detection.store(mode, std::memory_order_release);
791 }
792
793 // Return true iff threads x and y are part of the same equivalence
794 // class of waiters. An equivalence class is defined as the set of
795 // waiters with the same condition, type of lock, and thread priority.
796 //
797 // Requires that x and y be waiting on the same Mutex queue.
MuEquivalentWaiter(PerThreadSynch * x,PerThreadSynch * y)798 static bool MuEquivalentWaiter(PerThreadSynch *x, PerThreadSynch *y) {
799 return x->waitp->how == y->waitp->how && x->priority == y->priority &&
800 Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
801 }
802
803 // Given the contents of a mutex word containing a PerThreadSynch pointer,
804 // return the pointer.
GetPerThreadSynch(intptr_t v)805 static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
806 return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
807 }
808
809 // The next several routines maintain the per-thread next and skip fields
810 // used in the Mutex waiter queue.
811 // The queue is a circular singly-linked list, of which the "head" is the
812 // last element, and head->next if the first element.
813 // The skip field has the invariant:
814 // For thread x, x->skip is one of:
815 // - invalid (iff x is not in a Mutex wait queue),
816 // - null, or
817 // - a pointer to a distinct thread waiting later in the same Mutex queue
818 // such that all threads in [x, x->skip] have the same condition, priority
819 // and lock type (MuEquivalentWaiter() is true for all pairs in [x,
820 // x->skip]).
821 // In addition, if x->skip is valid, (x->may_skip || x->skip == null)
822 //
823 // By the spec of MuEquivalentWaiter(), it is not necessary when removing the
824 // first runnable thread y from the front a Mutex queue to adjust the skip
825 // field of another thread x because if x->skip==y, x->skip must (have) become
826 // invalid before y is removed. The function TryRemove can remove a specified
827 // thread from an arbitrary position in the queue whether runnable or not, so
828 // it fixes up skip fields that would otherwise be left dangling.
829 // The statement
830 // if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; }
831 // maintains the invariant provided x is not the last waiter in a Mutex queue
832 // The statement
833 // if (x->skip != null) { x->skip = x->skip->skip; }
834 // maintains the invariant.
835
836 // Returns the last thread y in a mutex waiter queue such that all threads in
837 // [x, y] inclusive share the same condition. Sets skip fields of some threads
838 // in that range to optimize future evaluation of Skip() on x values in
839 // the range. Requires thread x is in a mutex waiter queue.
840 // The locking is unusual. Skip() is called under these conditions:
841 // - spinlock is held in call from Enqueue(), with maybe_unlocking == false
842 // - Mutex is held in call from UnlockSlow() by last unlocker, with
843 // maybe_unlocking == true
844 // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
845 // UnlockSlow()) and TryRemove()
846 // These cases are mutually exclusive, so Skip() never runs concurrently
847 // with itself on the same Mutex. The skip chain is used in these other places
848 // that cannot occur concurrently:
849 // - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
850 // - Dequeue() (with spinlock and Mutex held)
851 // - UnlockSlow() (with spinlock and Mutex held)
852 // A more complex case is Enqueue()
853 // - Enqueue() (with spinlock held and maybe_unlocking == false)
854 // This is the first case in which Skip is called, above.
855 // - Enqueue() (without spinlock held; but queue is empty and being freshly
856 // formed)
857 // - Enqueue() (with spinlock held and maybe_unlocking == true)
858 // The first case has mutual exclusion, and the second isolation through
859 // working on an otherwise unreachable data structure.
860 // In the last case, Enqueue() is required to change no skip/next pointers
861 // except those in the added node and the former "head" node. This implies
862 // that the new node is added after head, and so must be the new head or the
863 // new front of the queue.
Skip(PerThreadSynch * x)864 static PerThreadSynch *Skip(PerThreadSynch *x) {
865 PerThreadSynch *x0 = nullptr;
866 PerThreadSynch *x1 = x;
867 PerThreadSynch *x2 = x->skip;
868 if (x2 != nullptr) {
869 // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
870 // such that x1 == x0->skip && x2 == x1->skip
871 while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
872 x0->skip = x2; // short-circuit skip from x0 to x2
873 }
874 x->skip = x1; // short-circuit skip from x to result
875 }
876 return x1;
877 }
878
879 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
880 // The latter is going to be removed out of order, because of a timeout.
881 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
882 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)883 static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
884 if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
885 if (to_be_removed->skip != nullptr) {
886 ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
887 } else if (ancestor->next != to_be_removed) { // they are not adjacent
888 ancestor->skip = ancestor->next; // can skip one past ancestor
889 } else {
890 ancestor->skip = nullptr; // can't skip at all
891 }
892 }
893 }
894
895 static void CondVarEnqueue(SynchWaitParams *waitp);
896
897 // Enqueue thread "waitp->thread" on a waiter queue.
898 // Called with mutex spinlock held if head != nullptr
899 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
900 // idempotent; it alters no state associated with the existing (empty)
901 // queue.
902 //
903 // If waitp->cv_word == nullptr, queue the thread at either the front or
904 // the end (according to its priority) of the circular mutex waiter queue whose
905 // head is "head", and return the new head. mu is the previous mutex state,
906 // which contains the reader count (perhaps adjusted for the operation in
907 // progress) if the list was empty and a read lock held, and the holder hint if
908 // the list was empty and a write lock held. (flags & kMuIsCond) indicates
909 // whether this thread was transferred from a CondVar or is waiting for a
910 // non-trivial condition. In this case, Enqueue() never returns nullptr
911 //
912 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
913 // returned. This mechanism is used by CondVar to queue a thread on the
914 // condition variable queue instead of the mutex queue in implementing Wait().
915 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)916 static PerThreadSynch *Enqueue(PerThreadSynch *head,
917 SynchWaitParams *waitp, intptr_t mu, int flags) {
918 // If we have been given a cv_word, call CondVarEnqueue() and return
919 // the previous head of the Mutex waiter queue.
920 if (waitp->cv_word != nullptr) {
921 CondVarEnqueue(waitp);
922 return head;
923 }
924
925 PerThreadSynch *s = waitp->thread;
926 ABSL_RAW_CHECK(
927 s->waitp == nullptr || // normal case
928 s->waitp == waitp || // Fer()---transfer from condition variable
929 s->suppress_fatal_errors,
930 "detected illegal recursion into Mutex code");
931 s->waitp = waitp;
932 s->skip = nullptr; // maintain skip invariant (see above)
933 s->may_skip = true; // always true on entering queue
934 s->wake = false; // not being woken
935 s->cond_waiter = ((flags & kMuIsCond) != 0);
936 if (head == nullptr) { // s is the only waiter
937 s->next = s; // it's the only entry in the cycle
938 s->readers = mu; // reader count is from mu word
939 s->maybe_unlocking = false; // no one is searching an empty list
940 head = s; // s is new head
941 } else {
942 PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
943 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
944 int64_t now_cycles = base_internal::CycleClock::Now();
945 if (s->next_priority_read_cycles < now_cycles) {
946 // Every so often, update our idea of the thread's priority.
947 // pthread_getschedparam() is 5% of the block/wakeup time;
948 // base_internal::CycleClock::Now() is 0.5%.
949 int policy;
950 struct sched_param param;
951 const int err = pthread_getschedparam(pthread_self(), &policy, ¶m);
952 if (err != 0) {
953 ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
954 } else {
955 s->priority = param.sched_priority;
956 s->next_priority_read_cycles =
957 now_cycles +
958 static_cast<int64_t>(base_internal::CycleClock::Frequency());
959 }
960 }
961 if (s->priority > head->priority) { // s's priority is above head's
962 // try to put s in priority-fifo order, or failing that at the front.
963 if (!head->maybe_unlocking) {
964 // No unlocker can be scanning the queue, so we can insert into the
965 // middle of the queue.
966 //
967 // Within a skip chain, all waiters have the same priority, so we can
968 // skip forward through the chains until we find one with a lower
969 // priority than the waiter to be enqueued.
970 PerThreadSynch *advance_to = head; // next value of enqueue_after
971 do {
972 enqueue_after = advance_to;
973 // (side-effect: optimizes skip chain)
974 advance_to = Skip(enqueue_after->next);
975 } while (s->priority <= advance_to->priority);
976 // termination guaranteed because s->priority > head->priority
977 // and head is the end of a skip chain
978 } else if (waitp->how == kExclusive &&
979 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
980 // An unlocker could be scanning the queue, but we know it will recheck
981 // the queue front for writers that have no condition, which is what s
982 // is, so an insert at front is safe.
983 enqueue_after = head; // add after head, at front
984 }
985 }
986 #endif
987 if (enqueue_after != nullptr) {
988 s->next = enqueue_after->next;
989 enqueue_after->next = s;
990
991 // enqueue_after can be: head, Skip(...), or cur.
992 // The first two imply enqueue_after->skip == nullptr, and
993 // the last is used only if MuEquivalentWaiter(s, cur).
994 // We require this because clearing enqueue_after->skip
995 // is impossible; enqueue_after's predecessors might also
996 // incorrectly skip over s if we were to allow other
997 // insertion points.
998 ABSL_RAW_CHECK(enqueue_after->skip == nullptr ||
999 MuEquivalentWaiter(enqueue_after, s),
1000 "Mutex Enqueue failure");
1001
1002 if (enqueue_after != head && enqueue_after->may_skip &&
1003 MuEquivalentWaiter(enqueue_after, enqueue_after->next)) {
1004 // enqueue_after can skip to its new successor, s
1005 enqueue_after->skip = enqueue_after->next;
1006 }
1007 if (MuEquivalentWaiter(s, s->next)) { // s->may_skip is known to be true
1008 s->skip = s->next; // s may skip to its successor
1009 }
1010 } else { // enqueue not done any other way, so
1011 // we're inserting s at the back
1012 // s will become new head; copy data from head into it
1013 s->next = head->next; // add s after head
1014 head->next = s;
1015 s->readers = head->readers; // reader count is from previous head
1016 s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
1017 if (head->may_skip && MuEquivalentWaiter(head, s)) {
1018 // head now has successor; may skip
1019 head->skip = s;
1020 }
1021 head = s; // s is new head
1022 }
1023 }
1024 s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
1025 return head;
1026 }
1027
1028 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
1029 // whose last element is head. The new head element is returned, or null
1030 // if the list is made empty.
1031 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)1032 static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
1033 PerThreadSynch *w = pw->next;
1034 pw->next = w->next; // snip w out of list
1035 if (head == w) { // we removed the head
1036 head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
1037 } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) {
1038 // pw can skip to its new successor
1039 if (pw->next->skip !=
1040 nullptr) { // either skip to its successors skip target
1041 pw->skip = pw->next->skip;
1042 } else { // or to pw's successor
1043 pw->skip = pw->next;
1044 }
1045 }
1046 return head;
1047 }
1048
1049 // Traverse the elements [ pw->next, h] of the circular list whose last element
1050 // is head.
1051 // Remove all elements with wake==true and place them in the
1052 // singly-linked list wake_list in the order found. Assumes that
1053 // there is only one such element if the element has how == kExclusive.
1054 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1055 static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
1056 PerThreadSynch *pw,
1057 PerThreadSynch **wake_tail) {
1058 PerThreadSynch *orig_h = head;
1059 PerThreadSynch *w = pw->next;
1060 bool skipped = false;
1061 do {
1062 if (w->wake) { // remove this element
1063 ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1064 // we're removing pw's successor so either pw->skip is zero or we should
1065 // already have removed pw since if pw->skip!=null, pw has the same
1066 // condition as w.
1067 head = Dequeue(head, pw);
1068 w->next = *wake_tail; // keep list terminated
1069 *wake_tail = w; // add w to wake_list;
1070 wake_tail = &w->next; // next addition to end
1071 if (w->waitp->how == kExclusive) { // wake at most 1 writer
1072 break;
1073 }
1074 } else { // not waking this one; skip
1075 pw = Skip(w); // skip as much as possible
1076 skipped = true;
1077 }
1078 w = pw->next;
1079 // We want to stop processing after we've considered the original head,
1080 // orig_h. We can't test for w==orig_h in the loop because w may skip over
1081 // it; we are guaranteed only that w's predecessor will not skip over
1082 // orig_h. When we've considered orig_h, either we've processed it and
1083 // removed it (so orig_h != head), or we considered it and skipped it (so
1084 // skipped==true && pw == head because skipping from head always skips by
1085 // just one, leaving pw pointing at head). So we want to
1086 // continue the loop with the negation of that expression.
1087 } while (orig_h == head && (pw != head || !skipped));
1088 return head;
1089 }
1090
1091 // Try to remove thread s from the list of waiters on this mutex.
1092 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1093 void Mutex::TryRemove(PerThreadSynch *s) {
1094 SchedulingGuard::ScopedDisable disable_rescheduling;
1095 intptr_t v = mu_.load(std::memory_order_relaxed);
1096 // acquire spinlock & lock
1097 if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1098 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1099 std::memory_order_acquire,
1100 std::memory_order_relaxed)) {
1101 PerThreadSynch *h = GetPerThreadSynch(v);
1102 if (h != nullptr) {
1103 PerThreadSynch *pw = h; // pw is w's predecessor
1104 PerThreadSynch *w;
1105 if ((w = pw->next) != s) { // search for thread,
1106 do { // processing at least one element
1107 // If the current element isn't equivalent to the waiter to be
1108 // removed, we can skip the entire chain.
1109 if (!MuEquivalentWaiter(s, w)) {
1110 pw = Skip(w); // so skip all that won't match
1111 // we don't have to worry about dangling skip fields
1112 // in the threads we skipped; none can point to s
1113 // because they are in a different equivalence class.
1114 } else { // seeking same condition
1115 FixSkip(w, s); // fix up any skip pointer from w to s
1116 pw = w;
1117 }
1118 // don't search further if we found the thread, or we're about to
1119 // process the first thread again.
1120 } while ((w = pw->next) != s && pw != h);
1121 }
1122 if (w == s) { // found thread; remove it
1123 // pw->skip may be non-zero here; the loop above ensured that
1124 // no ancestor of s can skip to s, so removal is safe anyway.
1125 h = Dequeue(h, pw);
1126 s->next = nullptr;
1127 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1128 }
1129 }
1130 intptr_t nv;
1131 do { // release spinlock and lock
1132 v = mu_.load(std::memory_order_relaxed);
1133 nv = v & (kMuDesig | kMuEvent);
1134 if (h != nullptr) {
1135 nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1136 h->readers = 0; // we hold writer lock
1137 h->maybe_unlocking = false; // finished unlocking
1138 }
1139 } while (!mu_.compare_exchange_weak(v, nv,
1140 std::memory_order_release,
1141 std::memory_order_relaxed));
1142 }
1143 }
1144
1145 // Wait until thread "s", which must be the current thread, is removed from the
1146 // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
1147 // if the wait extends past the absolute time specified, even if "s" is still
1148 // on the mutex queue. In this case, remove "s" from the queue and return
1149 // true, otherwise return false.
Block(PerThreadSynch * s)1150 ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
1151 while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1152 if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1153 // After a timeout, we go into a spin loop until we remove ourselves
1154 // from the queue, or someone else removes us. We can't be sure to be
1155 // able to remove ourselves in a single lock acquisition because this
1156 // mutex may be held, and the holder has the right to read the centre
1157 // of the waiter queue without holding the spinlock.
1158 this->TryRemove(s);
1159 int c = 0;
1160 while (s->next != nullptr) {
1161 c = synchronization_internal::MutexDelay(c, GENTLE);
1162 this->TryRemove(s);
1163 }
1164 if (kDebugMode) {
1165 // This ensures that we test the case that TryRemove() is called when s
1166 // is not on the queue.
1167 this->TryRemove(s);
1168 }
1169 s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
1170 s->waitp->cond = nullptr; // condition no longer relevant for wakeups
1171 }
1172 }
1173 ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1174 "detected illegal recursion in Mutex code");
1175 s->waitp = nullptr;
1176 }
1177
1178 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1179 PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
1180 PerThreadSynch *next = w->next;
1181 w->next = nullptr;
1182 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1183 IncrementSynchSem(this, w);
1184
1185 return next;
1186 }
1187
GetGraphIdLocked(Mutex * mu)1188 static GraphId GetGraphIdLocked(Mutex *mu)
1189 ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1190 if (!deadlock_graph) { // (re)create the deadlock graph.
1191 deadlock_graph =
1192 new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1193 GraphCycles;
1194 }
1195 return deadlock_graph->GetId(mu);
1196 }
1197
GetGraphId(Mutex * mu)1198 static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1199 deadlock_graph_mu.Lock();
1200 GraphId id = GetGraphIdLocked(mu);
1201 deadlock_graph_mu.Unlock();
1202 return id;
1203 }
1204
1205 // Record a lock acquisition. This is used in debug mode for deadlock
1206 // detection. The held_locks pointer points to the relevant data
1207 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1208 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1209 int n = held_locks->n;
1210 int i = 0;
1211 while (i != n && held_locks->locks[i].id != id) {
1212 i++;
1213 }
1214 if (i == n) {
1215 if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1216 held_locks->overflow = true; // lost some data
1217 } else { // we have room for lock
1218 held_locks->locks[i].mu = mu;
1219 held_locks->locks[i].count = 1;
1220 held_locks->locks[i].id = id;
1221 held_locks->n = n + 1;
1222 }
1223 } else {
1224 held_locks->locks[i].count++;
1225 }
1226 }
1227
1228 // Record a lock release. Each call to LockEnter(mu, id, x) should be
1229 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1230 // It does not process the event if is not needed when deadlock detection is
1231 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1232 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1233 int n = held_locks->n;
1234 int i = 0;
1235 while (i != n && held_locks->locks[i].id != id) {
1236 i++;
1237 }
1238 if (i == n) {
1239 if (!held_locks->overflow) {
1240 // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1241 // but in that case mu should still be present.
1242 i = 0;
1243 while (i != n && held_locks->locks[i].mu != mu) {
1244 i++;
1245 }
1246 if (i == n) { // mu missing means releasing unheld lock
1247 SynchEvent *mu_events = GetSynchEvent(mu);
1248 ABSL_RAW_LOG(FATAL,
1249 "thread releasing lock it does not hold: %p %s; "
1250 ,
1251 static_cast<void *>(mu),
1252 mu_events == nullptr ? "" : mu_events->name);
1253 }
1254 }
1255 } else if (held_locks->locks[i].count == 1) {
1256 held_locks->n = n - 1;
1257 held_locks->locks[i] = held_locks->locks[n - 1];
1258 held_locks->locks[n - 1].id = InvalidGraphId();
1259 held_locks->locks[n - 1].mu =
1260 nullptr; // clear mu to please the leak detector.
1261 } else {
1262 assert(held_locks->locks[i].count > 0);
1263 held_locks->locks[i].count--;
1264 }
1265 }
1266
1267 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1268 static inline void DebugOnlyLockEnter(Mutex *mu) {
1269 if (kDebugMode) {
1270 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1271 OnDeadlockCycle::kIgnore) {
1272 LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1273 }
1274 }
1275 }
1276
1277 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1278 static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
1279 if (kDebugMode) {
1280 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1281 OnDeadlockCycle::kIgnore) {
1282 LockEnter(mu, id, Synch_GetAllLocks());
1283 }
1284 }
1285 }
1286
1287 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1288 static inline void DebugOnlyLockLeave(Mutex *mu) {
1289 if (kDebugMode) {
1290 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1291 OnDeadlockCycle::kIgnore) {
1292 LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1293 }
1294 }
1295 }
1296
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1297 static char *StackString(void **pcs, int n, char *buf, int maxlen,
1298 bool symbolize) {
1299 static const int kSymLen = 200;
1300 char sym[kSymLen];
1301 int len = 0;
1302 for (int i = 0; i != n; i++) {
1303 if (len >= maxlen)
1304 return buf;
1305 size_t count = static_cast<size_t>(maxlen - len);
1306 if (symbolize) {
1307 if (!symbolizer(pcs[i], sym, kSymLen)) {
1308 sym[0] = '\0';
1309 }
1310 snprintf(buf + len, count, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i],
1311 sym);
1312 } else {
1313 snprintf(buf + len, count, " %p", pcs[i]);
1314 }
1315 len += strlen(&buf[len]);
1316 }
1317 return buf;
1318 }
1319
CurrentStackString(char * buf,int maxlen,bool symbolize)1320 static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
1321 void *pcs[40];
1322 return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1323 maxlen, symbolize);
1324 }
1325
1326 namespace {
1327 enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
1328 // a path this long would be remarkable
1329 // Buffers required to report a deadlock.
1330 // We do not allocate them on stack to avoid large stack frame.
1331 struct DeadlockReportBuffers {
1332 char buf[6100];
1333 GraphId path[kMaxDeadlockPathLen];
1334 };
1335
1336 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anon2e75745e0a11::ScopedDeadlockReportBuffers1337 ScopedDeadlockReportBuffers() {
1338 b = reinterpret_cast<DeadlockReportBuffers *>(
1339 base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1340 }
~ScopedDeadlockReportBuffersabsl::__anon2e75745e0a11::ScopedDeadlockReportBuffers1341 ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1342 DeadlockReportBuffers *b;
1343 };
1344
1345 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1346 int GetStack(void** stack, int max_depth) {
1347 return absl::GetStackTrace(stack, max_depth, 3);
1348 }
1349 } // anonymous namespace
1350
1351 // Called in debug mode when a thread is about to acquire a lock in a way that
1352 // may block.
DeadlockCheck(Mutex * mu)1353 static GraphId DeadlockCheck(Mutex *mu) {
1354 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1355 OnDeadlockCycle::kIgnore) {
1356 return InvalidGraphId();
1357 }
1358
1359 SynchLocksHeld *all_locks = Synch_GetAllLocks();
1360
1361 absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1362 const GraphId mu_id = GetGraphIdLocked(mu);
1363
1364 if (all_locks->n == 0) {
1365 // There are no other locks held. Return now so that we don't need to
1366 // call GetSynchEvent(). This way we do not record the stack trace
1367 // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1368 // it can't always be the first lock acquired by a thread.
1369 return mu_id;
1370 }
1371
1372 // We prefer to keep stack traces that show a thread holding and acquiring
1373 // as many locks as possible. This increases the chances that a given edge
1374 // in the acquires-before graph will be represented in the stack traces
1375 // recorded for the locks.
1376 deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1377
1378 // For each other mutex already held by this thread:
1379 for (int i = 0; i != all_locks->n; i++) {
1380 const GraphId other_node_id = all_locks->locks[i].id;
1381 const Mutex *other =
1382 static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
1383 if (other == nullptr) {
1384 // Ignore stale lock
1385 continue;
1386 }
1387
1388 // Add the acquired-before edge to the graph.
1389 if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1390 ScopedDeadlockReportBuffers scoped_buffers;
1391 DeadlockReportBuffers *b = scoped_buffers.b;
1392 static int number_of_reported_deadlocks = 0;
1393 number_of_reported_deadlocks++;
1394 // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1395 bool symbolize = number_of_reported_deadlocks <= 2;
1396 ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1397 CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1398 size_t len = 0;
1399 for (int j = 0; j != all_locks->n; j++) {
1400 void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1401 if (pr != nullptr) {
1402 snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
1403 len += strlen(&b->buf[len]);
1404 }
1405 }
1406 ABSL_RAW_LOG(ERROR,
1407 "Acquiring absl::Mutex %p while holding %s; a cycle in the "
1408 "historical lock ordering graph has been observed",
1409 static_cast<void *>(mu), b->buf);
1410 ABSL_RAW_LOG(ERROR, "Cycle: ");
1411 int path_len = deadlock_graph->FindPath(
1412 mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
1413 for (int j = 0; j != path_len; j++) {
1414 GraphId id = b->path[j];
1415 Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
1416 if (path_mu == nullptr) continue;
1417 void** stack;
1418 int depth = deadlock_graph->GetStackTrace(id, &stack);
1419 snprintf(b->buf, sizeof(b->buf),
1420 "mutex@%p stack: ", static_cast<void *>(path_mu));
1421 StackString(stack, depth, b->buf + strlen(b->buf),
1422 static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1423 symbolize);
1424 ABSL_RAW_LOG(ERROR, "%s", b->buf);
1425 }
1426 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1427 OnDeadlockCycle::kAbort) {
1428 deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
1429 ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1430 return mu_id;
1431 }
1432 break; // report at most one potential deadlock per acquisition
1433 }
1434 }
1435
1436 return mu_id;
1437 }
1438
1439 // Invoke DeadlockCheck() iff we're in debug mode and
1440 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1441 static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
1442 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1443 OnDeadlockCycle::kIgnore) {
1444 return DeadlockCheck(mu);
1445 } else {
1446 return InvalidGraphId();
1447 }
1448 }
1449
ForgetDeadlockInfo()1450 void Mutex::ForgetDeadlockInfo() {
1451 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1452 OnDeadlockCycle::kIgnore) {
1453 deadlock_graph_mu.Lock();
1454 if (deadlock_graph != nullptr) {
1455 deadlock_graph->RemoveNode(this);
1456 }
1457 deadlock_graph_mu.Unlock();
1458 }
1459 }
1460
AssertNotHeld() const1461 void Mutex::AssertNotHeld() const {
1462 // We have the data to allow this check only if in debug mode and deadlock
1463 // detection is enabled.
1464 if (kDebugMode &&
1465 (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1466 synch_deadlock_detection.load(std::memory_order_acquire) !=
1467 OnDeadlockCycle::kIgnore) {
1468 GraphId id = GetGraphId(const_cast<Mutex *>(this));
1469 SynchLocksHeld *locks = Synch_GetAllLocks();
1470 for (int i = 0; i != locks->n; i++) {
1471 if (locks->locks[i].id == id) {
1472 SynchEvent *mu_events = GetSynchEvent(this);
1473 ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1474 static_cast<const void *>(this),
1475 (mu_events == nullptr ? "" : mu_events->name));
1476 }
1477 }
1478 }
1479 }
1480
1481 // Attempt to acquire *mu, and return whether successful. The implementation
1482 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1483 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1484 int c = GetMutexGlobals().spinloop_iterations;
1485 do { // do/while somewhat faster on AMD
1486 intptr_t v = mu->load(std::memory_order_relaxed);
1487 if ((v & (kMuReader|kMuEvent)) != 0) {
1488 return false; // a reader or tracing -> give up
1489 } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
1490 mu->compare_exchange_strong(v, kMuWriter | v,
1491 std::memory_order_acquire,
1492 std::memory_order_relaxed)) {
1493 return true;
1494 }
1495 } while (--c > 0);
1496 return false;
1497 }
1498
Lock()1499 ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
1500 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1501 GraphId id = DebugOnlyDeadlockCheck(this);
1502 intptr_t v = mu_.load(std::memory_order_relaxed);
1503 // try fast acquire, then spin loop
1504 if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
1505 !mu_.compare_exchange_strong(v, kMuWriter | v,
1506 std::memory_order_acquire,
1507 std::memory_order_relaxed)) {
1508 // try spin acquire, then slow loop
1509 if (!TryAcquireWithSpinning(&this->mu_)) {
1510 this->LockSlow(kExclusive, nullptr, 0);
1511 }
1512 }
1513 DebugOnlyLockEnter(this, id);
1514 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1515 }
1516
ReaderLock()1517 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
1518 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1519 GraphId id = DebugOnlyDeadlockCheck(this);
1520 intptr_t v = mu_.load(std::memory_order_relaxed);
1521 // try fast acquire, then slow loop
1522 if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
1523 !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1524 std::memory_order_acquire,
1525 std::memory_order_relaxed)) {
1526 this->LockSlow(kShared, nullptr, 0);
1527 }
1528 DebugOnlyLockEnter(this, id);
1529 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1530 }
1531
LockWhen(const Condition & cond)1532 void Mutex::LockWhen(const Condition &cond) {
1533 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1534 GraphId id = DebugOnlyDeadlockCheck(this);
1535 this->LockSlow(kExclusive, &cond, 0);
1536 DebugOnlyLockEnter(this, id);
1537 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1538 }
1539
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1540 bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
1541 return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1542 }
1543
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)1544 bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
1545 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1546 GraphId id = DebugOnlyDeadlockCheck(this);
1547 bool res = LockSlowWithDeadline(kExclusive, &cond,
1548 KernelTimeout(deadline), 0);
1549 DebugOnlyLockEnter(this, id);
1550 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1551 return res;
1552 }
1553
ReaderLockWhen(const Condition & cond)1554 void Mutex::ReaderLockWhen(const Condition &cond) {
1555 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1556 GraphId id = DebugOnlyDeadlockCheck(this);
1557 this->LockSlow(kShared, &cond, 0);
1558 DebugOnlyLockEnter(this, id);
1559 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1560 }
1561
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1562 bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
1563 absl::Duration timeout) {
1564 return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1565 }
1566
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)1567 bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
1568 absl::Time deadline) {
1569 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1570 GraphId id = DebugOnlyDeadlockCheck(this);
1571 bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
1572 DebugOnlyLockEnter(this, id);
1573 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1574 return res;
1575 }
1576
Await(const Condition & cond)1577 void Mutex::Await(const Condition &cond) {
1578 if (cond.Eval()) { // condition already true; nothing to do
1579 if (kDebugMode) {
1580 this->AssertReaderHeld();
1581 }
1582 } else { // normal case
1583 ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
1584 "condition untrue on return from Await");
1585 }
1586 }
1587
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)1588 bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
1589 return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
1590 }
1591
AwaitWithDeadline(const Condition & cond,absl::Time deadline)1592 bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
1593 if (cond.Eval()) { // condition already true; nothing to do
1594 if (kDebugMode) {
1595 this->AssertReaderHeld();
1596 }
1597 return true;
1598 }
1599
1600 KernelTimeout t{deadline};
1601 bool res = this->AwaitCommon(cond, t);
1602 ABSL_RAW_CHECK(res || t.has_timeout(),
1603 "condition untrue on return from Await");
1604 return res;
1605 }
1606
AwaitCommon(const Condition & cond,KernelTimeout t)1607 bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
1608 this->AssertReaderHeld();
1609 MuHow how =
1610 (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1611 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1612 SynchWaitParams waitp(
1613 how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1614 nullptr /*no cv_word*/);
1615 int flags = kMuHasBlocked;
1616 if (!Condition::GuaranteedEqual(&cond, nullptr)) {
1617 flags |= kMuIsCond;
1618 }
1619 this->UnlockSlow(&waitp);
1620 this->Block(waitp.thread);
1621 ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1622 ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1623 this->LockSlowLoop(&waitp, flags);
1624 bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
1625 EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1626 ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1627 return res;
1628 }
1629
TryLock()1630 ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
1631 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1632 intptr_t v = mu_.load(std::memory_order_relaxed);
1633 if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
1634 mu_.compare_exchange_strong(v, kMuWriter | v,
1635 std::memory_order_acquire,
1636 std::memory_order_relaxed)) {
1637 DebugOnlyLockEnter(this);
1638 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1639 return true;
1640 }
1641 if ((v & kMuEvent) != 0) { // we're recording events
1642 if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
1643 mu_.compare_exchange_strong(
1644 v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1645 std::memory_order_acquire, std::memory_order_relaxed)) {
1646 DebugOnlyLockEnter(this);
1647 PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1648 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1649 return true;
1650 } else {
1651 PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1652 }
1653 }
1654 ABSL_TSAN_MUTEX_POST_LOCK(
1655 this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1656 return false;
1657 }
1658
ReaderTryLock()1659 ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
1660 ABSL_TSAN_MUTEX_PRE_LOCK(this,
1661 __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1662 intptr_t v = mu_.load(std::memory_order_relaxed);
1663 // The while-loops (here and below) iterate only if the mutex word keeps
1664 // changing (typically because the reader count changes) under the CAS. We
1665 // limit the number of attempts to avoid having to think about livelock.
1666 int loop_limit = 5;
1667 while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
1668 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1669 std::memory_order_acquire,
1670 std::memory_order_relaxed)) {
1671 DebugOnlyLockEnter(this);
1672 ABSL_TSAN_MUTEX_POST_LOCK(
1673 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1674 return true;
1675 }
1676 loop_limit--;
1677 v = mu_.load(std::memory_order_relaxed);
1678 }
1679 if ((v & kMuEvent) != 0) { // we're recording events
1680 loop_limit = 5;
1681 while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
1682 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1683 std::memory_order_acquire,
1684 std::memory_order_relaxed)) {
1685 DebugOnlyLockEnter(this);
1686 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1687 ABSL_TSAN_MUTEX_POST_LOCK(
1688 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1689 return true;
1690 }
1691 loop_limit--;
1692 v = mu_.load(std::memory_order_relaxed);
1693 }
1694 if ((v & kMuEvent) != 0) {
1695 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1696 }
1697 }
1698 ABSL_TSAN_MUTEX_POST_LOCK(this,
1699 __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1700 __tsan_mutex_try_lock_failed,
1701 0);
1702 return false;
1703 }
1704
Unlock()1705 ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
1706 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1707 DebugOnlyLockLeave(this);
1708 intptr_t v = mu_.load(std::memory_order_relaxed);
1709
1710 if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1711 ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1712 static_cast<unsigned>(v));
1713 }
1714
1715 // should_try_cas is whether we'll try a compare-and-swap immediately.
1716 // NOTE: optimized out when kDebugMode is false.
1717 bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1718 (v & (kMuWait | kMuDesig)) != kMuWait);
1719 // But, we can use an alternate computation of it, that compilers
1720 // currently don't find on their own. When that changes, this function
1721 // can be simplified.
1722 intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1723 intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1724 // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1725 // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1726 // all possible non-zero values for x exceed all possible values for y.
1727 // Therefore, (x == 0 && y > 0) == (x < y).
1728 if (kDebugMode && should_try_cas != (x < y)) {
1729 // We would usually use PRIdPTR here, but is not correctly implemented
1730 // within the android toolchain.
1731 ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1732 static_cast<long long>(v), static_cast<long long>(x),
1733 static_cast<long long>(y));
1734 }
1735 if (x < y &&
1736 mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1737 std::memory_order_release,
1738 std::memory_order_relaxed)) {
1739 // fast writer release (writer with no waiters or with designated waker)
1740 } else {
1741 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1742 }
1743 ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1744 }
1745
1746 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1747 static bool ExactlyOneReader(intptr_t v) {
1748 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1749 assert((v & kMuHigh) != 0);
1750 // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1751 // on some architectures the following generates slightly smaller code.
1752 // It may be faster too.
1753 constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1754 return (v & kMuMultipleWaitersMask) == 0;
1755 }
1756
ReaderUnlock()1757 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
1758 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1759 DebugOnlyLockLeave(this);
1760 intptr_t v = mu_.load(std::memory_order_relaxed);
1761 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1762 if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
1763 // fast reader release (reader with no waiters)
1764 intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
1765 if (mu_.compare_exchange_strong(v, v - clear,
1766 std::memory_order_release,
1767 std::memory_order_relaxed)) {
1768 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1769 return;
1770 }
1771 }
1772 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1773 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1774 }
1775
1776 // Clears the designated waker flag in the mutex if this thread has blocked, and
1777 // therefore may be the designated waker.
ClearDesignatedWakerMask(int flag)1778 static intptr_t ClearDesignatedWakerMask(int flag) {
1779 assert(flag >= 0);
1780 assert(flag <= 1);
1781 switch (flag) {
1782 case 0: // not blocked
1783 return ~static_cast<intptr_t>(0);
1784 case 1: // blocked; turn off the designated waker bit
1785 return ~static_cast<intptr_t>(kMuDesig);
1786 }
1787 ABSL_INTERNAL_UNREACHABLE;
1788 }
1789
1790 // Conditionally ignores the existence of waiting writers if a reader that has
1791 // already blocked once wakes up.
IgnoreWaitingWritersMask(int flag)1792 static intptr_t IgnoreWaitingWritersMask(int flag) {
1793 assert(flag >= 0);
1794 assert(flag <= 1);
1795 switch (flag) {
1796 case 0: // not blocked
1797 return ~static_cast<intptr_t>(0);
1798 case 1: // blocked; pretend there are no waiting writers
1799 return ~static_cast<intptr_t>(kMuWrWait);
1800 }
1801 ABSL_INTERNAL_UNREACHABLE;
1802 }
1803
1804 // Internal version of LockWhen(). See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1805 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond,
1806 int flags) {
1807 ABSL_RAW_CHECK(
1808 this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1809 "condition untrue on return from LockSlow");
1810 }
1811
1812 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1813 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
1814 bool locking, bool trylock,
1815 bool read_lock) {
1816 // Delicate annotation dance.
1817 // We are currently inside of read/write lock/unlock operation.
1818 // All memory accesses are ignored inside of mutex operations + for unlock
1819 // operation tsan considers that we've already released the mutex.
1820 bool res = false;
1821 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1822 const uint32_t flags = read_lock ? __tsan_mutex_read_lock : 0;
1823 const uint32_t tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1824 #endif
1825 if (locking) {
1826 // For lock we pretend that we have finished the operation,
1827 // evaluate the predicate, then unlock the mutex and start locking it again
1828 // to match the annotation at the end of outer lock operation.
1829 // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1830 // will think the lock acquisition is recursive which will trigger
1831 // deadlock detector.
1832 ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1833 res = cond->Eval();
1834 // There is no "try" version of Unlock, so use flags instead of tryflags.
1835 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1836 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1837 ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1838 } else {
1839 // Similarly, for unlock we pretend that we have unlocked the mutex,
1840 // lock the mutex, evaluate the predicate, and start unlocking it again
1841 // to match the annotation at the end of outer unlock operation.
1842 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1843 ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1844 ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1845 res = cond->Eval();
1846 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1847 }
1848 // Prevent unused param warnings in non-TSAN builds.
1849 static_cast<void>(mu);
1850 static_cast<void>(trylock);
1851 static_cast<void>(read_lock);
1852 return res;
1853 }
1854
1855 // Compute cond->Eval() hiding it from race detectors.
1856 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1857 // that was just added by a concurrent Lock operation; Lock adds the predicate
1858 // to the internal Mutex list without actually acquiring the Mutex
1859 // (it only acquires the internal spinlock, which is rightfully invisible for
1860 // tsan). As the result there is no tsan-visible synchronization between the
1861 // addition and this thread. So if we would enable race detection here,
1862 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1863 static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
1864 // Memory accesses are already ignored inside of lock/unlock operations,
1865 // but synchronization operations are also ignored. When we evaluate the
1866 // predicate we must ignore only memory accesses but not synchronization,
1867 // because missed synchronization can lead to false reports later.
1868 // So we "divert" (which un-ignores both memory accesses and synchronization)
1869 // and then separately turn on ignores of memory accesses.
1870 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1871 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1872 bool res = cond->Eval();
1873 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1874 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1875 static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
1876 return res;
1877 }
1878
1879 // Internal equivalent of *LockWhenWithDeadline(), where
1880 // "t" represents the absolute timeout; !t.has_timeout() means "forever".
1881 // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1882 // In flags, bits are ored together:
1883 // - kMuHasBlocked indicates that the client has already blocked on the call so
1884 // the designated waker bit must be cleared and waiting writers should not
1885 // obstruct this call
1886 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1887 // Await, LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1888 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
1889 KernelTimeout t, int flags) {
1890 intptr_t v = mu_.load(std::memory_order_relaxed);
1891 bool unlock = false;
1892 if ((v & how->fast_need_zero) == 0 && // try fast acquire
1893 mu_.compare_exchange_strong(
1894 v,
1895 (how->fast_or |
1896 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1897 how->fast_add,
1898 std::memory_order_acquire, std::memory_order_relaxed)) {
1899 if (cond == nullptr ||
1900 EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1901 return true;
1902 }
1903 unlock = true;
1904 }
1905 SynchWaitParams waitp(
1906 how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1907 nullptr /*no cv_word*/);
1908 if (!Condition::GuaranteedEqual(cond, nullptr)) {
1909 flags |= kMuIsCond;
1910 }
1911 if (unlock) {
1912 this->UnlockSlow(&waitp);
1913 this->Block(waitp.thread);
1914 flags |= kMuHasBlocked;
1915 }
1916 this->LockSlowLoop(&waitp, flags);
1917 return waitp.cond != nullptr || // => cond known true from LockSlowLoop
1918 cond == nullptr ||
1919 EvalConditionAnnotated(cond, this, true, false, how == kShared);
1920 }
1921
1922 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1923 // the printf-style argument list. The format string must be a literal.
1924 // Arguments after the first are not evaluated unless the condition is true.
1925 #define RAW_CHECK_FMT(cond, ...) \
1926 do { \
1927 if (ABSL_PREDICT_FALSE(!(cond))) { \
1928 ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1929 } \
1930 } while (0)
1931
CheckForMutexCorruption(intptr_t v,const char * label)1932 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1933 // Test for either of two situations that should not occur in v:
1934 // kMuWriter and kMuReader
1935 // kMuWrWait and !kMuWait
1936 const uintptr_t w = static_cast<uintptr_t>(v ^ kMuWait);
1937 // By flipping that bit, we can now test for:
1938 // kMuWriter and kMuReader in w
1939 // kMuWrWait and kMuWait in w
1940 // We've chosen these two pairs of values to be so that they will overlap,
1941 // respectively, when the word is left shifted by three. This allows us to
1942 // save a branch in the common (correct) case of them not being coincident.
1943 static_assert(kMuReader << 3 == kMuWriter, "must match");
1944 static_assert(kMuWait << 3 == kMuWrWait, "must match");
1945 if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1946 RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1947 "%s: Mutex corrupt: both reader and writer lock held: %p",
1948 label, reinterpret_cast<void *>(v));
1949 RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1950 "%s: Mutex corrupt: waiting writer with no waiters: %p",
1951 label, reinterpret_cast<void *>(v));
1952 assert(false);
1953 }
1954
LockSlowLoop(SynchWaitParams * waitp,int flags)1955 void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
1956 SchedulingGuard::ScopedDisable disable_rescheduling;
1957 int c = 0;
1958 intptr_t v = mu_.load(std::memory_order_relaxed);
1959 if ((v & kMuEvent) != 0) {
1960 PostSynchEvent(this,
1961 waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
1962 }
1963 ABSL_RAW_CHECK(
1964 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1965 "detected illegal recursion into Mutex code");
1966 for (;;) {
1967 v = mu_.load(std::memory_order_relaxed);
1968 CheckForMutexCorruption(v, "Lock");
1969 if ((v & waitp->how->slow_need_zero) == 0) {
1970 if (mu_.compare_exchange_strong(
1971 v,
1972 (waitp->how->fast_or |
1973 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1974 waitp->how->fast_add,
1975 std::memory_order_acquire, std::memory_order_relaxed)) {
1976 if (waitp->cond == nullptr ||
1977 EvalConditionAnnotated(waitp->cond, this, true, false,
1978 waitp->how == kShared)) {
1979 break; // we timed out, or condition true, so return
1980 }
1981 this->UnlockSlow(waitp); // got lock but condition false
1982 this->Block(waitp->thread);
1983 flags |= kMuHasBlocked;
1984 c = 0;
1985 }
1986 } else { // need to access waiter list
1987 bool dowait = false;
1988 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
1989 // This thread tries to become the one and only waiter.
1990 PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
1991 intptr_t nv =
1992 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) |
1993 kMuWait;
1994 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
1995 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1996 nv |= kMuWrWait;
1997 }
1998 if (mu_.compare_exchange_strong(
1999 v, reinterpret_cast<intptr_t>(new_h) | nv,
2000 std::memory_order_release, std::memory_order_relaxed)) {
2001 dowait = true;
2002 } else { // attempted Enqueue() failed
2003 // zero out the waitp field set by Enqueue()
2004 waitp->thread->waitp = nullptr;
2005 }
2006 } else if ((v & waitp->how->slow_inc_need_zero &
2007 IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) {
2008 // This is a reader that needs to increment the reader count,
2009 // but the count is currently held in the last waiter.
2010 if (mu_.compare_exchange_strong(
2011 v,
2012 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2013 kMuSpin | kMuReader,
2014 std::memory_order_acquire, std::memory_order_relaxed)) {
2015 PerThreadSynch *h = GetPerThreadSynch(v);
2016 h->readers += kMuOne; // inc reader count in waiter
2017 do { // release spinlock
2018 v = mu_.load(std::memory_order_relaxed);
2019 } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
2020 std::memory_order_release,
2021 std::memory_order_relaxed));
2022 if (waitp->cond == nullptr ||
2023 EvalConditionAnnotated(waitp->cond, this, true, false,
2024 waitp->how == kShared)) {
2025 break; // we timed out, or condition true, so return
2026 }
2027 this->UnlockSlow(waitp); // got lock but condition false
2028 this->Block(waitp->thread);
2029 flags |= kMuHasBlocked;
2030 c = 0;
2031 }
2032 } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
2033 mu_.compare_exchange_strong(
2034 v,
2035 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2036 kMuSpin | kMuWait,
2037 std::memory_order_acquire, std::memory_order_relaxed)) {
2038 PerThreadSynch *h = GetPerThreadSynch(v);
2039 PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
2040 intptr_t wr_wait = 0;
2041 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
2042 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2043 wr_wait = kMuWrWait; // give priority to a waiting writer
2044 }
2045 do { // release spinlock
2046 v = mu_.load(std::memory_order_relaxed);
2047 } while (!mu_.compare_exchange_weak(
2048 v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
2049 reinterpret_cast<intptr_t>(new_h),
2050 std::memory_order_release, std::memory_order_relaxed));
2051 dowait = true;
2052 }
2053 if (dowait) {
2054 this->Block(waitp->thread); // wait until removed from list or timeout
2055 flags |= kMuHasBlocked;
2056 c = 0;
2057 }
2058 }
2059 ABSL_RAW_CHECK(
2060 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2061 "detected illegal recursion into Mutex code");
2062 // delay, then try again
2063 c = synchronization_internal::MutexDelay(c, GENTLE);
2064 }
2065 ABSL_RAW_CHECK(
2066 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2067 "detected illegal recursion into Mutex code");
2068 if ((v & kMuEvent) != 0) {
2069 PostSynchEvent(this,
2070 waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
2071 SYNCH_EV_READERLOCK_RETURNING);
2072 }
2073 }
2074
2075 // Unlock this mutex, which is held by the current thread.
2076 // If waitp is non-zero, it must be the wait parameters for the current thread
2077 // which holds the lock but is not runnable because its condition is false
2078 // or it is in the process of blocking on a condition variable; it must requeue
2079 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2080 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
2081 SchedulingGuard::ScopedDisable disable_rescheduling;
2082 intptr_t v = mu_.load(std::memory_order_relaxed);
2083 this->AssertReaderHeld();
2084 CheckForMutexCorruption(v, "Unlock");
2085 if ((v & kMuEvent) != 0) {
2086 PostSynchEvent(this,
2087 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
2088 }
2089 int c = 0;
2090 // the waiter under consideration to wake, or zero
2091 PerThreadSynch *w = nullptr;
2092 // the predecessor to w or zero
2093 PerThreadSynch *pw = nullptr;
2094 // head of the list searched previously, or zero
2095 PerThreadSynch *old_h = nullptr;
2096 // a condition that's known to be false.
2097 const Condition *known_false = nullptr;
2098 PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
2099 intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
2100 // later writer could have acquired the lock
2101 // (starvation avoidance)
2102 ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2103 waitp->thread->suppress_fatal_errors,
2104 "detected illegal recursion into Mutex code");
2105 // This loop finds threads wake_list to wakeup if any, and removes them from
2106 // the list of waiters. In addition, it places waitp.thread on the queue of
2107 // waiters if waitp is non-zero.
2108 for (;;) {
2109 v = mu_.load(std::memory_order_relaxed);
2110 if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2111 waitp == nullptr) {
2112 // fast writer release (writer with no waiters or with designated waker)
2113 if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2114 std::memory_order_release,
2115 std::memory_order_relaxed)) {
2116 return;
2117 }
2118 } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2119 // fast reader release (reader with no waiters)
2120 intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2121 if (mu_.compare_exchange_strong(v, v - clear,
2122 std::memory_order_release,
2123 std::memory_order_relaxed)) {
2124 return;
2125 }
2126 } else if ((v & kMuSpin) == 0 && // attempt to get spinlock
2127 mu_.compare_exchange_strong(v, v | kMuSpin,
2128 std::memory_order_acquire,
2129 std::memory_order_relaxed)) {
2130 if ((v & kMuWait) == 0) { // no one to wake
2131 intptr_t nv;
2132 bool do_enqueue = true; // always Enqueue() the first time
2133 ABSL_RAW_CHECK(waitp != nullptr,
2134 "UnlockSlow is confused"); // about to sleep
2135 do { // must loop to release spinlock as reader count may change
2136 v = mu_.load(std::memory_order_relaxed);
2137 // decrement reader count if there are readers
2138 intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
2139 PerThreadSynch *new_h = nullptr;
2140 if (do_enqueue) {
2141 // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2142 // we must not retry here. The initial attempt will always have
2143 // succeeded, further attempts would enqueue us against *this due to
2144 // Fer() handling.
2145 do_enqueue = (waitp->cv_word == nullptr);
2146 new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2147 }
2148 intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
2149 if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
2150 clear = kMuWrWait | kMuReader; // clear read bit
2151 }
2152 nv = (v & kMuLow & ~clear & ~kMuSpin);
2153 if (new_h != nullptr) {
2154 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2155 } else { // new_h could be nullptr if we queued ourselves on a
2156 // CondVar
2157 // In that case, we must place the reader count back in the mutex
2158 // word, as Enqueue() did not store it in the new waiter.
2159 nv |= new_readers & kMuHigh;
2160 }
2161 // release spinlock & our lock; retry if reader-count changed
2162 // (writer count cannot change since we hold lock)
2163 } while (!mu_.compare_exchange_weak(v, nv,
2164 std::memory_order_release,
2165 std::memory_order_relaxed));
2166 break;
2167 }
2168
2169 // There are waiters.
2170 // Set h to the head of the circular waiter list.
2171 PerThreadSynch *h = GetPerThreadSynch(v);
2172 if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2173 // a reader but not the last
2174 h->readers -= kMuOne; // release our lock
2175 intptr_t nv = v; // normally just release spinlock
2176 if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
2177 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2178 ABSL_RAW_CHECK(new_h != nullptr,
2179 "waiters disappeared during Enqueue()!");
2180 nv &= kMuLow;
2181 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2182 }
2183 mu_.store(nv, std::memory_order_release); // release spinlock
2184 // can release with a store because there were waiters
2185 break;
2186 }
2187
2188 // Either we didn't search before, or we marked the queue
2189 // as "maybe_unlocking" and no one else should have changed it.
2190 ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2191 "Mutex queue changed beneath us");
2192
2193 // The lock is becoming free, and there's a waiter
2194 if (old_h != nullptr &&
2195 !old_h->may_skip) { // we used old_h as a terminator
2196 old_h->may_skip = true; // allow old_h to skip once more
2197 ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2198 if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) {
2199 old_h->skip = old_h->next; // old_h not head & can skip to successor
2200 }
2201 }
2202 if (h->next->waitp->how == kExclusive &&
2203 Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
2204 // easy case: writer with no condition; no need to search
2205 pw = h; // wake w, the successor of h (=pw)
2206 w = h->next;
2207 w->wake = true;
2208 // We are waking up a writer. This writer may be racing against
2209 // an already awake reader for the lock. We want the
2210 // writer to usually win this race,
2211 // because if it doesn't, we can potentially keep taking a reader
2212 // perpetually and writers will starve. Worse than
2213 // that, this can also starve other readers if kMuWrWait gets set
2214 // later.
2215 wr_wait = kMuWrWait;
2216 } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2217 // we found a waiter w to wake on a previous iteration and either it's
2218 // a writer, or we've searched the entire list so we have all the
2219 // readers.
2220 if (pw == nullptr) { // if w's predecessor is unknown, it must be h
2221 pw = h;
2222 }
2223 } else {
2224 // At this point we don't know all the waiters to wake, and the first
2225 // waiter has a condition or is a reader. We avoid searching over
2226 // waiters we've searched on previous iterations by starting at
2227 // old_h if it's set. If old_h==h, there's no one to wakeup at all.
2228 if (old_h == h) { // we've searched before, and nothing's new
2229 // so there's no one to wake.
2230 intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
2231 h->readers = 0;
2232 h->maybe_unlocking = false; // finished unlocking
2233 if (waitp != nullptr) { // we must queue ourselves and sleep
2234 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2235 nv &= kMuLow;
2236 if (new_h != nullptr) {
2237 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2238 } // else new_h could be nullptr if we queued ourselves on a
2239 // CondVar
2240 }
2241 // release spinlock & lock
2242 // can release with a store because there were waiters
2243 mu_.store(nv, std::memory_order_release);
2244 break;
2245 }
2246
2247 // set up to walk the list
2248 PerThreadSynch *w_walk; // current waiter during list walk
2249 PerThreadSynch *pw_walk; // previous waiter during list walk
2250 if (old_h != nullptr) { // we've searched up to old_h before
2251 pw_walk = old_h;
2252 w_walk = old_h->next;
2253 } else { // no prior search, start at beginning
2254 pw_walk =
2255 nullptr; // h->next's predecessor may change; don't record it
2256 w_walk = h->next;
2257 }
2258
2259 h->may_skip = false; // ensure we never skip past h in future searches
2260 // even if other waiters are queued after it.
2261 ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2262
2263 h->maybe_unlocking = true; // we're about to scan the waiter list
2264 // without the spinlock held.
2265 // Enqueue must be conservative about
2266 // priority queuing.
2267
2268 // We must release the spinlock to evaluate the conditions.
2269 mu_.store(v, std::memory_order_release); // release just spinlock
2270 // can release with a store because there were waiters
2271
2272 // h is the last waiter queued, and w_walk the first unsearched waiter.
2273 // Without the spinlock, the locations mu_ and h->next may now change
2274 // underneath us, but since we hold the lock itself, the only legal
2275 // change is to add waiters between h and w_walk. Therefore, it's safe
2276 // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2277 // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2278
2279 old_h = h; // remember we searched to here
2280
2281 // Walk the path upto and including h looking for waiters we can wake.
2282 while (pw_walk != h) {
2283 w_walk->wake = false;
2284 if (w_walk->waitp->cond ==
2285 nullptr || // no condition => vacuously true OR
2286 (w_walk->waitp->cond != known_false &&
2287 // this thread's condition is not known false, AND
2288 // is in fact true
2289 EvalConditionIgnored(this, w_walk->waitp->cond))) {
2290 if (w == nullptr) {
2291 w_walk->wake = true; // can wake this waiter
2292 w = w_walk;
2293 pw = pw_walk;
2294 if (w_walk->waitp->how == kExclusive) {
2295 wr_wait = kMuWrWait;
2296 break; // bail if waking this writer
2297 }
2298 } else if (w_walk->waitp->how == kShared) { // wake if a reader
2299 w_walk->wake = true;
2300 } else { // writer with true condition
2301 wr_wait = kMuWrWait;
2302 }
2303 } else { // can't wake; condition false
2304 known_false = w_walk->waitp->cond; // remember last false condition
2305 }
2306 if (w_walk->wake) { // we're waking reader w_walk
2307 pw_walk = w_walk; // don't skip similar waiters
2308 } else { // not waking; skip as much as possible
2309 pw_walk = Skip(w_walk);
2310 }
2311 // If pw_walk == h, then load of pw_walk->next can race with
2312 // concurrent write in Enqueue(). However, at the same time
2313 // we do not need to do the load, because we will bail out
2314 // from the loop anyway.
2315 if (pw_walk != h) {
2316 w_walk = pw_walk->next;
2317 }
2318 }
2319
2320 continue; // restart for(;;)-loop to wakeup w or to find more waiters
2321 }
2322 ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2323 // The first (and perhaps only) waiter we've chosen to wake is w, whose
2324 // predecessor is pw. If w is a reader, we must wake all the other
2325 // waiters with wake==true as well. We may also need to queue
2326 // ourselves if waitp != null. The spinlock and the lock are still
2327 // held.
2328
2329 // This traverses the list in [ pw->next, h ], where h is the head,
2330 // removing all elements with wake==true and placing them in the
2331 // singly-linked list wake_list. Returns the new head.
2332 h = DequeueAllWakeable(h, pw, &wake_list);
2333
2334 intptr_t nv = (v & kMuEvent) | kMuDesig;
2335 // assume no waiters left,
2336 // set kMuDesig for INV1a
2337
2338 if (waitp != nullptr) { // we must queue ourselves and sleep
2339 h = Enqueue(h, waitp, v, kMuIsCond);
2340 // h is new last waiter; could be null if we queued ourselves on a
2341 // CondVar
2342 }
2343
2344 ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2345 "unexpected empty wake list");
2346
2347 if (h != nullptr) { // there are waiters left
2348 h->readers = 0;
2349 h->maybe_unlocking = false; // finished unlocking
2350 nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2351 }
2352
2353 // release both spinlock & lock
2354 // can release with a store because there were waiters
2355 mu_.store(nv, std::memory_order_release);
2356 break; // out of for(;;)-loop
2357 }
2358 // aggressive here; no one can proceed till we do
2359 c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2360 } // end of for(;;)-loop
2361
2362 if (wake_list != kPerThreadSynchNull) {
2363 int64_t total_wait_cycles = 0;
2364 int64_t max_wait_cycles = 0;
2365 int64_t now = base_internal::CycleClock::Now();
2366 do {
2367 // Profile lock contention events only if the waiter was trying to acquire
2368 // the lock, not waiting on a condition variable or Condition.
2369 if (!wake_list->cond_waiter) {
2370 int64_t cycles_waited =
2371 (now - wake_list->waitp->contention_start_cycles);
2372 total_wait_cycles += cycles_waited;
2373 if (max_wait_cycles == 0) max_wait_cycles = cycles_waited;
2374 wake_list->waitp->contention_start_cycles = now;
2375 wake_list->waitp->should_submit_contention_data = true;
2376 }
2377 wake_list = Wakeup(wake_list); // wake waiters
2378 } while (wake_list != kPerThreadSynchNull);
2379 if (total_wait_cycles > 0) {
2380 mutex_tracer("slow release", this, total_wait_cycles);
2381 ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2382 submit_profile_data(total_wait_cycles);
2383 ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2384 }
2385 }
2386 }
2387
2388 // Used by CondVar implementation to reacquire mutex after waking from
2389 // condition variable. This routine is used instead of Lock() because the
2390 // waiting thread may have been moved from the condition variable queue to the
2391 // mutex queue without a wakeup, by Trans(). In that case, when the thread is
2392 // finally woken, the woken thread will believe it has been woken from the
2393 // condition variable (i.e. its PC will be in when in the CondVar code), when
2394 // in fact it has just been woken from the mutex. Thus, it must enter the slow
2395 // path of the mutex in the same state as if it had just woken from the mutex.
2396 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2397 void Mutex::Trans(MuHow how) {
2398 this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2399 }
2400
2401 // Used by CondVar implementation to effectively wake thread w from the
2402 // condition variable. If this mutex is free, we simply wake the thread.
2403 // It will later acquire the mutex with high probability. Otherwise, we
2404 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2405 void Mutex::Fer(PerThreadSynch *w) {
2406 SchedulingGuard::ScopedDisable disable_rescheduling;
2407 int c = 0;
2408 ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2409 "Mutex::Fer while waiting on Condition");
2410 ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
2411 "Mutex::Fer while in timed wait");
2412 ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2413 "Mutex::Fer with pending CondVar queueing");
2414 for (;;) {
2415 intptr_t v = mu_.load(std::memory_order_relaxed);
2416 // Note: must not queue if the mutex is unlocked (nobody will wake it).
2417 // For example, we can have only kMuWait (conditional) or maybe
2418 // kMuWait|kMuWrWait.
2419 // conflicting != 0 implies that the waking thread cannot currently take
2420 // the mutex, which in turn implies that someone else has it and can wake
2421 // us if we queue.
2422 const intptr_t conflicting =
2423 kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2424 if ((v & conflicting) == 0) {
2425 w->next = nullptr;
2426 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2427 IncrementSynchSem(this, w);
2428 return;
2429 } else {
2430 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
2431 // This thread tries to become the one and only waiter.
2432 PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
2433 ABSL_RAW_CHECK(new_h != nullptr,
2434 "Enqueue failed"); // we must queue ourselves
2435 if (mu_.compare_exchange_strong(
2436 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2437 std::memory_order_release, std::memory_order_relaxed)) {
2438 return;
2439 }
2440 } else if ((v & kMuSpin) == 0 &&
2441 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2442 PerThreadSynch *h = GetPerThreadSynch(v);
2443 PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
2444 ABSL_RAW_CHECK(new_h != nullptr,
2445 "Enqueue failed"); // we must queue ourselves
2446 do {
2447 v = mu_.load(std::memory_order_relaxed);
2448 } while (!mu_.compare_exchange_weak(
2449 v,
2450 (v & kMuLow & ~kMuSpin) | kMuWait |
2451 reinterpret_cast<intptr_t>(new_h),
2452 std::memory_order_release, std::memory_order_relaxed));
2453 return;
2454 }
2455 }
2456 c = synchronization_internal::MutexDelay(c, GENTLE);
2457 }
2458 }
2459
AssertHeld() const2460 void Mutex::AssertHeld() const {
2461 if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2462 SynchEvent *e = GetSynchEvent(this);
2463 ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2464 static_cast<const void *>(this),
2465 (e == nullptr ? "" : e->name));
2466 }
2467 }
2468
AssertReaderHeld() const2469 void Mutex::AssertReaderHeld() const {
2470 if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2471 SynchEvent *e = GetSynchEvent(this);
2472 ABSL_RAW_LOG(
2473 FATAL, "thread should hold at least a read lock on Mutex %p %s",
2474 static_cast<const void *>(this), (e == nullptr ? "" : e->name));
2475 }
2476 }
2477
2478 // -------------------------------- condition variables
2479 static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
2480 static const intptr_t kCvEvent = 0x0002L; // record events
2481
2482 static const intptr_t kCvLow = 0x0003L; // low order bits of CV
2483
2484 // Hack to make constant values available to gdb pretty printer
2485 enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
2486
2487 static_assert(PerThreadSynch::kAlignment > kCvLow,
2488 "PerThreadSynch::kAlignment must be greater than kCvLow");
2489
EnableDebugLog(const char * name)2490 void CondVar::EnableDebugLog(const char *name) {
2491 SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2492 e->log = true;
2493 UnrefSynchEvent(e);
2494 }
2495
~CondVar()2496 CondVar::~CondVar() {
2497 if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
2498 ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
2499 }
2500 }
2501
2502
2503 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2504 void CondVar::Remove(PerThreadSynch *s) {
2505 SchedulingGuard::ScopedDisable disable_rescheduling;
2506 intptr_t v;
2507 int c = 0;
2508 for (v = cv_.load(std::memory_order_relaxed);;
2509 v = cv_.load(std::memory_order_relaxed)) {
2510 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2511 cv_.compare_exchange_strong(v, v | kCvSpin,
2512 std::memory_order_acquire,
2513 std::memory_order_relaxed)) {
2514 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2515 if (h != nullptr) {
2516 PerThreadSynch *w = h;
2517 while (w->next != s && w->next != h) { // search for thread
2518 w = w->next;
2519 }
2520 if (w->next == s) { // found thread; remove it
2521 w->next = s->next;
2522 if (h == s) {
2523 h = (w == s) ? nullptr : w;
2524 }
2525 s->next = nullptr;
2526 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2527 }
2528 }
2529 // release spinlock
2530 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2531 std::memory_order_release);
2532 return;
2533 } else {
2534 // try again after a delay
2535 c = synchronization_internal::MutexDelay(c, GENTLE);
2536 }
2537 }
2538 }
2539
2540 // Queue thread waitp->thread on condition variable word cv_word using
2541 // wait parameters waitp.
2542 // We split this into a separate routine, rather than simply doing it as part
2543 // of WaitCommon(). If we were to queue ourselves on the condition variable
2544 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2545 // the logging code, or via a Condition function) and might potentially attempt
2546 // to block this thread. That would be a problem if the thread were already on
2547 // a condition variable waiter queue. Thus, we use the waitp->cv_word to tell
2548 // the unlock code to call CondVarEnqueue() to queue the thread on the condition
2549 // variable queue just before the mutex is to be unlocked, and (most
2550 // importantly) after any call to an external routine that might re-enter the
2551 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2552 static void CondVarEnqueue(SynchWaitParams *waitp) {
2553 // This thread might be transferred to the Mutex queue by Fer() when
2554 // we are woken. To make sure that is what happens, Enqueue() doesn't
2555 // call CondVarEnqueue() again but instead uses its normal code. We
2556 // must do this before we queue ourselves so that cv_word will be null
2557 // when seen by the dequeuer, who may wish immediately to requeue
2558 // this thread on another queue.
2559 std::atomic<intptr_t> *cv_word = waitp->cv_word;
2560 waitp->cv_word = nullptr;
2561
2562 intptr_t v = cv_word->load(std::memory_order_relaxed);
2563 int c = 0;
2564 while ((v & kCvSpin) != 0 || // acquire spinlock
2565 !cv_word->compare_exchange_weak(v, v | kCvSpin,
2566 std::memory_order_acquire,
2567 std::memory_order_relaxed)) {
2568 c = synchronization_internal::MutexDelay(c, GENTLE);
2569 v = cv_word->load(std::memory_order_relaxed);
2570 }
2571 ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2572 waitp->thread->waitp = waitp; // prepare ourselves for waiting
2573 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2574 if (h == nullptr) { // add this thread to waiter list
2575 waitp->thread->next = waitp->thread;
2576 } else {
2577 waitp->thread->next = h->next;
2578 h->next = waitp->thread;
2579 }
2580 waitp->thread->state.store(PerThreadSynch::kQueued,
2581 std::memory_order_relaxed);
2582 cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2583 std::memory_order_release);
2584 }
2585
WaitCommon(Mutex * mutex,KernelTimeout t)2586 bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
2587 bool rc = false; // return value; true iff we timed-out
2588
2589 intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2590 Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2591 ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2592
2593 // maybe trace this call
2594 intptr_t v = cv_.load(std::memory_order_relaxed);
2595 cond_var_tracer("Wait", this);
2596 if ((v & kCvEvent) != 0) {
2597 PostSynchEvent(this, SYNCH_EV_WAIT);
2598 }
2599
2600 // Release mu and wait on condition variable.
2601 SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2602 Synch_GetPerThreadAnnotated(mutex), &cv_);
2603 // UnlockSlow() will call CondVarEnqueue() just before releasing the
2604 // Mutex, thus queuing this thread on the condition variable. See
2605 // CondVarEnqueue() for the reasons.
2606 mutex->UnlockSlow(&waitp);
2607
2608 // wait for signal
2609 while (waitp.thread->state.load(std::memory_order_acquire) ==
2610 PerThreadSynch::kQueued) {
2611 if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2612 // DecrementSynchSem returned due to timeout.
2613 // Now we will either (1) remove ourselves from the wait list in Remove
2614 // below, in which case Remove will set thread.state = kAvailable and
2615 // we will not call DecrementSynchSem again; or (2) Signal/SignalAll
2616 // has removed us concurrently and is calling Wakeup, which will set
2617 // thread.state = kAvailable and post to the semaphore.
2618 // It's important to reset the timeout for the case (2) because otherwise
2619 // we can live-lock in this loop since DecrementSynchSem will always
2620 // return immediately due to timeout, but Signal/SignalAll is not
2621 // necessary set thread.state = kAvailable yet (and is not scheduled
2622 // due to thread priorities or other scheduler artifacts).
2623 // Note this could also be resolved if Signal/SignalAll would set
2624 // thread.state = kAvailable while holding the wait list spin lock.
2625 // But this can't be easily done for SignalAll since it grabs the whole
2626 // wait list with a single compare-exchange and does not really grab
2627 // the spin lock.
2628 t = KernelTimeout::Never();
2629 this->Remove(waitp.thread);
2630 rc = true;
2631 }
2632 }
2633
2634 ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2635 waitp.thread->waitp = nullptr; // cleanup
2636
2637 // maybe trace this call
2638 cond_var_tracer("Unwait", this);
2639 if ((v & kCvEvent) != 0) {
2640 PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2641 }
2642
2643 // From synchronization point of view Wait is unlock of the mutex followed
2644 // by lock of the mutex. We've annotated start of unlock in the beginning
2645 // of the function. Now, finish unlock and annotate lock of the mutex.
2646 // (Trans is effectively lock).
2647 ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2648 ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2649 mutex->Trans(mutex_how); // Reacquire mutex
2650 ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2651 return rc;
2652 }
2653
WaitWithTimeout(Mutex * mu,absl::Duration timeout)2654 bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
2655 return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
2656 }
2657
WaitWithDeadline(Mutex * mu,absl::Time deadline)2658 bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
2659 return WaitCommon(mu, KernelTimeout(deadline));
2660 }
2661
Wait(Mutex * mu)2662 void CondVar::Wait(Mutex *mu) {
2663 WaitCommon(mu, KernelTimeout::Never());
2664 }
2665
2666 // Wake thread w
2667 // If it was a timed wait, w will be waiting on w->cv
2668 // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
2669 // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
Wakeup(PerThreadSynch * w)2670 void CondVar::Wakeup(PerThreadSynch *w) {
2671 if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
2672 // The waiting thread only needs to observe "w->state == kAvailable" to be
2673 // released, we must cache "cvmu" before clearing "next".
2674 Mutex *mu = w->waitp->cvmu;
2675 w->next = nullptr;
2676 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2677 Mutex::IncrementSynchSem(mu, w);
2678 } else {
2679 w->waitp->cvmu->Fer(w);
2680 }
2681 }
2682
Signal()2683 void CondVar::Signal() {
2684 SchedulingGuard::ScopedDisable disable_rescheduling;
2685 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2686 intptr_t v;
2687 int c = 0;
2688 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2689 v = cv_.load(std::memory_order_relaxed)) {
2690 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2691 cv_.compare_exchange_strong(v, v | kCvSpin,
2692 std::memory_order_acquire,
2693 std::memory_order_relaxed)) {
2694 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2695 PerThreadSynch *w = nullptr;
2696 if (h != nullptr) { // remove first waiter
2697 w = h->next;
2698 if (w == h) {
2699 h = nullptr;
2700 } else {
2701 h->next = w->next;
2702 }
2703 }
2704 // release spinlock
2705 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2706 std::memory_order_release);
2707 if (w != nullptr) {
2708 CondVar::Wakeup(w); // wake waiter, if there was one
2709 cond_var_tracer("Signal wakeup", this);
2710 }
2711 if ((v & kCvEvent) != 0) {
2712 PostSynchEvent(this, SYNCH_EV_SIGNAL);
2713 }
2714 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2715 return;
2716 } else {
2717 c = synchronization_internal::MutexDelay(c, GENTLE);
2718 }
2719 }
2720 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2721 }
2722
SignalAll()2723 void CondVar::SignalAll () {
2724 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2725 intptr_t v;
2726 int c = 0;
2727 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2728 v = cv_.load(std::memory_order_relaxed)) {
2729 // empty the list if spinlock free
2730 // We do this by simply setting the list to empty using
2731 // compare and swap. We then have the entire list in our hands,
2732 // which cannot be changing since we grabbed it while no one
2733 // held the lock.
2734 if ((v & kCvSpin) == 0 &&
2735 cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2736 std::memory_order_relaxed)) {
2737 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2738 if (h != nullptr) {
2739 PerThreadSynch *w;
2740 PerThreadSynch *n = h->next;
2741 do { // for every thread, wake it up
2742 w = n;
2743 n = n->next;
2744 CondVar::Wakeup(w);
2745 } while (w != h);
2746 cond_var_tracer("SignalAll wakeup", this);
2747 }
2748 if ((v & kCvEvent) != 0) {
2749 PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2750 }
2751 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2752 return;
2753 } else {
2754 // try again after a delay
2755 c = synchronization_internal::MutexDelay(c, GENTLE);
2756 }
2757 }
2758 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2759 }
2760
Release()2761 void ReleasableMutexLock::Release() {
2762 ABSL_RAW_CHECK(this->mu_ != nullptr,
2763 "ReleasableMutexLock::Release may only be called once");
2764 this->mu_->Unlock();
2765 this->mu_ = nullptr;
2766 }
2767
2768 #ifdef ABSL_HAVE_THREAD_SANITIZER
2769 extern "C" void __tsan_read1(void *addr);
2770 #else
2771 #define __tsan_read1(addr) // do nothing if TSan not enabled
2772 #endif
2773
2774 // A function that just returns its argument, dereferenced
Dereference(void * arg)2775 static bool Dereference(void *arg) {
2776 // ThreadSanitizer does not instrument this file for memory accesses.
2777 // This function dereferences a user variable that can participate
2778 // in a data race, so we need to manually tell TSan about this memory access.
2779 __tsan_read1(arg);
2780 return *(static_cast<bool *>(arg));
2781 }
2782
Condition()2783 Condition::Condition() {} // null constructor, used for kTrue only
2784 const Condition Condition::kTrue;
2785
Condition(bool (* func)(void *),void * arg)2786 Condition::Condition(bool (*func)(void *), void *arg)
2787 : eval_(&CallVoidPtrFunction),
2788 function_(func),
2789 method_(nullptr),
2790 arg_(arg) {}
2791
CallVoidPtrFunction(const Condition * c)2792 bool Condition::CallVoidPtrFunction(const Condition *c) {
2793 return (*c->function_)(c->arg_);
2794 }
2795
Condition(const bool * cond)2796 Condition::Condition(const bool *cond)
2797 : eval_(CallVoidPtrFunction),
2798 function_(Dereference),
2799 method_(nullptr),
2800 // const_cast is safe since Dereference does not modify arg
2801 arg_(const_cast<bool *>(cond)) {}
2802
Eval() const2803 bool Condition::Eval() const {
2804 // eval_ == null for kTrue
2805 return (this->eval_ == nullptr) || (*this->eval_)(this);
2806 }
2807
GuaranteedEqual(const Condition * a,const Condition * b)2808 bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
2809 if (a == nullptr) {
2810 return b == nullptr || b->eval_ == nullptr;
2811 }
2812 if (b == nullptr || b->eval_ == nullptr) {
2813 return a->eval_ == nullptr;
2814 }
2815 return a->eval_ == b->eval_ && a->function_ == b->function_ &&
2816 a->arg_ == b->arg_ && a->method_ == b->method_;
2817 }
2818
2819 ABSL_NAMESPACE_END
2820 } // namespace absl
2821