1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // GraphCycles provides incremental cycle detection on a dynamic
16 // graph using the following algorithm:
17 //
18 // A dynamic topological sort algorithm for directed acyclic graphs
19 // David J. Pearce, Paul H. J. Kelly
20 // Journal of Experimental Algorithmics (JEA) JEA Homepage archive
21 // Volume 11, 2006, Article No. 1.7
22 //
23 // Brief summary of the algorithm:
24 //
25 // (1) Maintain a rank for each node that is consistent
26 // with the topological sort of the graph. I.e., path from x to y
27 // implies rank[x] < rank[y].
28 // (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y].
29 // (3) Otherwise: adjust ranks in the neighborhood of x and y.
30
31 #include "absl/base/attributes.h"
32 // This file is a no-op if the required LowLevelAlloc support is missing.
33 #include "absl/base/internal/low_level_alloc.h"
34 #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING
35
36 #include "absl/synchronization/internal/graphcycles.h"
37
38 #include <algorithm>
39 #include <array>
40 #include <limits>
41 #include "absl/base/internal/hide_ptr.h"
42 #include "absl/base/internal/raw_logging.h"
43 #include "absl/base/internal/spinlock.h"
44
45 // Do not use STL. This module does not use standard memory allocation.
46
47 namespace absl {
48 ABSL_NAMESPACE_BEGIN
49 namespace synchronization_internal {
50
51 namespace {
52
53 // Avoid LowLevelAlloc's default arena since it calls malloc hooks in
54 // which people are doing things like acquiring Mutexes.
55 ABSL_CONST_INIT static absl::base_internal::SpinLock arena_mu(
56 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
57 ABSL_CONST_INIT static base_internal::LowLevelAlloc::Arena* arena;
58
InitArenaIfNecessary()59 static void InitArenaIfNecessary() {
60 arena_mu.Lock();
61 if (arena == nullptr) {
62 arena = base_internal::LowLevelAlloc::NewArena(0);
63 }
64 arena_mu.Unlock();
65 }
66
67 // Number of inlined elements in Vec. Hash table implementation
68 // relies on this being a power of two.
69 static const uint32_t kInline = 8;
70
71 // A simple LowLevelAlloc based resizable vector with inlined storage
72 // for a few elements. T must be a plain type since constructor
73 // and destructor are not run on elements of type T managed by Vec.
74 template <typename T>
75 class Vec {
76 public:
Vec()77 Vec() { Init(); }
~Vec()78 ~Vec() { Discard(); }
79
clear()80 void clear() {
81 Discard();
82 Init();
83 }
84
empty() const85 bool empty() const { return size_ == 0; }
size() const86 uint32_t size() const { return size_; }
begin()87 T* begin() { return ptr_; }
end()88 T* end() { return ptr_ + size_; }
operator [](uint32_t i) const89 const T& operator[](uint32_t i) const { return ptr_[i]; }
operator [](uint32_t i)90 T& operator[](uint32_t i) { return ptr_[i]; }
back() const91 const T& back() const { return ptr_[size_-1]; }
pop_back()92 void pop_back() { size_--; }
93
push_back(const T & v)94 void push_back(const T& v) {
95 if (size_ == capacity_) Grow(size_ + 1);
96 ptr_[size_] = v;
97 size_++;
98 }
99
resize(uint32_t n)100 void resize(uint32_t n) {
101 if (n > capacity_) Grow(n);
102 size_ = n;
103 }
104
fill(const T & val)105 void fill(const T& val) {
106 for (uint32_t i = 0; i < size(); i++) {
107 ptr_[i] = val;
108 }
109 }
110
111 // Guarantees src is empty at end.
112 // Provided for the hash table resizing code below.
MoveFrom(Vec<T> * src)113 void MoveFrom(Vec<T>* src) {
114 if (src->ptr_ == src->space_) {
115 // Need to actually copy
116 resize(src->size_);
117 std::copy(src->ptr_, src->ptr_ + src->size_, ptr_);
118 src->size_ = 0;
119 } else {
120 Discard();
121 ptr_ = src->ptr_;
122 size_ = src->size_;
123 capacity_ = src->capacity_;
124 src->Init();
125 }
126 }
127
128 private:
129 T* ptr_;
130 T space_[kInline];
131 uint32_t size_;
132 uint32_t capacity_;
133
Init()134 void Init() {
135 ptr_ = space_;
136 size_ = 0;
137 capacity_ = kInline;
138 }
139
Discard()140 void Discard() {
141 if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_);
142 }
143
Grow(uint32_t n)144 void Grow(uint32_t n) {
145 while (capacity_ < n) {
146 capacity_ *= 2;
147 }
148 size_t request = static_cast<size_t>(capacity_) * sizeof(T);
149 T* copy = static_cast<T*>(
150 base_internal::LowLevelAlloc::AllocWithArena(request, arena));
151 std::copy(ptr_, ptr_ + size_, copy);
152 Discard();
153 ptr_ = copy;
154 }
155
156 Vec(const Vec&) = delete;
157 Vec& operator=(const Vec&) = delete;
158 };
159
160 // A hash set of non-negative int32_t that uses Vec for its underlying storage.
161 class NodeSet {
162 public:
NodeSet()163 NodeSet() { Init(); }
164
clear()165 void clear() { Init(); }
contains(int32_t v) const166 bool contains(int32_t v) const { return table_[FindIndex(v)] == v; }
167
insert(int32_t v)168 bool insert(int32_t v) {
169 uint32_t i = FindIndex(v);
170 if (table_[i] == v) {
171 return false;
172 }
173 if (table_[i] == kEmpty) {
174 // Only inserting over an empty cell increases the number of occupied
175 // slots.
176 occupied_++;
177 }
178 table_[i] = v;
179 // Double when 75% full.
180 if (occupied_ >= table_.size() - table_.size()/4) Grow();
181 return true;
182 }
183
erase(int32_t v)184 void erase(int32_t v) {
185 uint32_t i = FindIndex(v);
186 if (table_[i] == v) {
187 table_[i] = kDel;
188 }
189 }
190
191 // Iteration: is done via HASH_FOR_EACH
192 // Example:
193 // HASH_FOR_EACH(elem, node->out) { ... }
194 #define HASH_FOR_EACH(elem, eset) \
195 for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); )
Next(int32_t * cursor,int32_t * elem)196 bool Next(int32_t* cursor, int32_t* elem) {
197 while (static_cast<uint32_t>(*cursor) < table_.size()) {
198 int32_t v = table_[static_cast<uint32_t>(*cursor)];
199 (*cursor)++;
200 if (v >= 0) {
201 *elem = v;
202 return true;
203 }
204 }
205 return false;
206 }
207
208 private:
209 enum : int32_t { kEmpty = -1, kDel = -2 };
210 Vec<int32_t> table_;
211 uint32_t occupied_; // Count of non-empty slots (includes deleted slots)
212
Hash(int32_t a)213 static uint32_t Hash(int32_t a) { return static_cast<uint32_t>(a * 41); }
214
215 // Return index for storing v. May return an empty index or deleted index
FindIndex(int32_t v) const216 uint32_t FindIndex(int32_t v) const {
217 // Search starting at hash index.
218 const uint32_t mask = table_.size() - 1;
219 uint32_t i = Hash(v) & mask;
220 uint32_t deleted_index = 0; // index of first deleted element we see
221 bool seen_deleted_element = false;
222 while (true) {
223 int32_t e = table_[i];
224 if (v == e) {
225 return i;
226 } else if (e == kEmpty) {
227 // Return any previously encountered deleted slot.
228 return seen_deleted_element ? deleted_index : i;
229 } else if (e == kDel && !seen_deleted_element) {
230 // Keep searching since v might be present later.
231 deleted_index = i;
232 seen_deleted_element = true;
233 }
234 i = (i + 1) & mask; // Linear probing; quadratic is slightly slower.
235 }
236 }
237
Init()238 void Init() {
239 table_.clear();
240 table_.resize(kInline);
241 table_.fill(kEmpty);
242 occupied_ = 0;
243 }
244
Grow()245 void Grow() {
246 Vec<int32_t> copy;
247 copy.MoveFrom(&table_);
248 occupied_ = 0;
249 table_.resize(copy.size() * 2);
250 table_.fill(kEmpty);
251
252 for (const auto& e : copy) {
253 if (e >= 0) insert(e);
254 }
255 }
256
257 NodeSet(const NodeSet&) = delete;
258 NodeSet& operator=(const NodeSet&) = delete;
259 };
260
261 // We encode a node index and a node version in GraphId. The version
262 // number is incremented when the GraphId is freed which automatically
263 // invalidates all copies of the GraphId.
264
MakeId(int32_t index,uint32_t version)265 inline GraphId MakeId(int32_t index, uint32_t version) {
266 GraphId g;
267 g.handle =
268 (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index);
269 return g;
270 }
271
NodeIndex(GraphId id)272 inline int32_t NodeIndex(GraphId id) {
273 return static_cast<int32_t>(id.handle);
274 }
275
NodeVersion(GraphId id)276 inline uint32_t NodeVersion(GraphId id) {
277 return static_cast<uint32_t>(id.handle >> 32);
278 }
279
280 struct Node {
281 int32_t rank; // rank number assigned by Pearce-Kelly algorithm
282 uint32_t version; // Current version number
283 int32_t next_hash; // Next entry in hash table
284 bool visited; // Temporary marker used by depth-first-search
285 uintptr_t masked_ptr; // User-supplied pointer
286 NodeSet in; // List of immediate predecessor nodes in graph
287 NodeSet out; // List of immediate successor nodes in graph
288 int priority; // Priority of recorded stack trace.
289 int nstack; // Depth of recorded stack trace.
290 void* stack[40]; // stack[0,nstack-1] holds stack trace for node.
291 };
292
293 // Hash table for pointer to node index lookups.
294 class PointerMap {
295 public:
PointerMap(const Vec<Node * > * nodes)296 explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) {
297 table_.fill(-1);
298 }
299
Find(void * ptr)300 int32_t Find(void* ptr) {
301 auto masked = base_internal::HidePtr(ptr);
302 for (int32_t i = table_[Hash(ptr)]; i != -1;) {
303 Node* n = (*nodes_)[static_cast<uint32_t>(i)];
304 if (n->masked_ptr == masked) return i;
305 i = n->next_hash;
306 }
307 return -1;
308 }
309
Add(void * ptr,int32_t i)310 void Add(void* ptr, int32_t i) {
311 int32_t* head = &table_[Hash(ptr)];
312 (*nodes_)[static_cast<uint32_t>(i)]->next_hash = *head;
313 *head = i;
314 }
315
Remove(void * ptr)316 int32_t Remove(void* ptr) {
317 // Advance through linked list while keeping track of the
318 // predecessor slot that points to the current entry.
319 auto masked = base_internal::HidePtr(ptr);
320 for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) {
321 int32_t index = *slot;
322 Node* n = (*nodes_)[static_cast<uint32_t>(index)];
323 if (n->masked_ptr == masked) {
324 *slot = n->next_hash; // Remove n from linked list
325 n->next_hash = -1;
326 return index;
327 }
328 slot = &n->next_hash;
329 }
330 return -1;
331 }
332
333 private:
334 // Number of buckets in hash table for pointer lookups.
335 static constexpr uint32_t kHashTableSize = 8171; // should be prime
336
337 const Vec<Node*>* nodes_;
338 std::array<int32_t, kHashTableSize> table_;
339
Hash(void * ptr)340 static uint32_t Hash(void* ptr) {
341 return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize;
342 }
343 };
344
345 } // namespace
346
347 struct GraphCycles::Rep {
348 Vec<Node*> nodes_;
349 Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_
350 PointerMap ptrmap_;
351
352 // Temporary state.
353 Vec<int32_t> deltaf_; // Results of forward DFS
354 Vec<int32_t> deltab_; // Results of backward DFS
355 Vec<int32_t> list_; // All nodes to reprocess
356 Vec<int32_t> merged_; // Rank values to assign to list_ entries
357 Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches
358
Repabsl::synchronization_internal::GraphCycles::Rep359 Rep() : ptrmap_(&nodes_) {}
360 };
361
FindNode(GraphCycles::Rep * rep,GraphId id)362 static Node* FindNode(GraphCycles::Rep* rep, GraphId id) {
363 Node* n = rep->nodes_[static_cast<uint32_t>(NodeIndex(id))];
364 return (n->version == NodeVersion(id)) ? n : nullptr;
365 }
366
GraphCycles()367 GraphCycles::GraphCycles() {
368 InitArenaIfNecessary();
369 rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena))
370 Rep;
371 }
372
~GraphCycles()373 GraphCycles::~GraphCycles() {
374 for (auto* node : rep_->nodes_) {
375 node->Node::~Node();
376 base_internal::LowLevelAlloc::Free(node);
377 }
378 rep_->Rep::~Rep();
379 base_internal::LowLevelAlloc::Free(rep_);
380 }
381
CheckInvariants() const382 bool GraphCycles::CheckInvariants() const {
383 Rep* r = rep_;
384 NodeSet ranks; // Set of ranks seen so far.
385 for (uint32_t x = 0; x < r->nodes_.size(); x++) {
386 Node* nx = r->nodes_[x];
387 void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr);
388 if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) {
389 ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr);
390 }
391 if (nx->visited) {
392 ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x);
393 }
394 if (!ranks.insert(nx->rank)) {
395 ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank);
396 }
397 HASH_FOR_EACH(y, nx->out) {
398 Node* ny = r->nodes_[static_cast<uint32_t>(y)];
399 if (nx->rank >= ny->rank) {
400 ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y,
401 nx->rank, ny->rank);
402 }
403 }
404 }
405 return true;
406 }
407
GetId(void * ptr)408 GraphId GraphCycles::GetId(void* ptr) {
409 int32_t i = rep_->ptrmap_.Find(ptr);
410 if (i != -1) {
411 return MakeId(i, rep_->nodes_[static_cast<uint32_t>(i)]->version);
412 } else if (rep_->free_nodes_.empty()) {
413 Node* n =
414 new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena))
415 Node;
416 n->version = 1; // Avoid 0 since it is used by InvalidGraphId()
417 n->visited = false;
418 n->rank = static_cast<int32_t>(rep_->nodes_.size());
419 n->masked_ptr = base_internal::HidePtr(ptr);
420 n->nstack = 0;
421 n->priority = 0;
422 rep_->nodes_.push_back(n);
423 rep_->ptrmap_.Add(ptr, n->rank);
424 return MakeId(n->rank, n->version);
425 } else {
426 // Preserve preceding rank since the set of ranks in use must be
427 // a permutation of [0,rep_->nodes_.size()-1].
428 int32_t r = rep_->free_nodes_.back();
429 rep_->free_nodes_.pop_back();
430 Node* n = rep_->nodes_[static_cast<uint32_t>(r)];
431 n->masked_ptr = base_internal::HidePtr(ptr);
432 n->nstack = 0;
433 n->priority = 0;
434 rep_->ptrmap_.Add(ptr, r);
435 return MakeId(r, n->version);
436 }
437 }
438
RemoveNode(void * ptr)439 void GraphCycles::RemoveNode(void* ptr) {
440 int32_t i = rep_->ptrmap_.Remove(ptr);
441 if (i == -1) {
442 return;
443 }
444 Node* x = rep_->nodes_[static_cast<uint32_t>(i)];
445 HASH_FOR_EACH(y, x->out) {
446 rep_->nodes_[static_cast<uint32_t>(y)]->in.erase(i);
447 }
448 HASH_FOR_EACH(y, x->in) {
449 rep_->nodes_[static_cast<uint32_t>(y)]->out.erase(i);
450 }
451 x->in.clear();
452 x->out.clear();
453 x->masked_ptr = base_internal::HidePtr<void>(nullptr);
454 if (x->version == std::numeric_limits<uint32_t>::max()) {
455 // Cannot use x any more
456 } else {
457 x->version++; // Invalidates all copies of node.
458 rep_->free_nodes_.push_back(i);
459 }
460 }
461
Ptr(GraphId id)462 void* GraphCycles::Ptr(GraphId id) {
463 Node* n = FindNode(rep_, id);
464 return n == nullptr ? nullptr
465 : base_internal::UnhidePtr<void>(n->masked_ptr);
466 }
467
HasNode(GraphId node)468 bool GraphCycles::HasNode(GraphId node) {
469 return FindNode(rep_, node) != nullptr;
470 }
471
HasEdge(GraphId x,GraphId y) const472 bool GraphCycles::HasEdge(GraphId x, GraphId y) const {
473 Node* xn = FindNode(rep_, x);
474 return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y));
475 }
476
RemoveEdge(GraphId x,GraphId y)477 void GraphCycles::RemoveEdge(GraphId x, GraphId y) {
478 Node* xn = FindNode(rep_, x);
479 Node* yn = FindNode(rep_, y);
480 if (xn && yn) {
481 xn->out.erase(NodeIndex(y));
482 yn->in.erase(NodeIndex(x));
483 // No need to update the rank assignment since a previous valid
484 // rank assignment remains valid after an edge deletion.
485 }
486 }
487
488 static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound);
489 static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound);
490 static void Reorder(GraphCycles::Rep* r);
491 static void Sort(const Vec<Node*>&, Vec<int32_t>* delta);
492 static void MoveToList(
493 GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst);
494
InsertEdge(GraphId idx,GraphId idy)495 bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) {
496 Rep* r = rep_;
497 const int32_t x = NodeIndex(idx);
498 const int32_t y = NodeIndex(idy);
499 Node* nx = FindNode(r, idx);
500 Node* ny = FindNode(r, idy);
501 if (nx == nullptr || ny == nullptr) return true; // Expired ids
502
503 if (nx == ny) return false; // Self edge
504 if (!nx->out.insert(y)) {
505 // Edge already exists.
506 return true;
507 }
508
509 ny->in.insert(x);
510
511 if (nx->rank <= ny->rank) {
512 // New edge is consistent with existing rank assignment.
513 return true;
514 }
515
516 // Current rank assignments are incompatible with the new edge. Recompute.
517 // We only need to consider nodes that fall in the range [ny->rank,nx->rank].
518 if (!ForwardDFS(r, y, nx->rank)) {
519 // Found a cycle. Undo the insertion and tell caller.
520 nx->out.erase(y);
521 ny->in.erase(x);
522 // Since we do not call Reorder() on this path, clear any visited
523 // markers left by ForwardDFS.
524 for (const auto& d : r->deltaf_) {
525 r->nodes_[static_cast<uint32_t>(d)]->visited = false;
526 }
527 return false;
528 }
529 BackwardDFS(r, x, ny->rank);
530 Reorder(r);
531 return true;
532 }
533
ForwardDFS(GraphCycles::Rep * r,int32_t n,int32_t upper_bound)534 static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) {
535 // Avoid recursion since stack space might be limited.
536 // We instead keep a stack of nodes to visit.
537 r->deltaf_.clear();
538 r->stack_.clear();
539 r->stack_.push_back(n);
540 while (!r->stack_.empty()) {
541 n = r->stack_.back();
542 r->stack_.pop_back();
543 Node* nn = r->nodes_[static_cast<uint32_t>(n)];
544 if (nn->visited) continue;
545
546 nn->visited = true;
547 r->deltaf_.push_back(n);
548
549 HASH_FOR_EACH(w, nn->out) {
550 Node* nw = r->nodes_[static_cast<uint32_t>(w)];
551 if (nw->rank == upper_bound) {
552 return false; // Cycle
553 }
554 if (!nw->visited && nw->rank < upper_bound) {
555 r->stack_.push_back(w);
556 }
557 }
558 }
559 return true;
560 }
561
BackwardDFS(GraphCycles::Rep * r,int32_t n,int32_t lower_bound)562 static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) {
563 r->deltab_.clear();
564 r->stack_.clear();
565 r->stack_.push_back(n);
566 while (!r->stack_.empty()) {
567 n = r->stack_.back();
568 r->stack_.pop_back();
569 Node* nn = r->nodes_[static_cast<uint32_t>(n)];
570 if (nn->visited) continue;
571
572 nn->visited = true;
573 r->deltab_.push_back(n);
574
575 HASH_FOR_EACH(w, nn->in) {
576 Node* nw = r->nodes_[static_cast<uint32_t>(w)];
577 if (!nw->visited && lower_bound < nw->rank) {
578 r->stack_.push_back(w);
579 }
580 }
581 }
582 }
583
Reorder(GraphCycles::Rep * r)584 static void Reorder(GraphCycles::Rep* r) {
585 Sort(r->nodes_, &r->deltab_);
586 Sort(r->nodes_, &r->deltaf_);
587
588 // Adds contents of delta lists to list_ (backwards deltas first).
589 r->list_.clear();
590 MoveToList(r, &r->deltab_, &r->list_);
591 MoveToList(r, &r->deltaf_, &r->list_);
592
593 // Produce sorted list of all ranks that will be reassigned.
594 r->merged_.resize(r->deltab_.size() + r->deltaf_.size());
595 std::merge(r->deltab_.begin(), r->deltab_.end(),
596 r->deltaf_.begin(), r->deltaf_.end(),
597 r->merged_.begin());
598
599 // Assign the ranks in order to the collected list.
600 for (uint32_t i = 0; i < r->list_.size(); i++) {
601 r->nodes_[static_cast<uint32_t>(r->list_[i])]->rank = r->merged_[i];
602 }
603 }
604
Sort(const Vec<Node * > & nodes,Vec<int32_t> * delta)605 static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) {
606 struct ByRank {
607 const Vec<Node*>* nodes;
608 bool operator()(int32_t a, int32_t b) const {
609 return (*nodes)[static_cast<uint32_t>(a)]->rank <
610 (*nodes)[static_cast<uint32_t>(b)]->rank;
611 }
612 };
613 ByRank cmp;
614 cmp.nodes = &nodes;
615 std::sort(delta->begin(), delta->end(), cmp);
616 }
617
MoveToList(GraphCycles::Rep * r,Vec<int32_t> * src,Vec<int32_t> * dst)618 static void MoveToList(
619 GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) {
620 for (auto& v : *src) {
621 int32_t w = v;
622 // Replace v entry with its rank
623 v = r->nodes_[static_cast<uint32_t>(w)]->rank;
624 // Prepare for future DFS calls
625 r->nodes_[static_cast<uint32_t>(w)]->visited = false;
626 dst->push_back(w);
627 }
628 }
629
FindPath(GraphId idx,GraphId idy,int max_path_len,GraphId path[]) const630 int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len,
631 GraphId path[]) const {
632 Rep* r = rep_;
633 if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0;
634 const int32_t x = NodeIndex(idx);
635 const int32_t y = NodeIndex(idy);
636
637 // Forward depth first search starting at x until we hit y.
638 // As we descend into a node, we push it onto the path.
639 // As we leave a node, we remove it from the path.
640 int path_len = 0;
641
642 NodeSet seen;
643 r->stack_.clear();
644 r->stack_.push_back(x);
645 while (!r->stack_.empty()) {
646 int32_t n = r->stack_.back();
647 r->stack_.pop_back();
648 if (n < 0) {
649 // Marker to indicate that we are leaving a node
650 path_len--;
651 continue;
652 }
653
654 if (path_len < max_path_len) {
655 path[path_len] =
656 MakeId(n, rep_->nodes_[static_cast<uint32_t>(n)]->version);
657 }
658 path_len++;
659 r->stack_.push_back(-1); // Will remove tentative path entry
660
661 if (n == y) {
662 return path_len;
663 }
664
665 HASH_FOR_EACH(w, r->nodes_[static_cast<uint32_t>(n)]->out) {
666 if (seen.insert(w)) {
667 r->stack_.push_back(w);
668 }
669 }
670 }
671
672 return 0;
673 }
674
IsReachable(GraphId x,GraphId y) const675 bool GraphCycles::IsReachable(GraphId x, GraphId y) const {
676 return FindPath(x, y, 0, nullptr) > 0;
677 }
678
UpdateStackTrace(GraphId id,int priority,int (* get_stack_trace)(void ** stack,int))679 void GraphCycles::UpdateStackTrace(GraphId id, int priority,
680 int (*get_stack_trace)(void** stack, int)) {
681 Node* n = FindNode(rep_, id);
682 if (n == nullptr || n->priority >= priority) {
683 return;
684 }
685 n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack));
686 n->priority = priority;
687 }
688
GetStackTrace(GraphId id,void *** ptr)689 int GraphCycles::GetStackTrace(GraphId id, void*** ptr) {
690 Node* n = FindNode(rep_, id);
691 if (n == nullptr) {
692 *ptr = nullptr;
693 return 0;
694 } else {
695 *ptr = n->stack;
696 return n->nstack;
697 }
698 }
699
700 } // namespace synchronization_internal
701 ABSL_NAMESPACE_END
702 } // namespace absl
703
704 #endif // ABSL_LOW_LEVEL_ALLOC_MISSING
705