xref: /aosp_15_r20/external/webrtc/third_party/abseil-cpp/absl/hash/internal/hash.h (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 #ifndef ABSL_HASH_INTERNAL_HASH_H_
20 #define ABSL_HASH_INTERNAL_HASH_H_
21 
22 #include <algorithm>
23 #include <array>
24 #include <bitset>
25 #include <cmath>
26 #include <cstddef>
27 #include <cstring>
28 #include <deque>
29 #include <forward_list>
30 #include <functional>
31 #include <iterator>
32 #include <limits>
33 #include <list>
34 #include <map>
35 #include <memory>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <type_traits>
40 #include <unordered_map>
41 #include <unordered_set>
42 #include <utility>
43 #include <vector>
44 
45 #include "absl/base/config.h"
46 #include "absl/base/internal/unaligned_access.h"
47 #include "absl/base/port.h"
48 #include "absl/container/fixed_array.h"
49 #include "absl/hash/internal/city.h"
50 #include "absl/hash/internal/low_level_hash.h"
51 #include "absl/meta/type_traits.h"
52 #include "absl/numeric/int128.h"
53 #include "absl/strings/string_view.h"
54 #include "absl/types/optional.h"
55 #include "absl/types/variant.h"
56 #include "absl/utility/utility.h"
57 
58 namespace absl {
59 ABSL_NAMESPACE_BEGIN
60 
61 class HashState;
62 
63 namespace hash_internal {
64 
65 // Internal detail: Large buffers are hashed in smaller chunks.  This function
66 // returns the size of these chunks.
PiecewiseChunkSize()67 constexpr size_t PiecewiseChunkSize() { return 1024; }
68 
69 // PiecewiseCombiner
70 //
71 // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
72 // buffer of `char` or `unsigned char` as though it were contiguous.  This class
73 // provides two methods:
74 //
75 //   H add_buffer(state, data, size)
76 //   H finalize(state)
77 //
78 // `add_buffer` can be called zero or more times, followed by a single call to
79 // `finalize`.  This will produce the same hash expansion as concatenating each
80 // buffer piece into a single contiguous buffer, and passing this to
81 // `H::combine_contiguous`.
82 //
83 //  Example usage:
84 //    PiecewiseCombiner combiner;
85 //    for (const auto& piece : pieces) {
86 //      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
87 //    }
88 //    return combiner.finalize(std::move(state));
89 class PiecewiseCombiner {
90  public:
PiecewiseCombiner()91   PiecewiseCombiner() : position_(0) {}
92   PiecewiseCombiner(const PiecewiseCombiner&) = delete;
93   PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
94 
95   // PiecewiseCombiner::add_buffer()
96   //
97   // Appends the given range of bytes to the sequence to be hashed, which may
98   // modify the provided hash state.
99   template <typename H>
100   H add_buffer(H state, const unsigned char* data, size_t size);
101   template <typename H>
add_buffer(H state,const char * data,size_t size)102   H add_buffer(H state, const char* data, size_t size) {
103     return add_buffer(std::move(state),
104                       reinterpret_cast<const unsigned char*>(data), size);
105   }
106 
107   // PiecewiseCombiner::finalize()
108   //
109   // Finishes combining the hash sequence, which may may modify the provided
110   // hash state.
111   //
112   // Once finalize() is called, add_buffer() may no longer be called. The
113   // resulting hash state will be the same as if the pieces passed to
114   // add_buffer() were concatenated into a single flat buffer, and then provided
115   // to H::combine_contiguous().
116   template <typename H>
117   H finalize(H state);
118 
119  private:
120   unsigned char buf_[PiecewiseChunkSize()];
121   size_t position_;
122 };
123 
124 // is_hashable()
125 //
126 // Trait class which returns true if T is hashable by the absl::Hash framework.
127 // Used for the AbslHashValue implementations for composite types below.
128 template <typename T>
129 struct is_hashable;
130 
131 // HashStateBase
132 //
133 // An internal implementation detail that contains common implementation details
134 // for all of the "hash state objects" objects generated by Abseil.  This is not
135 // a public API; users should not create classes that inherit from this.
136 //
137 // A hash state object is the template argument `H` passed to `AbslHashValue`.
138 // It represents an intermediate state in the computation of an unspecified hash
139 // algorithm. `HashStateBase` provides a CRTP style base class for hash state
140 // implementations. Developers adding type support for `absl::Hash` should not
141 // rely on any parts of the state object other than the following member
142 // functions:
143 //
144 //   * HashStateBase::combine()
145 //   * HashStateBase::combine_contiguous()
146 //   * HashStateBase::combine_unordered()
147 //
148 // A derived hash state class of type `H` must provide a public member function
149 // with a signature similar to the following:
150 //
151 //    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
152 //
153 // It must also provide a private template method named RunCombineUnordered.
154 //
155 // A "consumer" is a 1-arg functor returning void.  Its argument is a reference
156 // to an inner hash state object, and it may be called multiple times.  When
157 // called, the functor consumes the entropy from the provided state object,
158 // and resets that object to its empty state.
159 //
160 // A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
161 // an inner hash state object and an ElementStateConsumer functor.  A combiner
162 // uses the provided inner hash state object to hash each element of the
163 // container, passing the inner hash state object to the consumer after hashing
164 // each element.
165 //
166 // Given these definitions, a derived hash state class of type H
167 // must provide a private template method with a signature similar to the
168 // following:
169 //
170 //    `template <typename CombinerT>`
171 //    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
172 //
173 // This function is responsible for constructing the inner state object and
174 // providing a consumer to the combiner.  It uses side effects of the consumer
175 // and combiner to mix the state of each element in an order-independent manner,
176 // and uses this to return an updated value of `outer_state`.
177 //
178 // This inside-out approach generates efficient object code in the normal case,
179 // but allows us to use stack storage to implement the absl::HashState type
180 // erasure mechanism (avoiding heap allocations while hashing).
181 //
182 // `HashStateBase` will provide a complete implementation for a hash state
183 // object in terms of these two methods.
184 //
185 // Example:
186 //
187 //   // Use CRTP to define your derived class.
188 //   struct MyHashState : HashStateBase<MyHashState> {
189 //       static H combine_contiguous(H state, const unsigned char*, size_t);
190 //       using MyHashState::HashStateBase::combine;
191 //       using MyHashState::HashStateBase::combine_contiguous;
192 //       using MyHashState::HashStateBase::combine_unordered;
193 //     private:
194 //       template <typename CombinerT>
195 //       static H RunCombineUnordered(H state, CombinerT combiner);
196 //   };
197 template <typename H>
198 class HashStateBase {
199  public:
200   // HashStateBase::combine()
201   //
202   // Combines an arbitrary number of values into a hash state, returning the
203   // updated state.
204   //
205   // Each of the value types `T` must be separately hashable by the Abseil
206   // hashing framework.
207   //
208   // NOTE:
209   //
210   //   state = H::combine(std::move(state), value1, value2, value3);
211   //
212   // is guaranteed to produce the same hash expansion as:
213   //
214   //   state = H::combine(std::move(state), value1);
215   //   state = H::combine(std::move(state), value2);
216   //   state = H::combine(std::move(state), value3);
217   template <typename T, typename... Ts>
218   static H combine(H state, const T& value, const Ts&... values);
combine(H state)219   static H combine(H state) { return state; }
220 
221   // HashStateBase::combine_contiguous()
222   //
223   // Combines a contiguous array of `size` elements into a hash state, returning
224   // the updated state.
225   //
226   // NOTE:
227   //
228   //   state = H::combine_contiguous(std::move(state), data, size);
229   //
230   // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
231   // perform internal optimizations).  If you need this guarantee, use the
232   // for-loop instead.
233   template <typename T>
234   static H combine_contiguous(H state, const T* data, size_t size);
235 
236   template <typename I>
237   static H combine_unordered(H state, I begin, I end);
238 
239   using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
240 
241   template <typename T>
242   using is_hashable = absl::hash_internal::is_hashable<T>;
243 
244  private:
245   // Common implementation of the iteration step of a "combiner", as described
246   // above.
247   template <typename I>
248   struct CombineUnorderedCallback {
249     I begin;
250     I end;
251 
252     template <typename InnerH, typename ElementStateConsumer>
operatorCombineUnorderedCallback253     void operator()(InnerH inner_state, ElementStateConsumer cb) {
254       for (; begin != end; ++begin) {
255         inner_state = H::combine(std::move(inner_state), *begin);
256         cb(inner_state);
257       }
258     }
259   };
260 };
261 
262 // is_uniquely_represented
263 //
264 // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
265 // is uniquely represented.
266 //
267 // A type is "uniquely represented" if two equal values of that type are
268 // guaranteed to have the same bytes in their underlying storage. In other
269 // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
270 // zero. This property cannot be detected automatically, so this trait is false
271 // by default, but can be specialized by types that wish to assert that they are
272 // uniquely represented. This makes them eligible for certain optimizations.
273 //
274 // If you have any doubt whatsoever, do not specialize this template.
275 // The default is completely safe, and merely disables some optimizations
276 // that will not matter for most types. Specializing this template,
277 // on the other hand, can be very hazardous.
278 //
279 // To be uniquely represented, a type must not have multiple ways of
280 // representing the same value; for example, float and double are not
281 // uniquely represented, because they have distinct representations for
282 // +0 and -0. Furthermore, the type's byte representation must consist
283 // solely of user-controlled data, with no padding bits and no compiler-
284 // controlled data such as vptrs or sanitizer metadata. This is usually
285 // very difficult to guarantee, because in most cases the compiler can
286 // insert data and padding bits at its own discretion.
287 //
288 // If you specialize this template for a type `T`, you must do so in the file
289 // that defines that type (or in this file). If you define that specialization
290 // anywhere else, `is_uniquely_represented<T>` could have different meanings
291 // in different places.
292 //
293 // The Enable parameter is meaningless; it is provided as a convenience,
294 // to support certain SFINAE techniques when defining specializations.
295 template <typename T, typename Enable = void>
296 struct is_uniquely_represented : std::false_type {};
297 
298 // is_uniquely_represented<unsigned char>
299 //
300 // unsigned char is a synonym for "byte", so it is guaranteed to be
301 // uniquely represented.
302 template <>
303 struct is_uniquely_represented<unsigned char> : std::true_type {};
304 
305 // is_uniquely_represented for non-standard integral types
306 //
307 // Integral types other than bool should be uniquely represented on any
308 // platform that this will plausibly be ported to.
309 template <typename Integral>
310 struct is_uniquely_represented<
311     Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
312     : std::true_type {};
313 
314 // is_uniquely_represented<bool>
315 //
316 //
317 template <>
318 struct is_uniquely_represented<bool> : std::false_type {};
319 
320 // hash_bytes()
321 //
322 // Convenience function that combines `hash_state` with the byte representation
323 // of `value`.
324 template <typename H, typename T>
325 H hash_bytes(H hash_state, const T& value) {
326   const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
327   return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
328 }
329 
330 // -----------------------------------------------------------------------------
331 // AbslHashValue for Basic Types
332 // -----------------------------------------------------------------------------
333 
334 // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
335 // allows us to block lexical scope lookup when doing an unqualified call to
336 // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
337 // only be found via ADL.
338 
339 // AbslHashValue() for hashing bool values
340 //
341 // We use SFINAE to ensure that this overload only accepts bool, not types that
342 // are convertible to bool.
343 template <typename H, typename B>
344 typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
345     H hash_state, B value) {
346   return H::combine(std::move(hash_state),
347                     static_cast<unsigned char>(value ? 1 : 0));
348 }
349 
350 // AbslHashValue() for hashing enum values
351 template <typename H, typename Enum>
352 typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
353     H hash_state, Enum e) {
354   // In practice, we could almost certainly just invoke hash_bytes directly,
355   // but it's possible that a sanitizer might one day want to
356   // store data in the unused bits of an enum. To avoid that risk, we
357   // convert to the underlying type before hashing. Hopefully this will get
358   // optimized away; if not, we can reopen discussion with c-toolchain-team.
359   return H::combine(std::move(hash_state),
360                     static_cast<typename std::underlying_type<Enum>::type>(e));
361 }
362 // AbslHashValue() for hashing floating-point values
363 template <typename H, typename Float>
364 typename std::enable_if<std::is_same<Float, float>::value ||
365                             std::is_same<Float, double>::value,
366                         H>::type
367 AbslHashValue(H hash_state, Float value) {
368   return hash_internal::hash_bytes(std::move(hash_state),
369                                    value == 0 ? 0 : value);
370 }
371 
372 // Long double has the property that it might have extra unused bytes in it.
373 // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
374 // of it. This means we can't use hash_bytes on a long double and have to
375 // convert it to something else first.
376 template <typename H, typename LongDouble>
377 typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
378 AbslHashValue(H hash_state, LongDouble value) {
379   const int category = std::fpclassify(value);
380   switch (category) {
381     case FP_INFINITE:
382       // Add the sign bit to differentiate between +Inf and -Inf
383       hash_state = H::combine(std::move(hash_state), std::signbit(value));
384       break;
385 
386     case FP_NAN:
387     case FP_ZERO:
388     default:
389       // Category is enough for these.
390       break;
391 
392     case FP_NORMAL:
393     case FP_SUBNORMAL:
394       // We can't convert `value` directly to double because this would have
395       // undefined behavior if the value is out of range.
396       // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
397       // guaranteed to be in range for `double`. The truncation is
398       // implementation defined, but that works as long as it is deterministic.
399       int exp;
400       auto mantissa = static_cast<double>(std::frexp(value, &exp));
401       hash_state = H::combine(std::move(hash_state), mantissa, exp);
402   }
403 
404   return H::combine(std::move(hash_state), category);
405 }
406 
407 // AbslHashValue() for hashing pointers
408 template <typename H, typename T>
409 H AbslHashValue(H hash_state, T* ptr) {
410   auto v = reinterpret_cast<uintptr_t>(ptr);
411   // Due to alignment, pointers tend to have low bits as zero, and the next few
412   // bits follow a pattern since they are also multiples of some base value.
413   // Mixing the pointer twice helps prevent stuck low bits for certain alignment
414   // values.
415   return H::combine(std::move(hash_state), v, v);
416 }
417 
418 // AbslHashValue() for hashing nullptr_t
419 template <typename H>
420 H AbslHashValue(H hash_state, std::nullptr_t) {
421   return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
422 }
423 
424 // AbslHashValue() for hashing pointers-to-member
425 template <typename H, typename T, typename C>
426 H AbslHashValue(H hash_state, T C::* ptr) {
427   auto salient_ptm_size = [](std::size_t n) -> std::size_t {
428 #if defined(_MSC_VER)
429     // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
430     // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
431     // padding (namely when they have 1 or 3 ints). The value below is a lower
432     // bound on the number of salient, non-padding bytes that we use for
433     // hashing.
434     if (alignof(T C::*) == alignof(int)) {
435       // No padding when all subobjects have the same size as the total
436       // alignment. This happens in 32-bit mode.
437       return n;
438     } else {
439       // Padding for 1 int (size 16) or 3 ints (size 24).
440       // With 2 ints, the size is 16 with no padding, which we pessimize.
441       return n == 24 ? 20 : n == 16 ? 12 : n;
442     }
443 #else
444     // On other platforms, we assume that pointers-to-members do not have
445     // padding.
446 #ifdef __cpp_lib_has_unique_object_representations
447     static_assert(std::has_unique_object_representations<T C::*>::value);
448 #endif  // __cpp_lib_has_unique_object_representations
449     return n;
450 #endif
451   };
452   return H::combine_contiguous(std::move(hash_state),
453                                reinterpret_cast<unsigned char*>(&ptr),
454                                salient_ptm_size(sizeof ptr));
455 }
456 
457 // -----------------------------------------------------------------------------
458 // AbslHashValue for Composite Types
459 // -----------------------------------------------------------------------------
460 
461 // AbslHashValue() for hashing pairs
462 template <typename H, typename T1, typename T2>
463 typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
464                         H>::type
465 AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
466   return H::combine(std::move(hash_state), p.first, p.second);
467 }
468 
469 // hash_tuple()
470 //
471 // Helper function for hashing a tuple. The third argument should
472 // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
473 template <typename H, typename Tuple, size_t... Is>
474 H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
475   return H::combine(std::move(hash_state), std::get<Is>(t)...);
476 }
477 
478 // AbslHashValue for hashing tuples
479 template <typename H, typename... Ts>
480 #if defined(_MSC_VER)
481 // This SFINAE gets MSVC confused under some conditions. Let's just disable it
482 // for now.
483 H
484 #else   // _MSC_VER
485 typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
486 #endif  // _MSC_VER
487 AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
488   return hash_internal::hash_tuple(std::move(hash_state), t,
489                                    absl::make_index_sequence<sizeof...(Ts)>());
490 }
491 
492 // -----------------------------------------------------------------------------
493 // AbslHashValue for Pointers
494 // -----------------------------------------------------------------------------
495 
496 // AbslHashValue for hashing unique_ptr
497 template <typename H, typename T, typename D>
498 H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
499   return H::combine(std::move(hash_state), ptr.get());
500 }
501 
502 // AbslHashValue for hashing shared_ptr
503 template <typename H, typename T>
504 H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
505   return H::combine(std::move(hash_state), ptr.get());
506 }
507 
508 // -----------------------------------------------------------------------------
509 // AbslHashValue for String-Like Types
510 // -----------------------------------------------------------------------------
511 
512 // AbslHashValue for hashing strings
513 //
514 // All the string-like types supported here provide the same hash expansion for
515 // the same character sequence. These types are:
516 //
517 //  - `absl::Cord`
518 //  - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
519 //      any allocator A)
520 //  - `absl::string_view` and `std::string_view`
521 //
522 // For simplicity, we currently support only `char` strings. This support may
523 // be broadened, if necessary, but with some caution - this overload would
524 // misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
525 // on the underlying character type.
526 template <typename H>
527 H AbslHashValue(H hash_state, absl::string_view str) {
528   return H::combine(
529       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
530       str.size());
531 }
532 
533 // Support std::wstring, std::u16string and std::u32string.
534 template <typename Char, typename Alloc, typename H,
535           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
536                                        std::is_same<Char, char16_t>::value ||
537                                        std::is_same<Char, char32_t>::value>>
538 H AbslHashValue(
539     H hash_state,
540     const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
541   return H::combine(
542       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
543       str.size());
544 }
545 
546 // -----------------------------------------------------------------------------
547 // AbslHashValue for Sequence Containers
548 // -----------------------------------------------------------------------------
549 
550 // AbslHashValue for hashing std::array
551 template <typename H, typename T, size_t N>
552 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
553     H hash_state, const std::array<T, N>& array) {
554   return H::combine_contiguous(std::move(hash_state), array.data(),
555                                array.size());
556 }
557 
558 // AbslHashValue for hashing std::deque
559 template <typename H, typename T, typename Allocator>
560 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
561     H hash_state, const std::deque<T, Allocator>& deque) {
562   // TODO(gromer): investigate a more efficient implementation taking
563   // advantage of the chunk structure.
564   for (const auto& t : deque) {
565     hash_state = H::combine(std::move(hash_state), t);
566   }
567   return H::combine(std::move(hash_state), deque.size());
568 }
569 
570 // AbslHashValue for hashing std::forward_list
571 template <typename H, typename T, typename Allocator>
572 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
573     H hash_state, const std::forward_list<T, Allocator>& list) {
574   size_t size = 0;
575   for (const T& t : list) {
576     hash_state = H::combine(std::move(hash_state), t);
577     ++size;
578   }
579   return H::combine(std::move(hash_state), size);
580 }
581 
582 // AbslHashValue for hashing std::list
583 template <typename H, typename T, typename Allocator>
584 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
585     H hash_state, const std::list<T, Allocator>& list) {
586   for (const auto& t : list) {
587     hash_state = H::combine(std::move(hash_state), t);
588   }
589   return H::combine(std::move(hash_state), list.size());
590 }
591 
592 // AbslHashValue for hashing std::vector
593 //
594 // Do not use this for vector<bool> on platforms that have a working
595 // implementation of std::hash. It does not have a .data(), and a fallback for
596 // std::hash<> is most likely faster.
597 template <typename H, typename T, typename Allocator>
598 typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
599                         H>::type
600 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
601   return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
602                                           vector.size()),
603                     vector.size());
604 }
605 
606 // AbslHashValue special cases for hashing std::vector<bool>
607 
608 #if defined(ABSL_IS_BIG_ENDIAN) && \
609     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
610 
611 // std::hash in libstdc++ does not work correctly with vector<bool> on Big
612 // Endian platforms therefore we need to implement a custom AbslHashValue for
613 // it. More details on the bug:
614 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
615 template <typename H, typename T, typename Allocator>
616 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
617                         H>::type
618 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
619   typename H::AbslInternalPiecewiseCombiner combiner;
620   for (const auto& i : vector) {
621     unsigned char c = static_cast<unsigned char>(i);
622     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
623   }
624   return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
625 }
626 #else
627 // When not working around the libstdc++ bug above, we still have to contend
628 // with the fact that std::hash<vector<bool>> is often poor quality, hashing
629 // directly on the internal words and on no other state.  On these platforms,
630 // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
631 //
632 // Mixing in the size (as we do in our other vector<> implementations) on top
633 // of the library-provided hash implementation avoids this QOI issue.
634 template <typename H, typename T, typename Allocator>
635 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
636                         H>::type
637 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
638   return H::combine(std::move(hash_state),
639                     std::hash<std::vector<T, Allocator>>{}(vector),
640                     vector.size());
641 }
642 #endif
643 
644 // -----------------------------------------------------------------------------
645 // AbslHashValue for Ordered Associative Containers
646 // -----------------------------------------------------------------------------
647 
648 // AbslHashValue for hashing std::map
649 template <typename H, typename Key, typename T, typename Compare,
650           typename Allocator>
651 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
652                         H>::type
653 AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
654   for (const auto& t : map) {
655     hash_state = H::combine(std::move(hash_state), t);
656   }
657   return H::combine(std::move(hash_state), map.size());
658 }
659 
660 // AbslHashValue for hashing std::multimap
661 template <typename H, typename Key, typename T, typename Compare,
662           typename Allocator>
663 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
664                         H>::type
665 AbslHashValue(H hash_state,
666               const std::multimap<Key, T, Compare, Allocator>& map) {
667   for (const auto& t : map) {
668     hash_state = H::combine(std::move(hash_state), t);
669   }
670   return H::combine(std::move(hash_state), map.size());
671 }
672 
673 // AbslHashValue for hashing std::set
674 template <typename H, typename Key, typename Compare, typename Allocator>
675 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
676     H hash_state, const std::set<Key, Compare, Allocator>& set) {
677   for (const auto& t : set) {
678     hash_state = H::combine(std::move(hash_state), t);
679   }
680   return H::combine(std::move(hash_state), set.size());
681 }
682 
683 // AbslHashValue for hashing std::multiset
684 template <typename H, typename Key, typename Compare, typename Allocator>
685 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
686     H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
687   for (const auto& t : set) {
688     hash_state = H::combine(std::move(hash_state), t);
689   }
690   return H::combine(std::move(hash_state), set.size());
691 }
692 
693 // -----------------------------------------------------------------------------
694 // AbslHashValue for Unordered Associative Containers
695 // -----------------------------------------------------------------------------
696 
697 // AbslHashValue for hashing std::unordered_set
698 template <typename H, typename Key, typename Hash, typename KeyEqual,
699           typename Alloc>
700 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
701     H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
702   return H::combine(
703       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
704       s.size());
705 }
706 
707 // AbslHashValue for hashing std::unordered_multiset
708 template <typename H, typename Key, typename Hash, typename KeyEqual,
709           typename Alloc>
710 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
711     H hash_state,
712     const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
713   return H::combine(
714       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
715       s.size());
716 }
717 
718 // AbslHashValue for hashing std::unordered_set
719 template <typename H, typename Key, typename T, typename Hash,
720           typename KeyEqual, typename Alloc>
721 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
722                         H>::type
723 AbslHashValue(H hash_state,
724               const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
725   return H::combine(
726       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
727       s.size());
728 }
729 
730 // AbslHashValue for hashing std::unordered_multiset
731 template <typename H, typename Key, typename T, typename Hash,
732           typename KeyEqual, typename Alloc>
733 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
734                         H>::type
735 AbslHashValue(H hash_state,
736               const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
737   return H::combine(
738       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
739       s.size());
740 }
741 
742 // -----------------------------------------------------------------------------
743 // AbslHashValue for Wrapper Types
744 // -----------------------------------------------------------------------------
745 
746 // AbslHashValue for hashing std::reference_wrapper
747 template <typename H, typename T>
748 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
749     H hash_state, std::reference_wrapper<T> opt) {
750   return H::combine(std::move(hash_state), opt.get());
751 }
752 
753 // AbslHashValue for hashing absl::optional
754 template <typename H, typename T>
755 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
756     H hash_state, const absl::optional<T>& opt) {
757   if (opt) hash_state = H::combine(std::move(hash_state), *opt);
758   return H::combine(std::move(hash_state), opt.has_value());
759 }
760 
761 // VariantVisitor
762 template <typename H>
763 struct VariantVisitor {
764   H&& hash_state;
765   template <typename T>
766   H operator()(const T& t) const {
767     return H::combine(std::move(hash_state), t);
768   }
769 };
770 
771 // AbslHashValue for hashing absl::variant
772 template <typename H, typename... T>
773 typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
774 AbslHashValue(H hash_state, const absl::variant<T...>& v) {
775   if (!v.valueless_by_exception()) {
776     hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
777   }
778   return H::combine(std::move(hash_state), v.index());
779 }
780 
781 // -----------------------------------------------------------------------------
782 // AbslHashValue for Other Types
783 // -----------------------------------------------------------------------------
784 
785 // AbslHashValue for hashing std::bitset is not defined on Little Endian
786 // platforms, for the same reason as for vector<bool> (see std::vector above):
787 // It does not expose the raw bytes, and a fallback to std::hash<> is most
788 // likely faster.
789 
790 #if defined(ABSL_IS_BIG_ENDIAN) && \
791     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
792 // AbslHashValue for hashing std::bitset
793 //
794 // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
795 // platforms therefore we need to implement a custom AbslHashValue for it. More
796 // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
797 template <typename H, size_t N>
798 H AbslHashValue(H hash_state, const std::bitset<N>& set) {
799   typename H::AbslInternalPiecewiseCombiner combiner;
800   for (int i = 0; i < N; i++) {
801     unsigned char c = static_cast<unsigned char>(set[i]);
802     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
803   }
804   return H::combine(combiner.finalize(std::move(hash_state)), N);
805 }
806 #endif
807 
808 // -----------------------------------------------------------------------------
809 
810 // hash_range_or_bytes()
811 //
812 // Mixes all values in the range [data, data+size) into the hash state.
813 // This overload accepts only uniquely-represented types, and hashes them by
814 // hashing the entire range of bytes.
815 template <typename H, typename T>
816 typename std::enable_if<is_uniquely_represented<T>::value, H>::type
817 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
818   const auto* bytes = reinterpret_cast<const unsigned char*>(data);
819   return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
820 }
821 
822 // hash_range_or_bytes()
823 template <typename H, typename T>
824 typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
825 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
826   for (const auto end = data + size; data < end; ++data) {
827     hash_state = H::combine(std::move(hash_state), *data);
828   }
829   return hash_state;
830 }
831 
832 #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
833     ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
834 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
835 #else
836 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
837 #endif
838 
839 // HashSelect
840 //
841 // Type trait to select the appropriate hash implementation to use.
842 // HashSelect::type<T> will give the proper hash implementation, to be invoked
843 // as:
844 //   HashSelect::type<T>::Invoke(state, value)
845 // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
846 // valid `Invoke` function. Types that are not hashable will have a ::value of
847 // `false`.
848 struct HashSelect {
849  private:
850   struct State : HashStateBase<State> {
851     static State combine_contiguous(State hash_state, const unsigned char*,
852                                     size_t);
853     using State::HashStateBase::combine_contiguous;
854   };
855 
856   struct UniquelyRepresentedProbe {
857     template <typename H, typename T>
858     static auto Invoke(H state, const T& value)
859         -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
860       return hash_internal::hash_bytes(std::move(state), value);
861     }
862   };
863 
864   struct HashValueProbe {
865     template <typename H, typename T>
866     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
867         std::is_same<H,
868                      decltype(AbslHashValue(std::move(state), value))>::value,
869         H> {
870       return AbslHashValue(std::move(state), value);
871     }
872   };
873 
874   struct LegacyHashProbe {
875 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
876     template <typename H, typename T>
877     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
878         std::is_convertible<
879             decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
880             size_t>::value,
881         H> {
882       return hash_internal::hash_bytes(
883           std::move(state),
884           ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
885     }
886 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
887   };
888 
889   struct StdHashProbe {
890     template <typename H, typename T>
891     static auto Invoke(H state, const T& value)
892         -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
893       return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
894     }
895   };
896 
897   template <typename Hash, typename T>
898   struct Probe : Hash {
899    private:
900     template <typename H, typename = decltype(H::Invoke(
901                               std::declval<State>(), std::declval<const T&>()))>
902     static std::true_type Test(int);
903     template <typename U>
904     static std::false_type Test(char);
905 
906    public:
907     static constexpr bool value = decltype(Test<Hash>(0))::value;
908   };
909 
910  public:
911   // Probe each implementation in order.
912   // disjunction provides short circuiting wrt instantiation.
913   template <typename T>
914   using Apply = absl::disjunction<         //
915       Probe<UniquelyRepresentedProbe, T>,  //
916       Probe<HashValueProbe, T>,            //
917       Probe<LegacyHashProbe, T>,           //
918       Probe<StdHashProbe, T>,              //
919       std::false_type>;
920 };
921 
922 template <typename T>
923 struct is_hashable
924     : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
925 
926 // MixingHashState
927 class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
928   // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
929   // We use the intrinsic when available to improve performance.
930 #ifdef ABSL_HAVE_INTRINSIC_INT128
931   using uint128 = __uint128_t;
932 #else   // ABSL_HAVE_INTRINSIC_INT128
933   using uint128 = absl::uint128;
934 #endif  // ABSL_HAVE_INTRINSIC_INT128
935 
936   static constexpr uint64_t kMul =
937       sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
938                           : uint64_t{0x9ddfea08eb382d69};
939 
940   template <typename T>
941   using IntegralFastPath =
942       conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
943 
944  public:
945   // Move only
946   MixingHashState(MixingHashState&&) = default;
947   MixingHashState& operator=(MixingHashState&&) = default;
948 
949   // MixingHashState::combine_contiguous()
950   //
951   // Fundamental base case for hash recursion: mixes the given range of bytes
952   // into the hash state.
953   static MixingHashState combine_contiguous(MixingHashState hash_state,
954                                             const unsigned char* first,
955                                             size_t size) {
956     return MixingHashState(
957         CombineContiguousImpl(hash_state.state_, first, size,
958                               std::integral_constant<int, sizeof(size_t)>{}));
959   }
960   using MixingHashState::HashStateBase::combine_contiguous;
961 
962   // MixingHashState::hash()
963   //
964   // For performance reasons in non-opt mode, we specialize this for
965   // integral types.
966   // Otherwise we would be instantiating and calling dozens of functions for
967   // something that is just one multiplication and a couple xor's.
968   // The result should be the same as running the whole algorithm, but faster.
969   template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
970   static size_t hash(T value) {
971     return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
972   }
973 
974   // Overload of MixingHashState::hash()
975   template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
976   static size_t hash(const T& value) {
977     return static_cast<size_t>(combine(MixingHashState{}, value).state_);
978   }
979 
980  private:
981   // Invoked only once for a given argument; that plus the fact that this is
982   // move-only ensures that there is only one non-moved-from object.
983   MixingHashState() : state_(Seed()) {}
984 
985   friend class MixingHashState::HashStateBase;
986 
987   template <typename CombinerT>
988   static MixingHashState RunCombineUnordered(MixingHashState state,
989                                              CombinerT combiner) {
990     uint64_t unordered_state = 0;
991     combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
992       // Add the hash state of the element to the running total, but mix the
993       // carry bit back into the low bit.  This in intended to avoid losing
994       // entropy to overflow, especially when unordered_multisets contain
995       // multiple copies of the same value.
996       auto element_state = inner_state.state_;
997       unordered_state += element_state;
998       if (unordered_state < element_state) {
999         ++unordered_state;
1000       }
1001       inner_state = MixingHashState{};
1002     });
1003     return MixingHashState::combine(std::move(state), unordered_state);
1004   }
1005 
1006   // Allow the HashState type-erasure implementation to invoke
1007   // RunCombinedUnordered() directly.
1008   friend class absl::HashState;
1009 
1010   // Workaround for MSVC bug.
1011   // We make the type copyable to fix the calling convention, even though we
1012   // never actually copy it. Keep it private to not affect the public API of the
1013   // type.
1014   MixingHashState(const MixingHashState&) = default;
1015 
1016   explicit MixingHashState(uint64_t state) : state_(state) {}
1017 
1018   // Implementation of the base case for combine_contiguous where we actually
1019   // mix the bytes into the state.
1020   // Dispatch to different implementations of the combine_contiguous depending
1021   // on the value of `sizeof(size_t)`.
1022   static uint64_t CombineContiguousImpl(uint64_t state,
1023                                         const unsigned char* first, size_t len,
1024                                         std::integral_constant<int, 4>
1025                                         /* sizeof_size_t */);
1026   static uint64_t CombineContiguousImpl(uint64_t state,
1027                                         const unsigned char* first, size_t len,
1028                                         std::integral_constant<int, 8>
1029                                         /* sizeof_size_t */);
1030 
1031   // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1032   // larger than PiecewiseChunkSize().  Has the same effect as calling
1033   // CombineContiguousImpl() repeatedly with the chunk stride size.
1034   static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1035                                                const unsigned char* first,
1036                                                size_t len);
1037   static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1038                                                const unsigned char* first,
1039                                                size_t len);
1040 
1041   // Reads 9 to 16 bytes from p.
1042   // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1043   // are in .second.
1044   static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1045                                                  size_t len) {
1046     uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1047     uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1048 #ifdef ABSL_IS_LITTLE_ENDIAN
1049     uint64_t most_significant = high_mem;
1050     uint64_t least_significant = low_mem;
1051 #else
1052     uint64_t most_significant = low_mem;
1053     uint64_t least_significant = high_mem;
1054 #endif
1055     return {least_significant, most_significant >> (128 - len * 8)};
1056   }
1057 
1058   // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1059   static uint64_t Read4To8(const unsigned char* p, size_t len) {
1060     uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1061     uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1062 #ifdef ABSL_IS_LITTLE_ENDIAN
1063     uint32_t most_significant = high_mem;
1064     uint32_t least_significant = low_mem;
1065 #else
1066     uint32_t most_significant = low_mem;
1067     uint32_t least_significant = high_mem;
1068 #endif
1069     return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1070            least_significant;
1071   }
1072 
1073   // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1074   static uint32_t Read1To3(const unsigned char* p, size_t len) {
1075     unsigned char mem0 = p[0];
1076     unsigned char mem1 = p[len / 2];
1077     unsigned char mem2 = p[len - 1];
1078 #ifdef ABSL_IS_LITTLE_ENDIAN
1079     unsigned char significant2 = mem2;
1080     unsigned char significant1 = mem1;
1081     unsigned char significant0 = mem0;
1082 #else
1083     unsigned char significant2 = mem0;
1084     unsigned char significant1 = mem1;
1085     unsigned char significant0 = mem2;
1086 #endif
1087     return static_cast<uint32_t>(significant0 |                     //
1088                                  (significant1 << (len / 2 * 8)) |  //
1089                                  (significant2 << ((len - 1) * 8)));
1090   }
1091 
1092   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1093     // Though the 128-bit product on AArch64 needs two instructions, it is
1094     // still a good balance between speed and hash quality.
1095     using MultType =
1096         absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1097     // We do the addition in 64-bit space to make sure the 128-bit
1098     // multiplication is fast. If we were to do it as MultType the compiler has
1099     // to assume that the high word is non-zero and needs to perform 2
1100     // multiplications instead of one.
1101     MultType m = state + v;
1102     m *= kMul;
1103     return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1104   }
1105 
1106   // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1107   // values for both the seed and salt parameters.
1108   static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1109 
1110   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1111                                                       size_t len) {
1112 #ifdef ABSL_HAVE_INTRINSIC_INT128
1113     return LowLevelHashImpl(data, len);
1114 #else
1115     return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1116 #endif
1117   }
1118 
1119   // Seed()
1120   //
1121   // A non-deterministic seed.
1122   //
1123   // The current purpose of this seed is to generate non-deterministic results
1124   // and prevent having users depend on the particular hash values.
1125   // It is not meant as a security feature right now, but it leaves the door
1126   // open to upgrade it to a true per-process random seed. A true random seed
1127   // costs more and we don't need to pay for that right now.
1128   //
1129   // On platforms with ASLR, we take advantage of it to make a per-process
1130   // random value.
1131   // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1132   //
1133   // On other platforms this is still going to be non-deterministic but most
1134   // probably per-build and not per-process.
1135   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1136 #if (!defined(__clang__) || __clang_major__ > 11) && \
1137     !defined(__apple_build_version__)
1138     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1139 #else
1140     // Workaround the absence of
1141     // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1142     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1143 #endif
1144   }
1145   static const void* const kSeed;
1146 
1147   uint64_t state_;
1148 };
1149 
1150 // MixingHashState::CombineContiguousImpl()
1151 inline uint64_t MixingHashState::CombineContiguousImpl(
1152     uint64_t state, const unsigned char* first, size_t len,
1153     std::integral_constant<int, 4> /* sizeof_size_t */) {
1154   // For large values we use CityHash, for small ones we just use a
1155   // multiplicative hash.
1156   uint64_t v;
1157   if (len > 8) {
1158     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1159       return CombineLargeContiguousImpl32(state, first, len);
1160     }
1161     v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1162   } else if (len >= 4) {
1163     v = Read4To8(first, len);
1164   } else if (len > 0) {
1165     v = Read1To3(first, len);
1166   } else {
1167     // Empty ranges have no effect.
1168     return state;
1169   }
1170   return Mix(state, v);
1171 }
1172 
1173 // Overload of MixingHashState::CombineContiguousImpl()
1174 inline uint64_t MixingHashState::CombineContiguousImpl(
1175     uint64_t state, const unsigned char* first, size_t len,
1176     std::integral_constant<int, 8> /* sizeof_size_t */) {
1177   // For large values we use LowLevelHash or CityHash depending on the platform,
1178   // for small ones we just use a multiplicative hash.
1179   uint64_t v;
1180   if (len > 16) {
1181     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1182       return CombineLargeContiguousImpl64(state, first, len);
1183     }
1184     v = Hash64(first, len);
1185   } else if (len > 8) {
1186     auto p = Read9To16(first, len);
1187     state = Mix(state, p.first);
1188     v = p.second;
1189   } else if (len >= 4) {
1190     v = Read4To8(first, len);
1191   } else if (len > 0) {
1192     v = Read1To3(first, len);
1193   } else {
1194     // Empty ranges have no effect.
1195     return state;
1196   }
1197   return Mix(state, v);
1198 }
1199 
1200 struct AggregateBarrier {};
1201 
1202 // HashImpl
1203 
1204 // Add a private base class to make sure this type is not an aggregate.
1205 // Aggregates can be aggregate initialized even if the default constructor is
1206 // deleted.
1207 struct PoisonedHash : private AggregateBarrier {
1208   PoisonedHash() = delete;
1209   PoisonedHash(const PoisonedHash&) = delete;
1210   PoisonedHash& operator=(const PoisonedHash&) = delete;
1211 };
1212 
1213 template <typename T>
1214 struct HashImpl {
1215   size_t operator()(const T& value) const {
1216     return MixingHashState::hash(value);
1217   }
1218 };
1219 
1220 template <typename T>
1221 struct Hash
1222     : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1223 
1224 template <typename H>
1225 template <typename T, typename... Ts>
1226 H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1227   return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1228                         std::move(state), value),
1229                     values...);
1230 }
1231 
1232 // HashStateBase::combine_contiguous()
1233 template <typename H>
1234 template <typename T>
1235 H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1236   return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1237 }
1238 
1239 // HashStateBase::combine_unordered()
1240 template <typename H>
1241 template <typename I>
1242 H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1243   return H::RunCombineUnordered(std::move(state),
1244                                 CombineUnorderedCallback<I>{begin, end});
1245 }
1246 
1247 // HashStateBase::PiecewiseCombiner::add_buffer()
1248 template <typename H>
1249 H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1250                                 size_t size) {
1251   if (position_ + size < PiecewiseChunkSize()) {
1252     // This partial chunk does not fill our existing buffer
1253     memcpy(buf_ + position_, data, size);
1254     position_ += size;
1255     return state;
1256   }
1257 
1258   // If the buffer is partially filled we need to complete the buffer
1259   // and hash it.
1260   if (position_ != 0) {
1261     const size_t bytes_needed = PiecewiseChunkSize() - position_;
1262     memcpy(buf_ + position_, data, bytes_needed);
1263     state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1264     data += bytes_needed;
1265     size -= bytes_needed;
1266   }
1267 
1268   // Hash whatever chunks we can without copying
1269   while (size >= PiecewiseChunkSize()) {
1270     state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1271     data += PiecewiseChunkSize();
1272     size -= PiecewiseChunkSize();
1273   }
1274   // Fill the buffer with the remainder
1275   memcpy(buf_, data, size);
1276   position_ = size;
1277   return state;
1278 }
1279 
1280 // HashStateBase::PiecewiseCombiner::finalize()
1281 template <typename H>
1282 H PiecewiseCombiner::finalize(H state) {
1283   // Hash the remainder left in the buffer, which may be empty
1284   return H::combine_contiguous(std::move(state), buf_, position_);
1285 }
1286 
1287 }  // namespace hash_internal
1288 ABSL_NAMESPACE_END
1289 }  // namespace absl
1290 
1291 #endif  // ABSL_HASH_INTERNAL_HASH_H_
1292