1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/hash/hash.h"
16
17 #include <algorithm>
18 #include <array>
19 #include <bitset>
20 #include <cstring>
21 #include <deque>
22 #include <forward_list>
23 #include <functional>
24 #include <initializer_list>
25 #include <iterator>
26 #include <limits>
27 #include <list>
28 #include <map>
29 #include <memory>
30 #include <numeric>
31 #include <random>
32 #include <set>
33 #include <string>
34 #include <tuple>
35 #include <type_traits>
36 #include <unordered_map>
37 #include <unordered_set>
38 #include <utility>
39 #include <vector>
40
41 #include "gmock/gmock.h"
42 #include "gtest/gtest.h"
43 #include "absl/container/btree_map.h"
44 #include "absl/container/btree_set.h"
45 #include "absl/container/flat_hash_map.h"
46 #include "absl/container/flat_hash_set.h"
47 #include "absl/container/node_hash_map.h"
48 #include "absl/container/node_hash_set.h"
49 #include "absl/hash/hash_testing.h"
50 #include "absl/hash/internal/spy_hash_state.h"
51 #include "absl/meta/type_traits.h"
52 #include "absl/numeric/int128.h"
53 #include "absl/strings/cord_test_helpers.h"
54
55 namespace {
56
57 // Utility wrapper of T for the purposes of testing the `AbslHash` type erasure
58 // mechanism. `TypeErasedValue<T>` can be constructed with a `T`, and can
59 // be compared and hashed. However, all hashing goes through the hashing
60 // type-erasure framework.
61 template <typename T>
62 class TypeErasedValue {
63 public:
64 TypeErasedValue() = default;
65 TypeErasedValue(const TypeErasedValue&) = default;
66 TypeErasedValue(TypeErasedValue&&) = default;
TypeErasedValue(const T & n)67 explicit TypeErasedValue(const T& n) : n_(n) {}
68
69 template <typename H>
AbslHashValue(H hash_state,const TypeErasedValue & v)70 friend H AbslHashValue(H hash_state, const TypeErasedValue& v) {
71 v.HashValue(absl::HashState::Create(&hash_state));
72 return hash_state;
73 }
74
HashValue(absl::HashState state) const75 void HashValue(absl::HashState state) const {
76 absl::HashState::combine(std::move(state), n_);
77 }
78
operator ==(const TypeErasedValue & rhs) const79 bool operator==(const TypeErasedValue& rhs) const { return n_ == rhs.n_; }
operator !=(const TypeErasedValue & rhs) const80 bool operator!=(const TypeErasedValue& rhs) const { return !(*this == rhs); }
81
82 private:
83 T n_;
84 };
85
86 // A TypeErasedValue refinement, for containers. It exposes the wrapped
87 // `value_type` and is constructible from an initializer list.
88 template <typename T>
89 class TypeErasedContainer : public TypeErasedValue<T> {
90 public:
91 using value_type = typename T::value_type;
92 TypeErasedContainer() = default;
93 TypeErasedContainer(const TypeErasedContainer&) = default;
94 TypeErasedContainer(TypeErasedContainer&&) = default;
TypeErasedContainer(const T & n)95 explicit TypeErasedContainer(const T& n) : TypeErasedValue<T>(n) {}
TypeErasedContainer(std::initializer_list<value_type> init_list)96 TypeErasedContainer(std::initializer_list<value_type> init_list)
97 : TypeErasedContainer(T(init_list.begin(), init_list.end())) {}
98 // one-argument constructor of value type T, to appease older toolchains that
99 // get confused by one-element initializer lists in some contexts
TypeErasedContainer(const value_type & v)100 explicit TypeErasedContainer(const value_type& v)
101 : TypeErasedContainer(T(&v, &v + 1)) {}
102 };
103
104 template <typename T>
105 using TypeErasedVector = TypeErasedContainer<std::vector<T>>;
106
107 using absl::Hash;
108 using absl::hash_internal::SpyHashState;
109
110 template <typename T>
111 class HashValueIntTest : public testing::Test {
112 };
113 TYPED_TEST_SUITE_P(HashValueIntTest);
114
115 template <typename T>
SpyHash(const T & value)116 SpyHashState SpyHash(const T& value) {
117 return SpyHashState::combine(SpyHashState(), value);
118 }
119
120 // Helper trait to verify if T is hashable. We use absl::Hash's poison status to
121 // detect it.
122 template <typename T>
123 using is_hashable = std::is_default_constructible<absl::Hash<T>>;
124
TYPED_TEST_P(HashValueIntTest,BasicUsage)125 TYPED_TEST_P(HashValueIntTest, BasicUsage) {
126 EXPECT_TRUE((is_hashable<TypeParam>::value));
127
128 TypeParam n = 42;
129 EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
130 EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
131 EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
132 SpyHash(std::numeric_limits<TypeParam>::min()));
133 }
134
TYPED_TEST_P(HashValueIntTest,FastPath)135 TYPED_TEST_P(HashValueIntTest, FastPath) {
136 // Test the fast-path to make sure the values are the same.
137 TypeParam n = 42;
138 EXPECT_EQ(absl::Hash<TypeParam>{}(n),
139 absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
140 }
141
142 REGISTER_TYPED_TEST_SUITE_P(HashValueIntTest, BasicUsage, FastPath);
143 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t,
144 uint32_t, uint64_t, size_t>;
145 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueIntTest, IntTypes);
146
147 enum LegacyEnum { kValue1, kValue2, kValue3 };
148
149 enum class EnumClass { kValue4, kValue5, kValue6 };
150
TEST(HashValueTest,EnumAndBool)151 TEST(HashValueTest, EnumAndBool) {
152 EXPECT_TRUE((is_hashable<LegacyEnum>::value));
153 EXPECT_TRUE((is_hashable<EnumClass>::value));
154 EXPECT_TRUE((is_hashable<bool>::value));
155
156 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
157 LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
158 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
159 EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
160 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
161 std::make_tuple(true, false)));
162 }
163
TEST(HashValueTest,FloatingPoint)164 TEST(HashValueTest, FloatingPoint) {
165 EXPECT_TRUE((is_hashable<float>::value));
166 EXPECT_TRUE((is_hashable<double>::value));
167 EXPECT_TRUE((is_hashable<long double>::value));
168
169 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
170 std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
171 -std::numeric_limits<float>::infinity())));
172
173 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
174 std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
175 -std::numeric_limits<double>::infinity())));
176
177 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
178 // Add some values with small exponent to test that NORMAL values also
179 // append their category.
180 .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
181 17 * static_cast<long double>(std::numeric_limits<double>::max()),
182 std::numeric_limits<long double>::infinity(),
183 -std::numeric_limits<long double>::infinity())));
184 }
185
TEST(HashValueTest,Pointer)186 TEST(HashValueTest, Pointer) {
187 EXPECT_TRUE((is_hashable<int*>::value));
188 EXPECT_TRUE((is_hashable<int(*)(char, float)>::value));
189 EXPECT_TRUE((is_hashable<void(*)(int, int, ...)>::value));
190
191 int i;
192 int* ptr = &i;
193 int* n = nullptr;
194
195 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
196 std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
197 }
198
TEST(HashValueTest,PointerAlignment)199 TEST(HashValueTest, PointerAlignment) {
200 // We want to make sure that pointer alignment will not cause bits to be
201 // stuck.
202
203 constexpr size_t kTotalSize = 1 << 20;
204 std::unique_ptr<char[]> data(new char[kTotalSize]);
205 constexpr size_t kLog2NumValues = 5;
206 constexpr size_t kNumValues = 1 << kLog2NumValues;
207
208 for (size_t align = 1; align < kTotalSize / kNumValues;
209 align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
210 SCOPED_TRACE(align);
211 ASSERT_LE(align * kNumValues, kTotalSize);
212
213 size_t bits_or = 0;
214 size_t bits_and = ~size_t{};
215
216 for (size_t i = 0; i < kNumValues; ++i) {
217 size_t hash = absl::Hash<void*>()(data.get() + i * align);
218 bits_or |= hash;
219 bits_and &= hash;
220 }
221
222 // Limit the scope to the bits we would be using for Swisstable.
223 constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
224 size_t stuck_bits = (~bits_or | bits_and) & kMask;
225 EXPECT_EQ(stuck_bits, 0u) << "0x" << std::hex << stuck_bits;
226 }
227 }
228
TEST(HashValueTest,PointerToMember)229 TEST(HashValueTest, PointerToMember) {
230 struct Bass {
231 void q() {}
232 };
233
234 struct A : Bass {
235 virtual ~A() = default;
236 virtual void vfa() {}
237
238 static auto pq() -> void (A::*)() { return &A::q; }
239 };
240
241 struct B : Bass {
242 virtual ~B() = default;
243 virtual void vfb() {}
244
245 static auto pq() -> void (B::*)() { return &B::q; }
246 };
247
248 struct Foo : A, B {
249 void f1() {}
250 void f2() const {}
251
252 int g1() & { return 0; }
253 int g2() const & { return 0; }
254 int g3() && { return 0; }
255 int g4() const && { return 0; }
256
257 int h1() & { return 0; }
258 int h2() const & { return 0; }
259 int h3() && { return 0; }
260 int h4() const && { return 0; }
261
262 int a;
263 int b;
264
265 const int c = 11;
266 const int d = 22;
267 };
268
269 EXPECT_TRUE((is_hashable<float Foo::*>::value));
270 EXPECT_TRUE((is_hashable<double (Foo::*)(int, int)&&>::value));
271
272 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
273 std::make_tuple(&Foo::a, &Foo::b, static_cast<int Foo::*>(nullptr))));
274
275 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
276 std::make_tuple(&Foo::c, &Foo::d, static_cast<const int Foo::*>(nullptr),
277 &Foo::a, &Foo::b)));
278
279 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
280 &Foo::f1, static_cast<void (Foo::*)()>(nullptr))));
281
282 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
283 &Foo::f2, static_cast<void (Foo::*)() const>(nullptr))));
284
285 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
286 &Foo::g1, &Foo::h1, static_cast<int (Foo::*)() &>(nullptr))));
287
288 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
289 &Foo::g2, &Foo::h2, static_cast<int (Foo::*)() const &>(nullptr))));
290
291 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
292 &Foo::g3, &Foo::h3, static_cast<int (Foo::*)() &&>(nullptr))));
293
294 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
295 &Foo::g4, &Foo::h4, static_cast<int (Foo::*)() const &&>(nullptr))));
296
297 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
298 std::make_tuple(static_cast<void (Foo::*)()>(&Foo::vfa),
299 static_cast<void (Foo::*)()>(&Foo::vfb),
300 static_cast<void (Foo::*)()>(nullptr))));
301
302 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
303 std::make_tuple(static_cast<void (Foo::*)()>(Foo::A::pq()),
304 static_cast<void (Foo::*)()>(Foo::B::pq()),
305 static_cast<void (Foo::*)()>(nullptr))));
306 }
307
TEST(HashValueTest,PairAndTuple)308 TEST(HashValueTest, PairAndTuple) {
309 EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
310 EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
311 EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
312 EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));
313
314 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
315 std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
316 std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));
317
318 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
319 std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
320 std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
321 std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
322 std::make_tuple(0, 0, -42))));
323
324 // Test that tuples of lvalue references work (so we need a few lvalues):
325 int a = 0, b = 1, c = 17, d = 23;
326 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
327 std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));
328
329 // Test that tuples of rvalue references work:
330 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
331 std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
332 std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
333 std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
334 std::forward_as_tuple(0, 0, -42))));
335 }
336
TEST(HashValueTest,CombineContiguousWorks)337 TEST(HashValueTest, CombineContiguousWorks) {
338 std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
339 std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};
340
341 auto vh1 = SpyHash(v1);
342 auto vh2 = SpyHash(v2);
343 EXPECT_NE(vh1, vh2);
344 }
345
346 struct DummyDeleter {
347 template <typename T>
operator ()__anon061a8a600111::DummyDeleter348 void operator() (T* ptr) {}
349 };
350
351 struct SmartPointerEq {
352 template <typename T, typename U>
operator ()__anon061a8a600111::SmartPointerEq353 bool operator()(const T& t, const U& u) const {
354 return GetPtr(t) == GetPtr(u);
355 }
356
357 template <typename T>
GetPtr__anon061a8a600111::SmartPointerEq358 static auto GetPtr(const T& t) -> decltype(&*t) {
359 return t ? &*t : nullptr;
360 }
361
GetPtr__anon061a8a600111::SmartPointerEq362 static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
363 };
364
TEST(HashValueTest,SmartPointers)365 TEST(HashValueTest, SmartPointers) {
366 EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
367 EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
368 EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));
369
370 int i, j;
371 std::unique_ptr<int, DummyDeleter> unique1(&i);
372 std::unique_ptr<int, DummyDeleter> unique2(&i);
373 std::unique_ptr<int, DummyDeleter> unique_other(&j);
374 std::unique_ptr<int, DummyDeleter> unique_null;
375
376 std::shared_ptr<int> shared1(&i, DummyDeleter());
377 std::shared_ptr<int> shared2(&i, DummyDeleter());
378 std::shared_ptr<int> shared_other(&j, DummyDeleter());
379 std::shared_ptr<int> shared_null;
380
381 // Sanity check of the Eq function.
382 ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
383 ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
384 ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
385 ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));
386
387 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
388 std::forward_as_tuple(&i, nullptr, //
389 unique1, unique2, unique_null, //
390 absl::make_unique<int>(), //
391 shared1, shared2, shared_null, //
392 std::make_shared<int>()),
393 SmartPointerEq{}));
394 }
395
TEST(HashValueTest,FunctionPointer)396 TEST(HashValueTest, FunctionPointer) {
397 using Func = int (*)();
398 EXPECT_TRUE(is_hashable<Func>::value);
399
400 Func p1 = [] { return 2; }, p2 = [] { return 1; };
401 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
402 std::make_tuple(p1, p2, nullptr)));
403 }
404
405 struct WrapInTuple {
406 template <typename T>
operator ()__anon061a8a600111::WrapInTuple407 std::tuple<int, T, size_t> operator()(const T& t) const {
408 return std::make_tuple(7, t, 0xdeadbeef);
409 }
410 };
411
FlatCord(absl::string_view sv)412 absl::Cord FlatCord(absl::string_view sv) {
413 absl::Cord c(sv);
414 c.Flatten();
415 return c;
416 }
417
FragmentedCord(absl::string_view sv)418 absl::Cord FragmentedCord(absl::string_view sv) {
419 if (sv.size() < 2) {
420 return absl::Cord(sv);
421 }
422 size_t halfway = sv.size() / 2;
423 std::vector<absl::string_view> parts = {sv.substr(0, halfway),
424 sv.substr(halfway)};
425 return absl::MakeFragmentedCord(parts);
426 }
427
TEST(HashValueTest,Strings)428 TEST(HashValueTest, Strings) {
429 EXPECT_TRUE((is_hashable<std::string>::value));
430
431 const std::string small = "foo";
432 const std::string dup = "foofoo";
433 const std::string large = std::string(2048, 'x'); // multiple of chunk size
434 const std::string huge = std::string(5000, 'a'); // not a multiple
435
436 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( //
437 std::string(), absl::string_view(), absl::Cord(), //
438 std::string(""), absl::string_view(""), absl::Cord(""), //
439 std::string(small), absl::string_view(small), absl::Cord(small), //
440 std::string(dup), absl::string_view(dup), absl::Cord(dup), //
441 std::string(large), absl::string_view(large), absl::Cord(large), //
442 std::string(huge), absl::string_view(huge), FlatCord(huge), //
443 FragmentedCord(huge))));
444
445 // Also check that nested types maintain the same hash.
446 const WrapInTuple t{};
447 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( //
448 t(std::string()), t(absl::string_view()), t(absl::Cord()), //
449 t(std::string("")), t(absl::string_view("")), t(absl::Cord("")), //
450 t(std::string(small)), t(absl::string_view(small)), //
451 t(absl::Cord(small)), //
452 t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)), //
453 t(std::string(large)), t(absl::string_view(large)), //
454 t(absl::Cord(large)), //
455 t(std::string(huge)), t(absl::string_view(huge)), //
456 t(FlatCord(huge)), t(FragmentedCord(huge)))));
457
458 // Make sure that hashing a `const char*` does not use its string-value.
459 EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
460 SpyHash(absl::string_view("ABC")));
461 }
462
TEST(HashValueTest,WString)463 TEST(HashValueTest, WString) {
464 EXPECT_TRUE((is_hashable<std::wstring>::value));
465
466 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
467 std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),
468 std::wstring(L"Some other different string"),
469 std::wstring(L"Iñtërnâtiônàlizætiøn"))));
470 }
471
TEST(HashValueTest,U16String)472 TEST(HashValueTest, U16String) {
473 EXPECT_TRUE((is_hashable<std::u16string>::value));
474
475 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
476 std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),
477 std::u16string(u"Some other different string"),
478 std::u16string(u"Iñtërnâtiônàlizætiøn"))));
479 }
480
TEST(HashValueTest,U32String)481 TEST(HashValueTest, U32String) {
482 EXPECT_TRUE((is_hashable<std::u32string>::value));
483
484 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
485 std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),
486 std::u32string(U"Some other different string"),
487 std::u32string(U"Iñtërnâtiônàlizætiøn"))));
488 }
489
TEST(HashValueTest,StdArray)490 TEST(HashValueTest, StdArray) {
491 EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));
492
493 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
494 std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
495 }
496
TEST(HashValueTest,StdBitset)497 TEST(HashValueTest, StdBitset) {
498 EXPECT_TRUE((is_hashable<std::bitset<257>>::value));
499
500 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
501 {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
502 std::bitset<2>("11")}));
503 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
504 {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));
505
506 constexpr int kNumBits = 256;
507 std::array<std::string, 6> bit_strings;
508 bit_strings.fill(std::string(kNumBits, '1'));
509 bit_strings[1][0] = '0';
510 bit_strings[2][1] = '0';
511 bit_strings[3][kNumBits / 3] = '0';
512 bit_strings[4][kNumBits - 2] = '0';
513 bit_strings[5][kNumBits - 1] = '0';
514 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
515 {std::bitset<kNumBits>(bit_strings[0].c_str()),
516 std::bitset<kNumBits>(bit_strings[1].c_str()),
517 std::bitset<kNumBits>(bit_strings[2].c_str()),
518 std::bitset<kNumBits>(bit_strings[3].c_str()),
519 std::bitset<kNumBits>(bit_strings[4].c_str()),
520 std::bitset<kNumBits>(bit_strings[5].c_str())}));
521 } // namespace
522
523 // Dummy type with unordered equality and hashing semantics. This preserves
524 // input order internally, and is used below to ensure we get test coverage
525 // for equal sequences with different iteraton orders.
526 template <typename T>
527 class UnorderedSequence {
528 public:
529 UnorderedSequence() = default;
530 template <typename TT>
UnorderedSequence(std::initializer_list<TT> l)531 UnorderedSequence(std::initializer_list<TT> l)
532 : values_(l.begin(), l.end()) {}
533 template <typename ForwardIterator,
534 typename std::enable_if<!std::is_integral<ForwardIterator>::value,
535 bool>::type = true>
UnorderedSequence(ForwardIterator begin,ForwardIterator end)536 UnorderedSequence(ForwardIterator begin, ForwardIterator end)
537 : values_(begin, end) {}
538 // one-argument constructor of value type T, to appease older toolchains that
539 // get confused by one-element initializer lists in some contexts
UnorderedSequence(const T & v)540 explicit UnorderedSequence(const T& v) : values_(&v, &v + 1) {}
541
542 using value_type = T;
543
size() const544 size_t size() const { return values_.size(); }
begin() const545 typename std::vector<T>::const_iterator begin() const {
546 return values_.begin();
547 }
end() const548 typename std::vector<T>::const_iterator end() const { return values_.end(); }
549
operator ==(const UnorderedSequence & lhs,const UnorderedSequence & rhs)550 friend bool operator==(const UnorderedSequence& lhs,
551 const UnorderedSequence& rhs) {
552 return lhs.size() == rhs.size() &&
553 std::is_permutation(lhs.begin(), lhs.end(), rhs.begin());
554 }
operator !=(const UnorderedSequence & lhs,const UnorderedSequence & rhs)555 friend bool operator!=(const UnorderedSequence& lhs,
556 const UnorderedSequence& rhs) {
557 return !(lhs == rhs);
558 }
559 template <typename H>
AbslHashValue(H h,const UnorderedSequence & u)560 friend H AbslHashValue(H h, const UnorderedSequence& u) {
561 return H::combine(H::combine_unordered(std::move(h), u.begin(), u.end()),
562 u.size());
563 }
564
565 private:
566 std::vector<T> values_;
567 };
568
569 template <typename T>
570 class HashValueSequenceTest : public testing::Test {
571 };
572 TYPED_TEST_SUITE_P(HashValueSequenceTest);
573
TYPED_TEST_P(HashValueSequenceTest,BasicUsage)574 TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
575 EXPECT_TRUE((is_hashable<TypeParam>::value));
576
577 using IntType = typename TypeParam::value_type;
578 auto a = static_cast<IntType>(0);
579 auto b = static_cast<IntType>(23);
580 auto c = static_cast<IntType>(42);
581
582 std::vector<TypeParam> exemplars = {
583 TypeParam(), TypeParam(), TypeParam{a, b, c},
584 TypeParam{a, c, b}, TypeParam{c, a, b}, TypeParam{a},
585 TypeParam{a, a}, TypeParam{a, a, a}, TypeParam{a, a, b},
586 TypeParam{a, b, a}, TypeParam{b, a, a}, TypeParam{a, b},
587 TypeParam{b, c}};
588 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
589 }
590
591 REGISTER_TYPED_TEST_SUITE_P(HashValueSequenceTest, BasicUsage);
592 using IntSequenceTypes = testing::Types<
593 std::deque<int>, std::forward_list<int>, std::list<int>, std::vector<int>,
594 std::vector<bool>, TypeErasedContainer<std::vector<int>>, std::set<int>,
595 std::multiset<int>, UnorderedSequence<int>,
596 TypeErasedContainer<UnorderedSequence<int>>, std::unordered_set<int>,
597 std::unordered_multiset<int>, absl::flat_hash_set<int>,
598 absl::node_hash_set<int>, absl::btree_set<int>>;
599 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueSequenceTest, IntSequenceTypes);
600
601 template <typename T>
602 class HashValueNestedSequenceTest : public testing::Test {};
603 TYPED_TEST_SUITE_P(HashValueNestedSequenceTest);
604
TYPED_TEST_P(HashValueNestedSequenceTest,BasicUsage)605 TYPED_TEST_P(HashValueNestedSequenceTest, BasicUsage) {
606 using T = TypeParam;
607 using V = typename T::value_type;
608 std::vector<T> exemplars = {
609 // empty case
610 T{},
611 // sets of empty sets
612 T{V{}}, T{V{}, V{}}, T{V{}, V{}, V{}},
613 // multisets of different values
614 T{V{1}}, T{V{1, 1}, V{1, 1}}, T{V{1, 1, 1}, V{1, 1, 1}, V{1, 1, 1}},
615 // various orderings of same nested sets
616 T{V{}, V{1, 2}}, T{V{}, V{2, 1}}, T{V{1, 2}, V{}}, T{V{2, 1}, V{}},
617 // various orderings of various nested sets, case 2
618 T{V{1, 2}, V{3, 4}}, T{V{1, 2}, V{4, 3}}, T{V{1, 3}, V{2, 4}},
619 T{V{1, 3}, V{4, 2}}, T{V{1, 4}, V{2, 3}}, T{V{1, 4}, V{3, 2}},
620 T{V{2, 3}, V{1, 4}}, T{V{2, 3}, V{4, 1}}, T{V{2, 4}, V{1, 3}},
621 T{V{2, 4}, V{3, 1}}, T{V{3, 4}, V{1, 2}}, T{V{3, 4}, V{2, 1}}};
622 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
623 }
624
625 REGISTER_TYPED_TEST_SUITE_P(HashValueNestedSequenceTest, BasicUsage);
626 template <typename T>
627 using TypeErasedSet = TypeErasedContainer<UnorderedSequence<T>>;
628
629 using NestedIntSequenceTypes = testing::Types<
630 std::vector<std::vector<int>>, std::vector<UnorderedSequence<int>>,
631 std::vector<TypeErasedSet<int>>, UnorderedSequence<std::vector<int>>,
632 UnorderedSequence<UnorderedSequence<int>>,
633 UnorderedSequence<TypeErasedSet<int>>, TypeErasedSet<std::vector<int>>,
634 TypeErasedSet<UnorderedSequence<int>>, TypeErasedSet<TypeErasedSet<int>>>;
635 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueNestedSequenceTest,
636 NestedIntSequenceTypes);
637
638 // Private type that only supports AbslHashValue to make sure our chosen hash
639 // implementation is recursive within absl::Hash.
640 // It uses std::abs() on the value to provide different bitwise representations
641 // of the same logical value.
642 struct Private {
643 int i;
644 template <typename H>
AbslHashValue(H h,Private p)645 friend H AbslHashValue(H h, Private p) {
646 return H::combine(std::move(h), std::abs(p.i));
647 }
648
operator ==(Private a,Private b)649 friend bool operator==(Private a, Private b) {
650 return std::abs(a.i) == std::abs(b.i);
651 }
652
operator <<(std::ostream & o,Private p)653 friend std::ostream& operator<<(std::ostream& o, Private p) {
654 return o << p.i;
655 }
656 };
657
658 // Test helper for combine_piecewise_buffer. It holds a string_view to the
659 // buffer-to-be-hashed. Its AbslHashValue specialization will split up its
660 // contents at the character offsets requested.
661 class PiecewiseHashTester {
662 public:
663 // Create a hash view of a buffer to be hashed contiguously.
PiecewiseHashTester(absl::string_view buf)664 explicit PiecewiseHashTester(absl::string_view buf)
665 : buf_(buf), piecewise_(false), split_locations_() {}
666
667 // Create a hash view of a buffer to be hashed piecewise, with breaks at the
668 // given locations.
PiecewiseHashTester(absl::string_view buf,std::set<size_t> split_locations)669 PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)
670 : buf_(buf),
671 piecewise_(true),
672 split_locations_(std::move(split_locations)) {}
673
674 template <typename H>
AbslHashValue(H h,const PiecewiseHashTester & p)675 friend H AbslHashValue(H h, const PiecewiseHashTester& p) {
676 if (!p.piecewise_) {
677 return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());
678 }
679 absl::hash_internal::PiecewiseCombiner combiner;
680 if (p.split_locations_.empty()) {
681 h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());
682 return combiner.finalize(std::move(h));
683 }
684 size_t begin = 0;
685 for (size_t next : p.split_locations_) {
686 absl::string_view chunk = p.buf_.substr(begin, next - begin);
687 h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());
688 begin = next;
689 }
690 absl::string_view last_chunk = p.buf_.substr(begin);
691 if (!last_chunk.empty()) {
692 h = combiner.add_buffer(std::move(h), last_chunk.data(),
693 last_chunk.size());
694 }
695 return combiner.finalize(std::move(h));
696 }
697
698 private:
699 absl::string_view buf_;
700 bool piecewise_;
701 std::set<size_t> split_locations_;
702 };
703
704 // Dummy object that hashes as two distinct contiguous buffers, "foo" followed
705 // by "bar"
706 struct DummyFooBar {
707 template <typename H>
AbslHashValue(H h,const DummyFooBar &)708 friend H AbslHashValue(H h, const DummyFooBar&) {
709 const char* foo = "foo";
710 const char* bar = "bar";
711 h = H::combine_contiguous(std::move(h), foo, 3);
712 h = H::combine_contiguous(std::move(h), bar, 3);
713 return h;
714 }
715 };
716
TEST(HashValueTest,CombinePiecewiseBuffer)717 TEST(HashValueTest, CombinePiecewiseBuffer) {
718 absl::Hash<PiecewiseHashTester> hash;
719
720 // Check that hashing an empty buffer through the piecewise API works.
721 EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));
722
723 // Similarly, small buffers should give consistent results
724 EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
725 hash(PiecewiseHashTester("foobar", {})));
726 EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
727 hash(PiecewiseHashTester("foobar", {3})));
728
729 // But hashing "foobar" in pieces gives a different answer than hashing "foo"
730 // contiguously, then "bar" contiguously.
731 EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),
732 absl::Hash<DummyFooBar>()(DummyFooBar{}));
733
734 // Test hashing a large buffer incrementally, broken up in several different
735 // ways. Arrange for breaks on and near the stride boundaries to look for
736 // off-by-one errors in the implementation.
737 //
738 // This test is run on a buffer that is a multiple of the stride size, and one
739 // that isn't.
740 for (size_t big_buffer_size : {1024u * 2 + 512u, 1024u * 3}) {
741 SCOPED_TRACE(big_buffer_size);
742 std::string big_buffer;
743 for (size_t i = 0; i < big_buffer_size; ++i) {
744 // Arbitrary string
745 big_buffer.push_back(32 + (i * (i / 3)) % 64);
746 }
747 auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));
748
749 const int possible_breaks = 9;
750 size_t breaks[possible_breaks] = {1, 512, 1023, 1024, 1025,
751 1536, 2047, 2048, 2049};
752 for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);
753 ++test_mask) {
754 SCOPED_TRACE(test_mask);
755 std::set<size_t> break_locations;
756 for (int j = 0; j < possible_breaks; ++j) {
757 if (test_mask & (1u << j)) {
758 break_locations.insert(breaks[j]);
759 }
760 }
761 EXPECT_EQ(
762 hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),
763 big_buffer_hash);
764 }
765 }
766 }
767
TEST(HashValueTest,PrivateSanity)768 TEST(HashValueTest, PrivateSanity) {
769 // Sanity check that Private is working as the tests below expect it to work.
770 EXPECT_TRUE(is_hashable<Private>::value);
771 EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
772 EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
773 }
774
TEST(HashValueTest,Optional)775 TEST(HashValueTest, Optional) {
776 EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);
777
778 using O = absl::optional<Private>;
779 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
780 std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
781 }
782
TEST(HashValueTest,Variant)783 TEST(HashValueTest, Variant) {
784 using V = absl::variant<Private, std::string>;
785 EXPECT_TRUE(is_hashable<V>::value);
786
787 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
788 V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));
789
790 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
791 struct S {};
792 EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
793 #endif
794 }
795
796 template <typename T>
797 class HashValueAssociativeMapTest : public testing::Test {};
798 TYPED_TEST_SUITE_P(HashValueAssociativeMapTest);
799
TYPED_TEST_P(HashValueAssociativeMapTest,BasicUsage)800 TYPED_TEST_P(HashValueAssociativeMapTest, BasicUsage) {
801 using M = TypeParam;
802 using V = typename M::value_type;
803 std::vector<M> exemplars{M{},
804 M{V{0, "foo"}},
805 M{V{1, "foo"}},
806 M{V{0, "bar"}},
807 M{V{1, "bar"}},
808 M{V{0, "foo"}, V{42, "bar"}},
809 M{V{42, "bar"}, V{0, "foo"}},
810 M{V{1, "foo"}, V{42, "bar"}},
811 M{V{1, "foo"}, V{43, "bar"}},
812 M{V{1, "foo"}, V{43, "baz"}}};
813 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
814 }
815
816 REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMapTest, BasicUsage);
817 using AssociativeMapTypes = testing::Types<
818 std::map<int, std::string>, std::unordered_map<int, std::string>,
819 absl::flat_hash_map<int, std::string>,
820 absl::node_hash_map<int, std::string>, absl::btree_map<int, std::string>,
821 UnorderedSequence<std::pair<const int, std::string>>>;
822 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMapTest,
823 AssociativeMapTypes);
824
825 template <typename T>
826 class HashValueAssociativeMultimapTest : public testing::Test {};
827 TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest);
828
TYPED_TEST_P(HashValueAssociativeMultimapTest,BasicUsage)829 TYPED_TEST_P(HashValueAssociativeMultimapTest, BasicUsage) {
830 using MM = TypeParam;
831 using V = typename MM::value_type;
832 std::vector<MM> exemplars{MM{},
833 MM{V{0, "foo"}},
834 MM{V{1, "foo"}},
835 MM{V{0, "bar"}},
836 MM{V{1, "bar"}},
837 MM{V{0, "foo"}, V{0, "bar"}},
838 MM{V{0, "bar"}, V{0, "foo"}},
839 MM{V{0, "foo"}, V{42, "bar"}},
840 MM{V{1, "foo"}, V{42, "bar"}},
841 MM{V{1, "foo"}, V{1, "foo"}, V{43, "bar"}},
842 MM{V{1, "foo"}, V{43, "bar"}, V{1, "foo"}},
843 MM{V{1, "foo"}, V{43, "baz"}}};
844 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
845 }
846
847 REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest, BasicUsage);
848 using AssociativeMultimapTypes =
849 testing::Types<std::multimap<int, std::string>,
850 std::unordered_multimap<int, std::string>>;
851 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMultimapTest,
852 AssociativeMultimapTypes);
853
TEST(HashValueTest,ReferenceWrapper)854 TEST(HashValueTest, ReferenceWrapper) {
855 EXPECT_TRUE(is_hashable<std::reference_wrapper<Private>>::value);
856
857 Private p1{1}, p10{10};
858 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
859 p1, p10, std::ref(p1), std::ref(p10), std::cref(p1), std::cref(p10))));
860
861 EXPECT_TRUE(is_hashable<std::reference_wrapper<int>>::value);
862 int one = 1, ten = 10;
863 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
864 one, ten, std::ref(one), std::ref(ten), std::cref(one), std::cref(ten))));
865
866 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
867 std::make_tuple(std::tuple<std::reference_wrapper<int>>(std::ref(one)),
868 std::tuple<std::reference_wrapper<int>>(std::ref(ten)),
869 std::tuple<int>(one), std::tuple<int>(ten))));
870 }
871
872 template <typename T, typename = void>
873 struct IsHashCallable : std::false_type {};
874
875 template <typename T>
876 struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
877 std::declval<const T&>()))>> : std::true_type {};
878
879 template <typename T, typename = void>
880 struct IsAggregateInitializable : std::false_type {};
881
882 template <typename T>
883 struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
884 : std::true_type {};
885
TEST(IsHashableTest,ValidHash)886 TEST(IsHashableTest, ValidHash) {
887 EXPECT_TRUE((is_hashable<int>::value));
888 EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
889 EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
890 EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
891 EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
892 EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
893 EXPECT_TRUE(IsHashCallable<int>::value);
894 EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
895 }
896
897 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
TEST(IsHashableTest,PoisonHash)898 TEST(IsHashableTest, PoisonHash) {
899 struct X {};
900 EXPECT_FALSE((is_hashable<X>::value));
901 EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
902 EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
903 EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
904 EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
905 EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
906 EXPECT_FALSE(IsHashCallable<X>::value);
907 #if !defined(__GNUC__) || __GNUC__ < 9
908 // This doesn't compile on GCC 9.
909 EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
910 #endif
911 }
912 #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
913
914 // Hashable types
915 //
916 // These types exist simply to exercise various AbslHashValue behaviors, so
917 // they are named by what their AbslHashValue overload does.
918 struct NoOp {
919 template <typename HashCode>
AbslHashValue(HashCode h,NoOp n)920 friend HashCode AbslHashValue(HashCode h, NoOp n) {
921 return h;
922 }
923 };
924
925 struct EmptyCombine {
926 template <typename HashCode>
AbslHashValue(HashCode h,EmptyCombine e)927 friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
928 return HashCode::combine(std::move(h));
929 }
930 };
931
932 template <typename Int>
933 struct CombineIterative {
934 template <typename HashCode>
AbslHashValue(HashCode h,CombineIterative c)935 friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
936 for (int i = 0; i < 5; ++i) {
937 h = HashCode::combine(std::move(h), Int(i));
938 }
939 return h;
940 }
941 };
942
943 template <typename Int>
944 struct CombineVariadic {
945 template <typename HashCode>
AbslHashValue(HashCode h,CombineVariadic c)946 friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
947 return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
948 Int(4));
949 }
950 };
951 enum class InvokeTag {
952 kUniquelyRepresented,
953 kHashValue,
954 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
955 kLegacyHash,
956 #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
957 kStdHash,
958 kNone
959 };
960
961 template <InvokeTag T>
962 using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
963
964 template <InvokeTag... Tags>
965 struct MinTag;
966
967 template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
968 struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
969
970 template <InvokeTag a>
971 struct MinTag<a> : InvokeTagConstant<a> {};
972
973 template <InvokeTag... Tags>
974 struct CustomHashType {
CustomHashType__anon061a8a600111::CustomHashType975 explicit CustomHashType(size_t val) : value(val) {}
976 size_t value;
977 };
978
979 template <InvokeTag allowed, InvokeTag... tags>
980 struct EnableIfContained
981 : std::enable_if<absl::disjunction<
982 std::integral_constant<bool, allowed == tags>...>::value> {};
983
984 template <
985 typename H, InvokeTag... Tags,
986 typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
AbslHashValue(H state,CustomHashType<Tags...> t)987 H AbslHashValue(H state, CustomHashType<Tags...> t) {
988 static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
989 return H::combine(std::move(state),
990 t.value + static_cast<int>(InvokeTag::kHashValue));
991 }
992
993 } // namespace
994
995 namespace absl {
996 ABSL_NAMESPACE_BEGIN
997 namespace hash_internal {
998 template <InvokeTag... Tags>
999 struct is_uniquely_represented<
1000 CustomHashType<Tags...>,
1001 typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
1002 : std::true_type {};
1003 } // namespace hash_internal
1004 ABSL_NAMESPACE_END
1005 } // namespace absl
1006
1007 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1008 namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
1009 template <InvokeTag... Tags>
1010 struct hash<CustomHashType<Tags...>> {
1011 template <InvokeTag... TagsIn, typename = typename EnableIfContained<
1012 InvokeTag::kLegacyHash, TagsIn...>::type>
operator ()ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash1013 size_t operator()(CustomHashType<TagsIn...> t) const {
1014 static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
1015 return t.value + static_cast<int>(InvokeTag::kLegacyHash);
1016 }
1017 };
1018 } // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
1019 #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1020
1021 namespace std {
1022 template <InvokeTag... Tags> // NOLINT
1023 struct hash<CustomHashType<Tags...>> {
1024 template <InvokeTag... TagsIn, typename = typename EnableIfContained<
1025 InvokeTag::kStdHash, TagsIn...>::type>
operator ()std::hash1026 size_t operator()(CustomHashType<TagsIn...> t) const {
1027 static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
1028 return t.value + static_cast<int>(InvokeTag::kStdHash);
1029 }
1030 };
1031 } // namespace std
1032
1033 namespace {
1034
1035 template <typename... T>
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>,T...)1036 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
1037 using type = CustomHashType<T::value...>;
1038 SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
1039 EXPECT_TRUE(is_hashable<type>());
1040 EXPECT_TRUE(is_hashable<const type>());
1041 EXPECT_TRUE(is_hashable<const type&>());
1042
1043 const size_t offset = static_cast<int>(std::min({T::value...}));
1044 EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));
1045 }
1046
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>)1047 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
1048 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
1049 // is_hashable is false if we don't support any of the hooks.
1050 using type = CustomHashType<>;
1051 EXPECT_FALSE(is_hashable<type>());
1052 EXPECT_FALSE(is_hashable<const type>());
1053 EXPECT_FALSE(is_hashable<const type&>());
1054 #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
1055 }
1056
1057 template <InvokeTag Tag, typename... T>
TestCustomHashType(InvokeTagConstant<Tag> tag,T...t)1058 void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
1059 constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
1060 TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
1061 TestCustomHashType(InvokeTagConstant<next>(), t...);
1062 }
1063
TEST(HashTest,CustomHashType)1064 TEST(HashTest, CustomHashType) {
1065 TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
1066 }
1067
TEST(HashTest,NoOpsAreEquivalent)1068 TEST(HashTest, NoOpsAreEquivalent) {
1069 EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
1070 EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
1071 }
1072
1073 template <typename T>
1074 class HashIntTest : public testing::Test {
1075 };
1076 TYPED_TEST_SUITE_P(HashIntTest);
1077
TYPED_TEST_P(HashIntTest,BasicUsage)1078 TYPED_TEST_P(HashIntTest, BasicUsage) {
1079 EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
1080 EXPECT_NE(Hash<NoOp>()({}),
1081 Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
1082 if (std::numeric_limits<TypeParam>::min() != 0) {
1083 EXPECT_NE(Hash<NoOp>()({}),
1084 Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
1085 }
1086
1087 EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
1088 Hash<CombineVariadic<TypeParam>>()({}));
1089 }
1090
1091 REGISTER_TYPED_TEST_SUITE_P(HashIntTest, BasicUsage);
1092 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t,
1093 uint32_t, uint64_t, size_t>;
1094 INSTANTIATE_TYPED_TEST_SUITE_P(My, HashIntTest, IntTypes);
1095
1096 struct StructWithPadding {
1097 char c;
1098 int i;
1099
1100 template <typename H>
AbslHashValue(H hash_state,const StructWithPadding & s)1101 friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
1102 return H::combine(std::move(hash_state), s.c, s.i);
1103 }
1104 };
1105
1106 static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
1107 "StructWithPadding doesn't have padding");
1108 static_assert(std::is_standard_layout<StructWithPadding>::value, "");
1109
1110 // This check has to be disabled because libstdc++ doesn't support it.
1111 // static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
1112
1113 template <typename T>
1114 struct ArraySlice {
1115 T* begin;
1116 T* end;
1117
1118 template <typename H>
AbslHashValue(H hash_state,const ArraySlice & slice)1119 friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
1120 for (auto t = slice.begin; t != slice.end; ++t) {
1121 hash_state = H::combine(std::move(hash_state), *t);
1122 }
1123 return hash_state;
1124 }
1125 };
1126
TEST(HashTest,HashNonUniquelyRepresentedType)1127 TEST(HashTest, HashNonUniquelyRepresentedType) {
1128 // Create equal StructWithPadding objects that are known to have non-equal
1129 // padding bytes.
1130 static const size_t kNumStructs = 10;
1131 unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
1132 std::memset(buffer1, 0, sizeof(buffer1));
1133 auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
1134
1135 unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
1136 std::memset(buffer2, 255, sizeof(buffer2));
1137 auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
1138 for (size_t i = 0; i < kNumStructs; ++i) {
1139 SCOPED_TRACE(i);
1140 s1[i].c = s2[i].c = static_cast<char>('0' + i);
1141 s1[i].i = s2[i].i = static_cast<int>(i);
1142 ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
1143 buffer2 + i * sizeof(StructWithPadding),
1144 sizeof(StructWithPadding)) == 0)
1145 << "Bug in test code: objects do not have unequal"
1146 << " object representations";
1147 }
1148
1149 EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
1150 EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
1151 Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
1152 }
1153
TEST(HashTest,StandardHashContainerUsage)1154 TEST(HashTest, StandardHashContainerUsage) {
1155 std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
1156 {42, "bar"}};
1157
1158 EXPECT_NE(map.find(0), map.end());
1159 EXPECT_EQ(map.find(1), map.end());
1160 EXPECT_NE(map.find(0u), map.end());
1161 }
1162
1163 struct ConvertibleFromNoOp {
ConvertibleFromNoOp__anon061a8a600411::ConvertibleFromNoOp1164 ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit)
1165
1166 template <typename H>
AbslHashValue(H hash_state,ConvertibleFromNoOp)1167 friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
1168 return H::combine(std::move(hash_state), 1);
1169 }
1170 };
1171
TEST(HashTest,HeterogeneousCall)1172 TEST(HashTest, HeterogeneousCall) {
1173 EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
1174 Hash<NoOp>()(NoOp()));
1175 }
1176
TEST(IsUniquelyRepresentedTest,SanityTest)1177 TEST(IsUniquelyRepresentedTest, SanityTest) {
1178 using absl::hash_internal::is_uniquely_represented;
1179
1180 EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
1181 EXPECT_TRUE(is_uniquely_represented<int>::value);
1182 EXPECT_FALSE(is_uniquely_represented<bool>::value);
1183 EXPECT_FALSE(is_uniquely_represented<int*>::value);
1184 }
1185
1186 struct IntAndString {
1187 int i;
1188 std::string s;
1189
1190 template <typename H>
AbslHashValue(H hash_state,IntAndString int_and_string)1191 friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
1192 return H::combine(std::move(hash_state), int_and_string.s,
1193 int_and_string.i);
1194 }
1195 };
1196
TEST(HashTest,SmallValueOn64ByteBoundary)1197 TEST(HashTest, SmallValueOn64ByteBoundary) {
1198 Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
1199 }
1200
TEST(HashTest,TypeErased)1201 TEST(HashTest, TypeErased) {
1202 EXPECT_TRUE((is_hashable<TypeErasedValue<size_t>>::value));
1203 EXPECT_TRUE((is_hashable<std::pair<TypeErasedValue<size_t>, int>>::value));
1204
1205 EXPECT_EQ(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{7}));
1206 EXPECT_NE(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{13}));
1207
1208 EXPECT_EQ(SpyHash(std::make_pair(TypeErasedValue<size_t>(7), 17)),
1209 SpyHash(std::make_pair(size_t{7}, 17)));
1210
1211 absl::flat_hash_set<absl::flat_hash_set<int>> ss = {{1, 2}, {3, 4}};
1212 TypeErasedContainer<absl::flat_hash_set<absl::flat_hash_set<int>>> es = {
1213 absl::flat_hash_set<int>{1, 2}, {3, 4}};
1214 absl::flat_hash_set<TypeErasedContainer<absl::flat_hash_set<int>>> se = {
1215 {1, 2}, {3, 4}};
1216 EXPECT_EQ(SpyHash(ss), SpyHash(es));
1217 EXPECT_EQ(SpyHash(ss), SpyHash(se));
1218 }
1219
1220 struct ValueWithBoolConversion {
operator bool__anon061a8a600411::ValueWithBoolConversion1221 operator bool() const { return false; }
1222 int i;
1223 };
1224
1225 } // namespace
1226 namespace std {
1227 template <>
1228 struct hash<ValueWithBoolConversion> {
operator ()std::hash1229 size_t operator()(ValueWithBoolConversion v) {
1230 return static_cast<size_t>(v.i);
1231 }
1232 };
1233 } // namespace std
1234
1235 namespace {
1236
TEST(HashTest,DoesNotUseImplicitConversionsToBool)1237 TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
1238 EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
1239 absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
1240 }
1241
TEST(HashOf,MatchesHashForSingleArgument)1242 TEST(HashOf, MatchesHashForSingleArgument) {
1243 std::string s = "forty two";
1244 int i = 42;
1245 double d = 42.0;
1246 std::tuple<int, int> t{4, 2};
1247
1248 EXPECT_EQ(absl::HashOf(s), absl::Hash<std::string>{}(s));
1249 EXPECT_EQ(absl::HashOf(i), absl::Hash<int>{}(i));
1250 EXPECT_EQ(absl::HashOf(d), absl::Hash<double>{}(d));
1251 EXPECT_EQ(absl::HashOf(t), (absl::Hash<std::tuple<int, int>>{}(t)));
1252 }
1253
TEST(HashOf,MatchesHashOfTupleForMultipleArguments)1254 TEST(HashOf, MatchesHashOfTupleForMultipleArguments) {
1255 std::string hello = "hello";
1256 std::string world = "world";
1257
1258 EXPECT_EQ(absl::HashOf(), absl::HashOf(std::make_tuple()));
1259 EXPECT_EQ(absl::HashOf(hello), absl::HashOf(std::make_tuple(hello)));
1260 EXPECT_EQ(absl::HashOf(hello, world),
1261 absl::HashOf(std::make_tuple(hello, world)));
1262 }
1263
1264 template <typename T>
1265 std::true_type HashOfExplicitParameter(decltype(absl::HashOf<T>(0))) {
1266 return {};
1267 }
1268 template <typename T>
HashOfExplicitParameter(size_t)1269 std::false_type HashOfExplicitParameter(size_t) {
1270 return {};
1271 }
1272
TEST(HashOf,CantPassExplicitTemplateParameters)1273 TEST(HashOf, CantPassExplicitTemplateParameters) {
1274 EXPECT_FALSE(HashOfExplicitParameter<int>(0));
1275 }
1276
1277 } // namespace
1278