1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines the Abseil `hash` library and the Abseil hashing
20 // framework. This framework consists of the following:
21 //
22 // * The `absl::Hash` functor, which is used to invoke the hasher within the
23 // Abseil hashing framework. `absl::Hash<T>` supports most basic types and
24 // a number of Abseil types out of the box.
25 // * `AbslHashValue`, an extension point that allows you to extend types to
26 // support Abseil hashing without requiring you to define a hashing
27 // algorithm.
28 // * `HashState`, a type-erased class which implements the manipulation of the
29 // hash state (H) itself; contains member functions `combine()`,
30 // `combine_contiguous()`, and `combine_unordered()`; and which you can use
31 // to contribute to an existing hash state when hashing your types.
32 //
33 // Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
34 // provides most of its utility by abstracting away the hash algorithm (and its
35 // implementation) entirely. Instead, a type invokes the Abseil hashing
36 // framework by simply combining its state with the state of known, hashable
37 // types. Hashing of that combined state is separately done by `absl::Hash`.
38 //
39 // One should assume that a hash algorithm is chosen randomly at the start of
40 // each process. E.g., `absl::Hash<int>{}(9)` in one process and
41 // `absl::Hash<int>{}(9)` in another process are likely to differ.
42 //
43 // `absl::Hash` may also produce different values from different dynamically
44 // loaded libraries. For this reason, `absl::Hash` values must never cross
45 // boundries in dynamically loaded libraries (including when used in types like
46 // hash containers.)
47 //
48 // `absl::Hash` is intended to strongly mix input bits with a target of passing
49 // an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect).
50 //
51 // Example:
52 //
53 // // Suppose we have a class `Circle` for which we want to add hashing:
54 // class Circle {
55 // public:
56 // ...
57 // private:
58 // std::pair<int, int> center_;
59 // int radius_;
60 // };
61 //
62 // // To add hashing support to `Circle`, we simply need to add a free
63 // // (non-member) function `AbslHashValue()`, and return the combined hash
64 // // state of the existing hash state and the class state. You can add such a
65 // // free function using a friend declaration within the body of the class:
66 // class Circle {
67 // public:
68 // ...
69 // template <typename H>
70 // friend H AbslHashValue(H h, const Circle& c) {
71 // return H::combine(std::move(h), c.center_, c.radius_);
72 // }
73 // ...
74 // };
75 //
76 // For more information, see Adding Type Support to `absl::Hash` below.
77 //
78 #ifndef ABSL_HASH_HASH_H_
79 #define ABSL_HASH_HASH_H_
80
81 #include <tuple>
82 #include <utility>
83
84 #include "absl/functional/function_ref.h"
85 #include "absl/hash/internal/hash.h"
86
87 namespace absl {
88 ABSL_NAMESPACE_BEGIN
89
90 // -----------------------------------------------------------------------------
91 // `absl::Hash`
92 // -----------------------------------------------------------------------------
93 //
94 // `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T`
95 // satisfying any of the following conditions (in order):
96 //
97 // * T is an arithmetic or pointer type
98 // * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
99 // hash state `H`.
100 // - T defines a specialization of `std::hash<T>`
101 //
102 // `absl::Hash` intrinsically supports the following types:
103 //
104 // * All integral types (including bool)
105 // * All enum types
106 // * All floating-point types (although hashing them is discouraged)
107 // * All pointer types, including nullptr_t
108 // * std::pair<T1, T2>, if T1 and T2 are hashable
109 // * std::tuple<Ts...>, if all the Ts... are hashable
110 // * std::unique_ptr and std::shared_ptr
111 // * All string-like types including:
112 // * absl::Cord
113 // * std::string
114 // * std::string_view (as well as any instance of std::basic_string that
115 // uses char and std::char_traits)
116 // * All the standard sequence containers (provided the elements are hashable)
117 // * All the standard associative containers (provided the elements are
118 // hashable)
119 // * absl types such as the following:
120 // * absl::string_view
121 // * absl::uint128
122 // * absl::Time, absl::Duration, and absl::TimeZone
123 // * absl containers (provided the elements are hashable) such as the
124 // following:
125 // * absl::flat_hash_set, absl::node_hash_set, absl::btree_set
126 // * absl::flat_hash_map, absl::node_hash_map, absl::btree_map
127 // * absl::btree_multiset, absl::btree_multimap
128 // * absl::InlinedVector
129 // * absl::FixedArray
130 //
131 // When absl::Hash is used to hash an unordered container with a custom hash
132 // functor, the elements are hashed using default absl::Hash semantics, not
133 // the custom hash functor. This is consistent with the behavior of
134 // operator==() on unordered containers, which compares elements pairwise with
135 // operator==() rather than the custom equality functor. It is usually a
136 // mistake to use either operator==() or absl::Hash on unordered collections
137 // that use functors incompatible with operator==() equality.
138 //
139 // Note: the list above is not meant to be exhaustive. Additional type support
140 // may be added, in which case the above list will be updated.
141 //
142 // -----------------------------------------------------------------------------
143 // absl::Hash Invocation Evaluation
144 // -----------------------------------------------------------------------------
145 //
146 // When invoked, `absl::Hash<T>` searches for supplied hash functions in the
147 // following order:
148 //
149 // * Natively supported types out of the box (see above)
150 // * Types for which an `AbslHashValue()` overload is provided (such as
151 // user-defined types). See "Adding Type Support to `absl::Hash`" below.
152 // * Types which define a `std::hash<T>` specialization
153 //
154 // The fallback to legacy hash functions exists mainly for backwards
155 // compatibility. If you have a choice, prefer defining an `AbslHashValue`
156 // overload instead of specializing any legacy hash functors.
157 //
158 // -----------------------------------------------------------------------------
159 // The Hash State Concept, and using `HashState` for Type Erasure
160 // -----------------------------------------------------------------------------
161 //
162 // The `absl::Hash` framework relies on the Concept of a "hash state." Such a
163 // hash state is used in several places:
164 //
165 // * Within existing implementations of `absl::Hash<T>` to store the hashed
166 // state of an object. Note that it is up to the implementation how it stores
167 // such state. A hash table, for example, may mix the state to produce an
168 // integer value; a testing framework may simply hold a vector of that state.
169 // * Within implementations of `AbslHashValue()` used to extend user-defined
170 // types. (See "Adding Type Support to absl::Hash" below.)
171 // * Inside a `HashState`, providing type erasure for the concept of a hash
172 // state, which you can use to extend the `absl::Hash` framework for types
173 // that are otherwise difficult to extend using `AbslHashValue()`. (See the
174 // `HashState` class below.)
175 //
176 // The "hash state" concept contains three member functions for mixing hash
177 // state:
178 //
179 // * `H::combine(state, values...)`
180 //
181 // Combines an arbitrary number of values into a hash state, returning the
182 // updated state. Note that the existing hash state is move-only and must be
183 // passed by value.
184 //
185 // Each of the value types T must be hashable by H.
186 //
187 // NOTE:
188 //
189 // state = H::combine(std::move(state), value1, value2, value3);
190 //
191 // must be guaranteed to produce the same hash expansion as
192 //
193 // state = H::combine(std::move(state), value1);
194 // state = H::combine(std::move(state), value2);
195 // state = H::combine(std::move(state), value3);
196 //
197 // * `H::combine_contiguous(state, data, size)`
198 //
199 // Combines a contiguous array of `size` elements into a hash state,
200 // returning the updated state. Note that the existing hash state is
201 // move-only and must be passed by value.
202 //
203 // NOTE:
204 //
205 // state = H::combine_contiguous(std::move(state), data, size);
206 //
207 // need NOT be guaranteed to produce the same hash expansion as a loop
208 // (it may perform internal optimizations). If you need this guarantee, use a
209 // loop instead.
210 //
211 // * `H::combine_unordered(state, begin, end)`
212 //
213 // Combines a set of elements denoted by an iterator pair into a hash
214 // state, returning the updated state. Note that the existing hash
215 // state is move-only and must be passed by value.
216 //
217 // Unlike the other two methods, the hashing is order-independent.
218 // This can be used to hash unordered collections.
219 //
220 // -----------------------------------------------------------------------------
221 // Adding Type Support to `absl::Hash`
222 // -----------------------------------------------------------------------------
223 //
224 // To add support for your user-defined type, add a proper `AbslHashValue()`
225 // overload as a free (non-member) function. The overload will take an
226 // existing hash state and should combine that state with state from the type.
227 //
228 // Example:
229 //
230 // template <typename H>
231 // H AbslHashValue(H state, const MyType& v) {
232 // return H::combine(std::move(state), v.field1, ..., v.fieldN);
233 // }
234 //
235 // where `(field1, ..., fieldN)` are the members you would use on your
236 // `operator==` to define equality.
237 //
238 // Notice that `AbslHashValue` is not a class member, but an ordinary function.
239 // An `AbslHashValue` overload for a type should only be declared in the same
240 // file and namespace as said type. The proper `AbslHashValue` implementation
241 // for a given type will be discovered via ADL.
242 //
243 // Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
244 // only be extended by adding `AbslHashValue()` overloads.
245 //
246 template <typename T>
247 using Hash = absl::hash_internal::Hash<T>;
248
249 // HashOf
250 //
251 // absl::HashOf() is a helper that generates a hash from the values of its
252 // arguments. It dispatches to absl::Hash directly, as follows:
253 // * HashOf(t) == absl::Hash<T>{}(t)
254 // * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c))
255 //
256 // HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when
257 // * The argument lists have pairwise identical C++ types
258 // * a1 == b1 && a2 == b2 && ...
259 //
260 // The requirement that the arguments match in both type and value is critical.
261 // It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if
262 // `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`.
263 template <int&... ExplicitArgumentBarrier, typename... Types>
HashOf(const Types &...values)264 size_t HashOf(const Types&... values) {
265 auto tuple = std::tie(values...);
266 return absl::Hash<decltype(tuple)>{}(tuple);
267 }
268
269 // HashState
270 //
271 // A type erased version of the hash state concept, for use in user-defined
272 // `AbslHashValue` implementations that can't use templates (such as PImpl
273 // classes, virtual functions, etc.). The type erasure adds overhead so it
274 // should be avoided unless necessary.
275 //
276 // Note: This wrapper will only erase calls to
277 // combine_contiguous(H, const unsigned char*, size_t)
278 // RunCombineUnordered(H, CombinerF)
279 //
280 // All other calls will be handled internally and will not invoke overloads
281 // provided by the wrapped class.
282 //
283 // Users of this class should still define a template `AbslHashValue` function,
284 // but can use `absl::HashState::Create(&state)` to erase the type of the hash
285 // state and dispatch to their private hashing logic.
286 //
287 // This state can be used like any other hash state. In particular, you can call
288 // `HashState::combine()` and `HashState::combine_contiguous()` on it.
289 //
290 // Example:
291 //
292 // class Interface {
293 // public:
294 // template <typename H>
295 // friend H AbslHashValue(H state, const Interface& value) {
296 // state = H::combine(std::move(state), std::type_index(typeid(*this)));
297 // value.HashValue(absl::HashState::Create(&state));
298 // return state;
299 // }
300 // private:
301 // virtual void HashValue(absl::HashState state) const = 0;
302 // };
303 //
304 // class Impl : Interface {
305 // private:
306 // void HashValue(absl::HashState state) const override {
307 // absl::HashState::combine(std::move(state), v1_, v2_);
308 // }
309 // int v1_;
310 // std::string v2_;
311 // };
312 class HashState : public hash_internal::HashStateBase<HashState> {
313 public:
314 // HashState::Create()
315 //
316 // Create a new `HashState` instance that wraps `state`. All calls to
317 // `combine()` and `combine_contiguous()` on the new instance will be
318 // redirected to the original `state` object. The `state` object must outlive
319 // the `HashState` instance.
320 template <typename T>
Create(T * state)321 static HashState Create(T* state) {
322 HashState s;
323 s.Init(state);
324 return s;
325 }
326
327 HashState(const HashState&) = delete;
328 HashState& operator=(const HashState&) = delete;
329 HashState(HashState&&) = default;
330 HashState& operator=(HashState&&) = default;
331
332 // HashState::combine()
333 //
334 // Combines an arbitrary number of values into a hash state, returning the
335 // updated state.
336 using HashState::HashStateBase::combine;
337
338 // HashState::combine_contiguous()
339 //
340 // Combines a contiguous array of `size` elements into a hash state, returning
341 // the updated state.
combine_contiguous(HashState hash_state,const unsigned char * first,size_t size)342 static HashState combine_contiguous(HashState hash_state,
343 const unsigned char* first, size_t size) {
344 hash_state.combine_contiguous_(hash_state.state_, first, size);
345 return hash_state;
346 }
347 using HashState::HashStateBase::combine_contiguous;
348
349 private:
350 HashState() = default;
351
352 friend class HashState::HashStateBase;
353
354 template <typename T>
CombineContiguousImpl(void * p,const unsigned char * first,size_t size)355 static void CombineContiguousImpl(void* p, const unsigned char* first,
356 size_t size) {
357 T& state = *static_cast<T*>(p);
358 state = T::combine_contiguous(std::move(state), first, size);
359 }
360
361 template <typename T>
Init(T * state)362 void Init(T* state) {
363 state_ = state;
364 combine_contiguous_ = &CombineContiguousImpl<T>;
365 run_combine_unordered_ = &RunCombineUnorderedImpl<T>;
366 }
367
368 template <typename HS>
369 struct CombineUnorderedInvoker {
370 template <typename T, typename ConsumerT>
operatorCombineUnorderedInvoker371 void operator()(T inner_state, ConsumerT inner_cb) {
372 f(HashState::Create(&inner_state),
373 [&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); });
374 }
375
376 absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f;
377 };
378
379 template <typename T>
RunCombineUnorderedImpl(HashState state,absl::FunctionRef<void (HashState,absl::FunctionRef<void (HashState &)>)> f)380 static HashState RunCombineUnorderedImpl(
381 HashState state,
382 absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>
383 f) {
384 // Note that this implementation assumes that inner_state and outer_state
385 // are the same type. This isn't true in the SpyHash case, but SpyHash
386 // types are move-convertible to each other, so this still works.
387 T& real_state = state.Real<T>();
388 real_state = T::RunCombineUnordered(
389 std::move(real_state), CombineUnorderedInvoker<HashState>{f});
390 return state;
391 }
392
393 template <typename CombinerT>
RunCombineUnordered(HashState state,CombinerT combiner)394 static HashState RunCombineUnordered(HashState state, CombinerT combiner) {
395 auto* run = state.run_combine_unordered_;
396 return run(std::move(state), std::ref(combiner));
397 }
398
399 // Do not erase an already erased state.
Init(HashState * state)400 void Init(HashState* state) {
401 state_ = state->state_;
402 combine_contiguous_ = state->combine_contiguous_;
403 run_combine_unordered_ = state->run_combine_unordered_;
404 }
405
406 template <typename T>
Real()407 T& Real() {
408 return *static_cast<T*>(state_);
409 }
410
411 void* state_;
412 void (*combine_contiguous_)(void*, const unsigned char*, size_t);
413 HashState (*run_combine_unordered_)(
414 HashState state,
415 absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>);
416 };
417
418 ABSL_NAMESPACE_END
419 } // namespace absl
420
421 #endif // ABSL_HASH_HASH_H_
422