1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55
56 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
57
58 // -----------------------------------------------------------------------------
59 // FixedArray
60 // -----------------------------------------------------------------------------
61 //
62 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
63 // inline for efficiency.
64 //
65 // Most users should not specify an `inline_elements` argument and let
66 // `FixedArray` automatically determine the number of elements
67 // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
68 // `FixedArray` implementation will use inline storage for arrays with a
69 // length <= `inline_elements`.
70 //
71 // Note that a `FixedArray` constructed with a `size_type` argument will
72 // default-initialize its values by leaving trivially constructible types
73 // uninitialized (e.g. int, int[4], double), and others default-constructed.
74 // This matches the behavior of c-style arrays and `std::array`, but not
75 // `std::vector`.
76 template <typename T, size_t N = kFixedArrayUseDefault,
77 typename A = std::allocator<T>>
78 class FixedArray {
79 static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
80 "Arrays with unknown bounds cannot be used with FixedArray.");
81
82 static constexpr size_t kInlineBytesDefault = 256;
83
84 using AllocatorTraits = std::allocator_traits<A>;
85 // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
86 // but this seems to be mostly pedantic.
87 template <typename Iterator>
88 using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
89 typename std::iterator_traits<Iterator>::iterator_category,
90 std::forward_iterator_tag>::value>;
NoexceptCopyable()91 static constexpr bool NoexceptCopyable() {
92 return std::is_nothrow_copy_constructible<StorageElement>::value &&
93 absl::allocator_is_nothrow<allocator_type>::value;
94 }
NoexceptMovable()95 static constexpr bool NoexceptMovable() {
96 return std::is_nothrow_move_constructible<StorageElement>::value &&
97 absl::allocator_is_nothrow<allocator_type>::value;
98 }
DefaultConstructorIsNonTrivial()99 static constexpr bool DefaultConstructorIsNonTrivial() {
100 return !absl::is_trivially_default_constructible<StorageElement>::value;
101 }
102
103 public:
104 using allocator_type = typename AllocatorTraits::allocator_type;
105 using value_type = typename AllocatorTraits::value_type;
106 using pointer = typename AllocatorTraits::pointer;
107 using const_pointer = typename AllocatorTraits::const_pointer;
108 using reference = value_type&;
109 using const_reference = const value_type&;
110 using size_type = typename AllocatorTraits::size_type;
111 using difference_type = typename AllocatorTraits::difference_type;
112 using iterator = pointer;
113 using const_iterator = const_pointer;
114 using reverse_iterator = std::reverse_iterator<iterator>;
115 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
116
117 static constexpr size_type inline_elements =
118 (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
119 : static_cast<size_type>(N));
120
121 FixedArray(
122 const FixedArray& other,
noexcept(NoexceptCopyable ())123 const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
124 : FixedArray(other.begin(), other.end(), a) {}
125
126 FixedArray(
127 FixedArray&& other,
noexcept(NoexceptMovable ())128 const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
129 : FixedArray(std::make_move_iterator(other.begin()),
130 std::make_move_iterator(other.end()), a) {}
131
132 // Creates an array object that can store `n` elements.
133 // Note that trivially constructible elements will be uninitialized.
134 explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)135 : storage_(n, a) {
136 if (DefaultConstructorIsNonTrivial()) {
137 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
138 storage_.end());
139 }
140 }
141
142 // Creates an array initialized with `n` copies of `val`.
143 FixedArray(size_type n, const value_type& val,
144 const allocator_type& a = allocator_type())
storage_(n,a)145 : storage_(n, a) {
146 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
147 storage_.end(), val);
148 }
149
150 // Creates an array initialized with the size and contents of `init_list`.
151 FixedArray(std::initializer_list<value_type> init_list,
152 const allocator_type& a = allocator_type())
153 : FixedArray(init_list.begin(), init_list.end(), a) {}
154
155 // Creates an array initialized with the elements from the input
156 // range. The array's size will always be `std::distance(first, last)`.
157 // REQUIRES: Iterator must be a forward_iterator or better.
158 template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
159 FixedArray(Iterator first, Iterator last,
160 const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)161 : storage_(std::distance(first, last), a) {
162 memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
163 }
164
~FixedArray()165 ~FixedArray() noexcept {
166 for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
167 AllocatorTraits::destroy(storage_.alloc(), cur);
168 }
169 }
170
171 // Assignments are deleted because they break the invariant that the size of a
172 // `FixedArray` never changes.
173 void operator=(FixedArray&&) = delete;
174 void operator=(const FixedArray&) = delete;
175
176 // FixedArray::size()
177 //
178 // Returns the length of the fixed array.
size()179 size_type size() const { return storage_.size(); }
180
181 // FixedArray::max_size()
182 //
183 // Returns the largest possible value of `std::distance(begin(), end())` for a
184 // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
185 // over the number of bytes taken by T.
max_size()186 constexpr size_type max_size() const {
187 return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
188 }
189
190 // FixedArray::empty()
191 //
192 // Returns whether or not the fixed array is empty.
empty()193 bool empty() const { return size() == 0; }
194
195 // FixedArray::memsize()
196 //
197 // Returns the memory size of the fixed array in bytes.
memsize()198 size_t memsize() const { return size() * sizeof(value_type); }
199
200 // FixedArray::data()
201 //
202 // Returns a const T* pointer to elements of the `FixedArray`. This pointer
203 // can be used to access (but not modify) the contained elements.
data()204 const_pointer data() const { return AsValueType(storage_.begin()); }
205
206 // Overload of FixedArray::data() to return a T* pointer to elements of the
207 // fixed array. This pointer can be used to access and modify the contained
208 // elements.
data()209 pointer data() { return AsValueType(storage_.begin()); }
210
211 // FixedArray::operator[]
212 //
213 // Returns a reference the ith element of the fixed array.
214 // REQUIRES: 0 <= i < size()
215 reference operator[](size_type i) {
216 ABSL_HARDENING_ASSERT(i < size());
217 return data()[i];
218 }
219
220 // Overload of FixedArray::operator()[] to return a const reference to the
221 // ith element of the fixed array.
222 // REQUIRES: 0 <= i < size()
223 const_reference operator[](size_type i) const {
224 ABSL_HARDENING_ASSERT(i < size());
225 return data()[i];
226 }
227
228 // FixedArray::at
229 //
230 // Bounds-checked access. Returns a reference to the ith element of the fixed
231 // array, or throws std::out_of_range
at(size_type i)232 reference at(size_type i) {
233 if (ABSL_PREDICT_FALSE(i >= size())) {
234 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
235 }
236 return data()[i];
237 }
238
239 // Overload of FixedArray::at() to return a const reference to the ith element
240 // of the fixed array.
at(size_type i)241 const_reference at(size_type i) const {
242 if (ABSL_PREDICT_FALSE(i >= size())) {
243 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
244 }
245 return data()[i];
246 }
247
248 // FixedArray::front()
249 //
250 // Returns a reference to the first element of the fixed array.
front()251 reference front() {
252 ABSL_HARDENING_ASSERT(!empty());
253 return data()[0];
254 }
255
256 // Overload of FixedArray::front() to return a reference to the first element
257 // of a fixed array of const values.
front()258 const_reference front() const {
259 ABSL_HARDENING_ASSERT(!empty());
260 return data()[0];
261 }
262
263 // FixedArray::back()
264 //
265 // Returns a reference to the last element of the fixed array.
back()266 reference back() {
267 ABSL_HARDENING_ASSERT(!empty());
268 return data()[size() - 1];
269 }
270
271 // Overload of FixedArray::back() to return a reference to the last element
272 // of a fixed array of const values.
back()273 const_reference back() const {
274 ABSL_HARDENING_ASSERT(!empty());
275 return data()[size() - 1];
276 }
277
278 // FixedArray::begin()
279 //
280 // Returns an iterator to the beginning of the fixed array.
begin()281 iterator begin() { return data(); }
282
283 // Overload of FixedArray::begin() to return a const iterator to the
284 // beginning of the fixed array.
begin()285 const_iterator begin() const { return data(); }
286
287 // FixedArray::cbegin()
288 //
289 // Returns a const iterator to the beginning of the fixed array.
cbegin()290 const_iterator cbegin() const { return begin(); }
291
292 // FixedArray::end()
293 //
294 // Returns an iterator to the end of the fixed array.
end()295 iterator end() { return data() + size(); }
296
297 // Overload of FixedArray::end() to return a const iterator to the end of the
298 // fixed array.
end()299 const_iterator end() const { return data() + size(); }
300
301 // FixedArray::cend()
302 //
303 // Returns a const iterator to the end of the fixed array.
cend()304 const_iterator cend() const { return end(); }
305
306 // FixedArray::rbegin()
307 //
308 // Returns a reverse iterator from the end of the fixed array.
rbegin()309 reverse_iterator rbegin() { return reverse_iterator(end()); }
310
311 // Overload of FixedArray::rbegin() to return a const reverse iterator from
312 // the end of the fixed array.
rbegin()313 const_reverse_iterator rbegin() const {
314 return const_reverse_iterator(end());
315 }
316
317 // FixedArray::crbegin()
318 //
319 // Returns a const reverse iterator from the end of the fixed array.
crbegin()320 const_reverse_iterator crbegin() const { return rbegin(); }
321
322 // FixedArray::rend()
323 //
324 // Returns a reverse iterator from the beginning of the fixed array.
rend()325 reverse_iterator rend() { return reverse_iterator(begin()); }
326
327 // Overload of FixedArray::rend() for returning a const reverse iterator
328 // from the beginning of the fixed array.
rend()329 const_reverse_iterator rend() const {
330 return const_reverse_iterator(begin());
331 }
332
333 // FixedArray::crend()
334 //
335 // Returns a reverse iterator from the beginning of the fixed array.
crend()336 const_reverse_iterator crend() const { return rend(); }
337
338 // FixedArray::fill()
339 //
340 // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)341 void fill(const value_type& val) { std::fill(begin(), end(), val); }
342
343 // Relational operators. Equality operators are elementwise using
344 // `operator==`, while order operators order FixedArrays lexicographically.
345 friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
346 return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
347 }
348
349 friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
350 return !(lhs == rhs);
351 }
352
353 friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
354 return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
355 rhs.end());
356 }
357
358 friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
359 return rhs < lhs;
360 }
361
362 friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
363 return !(rhs < lhs);
364 }
365
366 friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
367 return !(lhs < rhs);
368 }
369
370 template <typename H>
AbslHashValue(H h,const FixedArray & v)371 friend H AbslHashValue(H h, const FixedArray& v) {
372 return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
373 v.size());
374 }
375
376 private:
377 // StorageElement
378 //
379 // For FixedArrays with a C-style-array value_type, StorageElement is a POD
380 // wrapper struct called StorageElementWrapper that holds the value_type
381 // instance inside. This is needed for construction and destruction of the
382 // entire array regardless of how many dimensions it has. For all other cases,
383 // StorageElement is just an alias of value_type.
384 //
385 // Maintainer's Note: The simpler solution would be to simply wrap value_type
386 // in a struct whether it's an array or not. That causes some paranoid
387 // diagnostics to misfire, believing that 'data()' returns a pointer to a
388 // single element, rather than the packed array that it really is.
389 // e.g.:
390 //
391 // FixedArray<char> buf(1);
392 // sprintf(buf.data(), "foo");
393 //
394 // error: call to int __builtin___sprintf_chk(etc...)
395 // will always overflow destination buffer [-Werror]
396 //
397 template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
398 size_t InnerN = std::extent<OuterT>::value>
399 struct StorageElementWrapper {
400 InnerT array[InnerN];
401 };
402
403 using StorageElement =
404 absl::conditional_t<std::is_array<value_type>::value,
405 StorageElementWrapper<value_type>, value_type>;
406
AsValueType(pointer ptr)407 static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)408 static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
409 return std::addressof(ptr->array);
410 }
411
412 static_assert(sizeof(StorageElement) == sizeof(value_type), "");
413 static_assert(alignof(StorageElement) == alignof(value_type), "");
414
415 class NonEmptyInlinedStorage {
416 public:
data()417 StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
418 void AnnotateConstruct(size_type n);
419 void AnnotateDestruct(size_type n);
420
421 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()422 void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()423 void* RedzoneEnd() { return &redzone_end_ + 1; }
424 #endif // ABSL_HAVE_ADDRESS_SANITIZER
425
426 private:
427 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
428 alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
429 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
430 };
431
432 class EmptyInlinedStorage {
433 public:
data()434 StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)435 void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)436 void AnnotateDestruct(size_type) {}
437 };
438
439 using InlinedStorage =
440 absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
441 NonEmptyInlinedStorage>;
442
443 // Storage
444 //
445 // An instance of Storage manages the inline and out-of-line memory for
446 // instances of FixedArray. This guarantees that even when construction of
447 // individual elements fails in the FixedArray constructor body, the
448 // destructor for Storage will still be called and out-of-line memory will be
449 // properly deallocated.
450 //
451 class Storage : public InlinedStorage {
452 public:
Storage(size_type n,const allocator_type & a)453 Storage(size_type n, const allocator_type& a)
454 : size_alloc_(n, a), data_(InitializeData()) {}
455
~Storage()456 ~Storage() noexcept {
457 if (UsingInlinedStorage(size())) {
458 InlinedStorage::AnnotateDestruct(size());
459 } else {
460 AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
461 }
462 }
463
size()464 size_type size() const { return size_alloc_.template get<0>(); }
begin()465 StorageElement* begin() const { return data_; }
end()466 StorageElement* end() const { return begin() + size(); }
alloc()467 allocator_type& alloc() { return size_alloc_.template get<1>(); }
468
469 private:
UsingInlinedStorage(size_type n)470 static bool UsingInlinedStorage(size_type n) {
471 return n <= inline_elements;
472 }
473
474 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
475 ABSL_ATTRIBUTE_NOINLINE
476 #endif // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()477 StorageElement* InitializeData() {
478 if (UsingInlinedStorage(size())) {
479 InlinedStorage::AnnotateConstruct(size());
480 return InlinedStorage::data();
481 } else {
482 return reinterpret_cast<StorageElement*>(
483 AllocatorTraits::allocate(alloc(), size()));
484 }
485 }
486
487 // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
488 container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
489 StorageElement* data_;
490 };
491
492 Storage storage_;
493 };
494
495 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
496 template <typename T, size_t N, typename A>
497 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
498
499 template <typename T, size_t N, typename A>
500 constexpr typename FixedArray<T, N, A>::size_type
501 FixedArray<T, N, A>::inline_elements;
502 #endif
503
504 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)505 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
506 typename FixedArray<T, N, A>::size_type n) {
507 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
508 if (!n) return;
509 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
510 data() + n);
511 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
512 RedzoneBegin());
513 #endif // ABSL_HAVE_ADDRESS_SANITIZER
514 static_cast<void>(n); // Mark used when not in asan mode
515 }
516
517 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)518 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
519 typename FixedArray<T, N, A>::size_type n) {
520 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
521 if (!n) return;
522 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
523 RedzoneEnd());
524 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
525 data());
526 #endif // ABSL_HAVE_ADDRESS_SANITIZER
527 static_cast<void>(n); // Mark used when not in asan mode
528 }
529 ABSL_NAMESPACE_END
530 } // namespace absl
531
532 #endif // ABSL_CONTAINER_FIXED_ARRAY_H_
533