xref: /aosp_15_r20/external/webrtc/third_party/abseil-cpp/absl/container/btree_set.h (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree sets: sorted associative containers of
20 // values.
21 //
22 //     * `absl::btree_set<>`
23 //     * `absl::btree_multiset<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::set` and `std::multiset`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::set` and `std::multiset`, which are commonly implemented using
31 // red-black tree nodes, B-tree sets use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree sets perform better than their `std::set` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::set` and `std::multiset` as there are some API differences, which are
38 // noted in this header file. The most consequential differences with respect to
39 // migrating to b-tree from the STL types are listed in the next paragraph.
40 // Other API differences are minor.
41 //
42 // Importantly, insertions and deletions may invalidate outstanding iterators,
43 // pointers, and references to elements. Such invalidations are typically only
44 // an issue if insertion and deletion operations are interleaved with the use of
45 // more than one iterator, pointer, or reference simultaneously. For this
46 // reason, `insert()` and `erase()` return a valid iterator at the current
47 // position (and `extract()` cannot be used in this way).
48 //
49 // Another API difference is that btree iterators can be subtracted, and this
50 // is faster than using std::distance.
51 
52 #ifndef ABSL_CONTAINER_BTREE_SET_H_
53 #define ABSL_CONTAINER_BTREE_SET_H_
54 
55 #include "absl/container/internal/btree.h"  // IWYU pragma: export
56 #include "absl/container/internal/btree_container.h"  // IWYU pragma: export
57 
58 namespace absl {
59 ABSL_NAMESPACE_BEGIN
60 
61 namespace container_internal {
62 
63 template <typename Key>
64 struct set_slot_policy;
65 
66 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
67           bool IsMulti>
68 struct set_params;
69 
70 }  // namespace container_internal
71 
72 // absl::btree_set<>
73 //
74 // An `absl::btree_set<K>` is an ordered associative container of unique key
75 // values designed to be a more efficient replacement for `std::set` (in most
76 // cases).
77 //
78 // Keys are sorted using an (optional) comparison function, which defaults to
79 // `std::less<K>`.
80 //
81 // An `absl::btree_set<K>` uses a default allocator of `std::allocator<K>` to
82 // allocate (and deallocate) nodes, and construct and destruct values within
83 // those nodes. You may instead specify a custom allocator `A` (which in turn
84 // requires specifying a custom comparator `C`) as in
85 // `absl::btree_set<K, C, A>`.
86 //
87 template <typename Key, typename Compare = std::less<Key>,
88           typename Alloc = std::allocator<Key>>
89 class btree_set
90     : public container_internal::btree_set_container<
91           container_internal::btree<container_internal::set_params<
92               Key, Compare, Alloc, /*TargetNodeSize=*/256,
93               /*IsMulti=*/false>>> {
94   using Base = typename btree_set::btree_set_container;
95 
96  public:
97   // Constructors and Assignment Operators
98   //
99   // A `btree_set` supports the same overload set as `std::set`
100   // for construction and assignment:
101   //
102   // * Default constructor
103   //
104   //   absl::btree_set<std::string> set1;
105   //
106   // * Initializer List constructor
107   //
108   //   absl::btree_set<std::string> set2 =
109   //       {{"huey"}, {"dewey"}, {"louie"},};
110   //
111   // * Copy constructor
112   //
113   //   absl::btree_set<std::string> set3(set2);
114   //
115   // * Copy assignment operator
116   //
117   //  absl::btree_set<std::string> set4;
118   //  set4 = set3;
119   //
120   // * Move constructor
121   //
122   //   // Move is guaranteed efficient
123   //   absl::btree_set<std::string> set5(std::move(set4));
124   //
125   // * Move assignment operator
126   //
127   //   // May be efficient if allocators are compatible
128   //   absl::btree_set<std::string> set6;
129   //   set6 = std::move(set5);
130   //
131   // * Range constructor
132   //
133   //   std::vector<std::string> v = {"a", "b"};
134   //   absl::btree_set<std::string> set7(v.begin(), v.end());
btree_set()135   btree_set() {}
136   using Base::Base;
137 
138   // btree_set::begin()
139   //
140   // Returns an iterator to the beginning of the `btree_set`.
141   using Base::begin;
142 
143   // btree_set::cbegin()
144   //
145   // Returns a const iterator to the beginning of the `btree_set`.
146   using Base::cbegin;
147 
148   // btree_set::end()
149   //
150   // Returns an iterator to the end of the `btree_set`.
151   using Base::end;
152 
153   // btree_set::cend()
154   //
155   // Returns a const iterator to the end of the `btree_set`.
156   using Base::cend;
157 
158   // btree_set::empty()
159   //
160   // Returns whether or not the `btree_set` is empty.
161   using Base::empty;
162 
163   // btree_set::max_size()
164   //
165   // Returns the largest theoretical possible number of elements within a
166   // `btree_set` under current memory constraints. This value can be thought
167   // of as the largest value of `std::distance(begin(), end())` for a
168   // `btree_set<Key>`.
169   using Base::max_size;
170 
171   // btree_set::size()
172   //
173   // Returns the number of elements currently within the `btree_set`.
174   using Base::size;
175 
176   // btree_set::clear()
177   //
178   // Removes all elements from the `btree_set`. Invalidates any references,
179   // pointers, or iterators referring to contained elements.
180   using Base::clear;
181 
182   // btree_set::erase()
183   //
184   // Erases elements within the `btree_set`. Overloads are listed below.
185   //
186   // iterator erase(iterator position):
187   // iterator erase(const_iterator position):
188   //
189   //   Erases the element at `position` of the `btree_set`, returning
190   //   the iterator pointing to the element after the one that was erased
191   //   (or end() if none exists).
192   //
193   // iterator erase(const_iterator first, const_iterator last):
194   //
195   //   Erases the elements in the open interval [`first`, `last`), returning
196   //   the iterator pointing to the element after the interval that was erased
197   //   (or end() if none exists).
198   //
199   // template <typename K> size_type erase(const K& key):
200   //
201   //   Erases the element with the matching key, if it exists, returning the
202   //   number of elements erased (0 or 1).
203   using Base::erase;
204 
205   // btree_set::insert()
206   //
207   // Inserts an element of the specified value into the `btree_set`,
208   // returning an iterator pointing to the newly inserted element, provided that
209   // an element with the given key does not already exist. If an insertion
210   // occurs, any references, pointers, or iterators are invalidated.
211   // Overloads are listed below.
212   //
213   // std::pair<iterator,bool> insert(const value_type& value):
214   //
215   //   Inserts a value into the `btree_set`. Returns a pair consisting of an
216   //   iterator to the inserted element (or to the element that prevented the
217   //   insertion) and a bool denoting whether the insertion took place.
218   //
219   // std::pair<iterator,bool> insert(value_type&& value):
220   //
221   //   Inserts a moveable value into the `btree_set`. Returns a pair
222   //   consisting of an iterator to the inserted element (or to the element that
223   //   prevented the insertion) and a bool denoting whether the insertion took
224   //   place.
225   //
226   // iterator insert(const_iterator hint, const value_type& value):
227   // iterator insert(const_iterator hint, value_type&& value):
228   //
229   //   Inserts a value, using the position of `hint` as a non-binding suggestion
230   //   for where to begin the insertion search. Returns an iterator to the
231   //   inserted element, or to the existing element that prevented the
232   //   insertion.
233   //
234   // void insert(InputIterator first, InputIterator last):
235   //
236   //   Inserts a range of values [`first`, `last`).
237   //
238   // void insert(std::initializer_list<init_type> ilist):
239   //
240   //   Inserts the elements within the initializer list `ilist`.
241   using Base::insert;
242 
243   // btree_set::emplace()
244   //
245   // Inserts an element of the specified value by constructing it in-place
246   // within the `btree_set`, provided that no element with the given key
247   // already exists.
248   //
249   // The element may be constructed even if there already is an element with the
250   // key in the container, in which case the newly constructed element will be
251   // destroyed immediately.
252   //
253   // If an insertion occurs, any references, pointers, or iterators are
254   // invalidated.
255   using Base::emplace;
256 
257   // btree_set::emplace_hint()
258   //
259   // Inserts an element of the specified value by constructing it in-place
260   // within the `btree_set`, using the position of `hint` as a non-binding
261   // suggestion for where to begin the insertion search, and only inserts
262   // provided that no element with the given key already exists.
263   //
264   // The element may be constructed even if there already is an element with the
265   // key in the container, in which case the newly constructed element will be
266   // destroyed immediately.
267   //
268   // If an insertion occurs, any references, pointers, or iterators are
269   // invalidated.
270   using Base::emplace_hint;
271 
272   // btree_set::extract()
273   //
274   // Extracts the indicated element, erasing it in the process, and returns it
275   // as a C++17-compatible node handle. Any references, pointers, or iterators
276   // are invalidated. Overloads are listed below.
277   //
278   // node_type extract(const_iterator position):
279   //
280   //   Extracts the element at the indicated position and returns a node handle
281   //   owning that extracted data.
282   //
283   // template <typename K> node_type extract(const K& k):
284   //
285   //   Extracts the element with the key matching the passed key value and
286   //   returns a node handle owning that extracted data. If the `btree_set`
287   //   does not contain an element with a matching key, this function returns an
288   //   empty node handle.
289   //
290   // NOTE: In this context, `node_type` refers to the C++17 concept of a
291   // move-only type that owns and provides access to the elements in associative
292   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
293   // It does NOT refer to the data layout of the underlying btree.
294   using Base::extract;
295 
296   // btree_set::merge()
297   //
298   // Extracts elements from a given `source` btree_set into this
299   // `btree_set`. If the destination `btree_set` already contains an
300   // element with an equivalent key, that element is not extracted.
301   using Base::merge;
302 
303   // btree_set::swap(btree_set& other)
304   //
305   // Exchanges the contents of this `btree_set` with those of the `other`
306   // btree_set, avoiding invocation of any move, copy, or swap operations on
307   // individual elements.
308   //
309   // All iterators and references on the `btree_set` remain valid, excepting
310   // for the past-the-end iterator, which is invalidated.
311   using Base::swap;
312 
313   // btree_set::contains()
314   //
315   // template <typename K> bool contains(const K& key) const:
316   //
317   // Determines whether an element comparing equal to the given `key` exists
318   // within the `btree_set`, returning `true` if so or `false` otherwise.
319   //
320   // Supports heterogeneous lookup, provided that the set has a compatible
321   // heterogeneous comparator.
322   using Base::contains;
323 
324   // btree_set::count()
325   //
326   // template <typename K> size_type count(const K& key) const:
327   //
328   // Returns the number of elements comparing equal to the given `key` within
329   // the `btree_set`. Note that this function will return either `1` or `0`
330   // since duplicate elements are not allowed within a `btree_set`.
331   //
332   // Supports heterogeneous lookup, provided that the set has a compatible
333   // heterogeneous comparator.
334   using Base::count;
335 
336   // btree_set::equal_range()
337   //
338   // Returns a closed range [first, last], defined by a `std::pair` of two
339   // iterators, containing all elements with the passed key in the
340   // `btree_set`.
341   using Base::equal_range;
342 
343   // btree_set::find()
344   //
345   // template <typename K> iterator find(const K& key):
346   // template <typename K> const_iterator find(const K& key) const:
347   //
348   // Finds an element with the passed `key` within the `btree_set`.
349   //
350   // Supports heterogeneous lookup, provided that the set has a compatible
351   // heterogeneous comparator.
352   using Base::find;
353 
354   // btree_set::lower_bound()
355   //
356   // template <typename K> iterator lower_bound(const K& key):
357   // template <typename K> const_iterator lower_bound(const K& key) const:
358   //
359   // Finds the first element that is not less than `key` within the `btree_set`.
360   //
361   // Supports heterogeneous lookup, provided that the set has a compatible
362   // heterogeneous comparator.
363   using Base::lower_bound;
364 
365   // btree_set::upper_bound()
366   //
367   // template <typename K> iterator upper_bound(const K& key):
368   // template <typename K> const_iterator upper_bound(const K& key) const:
369   //
370   // Finds the first element that is greater than `key` within the `btree_set`.
371   //
372   // Supports heterogeneous lookup, provided that the set has a compatible
373   // heterogeneous comparator.
374   using Base::upper_bound;
375 
376   // btree_set::get_allocator()
377   //
378   // Returns the allocator function associated with this `btree_set`.
379   using Base::get_allocator;
380 
381   // btree_set::key_comp();
382   //
383   // Returns the key comparator associated with this `btree_set`.
384   using Base::key_comp;
385 
386   // btree_set::value_comp();
387   //
388   // Returns the value comparator associated with this `btree_set`. The keys to
389   // sort the elements are the values themselves, therefore `value_comp` and its
390   // sibling member function `key_comp` are equivalent.
391   using Base::value_comp;
392 };
393 
394 // absl::swap(absl::btree_set<>, absl::btree_set<>)
395 //
396 // Swaps the contents of two `absl::btree_set` containers.
397 template <typename K, typename C, typename A>
swap(btree_set<K,C,A> & x,btree_set<K,C,A> & y)398 void swap(btree_set<K, C, A> &x, btree_set<K, C, A> &y) {
399   return x.swap(y);
400 }
401 
402 // absl::erase_if(absl::btree_set<>, Pred)
403 //
404 // Erases all elements that satisfy the predicate pred from the container.
405 // Returns the number of erased elements.
406 template <typename K, typename C, typename A, typename Pred>
erase_if(btree_set<K,C,A> & set,Pred pred)407 typename btree_set<K, C, A>::size_type erase_if(btree_set<K, C, A> &set,
408                                                 Pred pred) {
409   return container_internal::btree_access::erase_if(set, std::move(pred));
410 }
411 
412 // absl::btree_multiset<>
413 //
414 // An `absl::btree_multiset<K>` is an ordered associative container of
415 // keys and associated values designed to be a more efficient replacement
416 // for `std::multiset` (in most cases). Unlike `absl::btree_set`, a B-tree
417 // multiset allows equivalent elements.
418 //
419 // Keys are sorted using an (optional) comparison function, which defaults to
420 // `std::less<K>`.
421 //
422 // An `absl::btree_multiset<K>` uses a default allocator of `std::allocator<K>`
423 // to allocate (and deallocate) nodes, and construct and destruct values within
424 // those nodes. You may instead specify a custom allocator `A` (which in turn
425 // requires specifying a custom comparator `C`) as in
426 // `absl::btree_multiset<K, C, A>`.
427 //
428 template <typename Key, typename Compare = std::less<Key>,
429           typename Alloc = std::allocator<Key>>
430 class btree_multiset
431     : public container_internal::btree_multiset_container<
432           container_internal::btree<container_internal::set_params<
433               Key, Compare, Alloc, /*TargetNodeSize=*/256,
434               /*IsMulti=*/true>>> {
435   using Base = typename btree_multiset::btree_multiset_container;
436 
437  public:
438   // Constructors and Assignment Operators
439   //
440   // A `btree_multiset` supports the same overload set as `std::set`
441   // for construction and assignment:
442   //
443   // * Default constructor
444   //
445   //   absl::btree_multiset<std::string> set1;
446   //
447   // * Initializer List constructor
448   //
449   //   absl::btree_multiset<std::string> set2 =
450   //       {{"huey"}, {"dewey"}, {"louie"},};
451   //
452   // * Copy constructor
453   //
454   //   absl::btree_multiset<std::string> set3(set2);
455   //
456   // * Copy assignment operator
457   //
458   //  absl::btree_multiset<std::string> set4;
459   //  set4 = set3;
460   //
461   // * Move constructor
462   //
463   //   // Move is guaranteed efficient
464   //   absl::btree_multiset<std::string> set5(std::move(set4));
465   //
466   // * Move assignment operator
467   //
468   //   // May be efficient if allocators are compatible
469   //   absl::btree_multiset<std::string> set6;
470   //   set6 = std::move(set5);
471   //
472   // * Range constructor
473   //
474   //   std::vector<std::string> v = {"a", "b"};
475   //   absl::btree_multiset<std::string> set7(v.begin(), v.end());
btree_multiset()476   btree_multiset() {}
477   using Base::Base;
478 
479   // btree_multiset::begin()
480   //
481   // Returns an iterator to the beginning of the `btree_multiset`.
482   using Base::begin;
483 
484   // btree_multiset::cbegin()
485   //
486   // Returns a const iterator to the beginning of the `btree_multiset`.
487   using Base::cbegin;
488 
489   // btree_multiset::end()
490   //
491   // Returns an iterator to the end of the `btree_multiset`.
492   using Base::end;
493 
494   // btree_multiset::cend()
495   //
496   // Returns a const iterator to the end of the `btree_multiset`.
497   using Base::cend;
498 
499   // btree_multiset::empty()
500   //
501   // Returns whether or not the `btree_multiset` is empty.
502   using Base::empty;
503 
504   // btree_multiset::max_size()
505   //
506   // Returns the largest theoretical possible number of elements within a
507   // `btree_multiset` under current memory constraints. This value can be
508   // thought of as the largest value of `std::distance(begin(), end())` for a
509   // `btree_multiset<Key>`.
510   using Base::max_size;
511 
512   // btree_multiset::size()
513   //
514   // Returns the number of elements currently within the `btree_multiset`.
515   using Base::size;
516 
517   // btree_multiset::clear()
518   //
519   // Removes all elements from the `btree_multiset`. Invalidates any references,
520   // pointers, or iterators referring to contained elements.
521   using Base::clear;
522 
523   // btree_multiset::erase()
524   //
525   // Erases elements within the `btree_multiset`. Overloads are listed below.
526   //
527   // iterator erase(iterator position):
528   // iterator erase(const_iterator position):
529   //
530   //   Erases the element at `position` of the `btree_multiset`, returning
531   //   the iterator pointing to the element after the one that was erased
532   //   (or end() if none exists).
533   //
534   // iterator erase(const_iterator first, const_iterator last):
535   //
536   //   Erases the elements in the open interval [`first`, `last`), returning
537   //   the iterator pointing to the element after the interval that was erased
538   //   (or end() if none exists).
539   //
540   // template <typename K> size_type erase(const K& key):
541   //
542   //   Erases the elements matching the key, if any exist, returning the
543   //   number of elements erased.
544   using Base::erase;
545 
546   // btree_multiset::insert()
547   //
548   // Inserts an element of the specified value into the `btree_multiset`,
549   // returning an iterator pointing to the newly inserted element.
550   // Any references, pointers, or iterators are invalidated.  Overloads are
551   // listed below.
552   //
553   // iterator insert(const value_type& value):
554   //
555   //   Inserts a value into the `btree_multiset`, returning an iterator to the
556   //   inserted element.
557   //
558   // iterator insert(value_type&& value):
559   //
560   //   Inserts a moveable value into the `btree_multiset`, returning an iterator
561   //   to the inserted element.
562   //
563   // iterator insert(const_iterator hint, const value_type& value):
564   // iterator insert(const_iterator hint, value_type&& value):
565   //
566   //   Inserts a value, using the position of `hint` as a non-binding suggestion
567   //   for where to begin the insertion search. Returns an iterator to the
568   //   inserted element.
569   //
570   // void insert(InputIterator first, InputIterator last):
571   //
572   //   Inserts a range of values [`first`, `last`).
573   //
574   // void insert(std::initializer_list<init_type> ilist):
575   //
576   //   Inserts the elements within the initializer list `ilist`.
577   using Base::insert;
578 
579   // btree_multiset::emplace()
580   //
581   // Inserts an element of the specified value by constructing it in-place
582   // within the `btree_multiset`. Any references, pointers, or iterators are
583   // invalidated.
584   using Base::emplace;
585 
586   // btree_multiset::emplace_hint()
587   //
588   // Inserts an element of the specified value by constructing it in-place
589   // within the `btree_multiset`, using the position of `hint` as a non-binding
590   // suggestion for where to begin the insertion search.
591   //
592   // Any references, pointers, or iterators are invalidated.
593   using Base::emplace_hint;
594 
595   // btree_multiset::extract()
596   //
597   // Extracts the indicated element, erasing it in the process, and returns it
598   // as a C++17-compatible node handle. Overloads are listed below.
599   //
600   // node_type extract(const_iterator position):
601   //
602   //   Extracts the element at the indicated position and returns a node handle
603   //   owning that extracted data.
604   //
605   // template <typename K> node_type extract(const K& k):
606   //
607   //   Extracts the element with the key matching the passed key value and
608   //   returns a node handle owning that extracted data. If the `btree_multiset`
609   //   does not contain an element with a matching key, this function returns an
610   //   empty node handle.
611   //
612   // NOTE: In this context, `node_type` refers to the C++17 concept of a
613   // move-only type that owns and provides access to the elements in associative
614   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
615   // It does NOT refer to the data layout of the underlying btree.
616   using Base::extract;
617 
618   // btree_multiset::merge()
619   //
620   // Extracts all elements from a given `source` btree_multiset into this
621   // `btree_multiset`.
622   using Base::merge;
623 
624   // btree_multiset::swap(btree_multiset& other)
625   //
626   // Exchanges the contents of this `btree_multiset` with those of the `other`
627   // btree_multiset, avoiding invocation of any move, copy, or swap operations
628   // on individual elements.
629   //
630   // All iterators and references on the `btree_multiset` remain valid,
631   // excepting for the past-the-end iterator, which is invalidated.
632   using Base::swap;
633 
634   // btree_multiset::contains()
635   //
636   // template <typename K> bool contains(const K& key) const:
637   //
638   // Determines whether an element comparing equal to the given `key` exists
639   // within the `btree_multiset`, returning `true` if so or `false` otherwise.
640   //
641   // Supports heterogeneous lookup, provided that the set has a compatible
642   // heterogeneous comparator.
643   using Base::contains;
644 
645   // btree_multiset::count()
646   //
647   // template <typename K> size_type count(const K& key) const:
648   //
649   // Returns the number of elements comparing equal to the given `key` within
650   // the `btree_multiset`.
651   //
652   // Supports heterogeneous lookup, provided that the set has a compatible
653   // heterogeneous comparator.
654   using Base::count;
655 
656   // btree_multiset::equal_range()
657   //
658   // Returns a closed range [first, last], defined by a `std::pair` of two
659   // iterators, containing all elements with the passed key in the
660   // `btree_multiset`.
661   using Base::equal_range;
662 
663   // btree_multiset::find()
664   //
665   // template <typename K> iterator find(const K& key):
666   // template <typename K> const_iterator find(const K& key) const:
667   //
668   // Finds an element with the passed `key` within the `btree_multiset`.
669   //
670   // Supports heterogeneous lookup, provided that the set has a compatible
671   // heterogeneous comparator.
672   using Base::find;
673 
674   // btree_multiset::lower_bound()
675   //
676   // template <typename K> iterator lower_bound(const K& key):
677   // template <typename K> const_iterator lower_bound(const K& key) const:
678   //
679   // Finds the first element that is not less than `key` within the
680   // `btree_multiset`.
681   //
682   // Supports heterogeneous lookup, provided that the set has a compatible
683   // heterogeneous comparator.
684   using Base::lower_bound;
685 
686   // btree_multiset::upper_bound()
687   //
688   // template <typename K> iterator upper_bound(const K& key):
689   // template <typename K> const_iterator upper_bound(const K& key) const:
690   //
691   // Finds the first element that is greater than `key` within the
692   // `btree_multiset`.
693   //
694   // Supports heterogeneous lookup, provided that the set has a compatible
695   // heterogeneous comparator.
696   using Base::upper_bound;
697 
698   // btree_multiset::get_allocator()
699   //
700   // Returns the allocator function associated with this `btree_multiset`.
701   using Base::get_allocator;
702 
703   // btree_multiset::key_comp();
704   //
705   // Returns the key comparator associated with this `btree_multiset`.
706   using Base::key_comp;
707 
708   // btree_multiset::value_comp();
709   //
710   // Returns the value comparator associated with this `btree_multiset`. The
711   // keys to sort the elements are the values themselves, therefore `value_comp`
712   // and its sibling member function `key_comp` are equivalent.
713   using Base::value_comp;
714 };
715 
716 // absl::swap(absl::btree_multiset<>, absl::btree_multiset<>)
717 //
718 // Swaps the contents of two `absl::btree_multiset` containers.
719 template <typename K, typename C, typename A>
swap(btree_multiset<K,C,A> & x,btree_multiset<K,C,A> & y)720 void swap(btree_multiset<K, C, A> &x, btree_multiset<K, C, A> &y) {
721   return x.swap(y);
722 }
723 
724 // absl::erase_if(absl::btree_multiset<>, Pred)
725 //
726 // Erases all elements that satisfy the predicate pred from the container.
727 // Returns the number of erased elements.
728 template <typename K, typename C, typename A, typename Pred>
erase_if(btree_multiset<K,C,A> & set,Pred pred)729 typename btree_multiset<K, C, A>::size_type erase_if(
730    btree_multiset<K, C, A> & set, Pred pred) {
731   return container_internal::btree_access::erase_if(set, std::move(pred));
732 }
733 
734 namespace container_internal {
735 
736 // This type implements the necessary functions from the
737 // absl::container_internal::slot_type interface for btree_(multi)set.
738 template <typename Key>
739 struct set_slot_policy {
740   using slot_type = Key;
741   using value_type = Key;
742   using mutable_value_type = Key;
743 
elementset_slot_policy744   static value_type &element(slot_type *slot) { return *slot; }
elementset_slot_policy745   static const value_type &element(const slot_type *slot) { return *slot; }
746 
747   template <typename Alloc, class... Args>
constructset_slot_policy748   static void construct(Alloc *alloc, slot_type *slot, Args &&...args) {
749     absl::allocator_traits<Alloc>::construct(*alloc, slot,
750                                              std::forward<Args>(args)...);
751   }
752 
753   template <typename Alloc>
constructset_slot_policy754   static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
755     absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
756   }
757 
758   template <typename Alloc>
constructset_slot_policy759   static void construct(Alloc *alloc, slot_type *slot, const slot_type *other) {
760     absl::allocator_traits<Alloc>::construct(*alloc, slot, *other);
761   }
762 
763   template <typename Alloc>
destroyset_slot_policy764   static void destroy(Alloc *alloc, slot_type *slot) {
765     absl::allocator_traits<Alloc>::destroy(*alloc, slot);
766   }
767 };
768 
769 // A parameters structure for holding the type parameters for a btree_set.
770 // Compare and Alloc should be nothrow copy-constructible.
771 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
772           bool IsMulti>
773 struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti,
774                                   /*IsMap=*/false, set_slot_policy<Key>> {
775   using value_type = Key;
776   using slot_type = typename set_params::common_params::slot_type;
777 
778   template <typename V>
keyset_params779   static const V &key(const V &value) {
780     return value;
781   }
keyset_params782   static const Key &key(const slot_type *slot) { return *slot; }
keyset_params783   static const Key &key(slot_type *slot) { return *slot; }
784 };
785 
786 }  // namespace container_internal
787 
788 ABSL_NAMESPACE_END
789 }  // namespace absl
790 
791 #endif  // ABSL_CONTAINER_BTREE_SET_H_
792