xref: /aosp_15_r20/external/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_processing/aec3/aec_state.h"
12 
13 #include "modules/audio_processing/aec3/aec3_fft.h"
14 #include "modules/audio_processing/aec3/render_delay_buffer.h"
15 #include "modules/audio_processing/logging/apm_data_dumper.h"
16 #include "rtc_base/strings/string_builder.h"
17 #include "test/gtest.h"
18 
19 namespace webrtc {
20 namespace {
21 
RunNormalUsageTest(size_t num_render_channels,size_t num_capture_channels)22 void RunNormalUsageTest(size_t num_render_channels,
23                         size_t num_capture_channels) {
24   // TODO(bugs.webrtc.org/10913): Test with different content in different
25   // channels.
26   constexpr int kSampleRateHz = 48000;
27   constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
28   ApmDataDumper data_dumper(42);
29   EchoCanceller3Config config;
30   AecState state(config, num_capture_channels);
31   absl::optional<DelayEstimate> delay_estimate =
32       DelayEstimate(DelayEstimate::Quality::kRefined, 10);
33   std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
34       RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
35   std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
36       num_capture_channels);
37   std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
38   Block x(kNumBands, num_render_channels);
39   EchoPathVariability echo_path_variability(
40       false, EchoPathVariability::DelayAdjustment::kNone, false);
41   std::vector<std::array<float, kBlockSize>> y(num_capture_channels);
42   std::vector<SubtractorOutput> subtractor_output(num_capture_channels);
43   for (size_t ch = 0; ch < num_capture_channels; ++ch) {
44     subtractor_output[ch].Reset();
45     subtractor_output[ch].s_refined.fill(100.f);
46     subtractor_output[ch].e_refined.fill(100.f);
47     y[ch].fill(1000.f);
48     E2_refined[ch].fill(0.f);
49     Y2[ch].fill(0.f);
50   }
51   Aec3Fft fft;
52   std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
53       converged_filter_frequency_response(
54           num_capture_channels,
55           std::vector<std::array<float, kFftLengthBy2Plus1>>(10));
56   for (auto& v_ch : converged_filter_frequency_response) {
57     for (auto& v : v_ch) {
58       v.fill(0.01f);
59     }
60   }
61   std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
62       diverged_filter_frequency_response = converged_filter_frequency_response;
63   converged_filter_frequency_response[0][2].fill(100.f);
64   converged_filter_frequency_response[0][2][0] = 1.f;
65   std::vector<std::vector<float>> impulse_response(
66       num_capture_channels,
67       std::vector<float>(
68           GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
69 
70   // Verify that linear AEC usability is true when the filter is converged
71   for (size_t band = 0; band < kNumBands; ++band) {
72     for (size_t ch = 0; ch < num_render_channels; ++ch) {
73       std::fill(x.begin(band, ch), x.end(band, ch), 101.f);
74     }
75   }
76   for (int k = 0; k < 3000; ++k) {
77     render_delay_buffer->Insert(x);
78     for (size_t ch = 0; ch < num_capture_channels; ++ch) {
79       subtractor_output[ch].ComputeMetrics(y[ch]);
80     }
81     state.Update(delay_estimate, converged_filter_frequency_response,
82                  impulse_response, *render_delay_buffer->GetRenderBuffer(),
83                  E2_refined, Y2, subtractor_output);
84   }
85   EXPECT_TRUE(state.UsableLinearEstimate());
86 
87   // Verify that linear AEC usability becomes false after an echo path
88   // change is reported
89   for (size_t ch = 0; ch < num_capture_channels; ++ch) {
90     subtractor_output[ch].ComputeMetrics(y[ch]);
91   }
92   state.HandleEchoPathChange(EchoPathVariability(
93       false, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
94   state.Update(delay_estimate, converged_filter_frequency_response,
95                impulse_response, *render_delay_buffer->GetRenderBuffer(),
96                E2_refined, Y2, subtractor_output);
97   EXPECT_FALSE(state.UsableLinearEstimate());
98 
99   // Verify that the active render detection works as intended.
100   for (size_t ch = 0; ch < num_render_channels; ++ch) {
101     std::fill(x.begin(0, ch), x.end(0, ch), 101.f);
102   }
103   render_delay_buffer->Insert(x);
104   for (size_t ch = 0; ch < num_capture_channels; ++ch) {
105     subtractor_output[ch].ComputeMetrics(y[ch]);
106   }
107   state.HandleEchoPathChange(EchoPathVariability(
108       true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
109   state.Update(delay_estimate, converged_filter_frequency_response,
110                impulse_response, *render_delay_buffer->GetRenderBuffer(),
111                E2_refined, Y2, subtractor_output);
112   EXPECT_FALSE(state.ActiveRender());
113 
114   for (int k = 0; k < 1000; ++k) {
115     render_delay_buffer->Insert(x);
116     for (size_t ch = 0; ch < num_capture_channels; ++ch) {
117       subtractor_output[ch].ComputeMetrics(y[ch]);
118     }
119     state.Update(delay_estimate, converged_filter_frequency_response,
120                  impulse_response, *render_delay_buffer->GetRenderBuffer(),
121                  E2_refined, Y2, subtractor_output);
122   }
123   EXPECT_TRUE(state.ActiveRender());
124 
125   // Verify that the ERL is properly estimated
126   for (int band = 0; band < x.NumBands(); ++band) {
127     for (int channel = 0; channel < x.NumChannels(); ++channel) {
128       std::fill(x.begin(band, channel), x.end(band, channel), 0.0f);
129     }
130   }
131 
132   for (size_t ch = 0; ch < num_render_channels; ++ch) {
133     x.View(/*band=*/0, ch)[0] = 5000.f;
134   }
135   for (size_t k = 0;
136        k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
137     render_delay_buffer->Insert(x);
138     if (k == 0) {
139       render_delay_buffer->Reset();
140     }
141     render_delay_buffer->PrepareCaptureProcessing();
142   }
143 
144   for (auto& Y2_ch : Y2) {
145     Y2_ch.fill(10.f * 10000.f * 10000.f);
146   }
147   for (size_t k = 0; k < 1000; ++k) {
148     for (size_t ch = 0; ch < num_capture_channels; ++ch) {
149       subtractor_output[ch].ComputeMetrics(y[ch]);
150     }
151     state.Update(delay_estimate, converged_filter_frequency_response,
152                  impulse_response, *render_delay_buffer->GetRenderBuffer(),
153                  E2_refined, Y2, subtractor_output);
154   }
155 
156   ASSERT_TRUE(state.UsableLinearEstimate());
157   const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
158   EXPECT_EQ(erl[0], erl[1]);
159   for (size_t k = 1; k < erl.size() - 1; ++k) {
160     EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
161   }
162   EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
163 
164   // Verify that the ERLE is properly estimated
165   for (auto& E2_refined_ch : E2_refined) {
166     E2_refined_ch.fill(1.f * 10000.f * 10000.f);
167   }
168   for (auto& Y2_ch : Y2) {
169     Y2_ch.fill(10.f * E2_refined[0][0]);
170   }
171   for (size_t k = 0; k < 1000; ++k) {
172     for (size_t ch = 0; ch < num_capture_channels; ++ch) {
173       subtractor_output[ch].ComputeMetrics(y[ch]);
174     }
175     state.Update(delay_estimate, converged_filter_frequency_response,
176                  impulse_response, *render_delay_buffer->GetRenderBuffer(),
177                  E2_refined, Y2, subtractor_output);
178   }
179   ASSERT_TRUE(state.UsableLinearEstimate());
180   {
181     // Note that the render spectrum is built so it does not have energy in
182     // the odd bands but just in the even bands.
183     const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
184     EXPECT_EQ(erle[0], erle[1]);
185     constexpr size_t kLowFrequencyLimit = 32;
186     for (size_t k = 2; k < kLowFrequencyLimit; k = k + 2) {
187       EXPECT_NEAR(4.f, erle[k], 0.1);
188     }
189     for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; k = k + 2) {
190       EXPECT_NEAR(1.5f, erle[k], 0.1);
191     }
192     EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
193   }
194   for (auto& E2_refined_ch : E2_refined) {
195     E2_refined_ch.fill(1.f * 10000.f * 10000.f);
196   }
197   for (auto& Y2_ch : Y2) {
198     Y2_ch.fill(5.f * E2_refined[0][0]);
199   }
200   for (size_t k = 0; k < 1000; ++k) {
201     for (size_t ch = 0; ch < num_capture_channels; ++ch) {
202       subtractor_output[ch].ComputeMetrics(y[ch]);
203     }
204     state.Update(delay_estimate, converged_filter_frequency_response,
205                  impulse_response, *render_delay_buffer->GetRenderBuffer(),
206                  E2_refined, Y2, subtractor_output);
207   }
208 
209   ASSERT_TRUE(state.UsableLinearEstimate());
210   {
211     const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
212     EXPECT_EQ(erle[0], erle[1]);
213     constexpr size_t kLowFrequencyLimit = 32;
214     for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
215       EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
216     }
217     for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
218       EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
219     }
220     EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
221   }
222 }
223 
224 }  // namespace
225 
226 class AecStateMultiChannel
227     : public ::testing::Test,
228       public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
229 
230 INSTANTIATE_TEST_SUITE_P(MultiChannel,
231                          AecStateMultiChannel,
232                          ::testing::Combine(::testing::Values(1, 2, 8),
233                                             ::testing::Values(1, 2, 8)));
234 
235 // Verify the general functionality of AecState
TEST_P(AecStateMultiChannel,NormalUsage)236 TEST_P(AecStateMultiChannel, NormalUsage) {
237   const size_t num_render_channels = std::get<0>(GetParam());
238   const size_t num_capture_channels = std::get<1>(GetParam());
239   RunNormalUsageTest(num_render_channels, num_capture_channels);
240 }
241 
242 // Verifies the delay for a converged filter is correctly identified.
TEST(AecState,ConvergedFilterDelay)243 TEST(AecState, ConvergedFilterDelay) {
244   constexpr int kFilterLengthBlocks = 10;
245   constexpr size_t kNumCaptureChannels = 1;
246   EchoCanceller3Config config;
247   AecState state(config, kNumCaptureChannels);
248   std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
249       RenderDelayBuffer::Create(config, 48000, 1));
250   absl::optional<DelayEstimate> delay_estimate;
251   std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
252       kNumCaptureChannels);
253   std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
254   std::array<float, kBlockSize> x;
255   EchoPathVariability echo_path_variability(
256       false, EchoPathVariability::DelayAdjustment::kNone, false);
257   std::vector<SubtractorOutput> subtractor_output(kNumCaptureChannels);
258   for (auto& output : subtractor_output) {
259     output.Reset();
260     output.s_refined.fill(100.f);
261   }
262   std::array<float, kBlockSize> y;
263   x.fill(0.f);
264   y.fill(0.f);
265 
266   std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
267       frequency_response(kNumCaptureChannels,
268                          std::vector<std::array<float, kFftLengthBy2Plus1>>(
269                              kFilterLengthBlocks));
270   for (auto& v_ch : frequency_response) {
271     for (auto& v : v_ch) {
272       v.fill(0.01f);
273     }
274   }
275 
276   std::vector<std::vector<float>> impulse_response(
277       kNumCaptureChannels,
278       std::vector<float>(
279           GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
280 
281   // Verify that the filter delay for a converged filter is properly
282   // identified.
283   for (int k = 0; k < kFilterLengthBlocks; ++k) {
284     for (auto& ir : impulse_response) {
285       std::fill(ir.begin(), ir.end(), 0.f);
286       ir[k * kBlockSize + 1] = 1.f;
287     }
288 
289     state.HandleEchoPathChange(echo_path_variability);
290     subtractor_output[0].ComputeMetrics(y);
291     state.Update(delay_estimate, frequency_response, impulse_response,
292                  *render_delay_buffer->GetRenderBuffer(), E2_refined, Y2,
293                  subtractor_output);
294   }
295 }
296 
297 }  // namespace webrtc
298