1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21 
22 #include "psci_private.h"
23 
24 /*
25  * SPD power management operations, expected to be supplied by the registered
26  * SPD on successful SP initialization
27  */
28 const spd_pm_ops_t *psci_spd_pm;
29 
30 /*
31  * PSCI requested local power state map. This array is used to store the local
32  * power states requested by a CPU for power levels from level 1 to
33  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
34  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
35  * CPU are the same.
36  *
37  * During state coordination, the platform is passed an array containing the
38  * local states requested for a particular non cpu power domain by each cpu
39  * within the domain.
40  *
41  * TODO: Dense packing of the requested states will cause cache thrashing
42  * when multiple power domains write to it. If we allocate the requested
43  * states at each power level in a cache-line aligned per-domain memory,
44  * the cache thrashing can be avoided.
45  */
46 static plat_local_state_t
47 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
48 
49 unsigned int psci_plat_core_count;
50 
51 /*******************************************************************************
52  * Arrays that hold the platform's power domain tree information for state
53  * management of power domains.
54  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
55  * which is an ancestor of a CPU power domain.
56  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
57  ******************************************************************************/
58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
59 #if USE_COHERENT_MEM
60 __section(".tzfw_coherent_mem")
61 #endif
62 ;
63 
64 /* Lock for PSCI state coordination */
65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
66 
67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
68 
69 /*******************************************************************************
70  * Pointer to functions exported by the platform to complete power mgmt. ops
71  ******************************************************************************/
72 const plat_psci_ops_t *psci_plat_pm_ops;
73 
74 /******************************************************************************
75  * Check that the maximum power level supported by the platform makes sense
76  *****************************************************************************/
77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
78 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
79 	assert_platform_max_pwrlvl_check);
80 
81 #if PSCI_OS_INIT_MODE
82 /*******************************************************************************
83  * The power state coordination mode used in CPU_SUSPEND.
84  * Defaults to platform-coordinated mode.
85  ******************************************************************************/
86 suspend_mode_t psci_suspend_mode = PLAT_COORD;
87 #endif
88 
89 /*
90  * The plat_local_state used by the platform is one of these types: RUN,
91  * RETENTION and OFF. The platform can define further sub-states for each type
92  * apart from RUN. This categorization is done to verify the sanity of the
93  * psci_power_state passed by the platform and to print debug information. The
94  * categorization is done on the basis of the following conditions:
95  *
96  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
97  *
98  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
99  *    STATE_TYPE_RETN.
100  *
101  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
102  *    STATE_TYPE_OFF.
103  */
104 typedef enum plat_local_state_type {
105 	STATE_TYPE_RUN = 0,
106 	STATE_TYPE_RETN,
107 	STATE_TYPE_OFF
108 } plat_local_state_type_t;
109 
110 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
112 {
113 	if (state != 0U) {
114 		if (state > PLAT_MAX_RET_STATE) {
115 			return STATE_TYPE_OFF;
116 		} else {
117 			return STATE_TYPE_RETN;
118 		}
119 	} else {
120 		return STATE_TYPE_RUN;
121 	}
122 }
123 
124 /******************************************************************************
125  * Check that the maximum retention level supported by the platform is less
126  * than the maximum off level.
127  *****************************************************************************/
128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
129 		assert_platform_max_off_and_retn_state_check);
130 
131 /******************************************************************************
132  * This function ensures that the power state parameter in a CPU_SUSPEND request
133  * is valid. If so, it returns the requested states for each power level.
134  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)135 int psci_validate_power_state(unsigned int power_state,
136 			      psci_power_state_t *state_info)
137 {
138 	/* Check SBZ bits in power state are zero */
139 	if (psci_check_power_state(power_state) != 0U)
140 		return PSCI_E_INVALID_PARAMS;
141 
142 	assert(psci_plat_pm_ops->validate_power_state != NULL);
143 
144 	/* Validate the power_state using platform pm_ops */
145 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
146 }
147 
148 /******************************************************************************
149  * This function retrieves the `psci_power_state_t` for system suspend from
150  * the platform.
151  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
153 {
154 	/*
155 	 * Assert that the required pm_ops hook is implemented to ensure that
156 	 * the capability detected during psci_setup() is valid.
157 	 */
158 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
159 
160 	/*
161 	 * Query the platform for the power_state required for system suspend
162 	 */
163 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
164 }
165 
166 #if PSCI_OS_INIT_MODE
167 /*******************************************************************************
168  * This function verifies that all the other cores at the 'end_pwrlvl' have been
169  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
170  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171  * otherwise.
172  ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
174 {
175 	unsigned int my_idx, lvl;
176 	unsigned int parent_idx = 0;
177 	unsigned int cpu_start_idx, ncpus, cpu_idx;
178 	plat_local_state_t local_state;
179 
180 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
181 		return true;
182 	}
183 
184 	my_idx = plat_my_core_pos();
185 
186 	for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
187 		parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
188 	}
189 
190 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
191 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
192 
193 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
194 			cpu_idx++) {
195 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
196 		if (cpu_idx == my_idx) {
197 			assert(is_local_state_run(local_state) != 0);
198 			continue;
199 		}
200 
201 		if (is_local_state_run(local_state) != 0) {
202 			return false;
203 		}
204 	}
205 
206 	return true;
207 }
208 #endif
209 
210 /*******************************************************************************
211  * This function verifies that all the other cores in the system have been
212  * turned OFF and the current CPU is the last running CPU in the system.
213  * Returns true, if the current CPU is the last ON CPU or false otherwise.
214  ******************************************************************************/
psci_is_last_on_cpu(void)215 bool psci_is_last_on_cpu(void)
216 {
217 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
218 
219 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
220 		if (cpu_idx == my_idx) {
221 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
222 			continue;
223 		}
224 
225 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
226 			VERBOSE("core=%u other than current core=%u %s\n",
227 				cpu_idx, my_idx, "running in the system");
228 			return false;
229 		}
230 	}
231 
232 	return true;
233 }
234 
235 /*******************************************************************************
236  * This function verifies that all cores in the system have been turned ON.
237  * Returns true, if all CPUs are ON or false otherwise.
238  ******************************************************************************/
psci_are_all_cpus_on(void)239 static bool psci_are_all_cpus_on(void)
240 {
241 	unsigned int cpu_idx;
242 
243 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
244 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
245 			return false;
246 		}
247 	}
248 
249 	return true;
250 }
251 
252 /*******************************************************************************
253  * Routine to return the maximum power level to traverse to after a cpu has
254  * been physically powered up. It is expected to be called immediately after
255  * reset from assembler code.
256  ******************************************************************************/
get_power_on_target_pwrlvl(void)257 static unsigned int get_power_on_target_pwrlvl(void)
258 {
259 	unsigned int pwrlvl;
260 
261 	/*
262 	 * Assume that this cpu was suspended and retrieve its target power
263 	 * level. If it is invalid then it could only have been turned off
264 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
265 	 * cpu can be turned off to.
266 	 */
267 	pwrlvl = psci_get_suspend_pwrlvl();
268 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
269 		pwrlvl = PLAT_MAX_PWR_LVL;
270 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
271 	return pwrlvl;
272 }
273 
274 /******************************************************************************
275  * Helper function to update the requested local power state array. This array
276  * does not store the requested state for the CPU power level. Hence an
277  * assertion is added to prevent us from accessing the CPU power level.
278  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)279 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
280 					 unsigned int cpu_idx,
281 					 plat_local_state_t req_pwr_state)
282 {
283 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
284 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
285 			(cpu_idx < psci_plat_core_count)) {
286 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
287 	}
288 }
289 
290 /******************************************************************************
291  * This function initializes the psci_req_local_pwr_states.
292  *****************************************************************************/
psci_init_req_local_pwr_states(void)293 void __init psci_init_req_local_pwr_states(void)
294 {
295 	/* Initialize the requested state of all non CPU power domains as OFF */
296 	unsigned int pwrlvl;
297 	unsigned int core;
298 
299 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
300 		for (core = 0; core < psci_plat_core_count; core++) {
301 			psci_req_local_pwr_states[pwrlvl][core] =
302 				PLAT_MAX_OFF_STATE;
303 		}
304 	}
305 }
306 
307 /******************************************************************************
308  * Helper function to return a reference to an array containing the local power
309  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
310  * array will be the number of cpu power domains of which this power domain is
311  * an ancestor. These requested states will be used to determine a suitable
312  * target state for this power domain during psci state coordination. An
313  * assertion is added to prevent us from accessing the CPU power level.
314  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)315 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
316 							 unsigned int cpu_idx)
317 {
318 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
319 
320 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
321 			(cpu_idx < psci_plat_core_count)) {
322 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
323 	} else
324 		return NULL;
325 }
326 
327 #if PSCI_OS_INIT_MODE
328 /******************************************************************************
329  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
330  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
331  * local power states (state_info).
332  *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)333 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
334 				      unsigned int cpu_idx,
335 				      psci_power_state_t *state_info,
336 				      plat_local_state_t *prev)
337 {
338 	unsigned int lvl;
339 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
340 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
341 #else
342 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
343 #endif
344 	plat_local_state_t req_state;
345 
346 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
347 		/* Save the previous requested local power state */
348 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
349 
350 		/* Update the new requested local power state */
351 		if (lvl <= end_pwrlvl) {
352 			req_state = state_info->pwr_domain_state[lvl];
353 		} else {
354 			req_state = state_info->pwr_domain_state[end_pwrlvl];
355 		}
356 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
357 	}
358 }
359 
360 /******************************************************************************
361  * Helper function to restore the previously saved requested local power states
362  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
363  *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)364 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
365 				       plat_local_state_t *prev)
366 {
367 	unsigned int lvl;
368 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
369 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
370 #else
371 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
372 #endif
373 
374 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
375 		/* Restore the previous requested local power state */
376 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
377 	}
378 }
379 #endif
380 
381 /*
382  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
383  * memory.
384  *
385  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
386  * it's accessed by both cached and non-cached participants. To serve the common
387  * minimum, perform a cache flush before read and after write so that non-cached
388  * participants operate on latest data in main memory.
389  *
390  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
391  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
392  * In both cases, no cache operations are required.
393  */
394 
395 /*
396  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
397  * after any required cache maintenance operation.
398  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)399 static plat_local_state_t get_non_cpu_pd_node_local_state(
400 		unsigned int parent_idx)
401 {
402 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
403 	flush_dcache_range(
404 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
405 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
406 #endif
407 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
408 }
409 
410 /*
411  * Update local state of non-CPU power domain node from a cached CPU; perform
412  * any required cache maintenance operation afterwards.
413  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)414 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
415 		plat_local_state_t state)
416 {
417 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
418 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
419 	flush_dcache_range(
420 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
421 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
422 #endif
423 }
424 
425 /******************************************************************************
426  * Helper function to return the current local power state of each power domain
427  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
428  * function will be called after a cpu is powered on to find the local state
429  * each power domain has emerged from.
430  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)431 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
432 				      psci_power_state_t *target_state)
433 {
434 	unsigned int parent_idx, lvl;
435 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
436 
437 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
438 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
439 
440 	/* Copy the local power state from node to state_info */
441 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
442 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
443 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
444 	}
445 
446 	/* Set the the higher levels to RUN */
447 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
448 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
449 }
450 
451 /******************************************************************************
452  * Helper function to set the target local power state that each power domain
453  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
454  * enter. This function will be called after coordination of requested power
455  * states has been done for each power level.
456  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)457 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
458 				      const psci_power_state_t *target_state)
459 {
460 	unsigned int parent_idx, lvl;
461 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
462 
463 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
464 
465 	/*
466 	 * Need to flush as local_state might be accessed with Data Cache
467 	 * disabled during power on
468 	 */
469 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
470 
471 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
472 
473 	/* Copy the local_state from state_info */
474 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
475 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
476 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
477 	}
478 }
479 
480 /*******************************************************************************
481  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
482  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)483 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
484 				      unsigned int end_lvl,
485 				      unsigned int *node_index)
486 {
487 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
488 	unsigned int i;
489 	unsigned int *node = node_index;
490 
491 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
492 		*node = parent_node;
493 		node++;
494 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
495 	}
496 }
497 
498 /******************************************************************************
499  * This function is invoked post CPU power up and initialization. It sets the
500  * affinity info state, target power state and requested power state for the
501  * current CPU and all its ancestor power domains to RUN.
502  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)503 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
504 {
505 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
506 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
507 
508 	/* Reset the local_state to RUN for the non cpu power domains. */
509 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
510 		set_non_cpu_pd_node_local_state(parent_idx,
511 				PSCI_LOCAL_STATE_RUN);
512 		psci_set_req_local_pwr_state(lvl,
513 					     cpu_idx,
514 					     PSCI_LOCAL_STATE_RUN);
515 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
516 	}
517 
518 	/* Set the affinity info state to ON */
519 	psci_set_aff_info_state(AFF_STATE_ON);
520 
521 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
522 	psci_flush_cpu_data(psci_svc_cpu_data);
523 }
524 
525 /******************************************************************************
526  * This function is used in platform-coordinated mode.
527  *
528  * This function is passed the local power states requested for each power
529  * domain (state_info) between the current CPU domain and its ancestors until
530  * the target power level (end_pwrlvl). It updates the array of requested power
531  * states with this information.
532  *
533  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
534  * retrieves the states requested by all the cpus of which the power domain at
535  * that level is an ancestor. It passes this information to the platform to
536  * coordinate and return the target power state. If the target state for a level
537  * is RUN then subsequent levels are not considered. At the CPU level, state
538  * coordination is not required. Hence, the requested and the target states are
539  * the same.
540  *
541  * The 'state_info' is updated with the target state for each level between the
542  * CPU and the 'end_pwrlvl' and returned to the caller.
543  *
544  * This function will only be invoked with data cache enabled and while
545  * powering down a core.
546  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)547 void psci_do_state_coordination(unsigned int end_pwrlvl,
548 				psci_power_state_t *state_info)
549 {
550 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
551 	unsigned int start_idx;
552 	unsigned int ncpus;
553 	plat_local_state_t target_state, *req_states;
554 
555 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
556 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
557 
558 	/* For level 0, the requested state will be equivalent
559 	   to target state */
560 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
561 
562 		/* First update the requested power state */
563 		psci_set_req_local_pwr_state(lvl, cpu_idx,
564 					     state_info->pwr_domain_state[lvl]);
565 
566 		/* Get the requested power states for this power level */
567 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
568 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
569 
570 		/*
571 		 * Let the platform coordinate amongst the requested states at
572 		 * this power level and return the target local power state.
573 		 */
574 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
575 		target_state = plat_get_target_pwr_state(lvl,
576 							 req_states,
577 							 ncpus);
578 
579 		state_info->pwr_domain_state[lvl] = target_state;
580 
581 		/* Break early if the negotiated target power state is RUN */
582 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
583 			break;
584 
585 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
586 	}
587 
588 	/*
589 	 * This is for cases when we break out of the above loop early because
590 	 * the target power state is RUN at a power level < end_pwlvl.
591 	 * We update the requested power state from state_info and then
592 	 * set the target state as RUN.
593 	 */
594 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
595 		psci_set_req_local_pwr_state(lvl, cpu_idx,
596 					     state_info->pwr_domain_state[lvl]);
597 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
598 
599 	}
600 }
601 
602 #if PSCI_OS_INIT_MODE
603 /******************************************************************************
604  * This function is used in OS-initiated mode.
605  *
606  * This function is passed the local power states requested for each power
607  * domain (state_info) between the current CPU domain and its ancestors until
608  * the target power level (end_pwrlvl), and ensures the requested power states
609  * are valid. It updates the array of requested power states with this
610  * information.
611  *
612  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
613  * retrieves the states requested by all the cpus of which the power domain at
614  * that level is an ancestor. It passes this information to the platform to
615  * coordinate and return the target power state. If the requested state does
616  * not match the target state, the request is denied.
617  *
618  * The 'state_info' is not modified.
619  *
620  * This function will only be invoked with data cache enabled and while
621  * powering down a core.
622  *****************************************************************************/
psci_validate_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)623 int psci_validate_state_coordination(unsigned int end_pwrlvl,
624 				     psci_power_state_t *state_info)
625 {
626 	int rc = PSCI_E_SUCCESS;
627 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
628 	unsigned int start_idx;
629 	unsigned int ncpus;
630 	plat_local_state_t target_state, *req_states;
631 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
632 
633 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
634 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
635 
636 	/*
637 	 * Save a copy of the previous requested local power states and update
638 	 * the new requested local power states.
639 	 */
640 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
641 
642 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
643 		/* Get the requested power states for this power level */
644 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
645 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
646 
647 		/*
648 		 * Let the platform coordinate amongst the requested states at
649 		 * this power level and return the target local power state.
650 		 */
651 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
652 		target_state = plat_get_target_pwr_state(lvl,
653 							 req_states,
654 							 ncpus);
655 
656 		/*
657 		 * Verify that the requested power state matches the target
658 		 * local power state.
659 		 */
660 		if (state_info->pwr_domain_state[lvl] != target_state) {
661 			if (target_state == PSCI_LOCAL_STATE_RUN) {
662 				rc = PSCI_E_DENIED;
663 			} else {
664 				rc = PSCI_E_INVALID_PARAMS;
665 			}
666 			goto exit;
667 		}
668 
669 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
670 	}
671 
672 	/*
673 	 * Verify that the current core is the last running core at the
674 	 * specified power level.
675 	 */
676 	lvl = state_info->last_at_pwrlvl;
677 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
678 		rc = PSCI_E_DENIED;
679 	}
680 
681 exit:
682 	if (rc != PSCI_E_SUCCESS) {
683 		/* Restore the previous requested local power states. */
684 		psci_restore_req_local_pwr_states(cpu_idx, prev);
685 		return rc;
686 	}
687 
688 	return rc;
689 }
690 #endif
691 
692 /******************************************************************************
693  * This function validates a suspend request by making sure that if a standby
694  * state is requested then no power level is turned off and the highest power
695  * level is placed in a standby/retention state.
696  *
697  * It also ensures that the state level X will enter is not shallower than the
698  * state level X + 1 will enter.
699  *
700  * This validation will be enabled only for DEBUG builds as the platform is
701  * expected to perform these validations as well.
702  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)703 int psci_validate_suspend_req(const psci_power_state_t *state_info,
704 			      unsigned int is_power_down_state)
705 {
706 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
707 	plat_local_state_t state;
708 	plat_local_state_type_t req_state_type, deepest_state_type;
709 	int i;
710 
711 	/* Find the target suspend power level */
712 	target_lvl = psci_find_target_suspend_lvl(state_info);
713 	if (target_lvl == PSCI_INVALID_PWR_LVL)
714 		return PSCI_E_INVALID_PARAMS;
715 
716 	/* All power domain levels are in a RUN state to begin with */
717 	deepest_state_type = STATE_TYPE_RUN;
718 
719 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
720 		state = state_info->pwr_domain_state[i];
721 		req_state_type = find_local_state_type(state);
722 
723 		/*
724 		 * While traversing from the highest power level to the lowest,
725 		 * the state requested for lower levels has to be the same or
726 		 * deeper i.e. equal to or greater than the state at the higher
727 		 * levels. If this condition is true, then the requested state
728 		 * becomes the deepest state encountered so far.
729 		 */
730 		if (req_state_type < deepest_state_type)
731 			return PSCI_E_INVALID_PARAMS;
732 		deepest_state_type = req_state_type;
733 	}
734 
735 	/* Find the highest off power level */
736 	max_off_lvl = psci_find_max_off_lvl(state_info);
737 
738 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
739 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
740 	if (target_lvl != max_off_lvl)
741 		max_retn_lvl = target_lvl;
742 
743 	/*
744 	 * If this is not a request for a power down state then max off level
745 	 * has to be invalid and max retention level has to be a valid power
746 	 * level.
747 	 */
748 	if ((is_power_down_state == 0U) &&
749 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
750 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
751 		return PSCI_E_INVALID_PARAMS;
752 
753 	return PSCI_E_SUCCESS;
754 }
755 
756 /******************************************************************************
757  * This function finds the highest power level which will be powered down
758  * amongst all the power levels specified in the 'state_info' structure
759  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)760 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
761 {
762 	int i;
763 
764 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
765 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
766 			return (unsigned int) i;
767 	}
768 
769 	return PSCI_INVALID_PWR_LVL;
770 }
771 
772 /******************************************************************************
773  * This functions finds the level of the highest power domain which will be
774  * placed in a low power state during a suspend operation.
775  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)776 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
777 {
778 	int i;
779 
780 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
781 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
782 			return (unsigned int) i;
783 	}
784 
785 	return PSCI_INVALID_PWR_LVL;
786 }
787 
788 /*******************************************************************************
789  * This function is passed the highest level in the topology tree that the
790  * operation should be applied to and a list of node indexes. It picks up locks
791  * from the node index list in order of increasing power domain level in the
792  * range specified.
793  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)794 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
795 				   const unsigned int *parent_nodes)
796 {
797 	unsigned int parent_idx;
798 	unsigned int level;
799 
800 	/* No locking required for level 0. Hence start locking from level 1 */
801 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
802 		parent_idx = parent_nodes[level - 1U];
803 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
804 	}
805 }
806 
807 /*******************************************************************************
808  * This function is passed the highest level in the topology tree that the
809  * operation should be applied to and a list of node indexes. It releases the
810  * locks in order of decreasing power domain level in the range specified.
811  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)812 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
813 				   const unsigned int *parent_nodes)
814 {
815 	unsigned int parent_idx;
816 	unsigned int level;
817 
818 	/* Unlock top down. No unlocking required for level 0. */
819 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
820 		parent_idx = parent_nodes[level - 1U];
821 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
822 	}
823 }
824 
825 /*******************************************************************************
826  * This function determines the full entrypoint information for the requested
827  * PSCI entrypoint on power on/resume and returns it.
828  ******************************************************************************/
829 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)830 static int psci_get_ns_ep_info(entry_point_info_t *ep,
831 			       uintptr_t entrypoint,
832 			       u_register_t context_id)
833 {
834 	u_register_t ep_attr, sctlr;
835 	unsigned int daif, ee, mode;
836 	u_register_t ns_scr_el3 = read_scr_el3();
837 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
838 
839 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
840 		read_sctlr_el2() : ns_sctlr_el1;
841 	ee = 0;
842 
843 	ep_attr = NON_SECURE | EP_ST_DISABLE;
844 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
845 		ep_attr |= EP_EE_BIG;
846 		ee = 1;
847 	}
848 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
849 
850 	ep->pc = entrypoint;
851 	zeromem(&ep->args, sizeof(ep->args));
852 	ep->args.arg0 = context_id;
853 
854 	/*
855 	 * Figure out whether the cpu enters the non-secure address space
856 	 * in aarch32 or aarch64
857 	 */
858 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
859 
860 		/*
861 		 * Check whether a Thumb entry point has been provided for an
862 		 * aarch64 EL
863 		 */
864 		if ((entrypoint & 0x1UL) != 0UL)
865 			return PSCI_E_INVALID_ADDRESS;
866 
867 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
868 
869 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
870 				   DISABLE_ALL_EXCEPTIONS);
871 	} else {
872 
873 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
874 			MODE32_hyp : MODE32_svc;
875 
876 		/*
877 		 * TODO: Choose async. exception bits if HYP mode is not
878 		 * implemented according to the values of SCR.{AW, FW} bits
879 		 */
880 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
881 
882 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
883 				       daif);
884 	}
885 
886 	return PSCI_E_SUCCESS;
887 }
888 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)889 static int psci_get_ns_ep_info(entry_point_info_t *ep,
890 			       uintptr_t entrypoint,
891 			       u_register_t context_id)
892 {
893 	u_register_t ep_attr;
894 	unsigned int aif, ee, mode;
895 	u_register_t scr = read_scr();
896 	u_register_t ns_sctlr, sctlr;
897 
898 	/* Switch to non secure state */
899 	write_scr(scr | SCR_NS_BIT);
900 	isb();
901 	ns_sctlr = read_sctlr();
902 
903 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
904 
905 	/* Return to original state */
906 	write_scr(scr);
907 	isb();
908 	ee = 0;
909 
910 	ep_attr = NON_SECURE | EP_ST_DISABLE;
911 	if (sctlr & SCTLR_EE_BIT) {
912 		ep_attr |= EP_EE_BIG;
913 		ee = 1;
914 	}
915 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
916 
917 	ep->pc = entrypoint;
918 	zeromem(&ep->args, sizeof(ep->args));
919 	ep->args.arg0 = context_id;
920 
921 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
922 
923 	/*
924 	 * TODO: Choose async. exception bits if HYP mode is not
925 	 * implemented according to the values of SCR.{AW, FW} bits
926 	 */
927 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
928 
929 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
930 
931 	return PSCI_E_SUCCESS;
932 }
933 
934 #endif /* __aarch64__ */
935 
936 /*******************************************************************************
937  * This function validates the entrypoint with the platform layer if the
938  * appropriate pm_ops hook is exported by the platform and returns the
939  * 'entry_point_info'.
940  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)941 int psci_validate_entry_point(entry_point_info_t *ep,
942 			      uintptr_t entrypoint,
943 			      u_register_t context_id)
944 {
945 	int rc;
946 
947 	/* Validate the entrypoint using platform psci_ops */
948 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
949 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
950 		if (rc != PSCI_E_SUCCESS)
951 			return PSCI_E_INVALID_ADDRESS;
952 	}
953 
954 	/*
955 	 * Verify and derive the re-entry information for
956 	 * the non-secure world from the non-secure state from
957 	 * where this call originated.
958 	 */
959 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
960 	return rc;
961 }
962 
963 /*******************************************************************************
964  * Generic handler which is called when a cpu is physically powered on. It
965  * traverses the node information and finds the highest power level powered
966  * off and performs generic, architectural, platform setup and state management
967  * to power on that power level and power levels below it.
968  * e.g. For a cpu that's been powered on, it will call the platform specific
969  * code to enable the gic cpu interface and for a cluster it will enable
970  * coherency at the interconnect level in addition to gic cpu interface.
971  ******************************************************************************/
psci_warmboot_entrypoint(void)972 void psci_warmboot_entrypoint(void)
973 {
974 	unsigned int end_pwrlvl;
975 	unsigned int cpu_idx = plat_my_core_pos();
976 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
977 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
978 
979 	/* Init registers that never change for the lifetime of TF-A */
980 	cm_manage_extensions_el3();
981 
982 	/*
983 	 * Verify that we have been explicitly turned ON or resumed from
984 	 * suspend.
985 	 */
986 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
987 		ERROR("Unexpected affinity info state.\n");
988 		panic();
989 	}
990 
991 	/*
992 	 * Get the maximum power domain level to traverse to after this cpu
993 	 * has been physically powered up.
994 	 */
995 	end_pwrlvl = get_power_on_target_pwrlvl();
996 
997 	/* Get the parent nodes */
998 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
999 
1000 	/*
1001 	 * This function acquires the lock corresponding to each power level so
1002 	 * that by the time all locks are taken, the system topology is snapshot
1003 	 * and state management can be done safely.
1004 	 */
1005 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1006 
1007 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1008 
1009 #if ENABLE_PSCI_STAT
1010 	plat_psci_stat_accounting_stop(&state_info);
1011 #endif
1012 
1013 	/*
1014 	 * This CPU could be resuming from suspend or it could have just been
1015 	 * turned on. To distinguish between these 2 cases, we examine the
1016 	 * affinity state of the CPU:
1017 	 *  - If the affinity state is ON_PENDING then it has just been
1018 	 *    turned on.
1019 	 *  - Else it is resuming from suspend.
1020 	 *
1021 	 * Depending on the type of warm reset identified, choose the right set
1022 	 * of power management handler and perform the generic, architecture
1023 	 * and platform specific handling.
1024 	 */
1025 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1026 		psci_cpu_on_finish(cpu_idx, &state_info);
1027 	else
1028 		psci_cpu_suspend_finish(cpu_idx, &state_info);
1029 
1030 	/*
1031 	 * Generic management: Now we just need to retrieve the
1032 	 * information that we had stashed away during the cpu_on
1033 	 * call to set this cpu on its way.
1034 	 */
1035 	cm_prepare_el3_exit_ns();
1036 
1037 	/*
1038 	 * Set the requested and target state of this CPU and all the higher
1039 	 * power domains which are ancestors of this CPU to run.
1040 	 */
1041 	psci_set_pwr_domains_to_run(end_pwrlvl);
1042 
1043 #if ENABLE_PSCI_STAT
1044 	/*
1045 	 * Update PSCI stats.
1046 	 * Caches are off when writing stats data on the power down path.
1047 	 * Since caches are now enabled, it's necessary to do cache
1048 	 * maintenance before reading that same data.
1049 	 */
1050 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1051 #endif
1052 
1053 	/*
1054 	 * This loop releases the lock corresponding to each power level
1055 	 * in the reverse order to which they were acquired.
1056 	 */
1057 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1058 }
1059 
1060 /*******************************************************************************
1061  * This function initializes the set of hooks that PSCI invokes as part of power
1062  * management operation. The power management hooks are expected to be provided
1063  * by the SPD, after it finishes all its initialization
1064  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1065 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1066 {
1067 	assert(pm != NULL);
1068 	psci_spd_pm = pm;
1069 
1070 	if (pm->svc_migrate != NULL)
1071 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1072 
1073 	if (pm->svc_migrate_info != NULL)
1074 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1075 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1076 }
1077 
1078 /*******************************************************************************
1079  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1080  * the necessary return value validation. If the Secure Payload is UP and
1081  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1082  * is resident through the mpidr parameter. Else the value of the parameter on
1083  * return is undefined.
1084  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1085 int psci_spd_migrate_info(u_register_t *mpidr)
1086 {
1087 	int rc;
1088 
1089 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1090 		return PSCI_E_NOT_SUPPORTED;
1091 
1092 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1093 
1094 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1095 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1096 
1097 	return rc;
1098 }
1099 
1100 
1101 /*******************************************************************************
1102  * This function prints the state of all power domains present in the
1103  * system
1104  ******************************************************************************/
psci_print_power_domain_map(void)1105 void psci_print_power_domain_map(void)
1106 {
1107 #if LOG_LEVEL >= LOG_LEVEL_INFO
1108 	unsigned int idx;
1109 	plat_local_state_t state;
1110 	plat_local_state_type_t state_type;
1111 
1112 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1113 	static const char * const psci_state_type_str[] = {
1114 		"ON",
1115 		"RETENTION",
1116 		"OFF",
1117 	};
1118 
1119 	INFO("PSCI Power Domain Map:\n");
1120 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1121 							idx++) {
1122 		state_type = find_local_state_type(
1123 				psci_non_cpu_pd_nodes[idx].local_state);
1124 		INFO("  Domain Node : Level %u, parent_node %u,"
1125 				" State %s (0x%x)\n",
1126 				psci_non_cpu_pd_nodes[idx].level,
1127 				psci_non_cpu_pd_nodes[idx].parent_node,
1128 				psci_state_type_str[state_type],
1129 				psci_non_cpu_pd_nodes[idx].local_state);
1130 	}
1131 
1132 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1133 		state = psci_get_cpu_local_state_by_idx(idx);
1134 		state_type = find_local_state_type(state);
1135 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1136 				" State %s (0x%x)\n",
1137 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1138 				psci_cpu_pd_nodes[idx].parent_node,
1139 				psci_state_type_str[state_type],
1140 				psci_get_cpu_local_state_by_idx(idx));
1141 	}
1142 #endif
1143 }
1144 
1145 /******************************************************************************
1146  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1147  * have ever been powered up would have set its MPDIR value to something other
1148  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1149  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1150  * meaningful only when called on the primary CPU during early boot.
1151  *****************************************************************************/
psci_secondaries_brought_up(void)1152 int psci_secondaries_brought_up(void)
1153 {
1154 	unsigned int idx, n_valid = 0U;
1155 
1156 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1157 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1158 			n_valid++;
1159 	}
1160 
1161 	assert(n_valid > 0U);
1162 
1163 	return (n_valid > 1U) ? 1 : 0;
1164 }
1165 
1166 /*******************************************************************************
1167  * Initiate power down sequence, by calling power down operations registered for
1168  * this CPU.
1169  ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)1170 void psci_pwrdown_cpu(unsigned int power_level)
1171 {
1172 	psci_do_manage_extensions();
1173 
1174 #if HW_ASSISTED_COHERENCY
1175 	/*
1176 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1177 	 * power down sequence, without performing cache-maintenance operations
1178 	 * in software. Data caches enabled both before and after this call.
1179 	 */
1180 	prepare_cpu_pwr_dwn(power_level);
1181 #else
1182 	/*
1183 	 * Without hardware-assisted coherency, the CPU drivers disable data
1184 	 * caches, then perform cache-maintenance operations in software.
1185 	 *
1186 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1187 	 * sequence, but that function will return with data caches disabled.
1188 	 * We must ensure that the stack memory is flushed out to memory before
1189 	 * we start popping from it again.
1190 	 */
1191 	psci_do_pwrdown_cache_maintenance(power_level);
1192 #endif
1193 }
1194 
1195 /*******************************************************************************
1196  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1197  * online PE. Caller can pass suitable method to stop a remote core.
1198  *
1199  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1200  * transition to power down state. Passing '0' makes it non-blocking.
1201  *
1202  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1203  * given timeout.
1204  ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1205 int psci_stop_other_cores(unsigned int wait_ms,
1206 				   void (*stop_func)(u_register_t mpidr))
1207 {
1208 	unsigned int idx, this_cpu_idx;
1209 
1210 	this_cpu_idx = plat_my_core_pos();
1211 
1212 	/* Invoke stop_func for each core */
1213 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1214 		/* skip current CPU */
1215 		if (idx == this_cpu_idx) {
1216 			continue;
1217 		}
1218 
1219 		/* Check if the CPU is ON */
1220 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1221 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1222 		}
1223 	}
1224 
1225 	/* Need to wait for other cores to shutdown */
1226 	if (wait_ms != 0U) {
1227 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1228 			mdelay(1U);
1229 		}
1230 
1231 		if (!psci_is_last_on_cpu()) {
1232 			WARN("Failed to stop all cores!\n");
1233 			psci_print_power_domain_map();
1234 			return PSCI_E_DENIED;
1235 		}
1236 	}
1237 
1238 	return PSCI_E_SUCCESS;
1239 }
1240 
1241 /*******************************************************************************
1242  * This function verifies that all the other cores in the system have been
1243  * turned OFF and the current CPU is the last running CPU in the system.
1244  * Returns true if the current CPU is the last ON CPU or false otherwise.
1245  *
1246  * This API has following differences with psci_is_last_on_cpu
1247  *  1. PSCI states are locked
1248  ******************************************************************************/
psci_is_last_on_cpu_safe(void)1249 bool psci_is_last_on_cpu_safe(void)
1250 {
1251 	unsigned int this_core = plat_my_core_pos();
1252 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1253 
1254 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1255 
1256 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1257 
1258 	if (!psci_is_last_on_cpu()) {
1259 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1260 		return false;
1261 	}
1262 
1263 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1264 
1265 	return true;
1266 }
1267 
1268 /*******************************************************************************
1269  * This function verifies that all cores in the system have been turned ON.
1270  * Returns true, if all CPUs are ON or false otherwise.
1271  *
1272  * This API has following differences with psci_are_all_cpus_on
1273  *  1. PSCI states are locked
1274  ******************************************************************************/
psci_are_all_cpus_on_safe(void)1275 bool psci_are_all_cpus_on_safe(void)
1276 {
1277 	unsigned int this_core = plat_my_core_pos();
1278 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1279 
1280 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1281 
1282 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1283 
1284 	if (!psci_are_all_cpus_on()) {
1285 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1286 		return false;
1287 	}
1288 
1289 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1290 
1291 	return true;
1292 }
1293 
1294 /*******************************************************************************
1295  * This function performs architectural feature specific management.
1296  * It ensures the architectural features are disabled during cpu
1297  * power off/suspend operations.
1298  ******************************************************************************/
psci_do_manage_extensions(void)1299 void psci_do_manage_extensions(void)
1300 {
1301 	/*
1302 	 * On power down we need to disable statistical profiling extensions
1303 	 * before exiting coherency.
1304 	 */
1305 	if (is_feat_spe_supported()) {
1306 		spe_disable();
1307 	}
1308 
1309 }
1310