1/* 2 * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#ifndef EL3_COMMON_MACROS_S 8#define EL3_COMMON_MACROS_S 9 10#include <arch.h> 11#include <asm_macros.S> 12#include <assert_macros.S> 13#include <context.h> 14#include <lib/xlat_tables/xlat_tables_defs.h> 15 16 /* 17 * Helper macro to initialise EL3 registers we care about. 18 */ 19 .macro el3_arch_init_common 20 /* --------------------------------------------------------------------- 21 * SCTLR_EL3 has already been initialised - read current value before 22 * modifying. 23 * 24 * SCTLR_EL3.I: Enable the instruction cache. 25 * 26 * SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault 27 * exception is generated if a load or store instruction executed at 28 * EL3 uses the SP as the base address and the SP is not aligned to a 29 * 16-byte boundary. 30 * 31 * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that 32 * load or store one or more registers have an alignment check that the 33 * address being accessed is aligned to the size of the data element(s) 34 * being accessed. 35 * --------------------------------------------------------------------- 36 */ 37 mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT) 38 mrs x0, sctlr_el3 39 orr x0, x0, x1 40 msr sctlr_el3, x0 41 isb 42 43#ifdef IMAGE_BL31 44 /* --------------------------------------------------------------------- 45 * Initialise the per-cpu cache pointer to the CPU. 46 * This is done early to enable crash reporting to have access to crash 47 * stack. Since crash reporting depends on cpu_data to report the 48 * unhandled exception, not doing so can lead to recursive exceptions 49 * due to a NULL TPIDR_EL3. 50 * --------------------------------------------------------------------- 51 */ 52 bl init_cpu_data_ptr 53#endif /* IMAGE_BL31 */ 54 55 /* --------------------------------------------------------------------- 56 * Initialise SCR_EL3, setting all fields rather than relying on hw. 57 * All fields are architecturally UNKNOWN on reset. The following fields 58 * do not change during the TF lifetime. The remaining fields are set to 59 * zero here but are updated ahead of transitioning to a lower EL in the 60 * function cm_init_context_common(). 61 * 62 * SCR_EL3.SIF: Set to one to disable instruction fetches from 63 * Non-secure memory. 64 * 65 * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts 66 * to EL3 when executing at any EL. 67 * 68 * SCR_EL3.EEL2: Set to one if S-EL2 is present and enabled. 69 * 70 * NOTE: Modifying EEL2 bit along with EA bit ensures that we mitigate 71 * against ERRATA_V2_3099206. 72 * --------------------------------------------------------------------- 73 */ 74 mov_imm x0, (SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) 75#if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 76 mrs x1, id_aa64pfr0_el1 77 and x1, x1, #(ID_AA64PFR0_SEL2_MASK << ID_AA64PFR0_SEL2_SHIFT) 78 cbz x1, 1f 79 orr x0, x0, #SCR_EEL2_BIT 80#endif 811: 82 msr scr_el3, x0 83 84 /* --------------------------------------------------------------------- 85 * Initialise MDCR_EL3, setting all fields rather than relying on hw. 86 * Some fields are architecturally UNKNOWN on reset. 87 * 88 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug. 89 * Debug exceptions, other than Breakpoint Instruction exceptions, are 90 * disabled from all ELs in Secure state. 91 * 92 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted 93 * privileged debug from S-EL1. 94 * 95 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register 96 * access to the powerdown debug registers do not trap to EL3. 97 * 98 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the 99 * debug registers, other than those registers that are controlled by 100 * MDCR_EL3.TDOSA. 101 */ 102 mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | \ 103 MDCR_SPD32(MDCR_SPD32_DISABLE)) & \ 104 ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT)) 105 106 msr mdcr_el3, x0 107 108 /* --------------------------------------------------------------------- 109 * Enable External Aborts and SError Interrupts now that the exception 110 * vectors have been setup. 111 * --------------------------------------------------------------------- 112 */ 113 msr daifclr, #DAIF_ABT_BIT 114 115 /* --------------------------------------------------------------------- 116 * Initialise CPTR_EL3, setting all fields rather than relying on hw. 117 * All fields are architecturally UNKNOWN on reset. 118 * --------------------------------------------------------------------- 119 */ 120 mov_imm x0, CPTR_EL3_RESET_VAL 121 msr cptr_el3, x0 122 123 /* 124 * If Data Independent Timing (DIT) functionality is implemented, 125 * always enable DIT in EL3. 126 * First assert that the FEAT_DIT build flag matches the feature id 127 * register value for DIT. 128 */ 129#if ENABLE_FEAT_DIT 130#if ENABLE_ASSERTIONS || ENABLE_FEAT_DIT > 1 131 mrs x0, id_aa64pfr0_el1 132 ubfx x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH 133#if ENABLE_FEAT_DIT > 1 134 cbz x0, 1f 135#else 136 cmp x0, #DIT_IMPLEMENTED 137 ASM_ASSERT(eq) 138#endif 139 140#endif /* ENABLE_ASSERTIONS */ 141 mov x0, #DIT_BIT 142 msr DIT, x0 1431: 144#endif 145 .endm 146 147/* ----------------------------------------------------------------------------- 148 * This is the super set of actions that need to be performed during a cold boot 149 * or a warm boot in EL3. This code is shared by BL1 and BL31. 150 * 151 * This macro will always perform reset handling, architectural initialisations 152 * and stack setup. The rest of the actions are optional because they might not 153 * be needed, depending on the context in which this macro is called. This is 154 * why this macro is parameterised ; each parameter allows to enable/disable 155 * some actions. 156 * 157 * _init_sctlr: 158 * Whether the macro needs to initialise SCTLR_EL3, including configuring 159 * the endianness of data accesses. 160 * 161 * _warm_boot_mailbox: 162 * Whether the macro needs to detect the type of boot (cold/warm). The 163 * detection is based on the platform entrypoint address : if it is zero 164 * then it is a cold boot, otherwise it is a warm boot. In the latter case, 165 * this macro jumps on the platform entrypoint address. 166 * 167 * _secondary_cold_boot: 168 * Whether the macro needs to identify the CPU that is calling it: primary 169 * CPU or secondary CPU. The primary CPU will be allowed to carry on with 170 * the platform initialisations, while the secondaries will be put in a 171 * platform-specific state in the meantime. 172 * 173 * If the caller knows this macro will only be called by the primary CPU 174 * then this parameter can be defined to 0 to skip this step. 175 * 176 * _init_memory: 177 * Whether the macro needs to initialise the memory. 178 * 179 * _init_c_runtime: 180 * Whether the macro needs to initialise the C runtime environment. 181 * 182 * _exception_vectors: 183 * Address of the exception vectors to program in the VBAR_EL3 register. 184 * 185 * _pie_fixup_size: 186 * Size of memory region to fixup Global Descriptor Table (GDT). 187 * 188 * A non-zero value is expected when firmware needs GDT to be fixed-up. 189 * 190 * ----------------------------------------------------------------------------- 191 */ 192 .macro el3_entrypoint_common \ 193 _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \ 194 _init_memory, _init_c_runtime, _exception_vectors, \ 195 _pie_fixup_size 196 197 .if \_init_sctlr 198 /* ------------------------------------------------------------- 199 * This is the initialisation of SCTLR_EL3 and so must ensure 200 * that all fields are explicitly set rather than relying on hw. 201 * Some fields reset to an IMPLEMENTATION DEFINED value and 202 * others are architecturally UNKNOWN on reset. 203 * 204 * SCTLR.EE: Set the CPU endianness before doing anything that 205 * might involve memory reads or writes. Set to zero to select 206 * Little Endian. 207 * 208 * SCTLR_EL3.WXN: For the EL3 translation regime, this field can 209 * force all memory regions that are writeable to be treated as 210 * XN (Execute-never). Set to zero so that this control has no 211 * effect on memory access permissions. 212 * 213 * SCTLR_EL3.SA: Set to zero to disable Stack Alignment check. 214 * 215 * SCTLR_EL3.A: Set to zero to disable Alignment fault checking. 216 * 217 * SCTLR.DSSBS: Set to zero to disable speculation store bypass 218 * safe behaviour upon exception entry to EL3. 219 * ------------------------------------------------------------- 220 */ 221 mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \ 222 | SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT)) 223#if ENABLE_FEAT_RAS 224 /* If FEAT_RAS is present assume FEAT_IESB is also present */ 225 orr x0, x0, #SCTLR_IESB_BIT 226#endif 227 msr sctlr_el3, x0 228 isb 229 .endif /* _init_sctlr */ 230 231 .if \_warm_boot_mailbox 232 /* ------------------------------------------------------------- 233 * This code will be executed for both warm and cold resets. 234 * Now is the time to distinguish between the two. 235 * Query the platform entrypoint address and if it is not zero 236 * then it means it is a warm boot so jump to this address. 237 * ------------------------------------------------------------- 238 */ 239 bl plat_get_my_entrypoint 240 cbz x0, do_cold_boot 241 br x0 242 243 do_cold_boot: 244 .endif /* _warm_boot_mailbox */ 245 246 .if \_pie_fixup_size 247#if ENABLE_PIE 248 /* 249 * ------------------------------------------------------------ 250 * If PIE is enabled fixup the Global descriptor Table only 251 * once during primary core cold boot path. 252 * 253 * Compile time base address, required for fixup, is calculated 254 * using "pie_fixup" label present within first page. 255 * ------------------------------------------------------------ 256 */ 257 pie_fixup: 258 ldr x0, =pie_fixup 259 and x0, x0, #~(PAGE_SIZE_MASK) 260 mov_imm x1, \_pie_fixup_size 261 add x1, x1, x0 262 bl fixup_gdt_reloc 263#endif /* ENABLE_PIE */ 264 .endif /* _pie_fixup_size */ 265 266 /* --------------------------------------------------------------------- 267 * Set the exception vectors. 268 * --------------------------------------------------------------------- 269 */ 270 adr x0, \_exception_vectors 271 msr vbar_el3, x0 272 isb 273 274#if !(defined(IMAGE_BL2) && ENABLE_RME) 275 /* --------------------------------------------------------------------- 276 * It is a cold boot. 277 * Perform any processor specific actions upon reset e.g. cache, TLB 278 * invalidations etc. 279 * --------------------------------------------------------------------- 280 */ 281 bl reset_handler 282#endif 283 284 el3_arch_init_common 285 286 .if \_secondary_cold_boot 287 /* ------------------------------------------------------------- 288 * Check if this is a primary or secondary CPU cold boot. 289 * The primary CPU will set up the platform while the 290 * secondaries are placed in a platform-specific state until the 291 * primary CPU performs the necessary actions to bring them out 292 * of that state and allows entry into the OS. 293 * ------------------------------------------------------------- 294 */ 295 bl plat_is_my_cpu_primary 296 cbnz w0, do_primary_cold_boot 297 298 /* This is a cold boot on a secondary CPU */ 299 bl plat_secondary_cold_boot_setup 300 /* plat_secondary_cold_boot_setup() is not supposed to return */ 301 bl el3_panic 302 303 do_primary_cold_boot: 304 .endif /* _secondary_cold_boot */ 305 306 /* --------------------------------------------------------------------- 307 * Initialize memory now. Secondary CPU initialization won't get to this 308 * point. 309 * --------------------------------------------------------------------- 310 */ 311 312 .if \_init_memory 313 bl platform_mem_init 314 .endif /* _init_memory */ 315 316 /* --------------------------------------------------------------------- 317 * Init C runtime environment: 318 * - Zero-initialise the NOBITS sections. There are 2 of them: 319 * - the .bss section; 320 * - the coherent memory section (if any). 321 * - Relocate the data section from ROM to RAM, if required. 322 * --------------------------------------------------------------------- 323 */ 324 .if \_init_c_runtime 325#if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && \ 326 ((RESET_TO_BL2 && BL2_INV_DCACHE) || ENABLE_RME)) 327 /* ------------------------------------------------------------- 328 * Invalidate the RW memory used by the BL31 image. This 329 * includes the data and NOBITS sections. This is done to 330 * safeguard against possible corruption of this memory by 331 * dirty cache lines in a system cache as a result of use by 332 * an earlier boot loader stage. If PIE is enabled however, 333 * RO sections including the GOT may be modified during 334 * pie fixup. Therefore, to be on the safe side, invalidate 335 * the entire image region if PIE is enabled. 336 * ------------------------------------------------------------- 337 */ 338#if ENABLE_PIE 339#if SEPARATE_CODE_AND_RODATA 340 adrp x0, __TEXT_START__ 341 add x0, x0, :lo12:__TEXT_START__ 342#else 343 adrp x0, __RO_START__ 344 add x0, x0, :lo12:__RO_START__ 345#endif /* SEPARATE_CODE_AND_RODATA */ 346#else 347 adrp x0, __RW_START__ 348 add x0, x0, :lo12:__RW_START__ 349#endif /* ENABLE_PIE */ 350 adrp x1, __RW_END__ 351 add x1, x1, :lo12:__RW_END__ 352 sub x1, x1, x0 353 bl inv_dcache_range 354#if defined(IMAGE_BL31) && SEPARATE_NOBITS_REGION 355 adrp x0, __NOBITS_START__ 356 add x0, x0, :lo12:__NOBITS_START__ 357 adrp x1, __NOBITS_END__ 358 add x1, x1, :lo12:__NOBITS_END__ 359 sub x1, x1, x0 360 bl inv_dcache_range 361#endif 362#if defined(IMAGE_BL2) && SEPARATE_BL2_NOLOAD_REGION 363 adrp x0, __BL2_NOLOAD_START__ 364 add x0, x0, :lo12:__BL2_NOLOAD_START__ 365 adrp x1, __BL2_NOLOAD_END__ 366 add x1, x1, :lo12:__BL2_NOLOAD_END__ 367 sub x1, x1, x0 368 bl inv_dcache_range 369#endif 370#endif 371 adrp x0, __BSS_START__ 372 add x0, x0, :lo12:__BSS_START__ 373 374 adrp x1, __BSS_END__ 375 add x1, x1, :lo12:__BSS_END__ 376 sub x1, x1, x0 377 bl zeromem 378 379#if USE_COHERENT_MEM 380 adrp x0, __COHERENT_RAM_START__ 381 add x0, x0, :lo12:__COHERENT_RAM_START__ 382 adrp x1, __COHERENT_RAM_END_UNALIGNED__ 383 add x1, x1, :lo12: __COHERENT_RAM_END_UNALIGNED__ 384 sub x1, x1, x0 385 bl zeromem 386#endif 387 388#if defined(IMAGE_BL1) || \ 389 (defined(IMAGE_BL2) && RESET_TO_BL2 && BL2_IN_XIP_MEM) 390 adrp x0, __DATA_RAM_START__ 391 add x0, x0, :lo12:__DATA_RAM_START__ 392 adrp x1, __DATA_ROM_START__ 393 add x1, x1, :lo12:__DATA_ROM_START__ 394 adrp x2, __DATA_RAM_END__ 395 add x2, x2, :lo12:__DATA_RAM_END__ 396 sub x2, x2, x0 397 bl memcpy16 398#endif 399 .endif /* _init_c_runtime */ 400 401 /* --------------------------------------------------------------------- 402 * Use SP_EL0 for the C runtime stack. 403 * --------------------------------------------------------------------- 404 */ 405 msr spsel, #0 406 407 /* --------------------------------------------------------------------- 408 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when 409 * the MMU is enabled. There is no risk of reading stale stack memory 410 * after enabling the MMU as only the primary CPU is running at the 411 * moment. 412 * --------------------------------------------------------------------- 413 */ 414 bl plat_set_my_stack 415 416#if STACK_PROTECTOR_ENABLED 417 .if \_init_c_runtime 418 bl update_stack_protector_canary 419 .endif /* _init_c_runtime */ 420#endif 421 .endm 422 423 .macro apply_at_speculative_wa 424#if ERRATA_SPECULATIVE_AT 425 /* 426 * This function expects x30 has been saved. 427 * Also, save x29 which will be used in the called function. 428 */ 429 str x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29] 430 bl save_and_update_ptw_el1_sys_regs 431 ldr x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29] 432#endif 433 .endm 434 435 .macro restore_ptw_el1_sys_regs 436#if ERRATA_SPECULATIVE_AT 437 /* ----------------------------------------------------------- 438 * In case of ERRATA_SPECULATIVE_AT, must follow below order 439 * to ensure that page table walk is not enabled until 440 * restoration of all EL1 system registers. TCR_EL1 register 441 * should be updated at the end which restores previous page 442 * table walk setting of stage1 i.e.(TCR_EL1.EPDx) bits. ISB 443 * ensures that CPU does below steps in order. 444 * 445 * 1. Ensure all other system registers are written before 446 * updating SCTLR_EL1 using ISB. 447 * 2. Restore SCTLR_EL1 register. 448 * 3. Ensure SCTLR_EL1 written successfully using ISB. 449 * 4. Restore TCR_EL1 register. 450 * ----------------------------------------------------------- 451 */ 452 isb 453 ldp x28, x29, [sp, #CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1] 454 msr sctlr_el1, x28 455 isb 456 msr tcr_el1, x29 457#endif 458 .endm 459 460/* ----------------------------------------------------------------- 461 * The below macro reads SCR_EL3 from the context structure to 462 * determine the security state of the context upon ERET. 463 * ------------------------------------------------------------------ 464 */ 465 .macro get_security_state _ret:req, _scr_reg:req 466 ubfx \_ret, \_scr_reg, #SCR_NSE_SHIFT, #1 467 cmp \_ret, #1 468 beq realm_state 469 bfi \_ret, \_scr_reg, #0, #1 470 b end 471 realm_state: 472 mov \_ret, #2 473 end: 474 .endm 475 476#endif /* EL3_COMMON_MACROS_S */ 477