1/* 2 * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <platform_def.h> 8 9#include <arch.h> 10#include <common/bl_common.h> 11#include <el3_common_macros.S> 12#include <lib/pmf/aarch64/pmf_asm_macros.S> 13#include <lib/runtime_instr.h> 14#include <lib/xlat_tables/xlat_mmu_helpers.h> 15 16 .globl bl31_entrypoint 17 .globl bl31_warm_entrypoint 18 19 /* ----------------------------------------------------- 20 * bl31_entrypoint() is the cold boot entrypoint, 21 * executed only by the primary cpu. 22 * ----------------------------------------------------- 23 */ 24 25func bl31_entrypoint 26 /* --------------------------------------------------------------- 27 * Stash the previous bootloader arguments x0 - x3 for later use. 28 * --------------------------------------------------------------- 29 */ 30 mov x20, x0 31 mov x21, x1 32 mov x22, x2 33 mov x23, x3 34 35#if !RESET_TO_BL31 36 /* --------------------------------------------------------------------- 37 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches 38 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot 39 * and primary/secondary CPU logic should not be executed in this case. 40 * 41 * Also, assume that the previous bootloader has already initialised the 42 * SCTLR_EL3, including the endianness, and has initialised the memory. 43 * --------------------------------------------------------------------- 44 */ 45 el3_entrypoint_common \ 46 _init_sctlr=0 \ 47 _warm_boot_mailbox=0 \ 48 _secondary_cold_boot=0 \ 49 _init_memory=0 \ 50 _init_c_runtime=1 \ 51 _exception_vectors=runtime_exceptions \ 52 _pie_fixup_size=BL31_LIMIT - BL31_BASE 53#else 54 55 /* --------------------------------------------------------------------- 56 * For RESET_TO_BL31 systems which have a programmable reset address, 57 * bl31_entrypoint() is executed only on the cold boot path so we can 58 * skip the warm boot mailbox mechanism. 59 * --------------------------------------------------------------------- 60 */ 61 el3_entrypoint_common \ 62 _init_sctlr=1 \ 63 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \ 64 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \ 65 _init_memory=1 \ 66 _init_c_runtime=1 \ 67 _exception_vectors=runtime_exceptions \ 68 _pie_fixup_size=BL31_LIMIT - BL31_BASE 69#endif /* RESET_TO_BL31 */ 70 71 /* -------------------------------------------------------------------- 72 * Perform BL31 setup 73 * -------------------------------------------------------------------- 74 */ 75 mov x0, x20 76 mov x1, x21 77 mov x2, x22 78 mov x3, x23 79 bl bl31_setup 80 81#if ENABLE_PAUTH 82 /* -------------------------------------------------------------------- 83 * Program APIAKey_EL1 and enable pointer authentication 84 * -------------------------------------------------------------------- 85 */ 86 bl pauth_init_enable_el3 87#endif /* ENABLE_PAUTH */ 88 89 /* -------------------------------------------------------------------- 90 * Jump to main function 91 * -------------------------------------------------------------------- 92 */ 93 bl bl31_main 94 95 /* -------------------------------------------------------------------- 96 * Clean the .data & .bss sections to main memory. This ensures 97 * that any global data which was initialised by the primary CPU 98 * is visible to secondary CPUs before they enable their data 99 * caches and participate in coherency. 100 * -------------------------------------------------------------------- 101 */ 102 adrp x0, __DATA_START__ 103 add x0, x0, :lo12:__DATA_START__ 104 adrp x1, __DATA_END__ 105 add x1, x1, :lo12:__DATA_END__ 106 sub x1, x1, x0 107 bl clean_dcache_range 108 109 adrp x0, __BSS_START__ 110 add x0, x0, :lo12:__BSS_START__ 111 adrp x1, __BSS_END__ 112 add x1, x1, :lo12:__BSS_END__ 113 sub x1, x1, x0 114 bl clean_dcache_range 115 116 b el3_exit 117endfunc bl31_entrypoint 118 119 /* -------------------------------------------------------------------- 120 * This CPU has been physically powered up. It is either resuming from 121 * suspend or has simply been turned on. In both cases, call the BL31 122 * warmboot entrypoint 123 * -------------------------------------------------------------------- 124 */ 125func bl31_warm_entrypoint 126#if ENABLE_RUNTIME_INSTRUMENTATION 127 128 /* 129 * This timestamp update happens with cache off. The next 130 * timestamp collection will need to do cache maintenance prior 131 * to timestamp update. 132 */ 133 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR 134 mrs x1, cntpct_el0 135 str x1, [x0] 136#endif 137 138 /* 139 * On the warm boot path, most of the EL3 initialisations performed by 140 * 'el3_entrypoint_common' must be skipped: 141 * 142 * - Only when the platform bypasses the BL1/BL31 entrypoint by 143 * programming the reset address do we need to initialise SCTLR_EL3. 144 * In other cases, we assume this has been taken care by the 145 * entrypoint code. 146 * 147 * - No need to determine the type of boot, we know it is a warm boot. 148 * 149 * - Do not try to distinguish between primary and secondary CPUs, this 150 * notion only exists for a cold boot. 151 * 152 * - No need to initialise the memory or the C runtime environment, 153 * it has been done once and for all on the cold boot path. 154 */ 155 el3_entrypoint_common \ 156 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \ 157 _warm_boot_mailbox=0 \ 158 _secondary_cold_boot=0 \ 159 _init_memory=0 \ 160 _init_c_runtime=0 \ 161 _exception_vectors=runtime_exceptions \ 162 _pie_fixup_size=0 163 164 /* 165 * We're about to enable MMU and participate in PSCI state coordination. 166 * 167 * The PSCI implementation invokes platform routines that enable CPUs to 168 * participate in coherency. On a system where CPUs are not 169 * cache-coherent without appropriate platform specific programming, 170 * having caches enabled until such time might lead to coherency issues 171 * (resulting from stale data getting speculatively fetched, among 172 * others). Therefore we keep data caches disabled even after enabling 173 * the MMU for such platforms. 174 * 175 * On systems with hardware-assisted coherency, or on single cluster 176 * platforms, such platform specific programming is not required to 177 * enter coherency (as CPUs already are); and there's no reason to have 178 * caches disabled either. 179 */ 180#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY 181 mov x0, xzr 182#else 183 mov x0, #DISABLE_DCACHE 184#endif 185 bl bl31_plat_enable_mmu 186 187#if ENABLE_RME 188 /* 189 * At warm boot GPT data structures have already been initialized in RAM 190 * but the sysregs for this CPU need to be initialized. Note that the GPT 191 * accesses are controlled attributes in GPCCR and do not depend on the 192 * SCR_EL3.C bit. 193 */ 194 bl gpt_enable 195 cbz x0, 1f 196 no_ret plat_panic_handler 1971: 198#endif 199 200#if ENABLE_PAUTH 201 /* -------------------------------------------------------------------- 202 * Program APIAKey_EL1 and enable pointer authentication 203 * -------------------------------------------------------------------- 204 */ 205 bl pauth_init_enable_el3 206#endif /* ENABLE_PAUTH */ 207 208 bl psci_warmboot_entrypoint 209 210#if ENABLE_RUNTIME_INSTRUMENTATION 211 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI 212 mov x19, x0 213 214 /* 215 * Invalidate before updating timestamp to ensure previous timestamp 216 * updates on the same cache line with caches disabled are properly 217 * seen by the same core. Without the cache invalidate, the core might 218 * write into a stale cache line. 219 */ 220 mov x1, #PMF_TS_SIZE 221 mov x20, x30 222 bl inv_dcache_range 223 mov x30, x20 224 225 mrs x0, cntpct_el0 226 str x0, [x19] 227#endif 228 b el3_exit 229endfunc bl31_warm_entrypoint 230