xref: /aosp_15_r20/external/tensorflow/tensorflow/lite/kernels/dequantize.h (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_KERNELS_DEQUANTIZE_H_
16 #define TENSORFLOW_LITE_KERNELS_DEQUANTIZE_H_
17 
18 #include <stdint.h>
19 
20 #include "Eigen/Core"
21 #include "tensorflow/lite/c/common.h"
22 #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
23 #include "tensorflow/lite/kernels/internal/reference/dequantize.h"
24 #include "tensorflow/lite/kernels/internal/reference/integer_ops/dequantize.h"
25 #include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
26 #include "tensorflow/lite/kernels/internal/tensor.h"
27 #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
28 #include "tensorflow/lite/kernels/internal/types.h"
29 
30 namespace tflite {
31 namespace ops {
32 namespace builtin {
33 namespace dequantize {
34 
35 // This file has two implementation of Dequantize.
36 enum KernelType {
37   kReference,
38   kGenericOptimized,
39 };
40 
IsQuantizedPerChannel(const TfLiteTensor * input)41 inline bool IsQuantizedPerChannel(const TfLiteTensor* input) {
42   if (input->quantization.type == kTfLiteAffineQuantization &&
43       input->quantization.params) {
44     auto* quant_params =
45         reinterpret_cast<TfLiteAffineQuantization*>(input->quantization.params);
46     return (quant_params->scale && quant_params->scale->size > 1);
47   }
48   return false;
49 }
50 
PerChannelDequantizeImpl(TfLiteContext * context,TfLiteNode * node,const TfLiteTensor * input,TfLiteTensor * output)51 inline TfLiteStatus PerChannelDequantizeImpl(TfLiteContext* context,
52                                              TfLiteNode* node,
53                                              const TfLiteTensor* input,
54                                              TfLiteTensor* output) {
55   const auto* quantization_params =
56       reinterpret_cast<const TfLiteAffineQuantization*>(
57           input->quantization.params);
58   PerChannelDequantizationParams per_channel_op_params;
59   per_channel_op_params.quantized_dimension =
60       quantization_params->quantized_dimension;
61   per_channel_op_params.scale = quantization_params->scale->data;
62   per_channel_op_params.zero_point = quantization_params->zero_point->data;
63   switch (input->type) {
64     case kTfLiteUInt8:
65       reference_ops::PerChannelDequantize<uint8_t>(
66           per_channel_op_params, GetTensorShape(input),
67           GetTensorData<uint8_t>(input), GetTensorShape(output),
68           GetTensorData<float>(output));
69       break;
70     case kTfLiteInt8:
71       reference_ops::PerChannelDequantize<int8_t>(
72           per_channel_op_params, GetTensorShape(input),
73           GetTensorData<int8_t>(input), GetTensorShape(output),
74           GetTensorData<float>(output));
75       break;
76     default:
77       TF_LITE_KERNEL_LOG(context, "Type %d not supported for per-channel.",
78                          input->type);
79       return kTfLiteError;
80   }
81   return kTfLiteOk;
82 }
83 
84 template <KernelType kernel_type>
DequantizeImpl(TfLiteContext * context,TfLiteNode * node,const TfLiteTensor * input,TfLiteTensor * output)85 TfLiteStatus DequantizeImpl(TfLiteContext* context, TfLiteNode* node,
86                             const TfLiteTensor* input, TfLiteTensor* output) {
87   if (IsQuantizedPerChannel(input)) {
88     return PerChannelDequantizeImpl(context, node, input, output);
89   }
90   DequantizationParams op_params;
91   op_params.zero_point = input->params.zero_point;
92   op_params.scale = input->params.scale;
93   switch (input->type) {
94     case kTfLiteUInt8:
95       if (kernel_type == kReference) {
96         reference_ops::Dequantize(
97             op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
98             GetTensorShape(output), GetTensorData<float>(output));
99       } else {
100         optimized_ops::Dequantize(
101             op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
102             GetTensorShape(output), GetTensorData<float>(output));
103       }
104       break;
105     case kTfLiteInt8:
106       if (kernel_type == kReference) {
107         reference_integer_ops::Dequantize<int8_t>(
108             op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
109             GetTensorShape(output), GetTensorData<float>(output));
110       } else {
111         optimized_ops::Dequantize(
112             op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
113             GetTensorShape(output), GetTensorData<float>(output));
114       }
115       break;
116     case kTfLiteInt16:
117       if (kernel_type == kReference) {
118         reference_integer_ops::Dequantize<int16_t>(
119             op_params, GetTensorShape(input), GetTensorData<int16_t>(input),
120             GetTensorShape(output), GetTensorData<float>(output));
121       } else {
122         optimized_ops::Dequantize(
123             op_params, GetTensorShape(input), GetTensorData<int16_t>(input),
124             GetTensorShape(output), GetTensorData<float>(output));
125       }
126       break;
127     case kTfLiteFloat16: {
128       const Eigen::half* half_data = reinterpret_cast<const Eigen::half*>(
129           GetTensorData<TfLiteFloat16>(input));
130       reference_ops::Dequantize(GetTensorShape(input), half_data,
131                                 GetTensorShape(output),
132                                 GetTensorData<float>(output));
133       break;
134     }
135     default:
136       TF_LITE_KERNEL_LOG(context, "Type %d not supported.", input->type);
137       return kTfLiteError;
138   }
139 
140   return kTfLiteOk;
141 }
142 
143 }  // namespace dequantize
144 }  // namespace builtin
145 }  // namespace ops
146 }  // namespace tflite
147 
148 #endif  // TENSORFLOW_LITE_KERNELS_DEQUANTIZE_H_
149