1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ProfileSummaryInfo.h"
16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
17 #include "llvm/CodeGen/MachineCombinerPattern.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/MachineSizeOpts.h"
24 #include "llvm/CodeGen/MachineTraceMetrics.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSchedule.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "machine-combiner"
38
39 STATISTIC(NumInstCombined, "Number of machineinst combined");
40
41 static cl::opt<unsigned>
42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43 cl::desc("Incremental depth computation will be used for basic "
44 "blocks with more instructions."), cl::init(500));
45
46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47 cl::desc("Dump all substituted intrs"),
48 cl::init(false));
49
50 #ifdef EXPENSIVE_CHECKS
51 static cl::opt<bool> VerifyPatternOrder(
52 "machine-combiner-verify-pattern-order", cl::Hidden,
53 cl::desc(
54 "Verify that the generated patterns are ordered by increasing latency"),
55 cl::init(true));
56 #else
57 static cl::opt<bool> VerifyPatternOrder(
58 "machine-combiner-verify-pattern-order", cl::Hidden,
59 cl::desc(
60 "Verify that the generated patterns are ordered by increasing latency"),
61 cl::init(false));
62 #endif
63
64 namespace {
65 class MachineCombiner : public MachineFunctionPass {
66 const TargetSubtargetInfo *STI;
67 const TargetInstrInfo *TII;
68 const TargetRegisterInfo *TRI;
69 MCSchedModel SchedModel;
70 MachineRegisterInfo *MRI;
71 MachineLoopInfo *MLI; // Current MachineLoopInfo
72 MachineTraceMetrics *Traces;
73 MachineTraceMetrics::Ensemble *MinInstr;
74 MachineBlockFrequencyInfo *MBFI;
75 ProfileSummaryInfo *PSI;
76 RegisterClassInfo RegClassInfo;
77
78 TargetSchedModel TSchedModel;
79
80 /// True if optimizing for code size.
81 bool OptSize;
82
83 public:
84 static char ID;
MachineCombiner()85 MachineCombiner() : MachineFunctionPass(ID) {
86 initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
87 }
88 void getAnalysisUsage(AnalysisUsage &AU) const override;
89 bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const90 StringRef getPassName() const override { return "Machine InstCombiner"; }
91
92 private:
93 bool combineInstructions(MachineBasicBlock *);
94 MachineInstr *getOperandDef(const MachineOperand &MO);
95 bool isTransientMI(const MachineInstr *MI);
96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
98 MachineTraceMetrics::Trace BlockTrace);
99 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
100 MachineTraceMetrics::Trace BlockTrace);
101 bool
102 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
103 MachineTraceMetrics::Trace BlockTrace,
104 SmallVectorImpl<MachineInstr *> &InsInstrs,
105 SmallVectorImpl<MachineInstr *> &DelInstrs,
106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
107 MachineCombinerPattern Pattern, bool SlackIsAccurate);
108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
109 SmallVectorImpl<MachineInstr *> &InsInstrs,
110 SmallVectorImpl<MachineInstr *> &DelInstrs,
111 MachineCombinerPattern Pattern);
112 bool preservesResourceLen(MachineBasicBlock *MBB,
113 MachineTraceMetrics::Trace BlockTrace,
114 SmallVectorImpl<MachineInstr *> &InsInstrs,
115 SmallVectorImpl<MachineInstr *> &DelInstrs);
116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
117 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
118 std::pair<unsigned, unsigned>
119 getLatenciesForInstrSequences(MachineInstr &MI,
120 SmallVectorImpl<MachineInstr *> &InsInstrs,
121 SmallVectorImpl<MachineInstr *> &DelInstrs,
122 MachineTraceMetrics::Trace BlockTrace);
123
124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
125 SmallVector<MachineCombinerPattern, 16> &Patterns);
126 };
127 }
128
129 char MachineCombiner::ID = 0;
130 char &llvm::MachineCombinerID = MachineCombiner::ID;
131
132 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
133 "Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)134 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
135 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
136 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
137 false, false)
138
139 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
140 AU.setPreservesCFG();
141 AU.addPreserved<MachineDominatorTree>();
142 AU.addRequired<MachineLoopInfo>();
143 AU.addPreserved<MachineLoopInfo>();
144 AU.addRequired<MachineTraceMetrics>();
145 AU.addPreserved<MachineTraceMetrics>();
146 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
147 AU.addRequired<ProfileSummaryInfoWrapperPass>();
148 MachineFunctionPass::getAnalysisUsage(AU);
149 }
150
getOperandDef(const MachineOperand & MO)151 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
152 MachineInstr *DefInstr = nullptr;
153 // We need a virtual register definition.
154 if (MO.isReg() && MO.getReg().isVirtual())
155 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
156 // PHI's have no depth etc.
157 if (DefInstr && DefInstr->isPHI())
158 DefInstr = nullptr;
159 return DefInstr;
160 }
161
162 /// Return true if MI is unlikely to generate an actual target instruction.
isTransientMI(const MachineInstr * MI)163 bool MachineCombiner::isTransientMI(const MachineInstr *MI) {
164 if (!MI->isCopy())
165 return MI->isTransient();
166
167 // If MI is a COPY, check if its src and dst registers can be coalesced.
168 Register Dst = MI->getOperand(0).getReg();
169 Register Src = MI->getOperand(1).getReg();
170
171 if (!MI->isFullCopy()) {
172 // If src RC contains super registers of dst RC, it can also be coalesced.
173 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical())
174 return false;
175
176 auto SrcSub = MI->getOperand(1).getSubReg();
177 auto SrcRC = MRI->getRegClass(Src);
178 auto DstRC = MRI->getRegClass(Dst);
179 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr;
180 }
181
182 if (Src.isPhysical() && Dst.isPhysical())
183 return Src == Dst;
184
185 if (Src.isVirtual() && Dst.isVirtual()) {
186 auto SrcRC = MRI->getRegClass(Src);
187 auto DstRC = MRI->getRegClass(Dst);
188 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC);
189 }
190
191 if (Src.isVirtual())
192 std::swap(Src, Dst);
193
194 // Now Src is physical register, Dst is virtual register.
195 auto DstRC = MRI->getRegClass(Dst);
196 return DstRC->contains(Src);
197 }
198
199 /// Computes depth of instructions in vector \InsInstr.
200 ///
201 /// \param InsInstrs is a vector of machine instructions
202 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
203 /// of defining machine instruction in \p InsInstrs
204 /// \param BlockTrace is a trace of machine instructions
205 ///
206 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
207 unsigned
getDepth(SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineTraceMetrics::Trace BlockTrace)208 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
209 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
210 MachineTraceMetrics::Trace BlockTrace) {
211 SmallVector<unsigned, 16> InstrDepth;
212 // For each instruction in the new sequence compute the depth based on the
213 // operands. Use the trace information when possible. For new operands which
214 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
215 for (auto *InstrPtr : InsInstrs) { // for each Use
216 unsigned IDepth = 0;
217 for (const MachineOperand &MO : InstrPtr->operands()) {
218 // Check for virtual register operand.
219 if (!(MO.isReg() && MO.getReg().isVirtual()))
220 continue;
221 if (!MO.isUse())
222 continue;
223 unsigned DepthOp = 0;
224 unsigned LatencyOp = 0;
225 DenseMap<unsigned, unsigned>::iterator II =
226 InstrIdxForVirtReg.find(MO.getReg());
227 if (II != InstrIdxForVirtReg.end()) {
228 // Operand is new virtual register not in trace
229 assert(II->second < InstrDepth.size() && "Bad Index");
230 MachineInstr *DefInstr = InsInstrs[II->second];
231 assert(DefInstr &&
232 "There must be a definition for a new virtual register");
233 DepthOp = InstrDepth[II->second];
234 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
235 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
236 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
237 InstrPtr, UseIdx);
238 } else {
239 MachineInstr *DefInstr = getOperandDef(MO);
240 if (DefInstr) {
241 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
242 if (!isTransientMI(DefInstr))
243 LatencyOp = TSchedModel.computeOperandLatency(
244 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
245 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
246 }
247 }
248 IDepth = std::max(IDepth, DepthOp + LatencyOp);
249 }
250 InstrDepth.push_back(IDepth);
251 }
252 unsigned NewRootIdx = InsInstrs.size() - 1;
253 return InstrDepth[NewRootIdx];
254 }
255
256 /// Computes instruction latency as max of latency of defined operands.
257 ///
258 /// \param Root is a machine instruction that could be replaced by NewRoot.
259 /// It is used to compute a more accurate latency information for NewRoot in
260 /// case there is a dependent instruction in the same trace (\p BlockTrace)
261 /// \param NewRoot is the instruction for which the latency is computed
262 /// \param BlockTrace is a trace of machine instructions
263 ///
264 /// \returns Latency of \p NewRoot
getLatency(MachineInstr * Root,MachineInstr * NewRoot,MachineTraceMetrics::Trace BlockTrace)265 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
266 MachineTraceMetrics::Trace BlockTrace) {
267 // Check each definition in NewRoot and compute the latency
268 unsigned NewRootLatency = 0;
269
270 for (const MachineOperand &MO : NewRoot->operands()) {
271 // Check for virtual register operand.
272 if (!(MO.isReg() && MO.getReg().isVirtual()))
273 continue;
274 if (!MO.isDef())
275 continue;
276 // Get the first instruction that uses MO
277 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
278 RI++;
279 if (RI == MRI->reg_end())
280 continue;
281 MachineInstr *UseMO = RI->getParent();
282 unsigned LatencyOp = 0;
283 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
284 LatencyOp = TSchedModel.computeOperandLatency(
285 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
286 UseMO->findRegisterUseOperandIdx(MO.getReg()));
287 } else {
288 LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
289 }
290 NewRootLatency = std::max(NewRootLatency, LatencyOp);
291 }
292 return NewRootLatency;
293 }
294
295 /// The combiner's goal may differ based on which pattern it is attempting
296 /// to optimize.
297 enum class CombinerObjective {
298 MustReduceDepth, // The data dependency chain must be improved.
299 MustReduceRegisterPressure, // The register pressure must be reduced.
300 Default // The critical path must not be lengthened.
301 };
302
getCombinerObjective(MachineCombinerPattern P)303 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
304 // TODO: If C++ ever gets a real enum class, make this part of the
305 // MachineCombinerPattern class.
306 switch (P) {
307 case MachineCombinerPattern::REASSOC_AX_BY:
308 case MachineCombinerPattern::REASSOC_AX_YB:
309 case MachineCombinerPattern::REASSOC_XA_BY:
310 case MachineCombinerPattern::REASSOC_XA_YB:
311 case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
312 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
313 case MachineCombinerPattern::SUBADD_OP1:
314 case MachineCombinerPattern::SUBADD_OP2:
315 case MachineCombinerPattern::FMADD_AX:
316 case MachineCombinerPattern::FMADD_XA:
317 case MachineCombinerPattern::FMSUB:
318 case MachineCombinerPattern::FNMSUB:
319 return CombinerObjective::MustReduceDepth;
320 case MachineCombinerPattern::REASSOC_XY_BCA:
321 case MachineCombinerPattern::REASSOC_XY_BAC:
322 return CombinerObjective::MustReduceRegisterPressure;
323 default:
324 return CombinerObjective::Default;
325 }
326 }
327
328 /// Estimate the latency of the new and original instruction sequence by summing
329 /// up the latencies of the inserted and deleted instructions. This assumes
330 /// that the inserted and deleted instructions are dependent instruction chains,
331 /// which might not hold in all cases.
getLatenciesForInstrSequences(MachineInstr & MI,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,MachineTraceMetrics::Trace BlockTrace)332 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
333 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
334 SmallVectorImpl<MachineInstr *> &DelInstrs,
335 MachineTraceMetrics::Trace BlockTrace) {
336 assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
337 unsigned NewRootLatency = 0;
338 // NewRoot is the last instruction in the \p InsInstrs vector.
339 MachineInstr *NewRoot = InsInstrs.back();
340 for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
341 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
342 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
343
344 unsigned RootLatency = 0;
345 for (auto *I : DelInstrs)
346 RootLatency += TSchedModel.computeInstrLatency(I);
347
348 return {NewRootLatency, RootLatency};
349 }
350
reduceRegisterPressure(MachineInstr & Root,MachineBasicBlock * MBB,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,MachineCombinerPattern Pattern)351 bool MachineCombiner::reduceRegisterPressure(
352 MachineInstr &Root, MachineBasicBlock *MBB,
353 SmallVectorImpl<MachineInstr *> &InsInstrs,
354 SmallVectorImpl<MachineInstr *> &DelInstrs,
355 MachineCombinerPattern Pattern) {
356 // FIXME: for now, we don't do any check for the register pressure patterns.
357 // We treat them as always profitable. But we can do better if we make
358 // RegPressureTracker class be aware of TIE attribute. Then we can get an
359 // accurate compare of register pressure with DelInstrs or InsInstrs.
360 return true;
361 }
362
363 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
364 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
365 /// sequence to replace the old sequence is that it cannot lengthen the critical
366 /// path. The definition of "improve" may be restricted by specifying that the
367 /// new path improves the data dependency chain (MustReduceDepth).
improvesCriticalPathLen(MachineBasicBlock * MBB,MachineInstr * Root,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineCombinerPattern Pattern,bool SlackIsAccurate)368 bool MachineCombiner::improvesCriticalPathLen(
369 MachineBasicBlock *MBB, MachineInstr *Root,
370 MachineTraceMetrics::Trace BlockTrace,
371 SmallVectorImpl<MachineInstr *> &InsInstrs,
372 SmallVectorImpl<MachineInstr *> &DelInstrs,
373 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
374 MachineCombinerPattern Pattern,
375 bool SlackIsAccurate) {
376 // Get depth and latency of NewRoot and Root.
377 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
378 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
379
380 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
381 << NewRootDepth << "\tRootDepth: " << RootDepth);
382
383 // For a transform such as reassociation, the cost equation is
384 // conservatively calculated so that we must improve the depth (data
385 // dependency cycles) in the critical path to proceed with the transform.
386 // Being conservative also protects against inaccuracies in the underlying
387 // machine trace metrics and CPU models.
388 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
389 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
390 LLVM_DEBUG(NewRootDepth < RootDepth
391 ? dbgs() << "\t and it does it\n"
392 : dbgs() << "\t but it does NOT do it\n");
393 return NewRootDepth < RootDepth;
394 }
395
396 // A more flexible cost calculation for the critical path includes the slack
397 // of the original code sequence. This may allow the transform to proceed
398 // even if the instruction depths (data dependency cycles) become worse.
399
400 // Account for the latency of the inserted and deleted instructions by
401 unsigned NewRootLatency, RootLatency;
402 std::tie(NewRootLatency, RootLatency) =
403 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
404
405 unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
406 unsigned NewCycleCount = NewRootDepth + NewRootLatency;
407 unsigned OldCycleCount =
408 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
409 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
410 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
411 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
412 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
413 << "\n\tRootDepth + RootLatency + RootSlack = "
414 << OldCycleCount;);
415 LLVM_DEBUG(NewCycleCount <= OldCycleCount
416 ? dbgs() << "\n\t It IMPROVES PathLen because"
417 : dbgs() << "\n\t It DOES NOT improve PathLen because");
418 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
419 << ", OldCycleCount = " << OldCycleCount << "\n");
420
421 return NewCycleCount <= OldCycleCount;
422 }
423
424 /// helper routine to convert instructions into SC
instr2instrSC(SmallVectorImpl<MachineInstr * > & Instrs,SmallVectorImpl<const MCSchedClassDesc * > & InstrsSC)425 void MachineCombiner::instr2instrSC(
426 SmallVectorImpl<MachineInstr *> &Instrs,
427 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
428 for (auto *InstrPtr : Instrs) {
429 unsigned Opc = InstrPtr->getOpcode();
430 unsigned Idx = TII->get(Opc).getSchedClass();
431 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
432 InstrsSC.push_back(SC);
433 }
434 }
435
436 /// True when the new instructions do not increase resource length
preservesResourceLen(MachineBasicBlock * MBB,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs)437 bool MachineCombiner::preservesResourceLen(
438 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
439 SmallVectorImpl<MachineInstr *> &InsInstrs,
440 SmallVectorImpl<MachineInstr *> &DelInstrs) {
441 if (!TSchedModel.hasInstrSchedModel())
442 return true;
443
444 // Compute current resource length
445
446 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
447 SmallVector <const MachineBasicBlock *, 1> MBBarr;
448 MBBarr.push_back(MBB);
449 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
450
451 // Deal with SC rather than Instructions.
452 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
453 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
454
455 instr2instrSC(InsInstrs, InsInstrsSC);
456 instr2instrSC(DelInstrs, DelInstrsSC);
457
458 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC};
459 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC};
460
461 // Compute new resource length.
462 unsigned ResLenAfterCombine =
463 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
464
465 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
466 << ResLenBeforeCombine
467 << " and after: " << ResLenAfterCombine << "\n";);
468 LLVM_DEBUG(
469 ResLenAfterCombine <=
470 ResLenBeforeCombine + TII->getExtendResourceLenLimit()
471 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
472 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
473 "Length\n");
474
475 return ResLenAfterCombine <=
476 ResLenBeforeCombine + TII->getExtendResourceLenLimit();
477 }
478
479 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
480 /// depths if requested.
481 ///
482 /// \param MBB basic block to insert instructions in
483 /// \param MI current machine instruction
484 /// \param InsInstrs new instructions to insert in \p MBB
485 /// \param DelInstrs instruction to delete from \p MBB
486 /// \param MinInstr is a pointer to the machine trace information
487 /// \param RegUnits set of live registers, needed to compute instruction depths
488 /// \param TII is target instruction info, used to call target hook
489 /// \param Pattern is used to call target hook finalizeInsInstrs
490 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
491 /// otherwise invalidate the trace
insertDeleteInstructions(MachineBasicBlock * MBB,MachineInstr & MI,SmallVector<MachineInstr *,16> InsInstrs,SmallVector<MachineInstr *,16> DelInstrs,MachineTraceMetrics::Ensemble * MinInstr,SparseSet<LiveRegUnit> & RegUnits,const TargetInstrInfo * TII,MachineCombinerPattern Pattern,bool IncrementalUpdate)492 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
493 SmallVector<MachineInstr *, 16> InsInstrs,
494 SmallVector<MachineInstr *, 16> DelInstrs,
495 MachineTraceMetrics::Ensemble *MinInstr,
496 SparseSet<LiveRegUnit> &RegUnits,
497 const TargetInstrInfo *TII,
498 MachineCombinerPattern Pattern,
499 bool IncrementalUpdate) {
500 // If we want to fix up some placeholder for some target, do it now.
501 // We need this because in genAlternativeCodeSequence, we have not decided the
502 // better pattern InsInstrs or DelInstrs, so we don't want generate some
503 // sideeffect to the function. For example we need to delay the constant pool
504 // entry creation here after InsInstrs is selected as better pattern.
505 // Otherwise the constant pool entry created for InsInstrs will not be deleted
506 // even if InsInstrs is not the better pattern.
507 TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
508
509 for (auto *InstrPtr : InsInstrs)
510 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
511
512 for (auto *InstrPtr : DelInstrs) {
513 InstrPtr->eraseFromParent();
514 // Erase all LiveRegs defined by the removed instruction
515 for (auto *I = RegUnits.begin(); I != RegUnits.end();) {
516 if (I->MI == InstrPtr)
517 I = RegUnits.erase(I);
518 else
519 I++;
520 }
521 }
522
523 if (IncrementalUpdate)
524 for (auto *InstrPtr : InsInstrs)
525 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
526 else
527 MinInstr->invalidate(MBB);
528
529 NumInstCombined++;
530 }
531
532 // Check that the difference between original and new latency is decreasing for
533 // later patterns. This helps to discover sub-optimal pattern orderings.
verifyPatternOrder(MachineBasicBlock * MBB,MachineInstr & Root,SmallVector<MachineCombinerPattern,16> & Patterns)534 void MachineCombiner::verifyPatternOrder(
535 MachineBasicBlock *MBB, MachineInstr &Root,
536 SmallVector<MachineCombinerPattern, 16> &Patterns) {
537 long PrevLatencyDiff = std::numeric_limits<long>::max();
538 (void)PrevLatencyDiff; // Variable is used in assert only.
539 for (auto P : Patterns) {
540 SmallVector<MachineInstr *, 16> InsInstrs;
541 SmallVector<MachineInstr *, 16> DelInstrs;
542 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
543 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
544 InstrIdxForVirtReg);
545 // Found pattern, but did not generate alternative sequence.
546 // This can happen e.g. when an immediate could not be materialized
547 // in a single instruction.
548 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
549 continue;
550
551 unsigned NewRootLatency, RootLatency;
552 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
553 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
554 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
555 assert(CurrentLatencyDiff <= PrevLatencyDiff &&
556 "Current pattern is better than previous pattern.");
557 PrevLatencyDiff = CurrentLatencyDiff;
558 }
559 }
560
561 /// Substitute a slow code sequence with a faster one by
562 /// evaluating instruction combining pattern.
563 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
564 /// combining based on machine trace metrics. Only combine a sequence of
565 /// instructions when this neither lengthens the critical path nor increases
566 /// resource pressure. When optimizing for codesize always combine when the new
567 /// sequence is shorter.
combineInstructions(MachineBasicBlock * MBB)568 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
569 bool Changed = false;
570 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
571
572 bool IncrementalUpdate = false;
573 auto BlockIter = MBB->begin();
574 decltype(BlockIter) LastUpdate;
575 // Check if the block is in a loop.
576 const MachineLoop *ML = MLI->getLoopFor(MBB);
577 if (!MinInstr)
578 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
579
580 SparseSet<LiveRegUnit> RegUnits;
581 RegUnits.setUniverse(TRI->getNumRegUnits());
582
583 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
584
585 bool DoRegPressureReduce =
586 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
587
588 while (BlockIter != MBB->end()) {
589 auto &MI = *BlockIter++;
590 SmallVector<MachineCombinerPattern, 16> Patterns;
591 // The motivating example is:
592 //
593 // MUL Other MUL_op1 MUL_op2 Other
594 // \ / \ | /
595 // ADD/SUB => MADD/MSUB
596 // (=Root) (=NewRoot)
597
598 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
599 // usually beneficial for code size it unfortunately can hurt performance
600 // when the ADD is on the critical path, but the MUL is not. With the
601 // substitution the MUL becomes part of the critical path (in form of the
602 // MADD) and can lengthen it on architectures where the MADD latency is
603 // longer than the ADD latency.
604 //
605 // For each instruction we check if it can be the root of a combiner
606 // pattern. Then for each pattern the new code sequence in form of MI is
607 // generated and evaluated. When the efficiency criteria (don't lengthen
608 // critical path, don't use more resources) is met the new sequence gets
609 // hooked up into the basic block before the old sequence is removed.
610 //
611 // The algorithm does not try to evaluate all patterns and pick the best.
612 // This is only an artificial restriction though. In practice there is
613 // mostly one pattern, and getMachineCombinerPatterns() can order patterns
614 // based on an internal cost heuristic. If
615 // machine-combiner-verify-pattern-order is enabled, all patterns are
616 // checked to ensure later patterns do not provide better latency savings.
617
618 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
619 continue;
620
621 if (VerifyPatternOrder)
622 verifyPatternOrder(MBB, MI, Patterns);
623
624 for (const auto P : Patterns) {
625 SmallVector<MachineInstr *, 16> InsInstrs;
626 SmallVector<MachineInstr *, 16> DelInstrs;
627 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
628 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
629 InstrIdxForVirtReg);
630 // Found pattern, but did not generate alternative sequence.
631 // This can happen e.g. when an immediate could not be materialized
632 // in a single instruction.
633 if (InsInstrs.empty())
634 continue;
635
636 LLVM_DEBUG(if (dump_intrs) {
637 dbgs() << "\tFor the Pattern (" << (int)P
638 << ") these instructions could be removed\n";
639 for (auto const *InstrPtr : DelInstrs)
640 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
641 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
642 dbgs() << "\tThese instructions could replace the removed ones\n";
643 for (auto const *InstrPtr : InsInstrs)
644 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
645 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
646 });
647
648 if (IncrementalUpdate && LastUpdate != BlockIter) {
649 // Update depths since the last incremental update.
650 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
651 LastUpdate = BlockIter;
652 }
653
654 if (DoRegPressureReduce &&
655 getCombinerObjective(P) ==
656 CombinerObjective::MustReduceRegisterPressure) {
657 if (MBB->size() > inc_threshold) {
658 // Use incremental depth updates for basic blocks above threshold
659 IncrementalUpdate = true;
660 LastUpdate = BlockIter;
661 }
662 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
663 // Replace DelInstrs with InsInstrs.
664 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
665 RegUnits, TII, P, IncrementalUpdate);
666 Changed |= true;
667
668 // Go back to previous instruction as it may have ILP reassociation
669 // opportunity.
670 BlockIter--;
671 break;
672 }
673 }
674
675 if (ML && TII->isThroughputPattern(P)) {
676 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n");
677 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
678 RegUnits, TII, P, IncrementalUpdate);
679 // Eagerly stop after the first pattern fires.
680 Changed = true;
681 break;
682 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) {
683 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize ("
684 << InsInstrs.size() << " < "
685 << DelInstrs.size() << ")\n");
686 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
687 RegUnits, TII, P, IncrementalUpdate);
688 // Eagerly stop after the first pattern fires.
689 Changed = true;
690 break;
691 } else {
692 // For big basic blocks, we only compute the full trace the first time
693 // we hit this. We do not invalidate the trace, but instead update the
694 // instruction depths incrementally.
695 // NOTE: Only the instruction depths up to MI are accurate. All other
696 // trace information is not updated.
697 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
698 Traces->verifyAnalysis();
699 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
700 InstrIdxForVirtReg, P,
701 !IncrementalUpdate) &&
702 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
703 if (MBB->size() > inc_threshold) {
704 // Use incremental depth updates for basic blocks above treshold
705 IncrementalUpdate = true;
706 LastUpdate = BlockIter;
707 }
708
709 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
710 RegUnits, TII, P, IncrementalUpdate);
711
712 // Eagerly stop after the first pattern fires.
713 Changed = true;
714 break;
715 }
716 // Cleanup instructions of the alternative code sequence. There is no
717 // use for them.
718 MachineFunction *MF = MBB->getParent();
719 for (auto *InstrPtr : InsInstrs)
720 MF->deleteMachineInstr(InstrPtr);
721 }
722 InstrIdxForVirtReg.clear();
723 }
724 }
725
726 if (Changed && IncrementalUpdate)
727 Traces->invalidate(MBB);
728 return Changed;
729 }
730
runOnMachineFunction(MachineFunction & MF)731 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
732 STI = &MF.getSubtarget();
733 TII = STI->getInstrInfo();
734 TRI = STI->getRegisterInfo();
735 SchedModel = STI->getSchedModel();
736 TSchedModel.init(STI);
737 MRI = &MF.getRegInfo();
738 MLI = &getAnalysis<MachineLoopInfo>();
739 Traces = &getAnalysis<MachineTraceMetrics>();
740 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
741 MBFI = (PSI && PSI->hasProfileSummary()) ?
742 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
743 nullptr;
744 MinInstr = nullptr;
745 OptSize = MF.getFunction().hasOptSize();
746 RegClassInfo.runOnMachineFunction(MF);
747
748 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
749 if (!TII->useMachineCombiner()) {
750 LLVM_DEBUG(
751 dbgs()
752 << " Skipping pass: Target does not support machine combiner\n");
753 return false;
754 }
755
756 bool Changed = false;
757
758 // Try to combine instructions.
759 for (auto &MBB : MF)
760 Changed |= combineInstructions(&MBB);
761
762 return Changed;
763 }
764