1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75
76 using namespace llvm;
77
78 #define DEBUG_TYPE "block-placement"
79
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83 "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85 "Potential frequency of taking unconditional branches");
86
87 static cl::opt<unsigned> AlignAllBlock(
88 "align-all-blocks",
89 cl::desc("Force the alignment of all blocks in the function in log2 format "
90 "(e.g 4 means align on 16B boundaries)."),
91 cl::init(0), cl::Hidden);
92
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94 "align-all-nofallthru-blocks",
95 cl::desc("Force the alignment of all blocks that have no fall-through "
96 "predecessors (i.e. don't add nops that are executed). In log2 "
97 "format (e.g 4 means align on 16B boundaries)."),
98 cl::init(0), cl::Hidden);
99
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101 "max-bytes-for-alignment",
102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103 "alignment"),
104 cl::init(0), cl::Hidden);
105
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108 "block-placement-exit-block-bias",
109 cl::desc("Block frequency percentage a loop exit block needs "
110 "over the original exit to be considered the new exit."),
111 cl::init(0), cl::Hidden);
112
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117 "loop-to-cold-block-ratio",
118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119 "(frequency of block) is greater than this ratio"),
120 cl::init(5), cl::Hidden);
121
122 static cl::opt<bool> ForceLoopColdBlock(
123 "force-loop-cold-block",
124 cl::desc("Force outlining cold blocks from loops."),
125 cl::init(false), cl::Hidden);
126
127 static cl::opt<bool>
128 PreciseRotationCost("precise-rotation-cost",
129 cl::desc("Model the cost of loop rotation more "
130 "precisely by using profile data."),
131 cl::init(false), cl::Hidden);
132
133 static cl::opt<bool>
134 ForcePreciseRotationCost("force-precise-rotation-cost",
135 cl::desc("Force the use of precise cost "
136 "loop rotation strategy."),
137 cl::init(false), cl::Hidden);
138
139 static cl::opt<unsigned> MisfetchCost(
140 "misfetch-cost",
141 cl::desc("Cost that models the probabilistic risk of an instruction "
142 "misfetch due to a jump comparing to falling through, whose cost "
143 "is zero."),
144 cl::init(1), cl::Hidden);
145
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147 cl::desc("Cost of jump instructions."),
148 cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150 TailDupPlacement("tail-dup-placement",
151 cl::desc("Perform tail duplication during placement. "
152 "Creates more fallthrough opportunites in "
153 "outline branches."),
154 cl::init(true), cl::Hidden);
155
156 static cl::opt<bool>
157 BranchFoldPlacement("branch-fold-placement",
158 cl::desc("Perform branch folding during placement. "
159 "Reduces code size."),
160 cl::init(true), cl::Hidden);
161
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164 "tail-dup-placement-threshold",
165 cl::desc("Instruction cutoff for tail duplication during layout. "
166 "Tail merging during layout is forced to have a threshold "
167 "that won't conflict."), cl::init(2),
168 cl::Hidden);
169
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172 "tail-dup-placement-aggressive-threshold",
173 cl::desc("Instruction cutoff for aggressive tail duplication during "
174 "layout. Used at -O3. Tail merging during layout is forced to "
175 "have a threshold that won't conflict."), cl::init(4),
176 cl::Hidden);
177
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180 "tail-dup-placement-penalty",
181 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182 "Copying can increase fallthrough, but it also increases icache "
183 "pressure. This parameter controls the penalty to account for that. "
184 "Percent as integer."),
185 cl::init(2),
186 cl::Hidden);
187
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190 "tail-dup-profile-percent-threshold",
191 cl::desc("If profile count information is used in tail duplication cost "
192 "model, the gained fall through number from tail duplication "
193 "should be at least this percent of hot count."),
194 cl::init(50), cl::Hidden);
195
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198 "triangle-chain-count",
199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200 "triangle tail duplication heuristic to kick in. 0 to disable."),
201 cl::init(2),
202 cl::Hidden);
203
204 // Use case: When block layout is visualized after MBP pass, the basic blocks
205 // are labeled in layout order; meanwhile blocks could be numbered in a
206 // different order. It's hard to map between the graph and pass output.
207 // With this option on, the basic blocks are renumbered in function layout
208 // order. For debugging only.
209 static cl::opt<bool> RenumberBlocksBeforeView(
210 "renumber-blocks-before-view",
211 cl::desc(
212 "If true, basic blocks are re-numbered before MBP layout is printed "
213 "into a dot graph. Only used when a function is being printed."),
214 cl::init(false), cl::Hidden);
215
216 extern cl::opt<bool> EnableExtTspBlockPlacement;
217 extern cl::opt<bool> ApplyExtTspWithoutProfile;
218
219 namespace llvm {
220 extern cl::opt<unsigned> StaticLikelyProb;
221 extern cl::opt<unsigned> ProfileLikelyProb;
222
223 // Internal option used to control BFI display only after MBP pass.
224 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
225 // -view-block-layout-with-bfi=
226 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
227
228 // Command line option to specify the name of the function for CFG dump
229 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
230 extern cl::opt<std::string> ViewBlockFreqFuncName;
231 } // namespace llvm
232
233 namespace {
234
235 class BlockChain;
236
237 /// Type for our function-wide basic block -> block chain mapping.
238 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
239
240 /// A chain of blocks which will be laid out contiguously.
241 ///
242 /// This is the datastructure representing a chain of consecutive blocks that
243 /// are profitable to layout together in order to maximize fallthrough
244 /// probabilities and code locality. We also can use a block chain to represent
245 /// a sequence of basic blocks which have some external (correctness)
246 /// requirement for sequential layout.
247 ///
248 /// Chains can be built around a single basic block and can be merged to grow
249 /// them. They participate in a block-to-chain mapping, which is updated
250 /// automatically as chains are merged together.
251 class BlockChain {
252 /// The sequence of blocks belonging to this chain.
253 ///
254 /// This is the sequence of blocks for a particular chain. These will be laid
255 /// out in-order within the function.
256 SmallVector<MachineBasicBlock *, 4> Blocks;
257
258 /// A handle to the function-wide basic block to block chain mapping.
259 ///
260 /// This is retained in each block chain to simplify the computation of child
261 /// block chains for SCC-formation and iteration. We store the edges to child
262 /// basic blocks, and map them back to their associated chains using this
263 /// structure.
264 BlockToChainMapType &BlockToChain;
265
266 public:
267 /// Construct a new BlockChain.
268 ///
269 /// This builds a new block chain representing a single basic block in the
270 /// function. It also registers itself as the chain that block participates
271 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)272 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
273 : Blocks(1, BB), BlockToChain(BlockToChain) {
274 assert(BB && "Cannot create a chain with a null basic block");
275 BlockToChain[BB] = this;
276 }
277
278 /// Iterator over blocks within the chain.
279 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
280 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
281
282 /// Beginning of blocks within the chain.
begin()283 iterator begin() { return Blocks.begin(); }
begin() const284 const_iterator begin() const { return Blocks.begin(); }
285
286 /// End of blocks within the chain.
end()287 iterator end() { return Blocks.end(); }
end() const288 const_iterator end() const { return Blocks.end(); }
289
remove(MachineBasicBlock * BB)290 bool remove(MachineBasicBlock* BB) {
291 for(iterator i = begin(); i != end(); ++i) {
292 if (*i == BB) {
293 Blocks.erase(i);
294 return true;
295 }
296 }
297 return false;
298 }
299
300 /// Merge a block chain into this one.
301 ///
302 /// This routine merges a block chain into this one. It takes care of forming
303 /// a contiguous sequence of basic blocks, updating the edge list, and
304 /// updating the block -> chain mapping. It does not free or tear down the
305 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)306 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
307 assert(BB && "Can't merge a null block.");
308 assert(!Blocks.empty() && "Can't merge into an empty chain.");
309
310 // Fast path in case we don't have a chain already.
311 if (!Chain) {
312 assert(!BlockToChain[BB] &&
313 "Passed chain is null, but BB has entry in BlockToChain.");
314 Blocks.push_back(BB);
315 BlockToChain[BB] = this;
316 return;
317 }
318
319 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
320 assert(Chain->begin() != Chain->end());
321
322 // Update the incoming blocks to point to this chain, and add them to the
323 // chain structure.
324 for (MachineBasicBlock *ChainBB : *Chain) {
325 Blocks.push_back(ChainBB);
326 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
327 BlockToChain[ChainBB] = this;
328 }
329 }
330
331 #ifndef NDEBUG
332 /// Dump the blocks in this chain.
dump()333 LLVM_DUMP_METHOD void dump() {
334 for (MachineBasicBlock *MBB : *this)
335 MBB->dump();
336 }
337 #endif // NDEBUG
338
339 /// Count of predecessors of any block within the chain which have not
340 /// yet been scheduled. In general, we will delay scheduling this chain
341 /// until those predecessors are scheduled (or we find a sufficiently good
342 /// reason to override this heuristic.) Note that when forming loop chains,
343 /// blocks outside the loop are ignored and treated as if they were already
344 /// scheduled.
345 ///
346 /// Note: This field is reinitialized multiple times - once for each loop,
347 /// and then once for the function as a whole.
348 unsigned UnscheduledPredecessors = 0;
349 };
350
351 class MachineBlockPlacement : public MachineFunctionPass {
352 /// A type for a block filter set.
353 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
354
355 /// Pair struct containing basic block and taildup profitability
356 struct BlockAndTailDupResult {
357 MachineBasicBlock *BB;
358 bool ShouldTailDup;
359 };
360
361 /// Triple struct containing edge weight and the edge.
362 struct WeightedEdge {
363 BlockFrequency Weight;
364 MachineBasicBlock *Src;
365 MachineBasicBlock *Dest;
366 };
367
368 /// work lists of blocks that are ready to be laid out
369 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
370 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
371
372 /// Edges that have already been computed as optimal.
373 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
374
375 /// Machine Function
376 MachineFunction *F;
377
378 /// A handle to the branch probability pass.
379 const MachineBranchProbabilityInfo *MBPI;
380
381 /// A handle to the function-wide block frequency pass.
382 std::unique_ptr<MBFIWrapper> MBFI;
383
384 /// A handle to the loop info.
385 MachineLoopInfo *MLI;
386
387 /// Preferred loop exit.
388 /// Member variable for convenience. It may be removed by duplication deep
389 /// in the call stack.
390 MachineBasicBlock *PreferredLoopExit;
391
392 /// A handle to the target's instruction info.
393 const TargetInstrInfo *TII;
394
395 /// A handle to the target's lowering info.
396 const TargetLoweringBase *TLI;
397
398 /// A handle to the post dominator tree.
399 MachinePostDominatorTree *MPDT;
400
401 ProfileSummaryInfo *PSI;
402
403 /// Duplicator used to duplicate tails during placement.
404 ///
405 /// Placement decisions can open up new tail duplication opportunities, but
406 /// since tail duplication affects placement decisions of later blocks, it
407 /// must be done inline.
408 TailDuplicator TailDup;
409
410 /// Partial tail duplication threshold.
411 BlockFrequency DupThreshold;
412
413 /// True: use block profile count to compute tail duplication cost.
414 /// False: use block frequency to compute tail duplication cost.
415 bool UseProfileCount;
416
417 /// Allocator and owner of BlockChain structures.
418 ///
419 /// We build BlockChains lazily while processing the loop structure of
420 /// a function. To reduce malloc traffic, we allocate them using this
421 /// slab-like allocator, and destroy them after the pass completes. An
422 /// important guarantee is that this allocator produces stable pointers to
423 /// the chains.
424 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
425
426 /// Function wide BasicBlock to BlockChain mapping.
427 ///
428 /// This mapping allows efficiently moving from any given basic block to the
429 /// BlockChain it participates in, if any. We use it to, among other things,
430 /// allow implicitly defining edges between chains as the existing edges
431 /// between basic blocks.
432 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
433
434 #ifndef NDEBUG
435 /// The set of basic blocks that have terminators that cannot be fully
436 /// analyzed. These basic blocks cannot be re-ordered safely by
437 /// MachineBlockPlacement, and we must preserve physical layout of these
438 /// blocks and their successors through the pass.
439 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
440 #endif
441
442 /// Get block profile count or frequency according to UseProfileCount.
443 /// The return value is used to model tail duplication cost.
getBlockCountOrFrequency(const MachineBasicBlock * BB)444 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
445 if (UseProfileCount) {
446 auto Count = MBFI->getBlockProfileCount(BB);
447 if (Count)
448 return *Count;
449 else
450 return 0;
451 } else
452 return MBFI->getBlockFreq(BB);
453 }
454
455 /// Scale the DupThreshold according to basic block size.
456 BlockFrequency scaleThreshold(MachineBasicBlock *BB);
457 void initDupThreshold();
458
459 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
460 /// if the count goes to 0, add them to the appropriate work list.
461 void markChainSuccessors(
462 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
463 const BlockFilterSet *BlockFilter = nullptr);
464
465 /// Decrease the UnscheduledPredecessors count for a single block, and
466 /// if the count goes to 0, add them to the appropriate work list.
467 void markBlockSuccessors(
468 const BlockChain &Chain, const MachineBasicBlock *BB,
469 const MachineBasicBlock *LoopHeaderBB,
470 const BlockFilterSet *BlockFilter = nullptr);
471
472 BranchProbability
473 collectViableSuccessors(
474 const MachineBasicBlock *BB, const BlockChain &Chain,
475 const BlockFilterSet *BlockFilter,
476 SmallVector<MachineBasicBlock *, 4> &Successors);
477 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
478 BlockFilterSet *BlockFilter);
479 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
480 MachineBasicBlock *BB,
481 BlockFilterSet *BlockFilter);
482 bool repeatedlyTailDuplicateBlock(
483 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
484 const MachineBasicBlock *LoopHeaderBB,
485 BlockChain &Chain, BlockFilterSet *BlockFilter,
486 MachineFunction::iterator &PrevUnplacedBlockIt);
487 bool maybeTailDuplicateBlock(
488 MachineBasicBlock *BB, MachineBasicBlock *LPred,
489 BlockChain &Chain, BlockFilterSet *BlockFilter,
490 MachineFunction::iterator &PrevUnplacedBlockIt,
491 bool &DuplicatedToLPred);
492 bool hasBetterLayoutPredecessor(
493 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
494 const BlockChain &SuccChain, BranchProbability SuccProb,
495 BranchProbability RealSuccProb, const BlockChain &Chain,
496 const BlockFilterSet *BlockFilter);
497 BlockAndTailDupResult selectBestSuccessor(
498 const MachineBasicBlock *BB, const BlockChain &Chain,
499 const BlockFilterSet *BlockFilter);
500 MachineBasicBlock *selectBestCandidateBlock(
501 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
502 MachineBasicBlock *getFirstUnplacedBlock(
503 const BlockChain &PlacedChain,
504 MachineFunction::iterator &PrevUnplacedBlockIt,
505 const BlockFilterSet *BlockFilter);
506
507 /// Add a basic block to the work list if it is appropriate.
508 ///
509 /// If the optional parameter BlockFilter is provided, only MBB
510 /// present in the set will be added to the worklist. If nullptr
511 /// is provided, no filtering occurs.
512 void fillWorkLists(const MachineBasicBlock *MBB,
513 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
514 const BlockFilterSet *BlockFilter);
515
516 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
517 BlockFilterSet *BlockFilter = nullptr);
518 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
519 const MachineBasicBlock *OldTop);
520 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
521 const BlockFilterSet &LoopBlockSet);
522 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
523 const BlockFilterSet &LoopBlockSet);
524 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
525 const MachineBasicBlock *OldTop,
526 const MachineBasicBlock *ExitBB,
527 const BlockFilterSet &LoopBlockSet);
528 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
529 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
530 MachineBasicBlock *findBestLoopTop(
531 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
532 MachineBasicBlock *findBestLoopExit(
533 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
534 BlockFrequency &ExitFreq);
535 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
536 void buildLoopChains(const MachineLoop &L);
537 void rotateLoop(
538 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
539 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
540 void rotateLoopWithProfile(
541 BlockChain &LoopChain, const MachineLoop &L,
542 const BlockFilterSet &LoopBlockSet);
543 void buildCFGChains();
544 void optimizeBranches();
545 void alignBlocks();
546 /// Returns true if a block should be tail-duplicated to increase fallthrough
547 /// opportunities.
548 bool shouldTailDuplicate(MachineBasicBlock *BB);
549 /// Check the edge frequencies to see if tail duplication will increase
550 /// fallthroughs.
551 bool isProfitableToTailDup(
552 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
553 BranchProbability QProb,
554 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
555
556 /// Check for a trellis layout.
557 bool isTrellis(const MachineBasicBlock *BB,
558 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
559 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
560
561 /// Get the best successor given a trellis layout.
562 BlockAndTailDupResult getBestTrellisSuccessor(
563 const MachineBasicBlock *BB,
564 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
565 BranchProbability AdjustedSumProb, const BlockChain &Chain,
566 const BlockFilterSet *BlockFilter);
567
568 /// Get the best pair of non-conflicting edges.
569 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
570 const MachineBasicBlock *BB,
571 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
572
573 /// Returns true if a block can tail duplicate into all unplaced
574 /// predecessors. Filters based on loop.
575 bool canTailDuplicateUnplacedPreds(
576 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
577 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
578
579 /// Find chains of triangles to tail-duplicate where a global analysis works,
580 /// but a local analysis would not find them.
581 void precomputeTriangleChains();
582
583 /// Apply a post-processing step optimizing block placement.
584 void applyExtTsp();
585
586 /// Modify the existing block placement in the function and adjust all jumps.
587 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
588
589 /// Create a single CFG chain from the current block order.
590 void createCFGChainExtTsp();
591
592 public:
593 static char ID; // Pass identification, replacement for typeid
594
MachineBlockPlacement()595 MachineBlockPlacement() : MachineFunctionPass(ID) {
596 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
597 }
598
599 bool runOnMachineFunction(MachineFunction &F) override;
600
allowTailDupPlacement() const601 bool allowTailDupPlacement() const {
602 assert(F);
603 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
604 }
605
getAnalysisUsage(AnalysisUsage & AU) const606 void getAnalysisUsage(AnalysisUsage &AU) const override {
607 AU.addRequired<MachineBranchProbabilityInfo>();
608 AU.addRequired<MachineBlockFrequencyInfo>();
609 if (TailDupPlacement)
610 AU.addRequired<MachinePostDominatorTree>();
611 AU.addRequired<MachineLoopInfo>();
612 AU.addRequired<ProfileSummaryInfoWrapperPass>();
613 AU.addRequired<TargetPassConfig>();
614 MachineFunctionPass::getAnalysisUsage(AU);
615 }
616 };
617
618 } // end anonymous namespace
619
620 char MachineBlockPlacement::ID = 0;
621
622 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
623
624 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
625 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)626 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
627 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
628 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
629 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
630 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
631 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
632 "Branch Probability Basic Block Placement", false, false)
633
634 #ifndef NDEBUG
635 /// Helper to print the name of a MBB.
636 ///
637 /// Only used by debug logging.
638 static std::string getBlockName(const MachineBasicBlock *BB) {
639 std::string Result;
640 raw_string_ostream OS(Result);
641 OS << printMBBReference(*BB);
642 OS << " ('" << BB->getName() << "')";
643 OS.flush();
644 return Result;
645 }
646 #endif
647
648 /// Mark a chain's successors as having one fewer preds.
649 ///
650 /// When a chain is being merged into the "placed" chain, this routine will
651 /// quickly walk the successors of each block in the chain and mark them as
652 /// having one fewer active predecessor. It also adds any successors of this
653 /// chain which reach the zero-predecessor state to the appropriate worklist.
markChainSuccessors(const BlockChain & Chain,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)654 void MachineBlockPlacement::markChainSuccessors(
655 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
656 const BlockFilterSet *BlockFilter) {
657 // Walk all the blocks in this chain, marking their successors as having
658 // a predecessor placed.
659 for (MachineBasicBlock *MBB : Chain) {
660 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
661 }
662 }
663
664 /// Mark a single block's successors as having one fewer preds.
665 ///
666 /// Under normal circumstances, this is only called by markChainSuccessors,
667 /// but if a block that was to be placed is completely tail-duplicated away,
668 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
669 /// for just that block.
markBlockSuccessors(const BlockChain & Chain,const MachineBasicBlock * MBB,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)670 void MachineBlockPlacement::markBlockSuccessors(
671 const BlockChain &Chain, const MachineBasicBlock *MBB,
672 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
673 // Add any successors for which this is the only un-placed in-loop
674 // predecessor to the worklist as a viable candidate for CFG-neutral
675 // placement. No subsequent placement of this block will violate the CFG
676 // shape, so we get to use heuristics to choose a favorable placement.
677 for (MachineBasicBlock *Succ : MBB->successors()) {
678 if (BlockFilter && !BlockFilter->count(Succ))
679 continue;
680 BlockChain &SuccChain = *BlockToChain[Succ];
681 // Disregard edges within a fixed chain, or edges to the loop header.
682 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
683 continue;
684
685 // This is a cross-chain edge that is within the loop, so decrement the
686 // loop predecessor count of the destination chain.
687 if (SuccChain.UnscheduledPredecessors == 0 ||
688 --SuccChain.UnscheduledPredecessors > 0)
689 continue;
690
691 auto *NewBB = *SuccChain.begin();
692 if (NewBB->isEHPad())
693 EHPadWorkList.push_back(NewBB);
694 else
695 BlockWorkList.push_back(NewBB);
696 }
697 }
698
699 /// This helper function collects the set of successors of block
700 /// \p BB that are allowed to be its layout successors, and return
701 /// the total branch probability of edges from \p BB to those
702 /// blocks.
collectViableSuccessors(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter,SmallVector<MachineBasicBlock *,4> & Successors)703 BranchProbability MachineBlockPlacement::collectViableSuccessors(
704 const MachineBasicBlock *BB, const BlockChain &Chain,
705 const BlockFilterSet *BlockFilter,
706 SmallVector<MachineBasicBlock *, 4> &Successors) {
707 // Adjust edge probabilities by excluding edges pointing to blocks that is
708 // either not in BlockFilter or is already in the current chain. Consider the
709 // following CFG:
710 //
711 // --->A
712 // | / \
713 // | B C
714 // | \ / \
715 // ----D E
716 //
717 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
718 // A->C is chosen as a fall-through, D won't be selected as a successor of C
719 // due to CFG constraint (the probability of C->D is not greater than
720 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
721 // when calculating the probability of C->D, D will be selected and we
722 // will get A C D B as the layout of this loop.
723 auto AdjustedSumProb = BranchProbability::getOne();
724 for (MachineBasicBlock *Succ : BB->successors()) {
725 bool SkipSucc = false;
726 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
727 SkipSucc = true;
728 } else {
729 BlockChain *SuccChain = BlockToChain[Succ];
730 if (SuccChain == &Chain) {
731 SkipSucc = true;
732 } else if (Succ != *SuccChain->begin()) {
733 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
734 << " -> Mid chain!\n");
735 continue;
736 }
737 }
738 if (SkipSucc)
739 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
740 else
741 Successors.push_back(Succ);
742 }
743
744 return AdjustedSumProb;
745 }
746
747 /// The helper function returns the branch probability that is adjusted
748 /// or normalized over the new total \p AdjustedSumProb.
749 static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,BranchProbability AdjustedSumProb)750 getAdjustedProbability(BranchProbability OrigProb,
751 BranchProbability AdjustedSumProb) {
752 BranchProbability SuccProb;
753 uint32_t SuccProbN = OrigProb.getNumerator();
754 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
755 if (SuccProbN >= SuccProbD)
756 SuccProb = BranchProbability::getOne();
757 else
758 SuccProb = BranchProbability(SuccProbN, SuccProbD);
759
760 return SuccProb;
761 }
762
763 /// Check if \p BB has exactly the successors in \p Successors.
764 static bool
hasSameSuccessors(MachineBasicBlock & BB,SmallPtrSetImpl<const MachineBasicBlock * > & Successors)765 hasSameSuccessors(MachineBasicBlock &BB,
766 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
767 if (BB.succ_size() != Successors.size())
768 return false;
769 // We don't want to count self-loops
770 if (Successors.count(&BB))
771 return false;
772 for (MachineBasicBlock *Succ : BB.successors())
773 if (!Successors.count(Succ))
774 return false;
775 return true;
776 }
777
778 /// Check if a block should be tail duplicated to increase fallthrough
779 /// opportunities.
780 /// \p BB Block to check.
shouldTailDuplicate(MachineBasicBlock * BB)781 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
782 // Blocks with single successors don't create additional fallthrough
783 // opportunities. Don't duplicate them. TODO: When conditional exits are
784 // analyzable, allow them to be duplicated.
785 bool IsSimple = TailDup.isSimpleBB(BB);
786
787 if (BB->succ_size() == 1)
788 return false;
789 return TailDup.shouldTailDuplicate(IsSimple, *BB);
790 }
791
792 /// Compare 2 BlockFrequency's with a small penalty for \p A.
793 /// In order to be conservative, we apply a X% penalty to account for
794 /// increased icache pressure and static heuristics. For small frequencies
795 /// we use only the numerators to improve accuracy. For simplicity, we assume the
796 /// penalty is less than 100%
797 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
greaterWithBias(BlockFrequency A,BlockFrequency B,uint64_t EntryFreq)798 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
799 uint64_t EntryFreq) {
800 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
801 BlockFrequency Gain = A - B;
802 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
803 }
804
805 /// Check the edge frequencies to see if tail duplication will increase
806 /// fallthroughs. It only makes sense to call this function when
807 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
808 /// always locally profitable if we would have picked \p Succ without
809 /// considering duplication.
isProfitableToTailDup(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,BranchProbability QProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)810 bool MachineBlockPlacement::isProfitableToTailDup(
811 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
812 BranchProbability QProb,
813 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
814 // We need to do a probability calculation to make sure this is profitable.
815 // First: does succ have a successor that post-dominates? This affects the
816 // calculation. The 2 relevant cases are:
817 // BB BB
818 // | \Qout | \Qout
819 // P| C |P C
820 // = C' = C'
821 // | /Qin | /Qin
822 // | / | /
823 // Succ Succ
824 // / \ | \ V
825 // U/ =V |U \
826 // / \ = D
827 // D E | /
828 // | /
829 // |/
830 // PDom
831 // '=' : Branch taken for that CFG edge
832 // In the second case, Placing Succ while duplicating it into C prevents the
833 // fallthrough of Succ into either D or PDom, because they now have C as an
834 // unplaced predecessor
835
836 // Start by figuring out which case we fall into
837 MachineBasicBlock *PDom = nullptr;
838 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
839 // Only scan the relevant successors
840 auto AdjustedSuccSumProb =
841 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
842 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
843 auto BBFreq = MBFI->getBlockFreq(BB);
844 auto SuccFreq = MBFI->getBlockFreq(Succ);
845 BlockFrequency P = BBFreq * PProb;
846 BlockFrequency Qout = BBFreq * QProb;
847 uint64_t EntryFreq = MBFI->getEntryFreq();
848 // If there are no more successors, it is profitable to copy, as it strictly
849 // increases fallthrough.
850 if (SuccSuccs.size() == 0)
851 return greaterWithBias(P, Qout, EntryFreq);
852
853 auto BestSuccSucc = BranchProbability::getZero();
854 // Find the PDom or the best Succ if no PDom exists.
855 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
856 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
857 if (Prob > BestSuccSucc)
858 BestSuccSucc = Prob;
859 if (PDom == nullptr)
860 if (MPDT->dominates(SuccSucc, Succ)) {
861 PDom = SuccSucc;
862 break;
863 }
864 }
865 // For the comparisons, we need to know Succ's best incoming edge that isn't
866 // from BB.
867 auto SuccBestPred = BlockFrequency(0);
868 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
869 if (SuccPred == Succ || SuccPred == BB
870 || BlockToChain[SuccPred] == &Chain
871 || (BlockFilter && !BlockFilter->count(SuccPred)))
872 continue;
873 auto Freq = MBFI->getBlockFreq(SuccPred)
874 * MBPI->getEdgeProbability(SuccPred, Succ);
875 if (Freq > SuccBestPred)
876 SuccBestPred = Freq;
877 }
878 // Qin is Succ's best unplaced incoming edge that isn't BB
879 BlockFrequency Qin = SuccBestPred;
880 // If it doesn't have a post-dominating successor, here is the calculation:
881 // BB BB
882 // | \Qout | \
883 // P| C | =
884 // = C' | C
885 // | /Qin | |
886 // | / | C' (+Succ)
887 // Succ Succ /|
888 // / \ | \/ |
889 // U/ =V | == |
890 // / \ | / \|
891 // D E D E
892 // '=' : Branch taken for that CFG edge
893 // Cost in the first case is: P + V
894 // For this calculation, we always assume P > Qout. If Qout > P
895 // The result of this function will be ignored at the caller.
896 // Let F = SuccFreq - Qin
897 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
898
899 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
900 BranchProbability UProb = BestSuccSucc;
901 BranchProbability VProb = AdjustedSuccSumProb - UProb;
902 BlockFrequency F = SuccFreq - Qin;
903 BlockFrequency V = SuccFreq * VProb;
904 BlockFrequency QinU = std::min(Qin, F) * UProb;
905 BlockFrequency BaseCost = P + V;
906 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
907 return greaterWithBias(BaseCost, DupCost, EntryFreq);
908 }
909 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
910 BranchProbability VProb = AdjustedSuccSumProb - UProb;
911 BlockFrequency U = SuccFreq * UProb;
912 BlockFrequency V = SuccFreq * VProb;
913 BlockFrequency F = SuccFreq - Qin;
914 // If there is a post-dominating successor, here is the calculation:
915 // BB BB BB BB
916 // | \Qout | \ | \Qout | \
917 // |P C | = |P C | =
918 // = C' |P C = C' |P C
919 // | /Qin | | | /Qin | |
920 // | / | C' (+Succ) | / | C' (+Succ)
921 // Succ Succ /| Succ Succ /|
922 // | \ V | \/ | | \ V | \/ |
923 // |U \ |U /\ =? |U = |U /\ |
924 // = D = = =?| | D | = =|
925 // | / |/ D | / |/ D
926 // | / | / | = | /
927 // |/ | / |/ | =
928 // Dom Dom Dom Dom
929 // '=' : Branch taken for that CFG edge
930 // The cost for taken branches in the first case is P + U
931 // Let F = SuccFreq - Qin
932 // The cost in the second case (assuming independence), given the layout:
933 // BB, Succ, (C+Succ), D, Dom or the layout:
934 // BB, Succ, D, Dom, (C+Succ)
935 // is Qout + max(F, Qin) * U + min(F, Qin)
936 // compare P + U vs Qout + P * U + Qin.
937 //
938 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
939 //
940 // For the 3rd case, the cost is P + 2 * V
941 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
942 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
943 if (UProb > AdjustedSuccSumProb / 2 &&
944 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
945 Chain, BlockFilter))
946 // Cases 3 & 4
947 return greaterWithBias(
948 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
949 EntryFreq);
950 // Cases 1 & 2
951 return greaterWithBias((P + U),
952 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
953 std::max(Qin, F) * UProb),
954 EntryFreq);
955 }
956
957 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
958 /// successors form the lower part of a trellis. A successor set S forms the
959 /// lower part of a trellis if all of the predecessors of S are either in S or
960 /// have all of S as successors. We ignore trellises where BB doesn't have 2
961 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
962 /// are very uncommon and complex to compute optimally. Allowing edges within S
963 /// is not strictly a trellis, but the same algorithm works, so we allow it.
isTrellis(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,const BlockChain & Chain,const BlockFilterSet * BlockFilter)964 bool MachineBlockPlacement::isTrellis(
965 const MachineBasicBlock *BB,
966 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
967 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
968 // Technically BB could form a trellis with branching factor higher than 2.
969 // But that's extremely uncommon.
970 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
971 return false;
972
973 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
974 BB->succ_end());
975 // To avoid reviewing the same predecessors twice.
976 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
977
978 for (MachineBasicBlock *Succ : ViableSuccs) {
979 int PredCount = 0;
980 for (auto *SuccPred : Succ->predecessors()) {
981 // Allow triangle successors, but don't count them.
982 if (Successors.count(SuccPred)) {
983 // Make sure that it is actually a triangle.
984 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
985 if (!Successors.count(CheckSucc))
986 return false;
987 continue;
988 }
989 const BlockChain *PredChain = BlockToChain[SuccPred];
990 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
991 PredChain == &Chain || PredChain == BlockToChain[Succ])
992 continue;
993 ++PredCount;
994 // Perform the successor check only once.
995 if (!SeenPreds.insert(SuccPred).second)
996 continue;
997 if (!hasSameSuccessors(*SuccPred, Successors))
998 return false;
999 }
1000 // If one of the successors has only BB as a predecessor, it is not a
1001 // trellis.
1002 if (PredCount < 1)
1003 return false;
1004 }
1005 return true;
1006 }
1007
1008 /// Pick the highest total weight pair of edges that can both be laid out.
1009 /// The edges in \p Edges[0] are assumed to have a different destination than
1010 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1011 /// the individual highest weight edges to the 2 different destinations, or in
1012 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1013 std::pair<MachineBlockPlacement::WeightedEdge,
1014 MachineBlockPlacement::WeightedEdge>
getBestNonConflictingEdges(const MachineBasicBlock * BB,MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge,8>> Edges)1015 MachineBlockPlacement::getBestNonConflictingEdges(
1016 const MachineBasicBlock *BB,
1017 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1018 Edges) {
1019 // Sort the edges, and then for each successor, find the best incoming
1020 // predecessor. If the best incoming predecessors aren't the same,
1021 // then that is clearly the best layout. If there is a conflict, one of the
1022 // successors will have to fallthrough from the second best predecessor. We
1023 // compare which combination is better overall.
1024
1025 // Sort for highest frequency.
1026 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1027
1028 llvm::stable_sort(Edges[0], Cmp);
1029 llvm::stable_sort(Edges[1], Cmp);
1030 auto BestA = Edges[0].begin();
1031 auto BestB = Edges[1].begin();
1032 // Arrange for the correct answer to be in BestA and BestB
1033 // If the 2 best edges don't conflict, the answer is already there.
1034 if (BestA->Src == BestB->Src) {
1035 // Compare the total fallthrough of (Best + Second Best) for both pairs
1036 auto SecondBestA = std::next(BestA);
1037 auto SecondBestB = std::next(BestB);
1038 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1039 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1040 if (BestAScore < BestBScore)
1041 BestA = SecondBestA;
1042 else
1043 BestB = SecondBestB;
1044 }
1045 // Arrange for the BB edge to be in BestA if it exists.
1046 if (BestB->Src == BB)
1047 std::swap(BestA, BestB);
1048 return std::make_pair(*BestA, *BestB);
1049 }
1050
1051 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1052 /// We only handle trellises with 2 successors, so the algorithm is
1053 /// straightforward: Find the best pair of edges that don't conflict. We find
1054 /// the best incoming edge for each successor in the trellis. If those conflict,
1055 /// we consider which of them should be replaced with the second best.
1056 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1057 /// comes from \p BB, it will be in \p BestEdges[0]
1058 MachineBlockPlacement::BlockAndTailDupResult
getBestTrellisSuccessor(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,BranchProbability AdjustedSumProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1059 MachineBlockPlacement::getBestTrellisSuccessor(
1060 const MachineBasicBlock *BB,
1061 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1062 BranchProbability AdjustedSumProb, const BlockChain &Chain,
1063 const BlockFilterSet *BlockFilter) {
1064
1065 BlockAndTailDupResult Result = {nullptr, false};
1066 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1067 BB->succ_end());
1068
1069 // We assume size 2 because it's common. For general n, we would have to do
1070 // the Hungarian algorithm, but it's not worth the complexity because more
1071 // than 2 successors is fairly uncommon, and a trellis even more so.
1072 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1073 return Result;
1074
1075 // Collect the edge frequencies of all edges that form the trellis.
1076 SmallVector<WeightedEdge, 8> Edges[2];
1077 int SuccIndex = 0;
1078 for (auto *Succ : ViableSuccs) {
1079 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1080 // Skip any placed predecessors that are not BB
1081 if (SuccPred != BB)
1082 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1083 BlockToChain[SuccPred] == &Chain ||
1084 BlockToChain[SuccPred] == BlockToChain[Succ])
1085 continue;
1086 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1087 MBPI->getEdgeProbability(SuccPred, Succ);
1088 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1089 }
1090 ++SuccIndex;
1091 }
1092
1093 // Pick the best combination of 2 edges from all the edges in the trellis.
1094 WeightedEdge BestA, BestB;
1095 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1096
1097 if (BestA.Src != BB) {
1098 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1099 // we shouldn't choose any successor. We've already looked and there's a
1100 // better fallthrough edge for all the successors.
1101 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1102 return Result;
1103 }
1104
1105 // Did we pick the triangle edge? If tail-duplication is profitable, do
1106 // that instead. Otherwise merge the triangle edge now while we know it is
1107 // optimal.
1108 if (BestA.Dest == BestB.Src) {
1109 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1110 // would be better.
1111 MachineBasicBlock *Succ1 = BestA.Dest;
1112 MachineBasicBlock *Succ2 = BestB.Dest;
1113 // Check to see if tail-duplication would be profitable.
1114 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1115 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1116 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1117 Chain, BlockFilter)) {
1118 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1119 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1120 dbgs() << " Selected: " << getBlockName(Succ2)
1121 << ", probability: " << Succ2Prob
1122 << " (Tail Duplicate)\n");
1123 Result.BB = Succ2;
1124 Result.ShouldTailDup = true;
1125 return Result;
1126 }
1127 }
1128 // We have already computed the optimal edge for the other side of the
1129 // trellis.
1130 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1131
1132 auto TrellisSucc = BestA.Dest;
1133 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1134 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1135 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1136 << ", probability: " << SuccProb << " (Trellis)\n");
1137 Result.BB = TrellisSucc;
1138 return Result;
1139 }
1140
1141 /// When the option allowTailDupPlacement() is on, this method checks if the
1142 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1143 /// into all of its unplaced, unfiltered predecessors, that are not BB.
canTailDuplicateUnplacedPreds(const MachineBasicBlock * BB,MachineBasicBlock * Succ,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1144 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1145 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1146 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1147 if (!shouldTailDuplicate(Succ))
1148 return false;
1149
1150 // The result of canTailDuplicate.
1151 bool Duplicate = true;
1152 // Number of possible duplication.
1153 unsigned int NumDup = 0;
1154
1155 // For CFG checking.
1156 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1157 BB->succ_end());
1158 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1159 // Make sure all unplaced and unfiltered predecessors can be
1160 // tail-duplicated into.
1161 // Skip any blocks that are already placed or not in this loop.
1162 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1163 || BlockToChain[Pred] == &Chain)
1164 continue;
1165 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1166 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1167 // This will result in a trellis after tail duplication, so we don't
1168 // need to copy Succ into this predecessor. In the presence
1169 // of a trellis tail duplication can continue to be profitable.
1170 // For example:
1171 // A A
1172 // |\ |\
1173 // | \ | \
1174 // | C | C+BB
1175 // | / | |
1176 // |/ | |
1177 // BB => BB |
1178 // |\ |\/|
1179 // | \ |/\|
1180 // | D | D
1181 // | / | /
1182 // |/ |/
1183 // Succ Succ
1184 //
1185 // After BB was duplicated into C, the layout looks like the one on the
1186 // right. BB and C now have the same successors. When considering
1187 // whether Succ can be duplicated into all its unplaced predecessors, we
1188 // ignore C.
1189 // We can do this because C already has a profitable fallthrough, namely
1190 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1191 // duplication and for this test.
1192 //
1193 // This allows trellises to be laid out in 2 separate chains
1194 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1195 // because it allows the creation of 2 fallthrough paths with links
1196 // between them, and we correctly identify the best layout for these
1197 // CFGs. We want to extend trellises that the user created in addition
1198 // to trellises created by tail-duplication, so we just look for the
1199 // CFG.
1200 continue;
1201 Duplicate = false;
1202 continue;
1203 }
1204 NumDup++;
1205 }
1206
1207 // No possible duplication in current filter set.
1208 if (NumDup == 0)
1209 return false;
1210
1211 // If profile information is available, findDuplicateCandidates can do more
1212 // precise benefit analysis.
1213 if (F->getFunction().hasProfileData())
1214 return true;
1215
1216 // This is mainly for function exit BB.
1217 // The integrated tail duplication is really designed for increasing
1218 // fallthrough from predecessors from Succ to its successors. We may need
1219 // other machanism to handle different cases.
1220 if (Succ->succ_empty())
1221 return true;
1222
1223 // Plus the already placed predecessor.
1224 NumDup++;
1225
1226 // If the duplication candidate has more unplaced predecessors than
1227 // successors, the extra duplication can't bring more fallthrough.
1228 //
1229 // Pred1 Pred2 Pred3
1230 // \ | /
1231 // \ | /
1232 // \ | /
1233 // Dup
1234 // / \
1235 // / \
1236 // Succ1 Succ2
1237 //
1238 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1239 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1240 // but the duplication into Pred3 can't increase fallthrough.
1241 //
1242 // A small number of extra duplication may not hurt too much. We need a better
1243 // heuristic to handle it.
1244 if ((NumDup > Succ->succ_size()) || !Duplicate)
1245 return false;
1246
1247 return true;
1248 }
1249
1250 /// Find chains of triangles where we believe it would be profitable to
1251 /// tail-duplicate them all, but a local analysis would not find them.
1252 /// There are 3 ways this can be profitable:
1253 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1254 /// longer chains)
1255 /// 2) The chains are statically correlated. Branch probabilities have a very
1256 /// U-shaped distribution.
1257 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1258 /// If the branches in a chain are likely to be from the same side of the
1259 /// distribution as their predecessor, but are independent at runtime, this
1260 /// transformation is profitable. (Because the cost of being wrong is a small
1261 /// fixed cost, unlike the standard triangle layout where the cost of being
1262 /// wrong scales with the # of triangles.)
1263 /// 3) The chains are dynamically correlated. If the probability that a previous
1264 /// branch was taken positively influences whether the next branch will be
1265 /// taken
1266 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
precomputeTriangleChains()1267 void MachineBlockPlacement::precomputeTriangleChains() {
1268 struct TriangleChain {
1269 std::vector<MachineBasicBlock *> Edges;
1270
1271 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1272 : Edges({src, dst}) {}
1273
1274 void append(MachineBasicBlock *dst) {
1275 assert(getKey()->isSuccessor(dst) &&
1276 "Attempting to append a block that is not a successor.");
1277 Edges.push_back(dst);
1278 }
1279
1280 unsigned count() const { return Edges.size() - 1; }
1281
1282 MachineBasicBlock *getKey() const {
1283 return Edges.back();
1284 }
1285 };
1286
1287 if (TriangleChainCount == 0)
1288 return;
1289
1290 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1291 // Map from last block to the chain that contains it. This allows us to extend
1292 // chains as we find new triangles.
1293 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1294 for (MachineBasicBlock &BB : *F) {
1295 // If BB doesn't have 2 successors, it doesn't start a triangle.
1296 if (BB.succ_size() != 2)
1297 continue;
1298 MachineBasicBlock *PDom = nullptr;
1299 for (MachineBasicBlock *Succ : BB.successors()) {
1300 if (!MPDT->dominates(Succ, &BB))
1301 continue;
1302 PDom = Succ;
1303 break;
1304 }
1305 // If BB doesn't have a post-dominating successor, it doesn't form a
1306 // triangle.
1307 if (PDom == nullptr)
1308 continue;
1309 // If PDom has a hint that it is low probability, skip this triangle.
1310 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1311 continue;
1312 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1313 // we're looking for.
1314 if (!shouldTailDuplicate(PDom))
1315 continue;
1316 bool CanTailDuplicate = true;
1317 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1318 // isn't the kind of triangle we're looking for.
1319 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1320 if (Pred == &BB)
1321 continue;
1322 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1323 CanTailDuplicate = false;
1324 break;
1325 }
1326 }
1327 // If we can't tail-duplicate PDom to its predecessors, then skip this
1328 // triangle.
1329 if (!CanTailDuplicate)
1330 continue;
1331
1332 // Now we have an interesting triangle. Insert it if it's not part of an
1333 // existing chain.
1334 // Note: This cannot be replaced with a call insert() or emplace() because
1335 // the find key is BB, but the insert/emplace key is PDom.
1336 auto Found = TriangleChainMap.find(&BB);
1337 // If it is, remove the chain from the map, grow it, and put it back in the
1338 // map with the end as the new key.
1339 if (Found != TriangleChainMap.end()) {
1340 TriangleChain Chain = std::move(Found->second);
1341 TriangleChainMap.erase(Found);
1342 Chain.append(PDom);
1343 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1344 } else {
1345 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1346 assert(InsertResult.second && "Block seen twice.");
1347 (void)InsertResult;
1348 }
1349 }
1350
1351 // Iterating over a DenseMap is safe here, because the only thing in the body
1352 // of the loop is inserting into another DenseMap (ComputedEdges).
1353 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1354 for (auto &ChainPair : TriangleChainMap) {
1355 TriangleChain &Chain = ChainPair.second;
1356 // Benchmarking has shown that due to branch correlation duplicating 2 or
1357 // more triangles is profitable, despite the calculations assuming
1358 // independence.
1359 if (Chain.count() < TriangleChainCount)
1360 continue;
1361 MachineBasicBlock *dst = Chain.Edges.back();
1362 Chain.Edges.pop_back();
1363 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1364 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1365 << getBlockName(dst)
1366 << " as pre-computed based on triangles.\n");
1367
1368 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1369 assert(InsertResult.second && "Block seen twice.");
1370 (void)InsertResult;
1371
1372 dst = src;
1373 }
1374 }
1375 }
1376
1377 // When profile is not present, return the StaticLikelyProb.
1378 // When profile is available, we need to handle the triangle-shape CFG.
getLayoutSuccessorProbThreshold(const MachineBasicBlock * BB)1379 static BranchProbability getLayoutSuccessorProbThreshold(
1380 const MachineBasicBlock *BB) {
1381 if (!BB->getParent()->getFunction().hasProfileData())
1382 return BranchProbability(StaticLikelyProb, 100);
1383 if (BB->succ_size() == 2) {
1384 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1385 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1386 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1387 /* See case 1 below for the cost analysis. For BB->Succ to
1388 * be taken with smaller cost, the following needs to hold:
1389 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1390 * So the threshold T in the calculation below
1391 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1392 * So T / (1 - T) = 2, Yielding T = 2/3
1393 * Also adding user specified branch bias, we have
1394 * T = (2/3)*(ProfileLikelyProb/50)
1395 * = (2*ProfileLikelyProb)/150)
1396 */
1397 return BranchProbability(2 * ProfileLikelyProb, 150);
1398 }
1399 }
1400 return BranchProbability(ProfileLikelyProb, 100);
1401 }
1402
1403 /// Checks to see if the layout candidate block \p Succ has a better layout
1404 /// predecessor than \c BB. If yes, returns true.
1405 /// \p SuccProb: The probability adjusted for only remaining blocks.
1406 /// Only used for logging
1407 /// \p RealSuccProb: The un-adjusted probability.
1408 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1409 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1410 /// considered
hasBetterLayoutPredecessor(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,const BlockChain & SuccChain,BranchProbability SuccProb,BranchProbability RealSuccProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1411 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1412 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1413 const BlockChain &SuccChain, BranchProbability SuccProb,
1414 BranchProbability RealSuccProb, const BlockChain &Chain,
1415 const BlockFilterSet *BlockFilter) {
1416
1417 // There isn't a better layout when there are no unscheduled predecessors.
1418 if (SuccChain.UnscheduledPredecessors == 0)
1419 return false;
1420
1421 // There are two basic scenarios here:
1422 // -------------------------------------
1423 // Case 1: triangular shape CFG (if-then):
1424 // BB
1425 // | \
1426 // | \
1427 // | Pred
1428 // | /
1429 // Succ
1430 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1431 // set Succ as the layout successor of BB. Picking Succ as BB's
1432 // successor breaks the CFG constraints (FIXME: define these constraints).
1433 // With this layout, Pred BB
1434 // is forced to be outlined, so the overall cost will be cost of the
1435 // branch taken from BB to Pred, plus the cost of back taken branch
1436 // from Pred to Succ, as well as the additional cost associated
1437 // with the needed unconditional jump instruction from Pred To Succ.
1438
1439 // The cost of the topological order layout is the taken branch cost
1440 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1441 // must hold:
1442 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1443 // < freq(BB->Succ) * taken_branch_cost.
1444 // Ignoring unconditional jump cost, we get
1445 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1446 // prob(BB->Succ) > 2 * prob(BB->Pred)
1447 //
1448 // When real profile data is available, we can precisely compute the
1449 // probability threshold that is needed for edge BB->Succ to be considered.
1450 // Without profile data, the heuristic requires the branch bias to be
1451 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1452 // -----------------------------------------------------------------
1453 // Case 2: diamond like CFG (if-then-else):
1454 // S
1455 // / \
1456 // | \
1457 // BB Pred
1458 // \ /
1459 // Succ
1460 // ..
1461 //
1462 // The current block is BB and edge BB->Succ is now being evaluated.
1463 // Note that edge S->BB was previously already selected because
1464 // prob(S->BB) > prob(S->Pred).
1465 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1466 // choose Pred, we will have a topological ordering as shown on the left
1467 // in the picture below. If we choose Succ, we have the solution as shown
1468 // on the right:
1469 //
1470 // topo-order:
1471 //
1472 // S----- ---S
1473 // | | | |
1474 // ---BB | | BB
1475 // | | | |
1476 // | Pred-- | Succ--
1477 // | | | |
1478 // ---Succ ---Pred--
1479 //
1480 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1481 // = freq(S->Pred) + freq(S->BB)
1482 //
1483 // If we have profile data (i.e, branch probabilities can be trusted), the
1484 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1485 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1486 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1487 // means the cost of topological order is greater.
1488 // When profile data is not available, however, we need to be more
1489 // conservative. If the branch prediction is wrong, breaking the topo-order
1490 // will actually yield a layout with large cost. For this reason, we need
1491 // strong biased branch at block S with Prob(S->BB) in order to select
1492 // BB->Succ. This is equivalent to looking the CFG backward with backward
1493 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1494 // profile data).
1495 // --------------------------------------------------------------------------
1496 // Case 3: forked diamond
1497 // S
1498 // / \
1499 // / \
1500 // BB Pred
1501 // | \ / |
1502 // | \ / |
1503 // | X |
1504 // | / \ |
1505 // | / \ |
1506 // S1 S2
1507 //
1508 // The current block is BB and edge BB->S1 is now being evaluated.
1509 // As above S->BB was already selected because
1510 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1511 //
1512 // topo-order:
1513 //
1514 // S-------| ---S
1515 // | | | |
1516 // ---BB | | BB
1517 // | | | |
1518 // | Pred----| | S1----
1519 // | | | |
1520 // --(S1 or S2) ---Pred--
1521 // |
1522 // S2
1523 //
1524 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1525 // + min(freq(Pred->S1), freq(Pred->S2))
1526 // Non-topo-order cost:
1527 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1528 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1529 // is 0. Then the non topo layout is better when
1530 // freq(S->Pred) < freq(BB->S1).
1531 // This is exactly what is checked below.
1532 // Note there are other shapes that apply (Pred may not be a single block,
1533 // but they all fit this general pattern.)
1534 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1535
1536 // Make sure that a hot successor doesn't have a globally more
1537 // important predecessor.
1538 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1539 bool BadCFGConflict = false;
1540
1541 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1542 BlockChain *PredChain = BlockToChain[Pred];
1543 if (Pred == Succ || PredChain == &SuccChain ||
1544 (BlockFilter && !BlockFilter->count(Pred)) ||
1545 PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1546 // This check is redundant except for look ahead. This function is
1547 // called for lookahead by isProfitableToTailDup when BB hasn't been
1548 // placed yet.
1549 (Pred == BB))
1550 continue;
1551 // Do backward checking.
1552 // For all cases above, we need a backward checking to filter out edges that
1553 // are not 'strongly' biased.
1554 // BB Pred
1555 // \ /
1556 // Succ
1557 // We select edge BB->Succ if
1558 // freq(BB->Succ) > freq(Succ) * HotProb
1559 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1560 // HotProb
1561 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1562 // Case 1 is covered too, because the first equation reduces to:
1563 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1564 BlockFrequency PredEdgeFreq =
1565 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1566 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1567 BadCFGConflict = true;
1568 break;
1569 }
1570 }
1571
1572 if (BadCFGConflict) {
1573 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1574 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1575 return true;
1576 }
1577
1578 return false;
1579 }
1580
1581 /// Select the best successor for a block.
1582 ///
1583 /// This looks across all successors of a particular block and attempts to
1584 /// select the "best" one to be the layout successor. It only considers direct
1585 /// successors which also pass the block filter. It will attempt to avoid
1586 /// breaking CFG structure, but cave and break such structures in the case of
1587 /// very hot successor edges.
1588 ///
1589 /// \returns The best successor block found, or null if none are viable, along
1590 /// with a boolean indicating if tail duplication is necessary.
1591 MachineBlockPlacement::BlockAndTailDupResult
selectBestSuccessor(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1592 MachineBlockPlacement::selectBestSuccessor(
1593 const MachineBasicBlock *BB, const BlockChain &Chain,
1594 const BlockFilterSet *BlockFilter) {
1595 const BranchProbability HotProb(StaticLikelyProb, 100);
1596
1597 BlockAndTailDupResult BestSucc = { nullptr, false };
1598 auto BestProb = BranchProbability::getZero();
1599
1600 SmallVector<MachineBasicBlock *, 4> Successors;
1601 auto AdjustedSumProb =
1602 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1603
1604 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1605 << "\n");
1606
1607 // if we already precomputed the best successor for BB, return that if still
1608 // applicable.
1609 auto FoundEdge = ComputedEdges.find(BB);
1610 if (FoundEdge != ComputedEdges.end()) {
1611 MachineBasicBlock *Succ = FoundEdge->second.BB;
1612 ComputedEdges.erase(FoundEdge);
1613 BlockChain *SuccChain = BlockToChain[Succ];
1614 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1615 SuccChain != &Chain && Succ == *SuccChain->begin())
1616 return FoundEdge->second;
1617 }
1618
1619 // if BB is part of a trellis, Use the trellis to determine the optimal
1620 // fallthrough edges
1621 if (isTrellis(BB, Successors, Chain, BlockFilter))
1622 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1623 BlockFilter);
1624
1625 // For blocks with CFG violations, we may be able to lay them out anyway with
1626 // tail-duplication. We keep this vector so we can perform the probability
1627 // calculations the minimum number of times.
1628 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1629 DupCandidates;
1630 for (MachineBasicBlock *Succ : Successors) {
1631 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1632 BranchProbability SuccProb =
1633 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1634
1635 BlockChain &SuccChain = *BlockToChain[Succ];
1636 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1637 // predecessor that yields lower global cost.
1638 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1639 Chain, BlockFilter)) {
1640 // If tail duplication would make Succ profitable, place it.
1641 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1642 DupCandidates.emplace_back(SuccProb, Succ);
1643 continue;
1644 }
1645
1646 LLVM_DEBUG(
1647 dbgs() << " Candidate: " << getBlockName(Succ)
1648 << ", probability: " << SuccProb
1649 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1650 << "\n");
1651
1652 if (BestSucc.BB && BestProb >= SuccProb) {
1653 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1654 continue;
1655 }
1656
1657 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1658 BestSucc.BB = Succ;
1659 BestProb = SuccProb;
1660 }
1661 // Handle the tail duplication candidates in order of decreasing probability.
1662 // Stop at the first one that is profitable. Also stop if they are less
1663 // profitable than BestSucc. Position is important because we preserve it and
1664 // prefer first best match. Here we aren't comparing in order, so we capture
1665 // the position instead.
1666 llvm::stable_sort(DupCandidates,
1667 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1668 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1669 return std::get<0>(L) > std::get<0>(R);
1670 });
1671 for (auto &Tup : DupCandidates) {
1672 BranchProbability DupProb;
1673 MachineBasicBlock *Succ;
1674 std::tie(DupProb, Succ) = Tup;
1675 if (DupProb < BestProb)
1676 break;
1677 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1678 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1679 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1680 << ", probability: " << DupProb
1681 << " (Tail Duplicate)\n");
1682 BestSucc.BB = Succ;
1683 BestSucc.ShouldTailDup = true;
1684 break;
1685 }
1686 }
1687
1688 if (BestSucc.BB)
1689 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1690
1691 return BestSucc;
1692 }
1693
1694 /// Select the best block from a worklist.
1695 ///
1696 /// This looks through the provided worklist as a list of candidate basic
1697 /// blocks and select the most profitable one to place. The definition of
1698 /// profitable only really makes sense in the context of a loop. This returns
1699 /// the most frequently visited block in the worklist, which in the case of
1700 /// a loop, is the one most desirable to be physically close to the rest of the
1701 /// loop body in order to improve i-cache behavior.
1702 ///
1703 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(const BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList)1704 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1705 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1706 // Once we need to walk the worklist looking for a candidate, cleanup the
1707 // worklist of already placed entries.
1708 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1709 // some code complexity) into the loop below.
1710 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1711 return BlockToChain.lookup(BB) == &Chain;
1712 });
1713
1714 if (WorkList.empty())
1715 return nullptr;
1716
1717 bool IsEHPad = WorkList[0]->isEHPad();
1718
1719 MachineBasicBlock *BestBlock = nullptr;
1720 BlockFrequency BestFreq;
1721 for (MachineBasicBlock *MBB : WorkList) {
1722 assert(MBB->isEHPad() == IsEHPad &&
1723 "EHPad mismatch between block and work list.");
1724
1725 BlockChain &SuccChain = *BlockToChain[MBB];
1726 if (&SuccChain == &Chain)
1727 continue;
1728
1729 assert(SuccChain.UnscheduledPredecessors == 0 &&
1730 "Found CFG-violating block");
1731
1732 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1733 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1734 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1735
1736 // For ehpad, we layout the least probable first as to avoid jumping back
1737 // from least probable landingpads to more probable ones.
1738 //
1739 // FIXME: Using probability is probably (!) not the best way to achieve
1740 // this. We should probably have a more principled approach to layout
1741 // cleanup code.
1742 //
1743 // The goal is to get:
1744 //
1745 // +--------------------------+
1746 // | V
1747 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1748 //
1749 // Rather than:
1750 //
1751 // +-------------------------------------+
1752 // V |
1753 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1754 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1755 continue;
1756
1757 BestBlock = MBB;
1758 BestFreq = CandidateFreq;
1759 }
1760
1761 return BestBlock;
1762 }
1763
1764 /// Retrieve the first unplaced basic block.
1765 ///
1766 /// This routine is called when we are unable to use the CFG to walk through
1767 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1768 /// We walk through the function's blocks in order, starting from the
1769 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1770 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)1771 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1772 const BlockChain &PlacedChain,
1773 MachineFunction::iterator &PrevUnplacedBlockIt,
1774 const BlockFilterSet *BlockFilter) {
1775 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1776 ++I) {
1777 if (BlockFilter && !BlockFilter->count(&*I))
1778 continue;
1779 if (BlockToChain[&*I] != &PlacedChain) {
1780 PrevUnplacedBlockIt = I;
1781 // Now select the head of the chain to which the unplaced block belongs
1782 // as the block to place. This will force the entire chain to be placed,
1783 // and satisfies the requirements of merging chains.
1784 return *BlockToChain[&*I]->begin();
1785 }
1786 }
1787 return nullptr;
1788 }
1789
fillWorkLists(const MachineBasicBlock * MBB,SmallPtrSetImpl<BlockChain * > & UpdatedPreds,const BlockFilterSet * BlockFilter=nullptr)1790 void MachineBlockPlacement::fillWorkLists(
1791 const MachineBasicBlock *MBB,
1792 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1793 const BlockFilterSet *BlockFilter = nullptr) {
1794 BlockChain &Chain = *BlockToChain[MBB];
1795 if (!UpdatedPreds.insert(&Chain).second)
1796 return;
1797
1798 assert(
1799 Chain.UnscheduledPredecessors == 0 &&
1800 "Attempting to place block with unscheduled predecessors in worklist.");
1801 for (MachineBasicBlock *ChainBB : Chain) {
1802 assert(BlockToChain[ChainBB] == &Chain &&
1803 "Block in chain doesn't match BlockToChain map.");
1804 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1805 if (BlockFilter && !BlockFilter->count(Pred))
1806 continue;
1807 if (BlockToChain[Pred] == &Chain)
1808 continue;
1809 ++Chain.UnscheduledPredecessors;
1810 }
1811 }
1812
1813 if (Chain.UnscheduledPredecessors != 0)
1814 return;
1815
1816 MachineBasicBlock *BB = *Chain.begin();
1817 if (BB->isEHPad())
1818 EHPadWorkList.push_back(BB);
1819 else
1820 BlockWorkList.push_back(BB);
1821 }
1822
buildChain(const MachineBasicBlock * HeadBB,BlockChain & Chain,BlockFilterSet * BlockFilter)1823 void MachineBlockPlacement::buildChain(
1824 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1825 BlockFilterSet *BlockFilter) {
1826 assert(HeadBB && "BB must not be null.\n");
1827 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1828 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1829
1830 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1831 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1832 MachineBasicBlock *BB = *std::prev(Chain.end());
1833 while (true) {
1834 assert(BB && "null block found at end of chain in loop.");
1835 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1836 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1837
1838
1839 // Look for the best viable successor if there is one to place immediately
1840 // after this block.
1841 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1842 MachineBasicBlock* BestSucc = Result.BB;
1843 bool ShouldTailDup = Result.ShouldTailDup;
1844 if (allowTailDupPlacement())
1845 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1846 Chain,
1847 BlockFilter));
1848
1849 // If an immediate successor isn't available, look for the best viable
1850 // block among those we've identified as not violating the loop's CFG at
1851 // this point. This won't be a fallthrough, but it will increase locality.
1852 if (!BestSucc)
1853 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1854 if (!BestSucc)
1855 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1856
1857 if (!BestSucc) {
1858 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1859 if (!BestSucc)
1860 break;
1861
1862 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1863 "layout successor until the CFG reduces\n");
1864 }
1865
1866 // Placement may have changed tail duplication opportunities.
1867 // Check for that now.
1868 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1869 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1870 BlockFilter, PrevUnplacedBlockIt);
1871 // If the chosen successor was duplicated into BB, don't bother laying
1872 // it out, just go round the loop again with BB as the chain end.
1873 if (!BB->isSuccessor(BestSucc))
1874 continue;
1875 }
1876
1877 // Place this block, updating the datastructures to reflect its placement.
1878 BlockChain &SuccChain = *BlockToChain[BestSucc];
1879 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1880 // we selected a successor that didn't fit naturally into the CFG.
1881 SuccChain.UnscheduledPredecessors = 0;
1882 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1883 << getBlockName(BestSucc) << "\n");
1884 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1885 Chain.merge(BestSucc, &SuccChain);
1886 BB = *std::prev(Chain.end());
1887 }
1888
1889 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1890 << getBlockName(*Chain.begin()) << "\n");
1891 }
1892
1893 // If bottom of block BB has only one successor OldTop, in most cases it is
1894 // profitable to move it before OldTop, except the following case:
1895 //
1896 // -->OldTop<-
1897 // | . |
1898 // | . |
1899 // | . |
1900 // ---Pred |
1901 // | |
1902 // BB-----
1903 //
1904 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1905 // layout the other successor below it, so it can't reduce taken branch.
1906 // In this case we keep its original layout.
1907 bool
canMoveBottomBlockToTop(const MachineBasicBlock * BottomBlock,const MachineBasicBlock * OldTop)1908 MachineBlockPlacement::canMoveBottomBlockToTop(
1909 const MachineBasicBlock *BottomBlock,
1910 const MachineBasicBlock *OldTop) {
1911 if (BottomBlock->pred_size() != 1)
1912 return true;
1913 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1914 if (Pred->succ_size() != 2)
1915 return true;
1916
1917 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1918 if (OtherBB == BottomBlock)
1919 OtherBB = *Pred->succ_rbegin();
1920 if (OtherBB == OldTop)
1921 return false;
1922
1923 return true;
1924 }
1925
1926 // Find out the possible fall through frequence to the top of a loop.
1927 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)1928 MachineBlockPlacement::TopFallThroughFreq(
1929 const MachineBasicBlock *Top,
1930 const BlockFilterSet &LoopBlockSet) {
1931 BlockFrequency MaxFreq = 0;
1932 for (MachineBasicBlock *Pred : Top->predecessors()) {
1933 BlockChain *PredChain = BlockToChain[Pred];
1934 if (!LoopBlockSet.count(Pred) &&
1935 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1936 // Found a Pred block can be placed before Top.
1937 // Check if Top is the best successor of Pred.
1938 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1939 bool TopOK = true;
1940 for (MachineBasicBlock *Succ : Pred->successors()) {
1941 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1942 BlockChain *SuccChain = BlockToChain[Succ];
1943 // Check if Succ can be placed after Pred.
1944 // Succ should not be in any chain, or it is the head of some chain.
1945 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1946 (!SuccChain || Succ == *SuccChain->begin())) {
1947 TopOK = false;
1948 break;
1949 }
1950 }
1951 if (TopOK) {
1952 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1953 MBPI->getEdgeProbability(Pred, Top);
1954 if (EdgeFreq > MaxFreq)
1955 MaxFreq = EdgeFreq;
1956 }
1957 }
1958 }
1959 return MaxFreq;
1960 }
1961
1962 // Compute the fall through gains when move NewTop before OldTop.
1963 //
1964 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1965 // marked as "+" are increased fallthrough, this function computes
1966 //
1967 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1968 //
1969 // |
1970 // | -
1971 // V
1972 // --->OldTop
1973 // | .
1974 // | .
1975 // +| . +
1976 // | Pred --->
1977 // | |-
1978 // | V
1979 // --- NewTop <---
1980 // |-
1981 // V
1982 //
1983 BlockFrequency
FallThroughGains(const MachineBasicBlock * NewTop,const MachineBasicBlock * OldTop,const MachineBasicBlock * ExitBB,const BlockFilterSet & LoopBlockSet)1984 MachineBlockPlacement::FallThroughGains(
1985 const MachineBasicBlock *NewTop,
1986 const MachineBasicBlock *OldTop,
1987 const MachineBasicBlock *ExitBB,
1988 const BlockFilterSet &LoopBlockSet) {
1989 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1990 BlockFrequency FallThrough2Exit = 0;
1991 if (ExitBB)
1992 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1993 MBPI->getEdgeProbability(NewTop, ExitBB);
1994 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1995 MBPI->getEdgeProbability(NewTop, OldTop);
1996
1997 // Find the best Pred of NewTop.
1998 MachineBasicBlock *BestPred = nullptr;
1999 BlockFrequency FallThroughFromPred = 0;
2000 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2001 if (!LoopBlockSet.count(Pred))
2002 continue;
2003 BlockChain *PredChain = BlockToChain[Pred];
2004 if (!PredChain || Pred == *std::prev(PredChain->end())) {
2005 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
2006 MBPI->getEdgeProbability(Pred, NewTop);
2007 if (EdgeFreq > FallThroughFromPred) {
2008 FallThroughFromPred = EdgeFreq;
2009 BestPred = Pred;
2010 }
2011 }
2012 }
2013
2014 // If NewTop is not placed after Pred, another successor can be placed
2015 // after Pred.
2016 BlockFrequency NewFreq = 0;
2017 if (BestPred) {
2018 for (MachineBasicBlock *Succ : BestPred->successors()) {
2019 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2020 continue;
2021 if (ComputedEdges.find(Succ) != ComputedEdges.end())
2022 continue;
2023 BlockChain *SuccChain = BlockToChain[Succ];
2024 if ((SuccChain && (Succ != *SuccChain->begin())) ||
2025 (SuccChain == BlockToChain[BestPred]))
2026 continue;
2027 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2028 MBPI->getEdgeProbability(BestPred, Succ);
2029 if (EdgeFreq > NewFreq)
2030 NewFreq = EdgeFreq;
2031 }
2032 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2033 MBPI->getEdgeProbability(BestPred, NewTop);
2034 if (NewFreq > OrigEdgeFreq) {
2035 // If NewTop is not the best successor of Pred, then Pred doesn't
2036 // fallthrough to NewTop. So there is no FallThroughFromPred and
2037 // NewFreq.
2038 NewFreq = 0;
2039 FallThroughFromPred = 0;
2040 }
2041 }
2042
2043 BlockFrequency Result = 0;
2044 BlockFrequency Gains = BackEdgeFreq + NewFreq;
2045 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2046 FallThroughFromPred;
2047 if (Gains > Lost)
2048 Result = Gains - Lost;
2049 return Result;
2050 }
2051
2052 /// Helper function of findBestLoopTop. Find the best loop top block
2053 /// from predecessors of old top.
2054 ///
2055 /// Look for a block which is strictly better than the old top for laying
2056 /// out before the old top of the loop. This looks for only two patterns:
2057 ///
2058 /// 1. a block has only one successor, the old loop top
2059 ///
2060 /// Because such a block will always result in an unconditional jump,
2061 /// rotating it in front of the old top is always profitable.
2062 ///
2063 /// 2. a block has two successors, one is old top, another is exit
2064 /// and it has more than one predecessors
2065 ///
2066 /// If it is below one of its predecessors P, only P can fall through to
2067 /// it, all other predecessors need a jump to it, and another conditional
2068 /// jump to loop header. If it is moved before loop header, all its
2069 /// predecessors jump to it, then fall through to loop header. So all its
2070 /// predecessors except P can reduce one taken branch.
2071 /// At the same time, move it before old top increases the taken branch
2072 /// to loop exit block, so the reduced taken branch will be compared with
2073 /// the increased taken branch to the loop exit block.
2074 MachineBasicBlock *
findBestLoopTopHelper(MachineBasicBlock * OldTop,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2075 MachineBlockPlacement::findBestLoopTopHelper(
2076 MachineBasicBlock *OldTop,
2077 const MachineLoop &L,
2078 const BlockFilterSet &LoopBlockSet) {
2079 // Check that the header hasn't been fused with a preheader block due to
2080 // crazy branches. If it has, we need to start with the header at the top to
2081 // prevent pulling the preheader into the loop body.
2082 BlockChain &HeaderChain = *BlockToChain[OldTop];
2083 if (!LoopBlockSet.count(*HeaderChain.begin()))
2084 return OldTop;
2085 if (OldTop != *HeaderChain.begin())
2086 return OldTop;
2087
2088 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2089 << "\n");
2090
2091 BlockFrequency BestGains = 0;
2092 MachineBasicBlock *BestPred = nullptr;
2093 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2094 if (!LoopBlockSet.count(Pred))
2095 continue;
2096 if (Pred == L.getHeader())
2097 continue;
2098 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2099 << Pred->succ_size() << " successors, ";
2100 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2101 if (Pred->succ_size() > 2)
2102 continue;
2103
2104 MachineBasicBlock *OtherBB = nullptr;
2105 if (Pred->succ_size() == 2) {
2106 OtherBB = *Pred->succ_begin();
2107 if (OtherBB == OldTop)
2108 OtherBB = *Pred->succ_rbegin();
2109 }
2110
2111 if (!canMoveBottomBlockToTop(Pred, OldTop))
2112 continue;
2113
2114 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2115 LoopBlockSet);
2116 if ((Gains > 0) && (Gains > BestGains ||
2117 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2118 BestPred = Pred;
2119 BestGains = Gains;
2120 }
2121 }
2122
2123 // If no direct predecessor is fine, just use the loop header.
2124 if (!BestPred) {
2125 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2126 return OldTop;
2127 }
2128
2129 // Walk backwards through any straight line of predecessors.
2130 while (BestPred->pred_size() == 1 &&
2131 (*BestPred->pred_begin())->succ_size() == 1 &&
2132 *BestPred->pred_begin() != L.getHeader())
2133 BestPred = *BestPred->pred_begin();
2134
2135 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2136 return BestPred;
2137 }
2138
2139 /// Find the best loop top block for layout.
2140 ///
2141 /// This function iteratively calls findBestLoopTopHelper, until no new better
2142 /// BB can be found.
2143 MachineBasicBlock *
findBestLoopTop(const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2144 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2145 const BlockFilterSet &LoopBlockSet) {
2146 // Placing the latch block before the header may introduce an extra branch
2147 // that skips this block the first time the loop is executed, which we want
2148 // to avoid when optimising for size.
2149 // FIXME: in theory there is a case that does not introduce a new branch,
2150 // i.e. when the layout predecessor does not fallthrough to the loop header.
2151 // In practice this never happens though: there always seems to be a preheader
2152 // that can fallthrough and that is also placed before the header.
2153 bool OptForSize = F->getFunction().hasOptSize() ||
2154 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2155 if (OptForSize)
2156 return L.getHeader();
2157
2158 MachineBasicBlock *OldTop = nullptr;
2159 MachineBasicBlock *NewTop = L.getHeader();
2160 while (NewTop != OldTop) {
2161 OldTop = NewTop;
2162 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2163 if (NewTop != OldTop)
2164 ComputedEdges[NewTop] = { OldTop, false };
2165 }
2166 return NewTop;
2167 }
2168
2169 /// Find the best loop exiting block for layout.
2170 ///
2171 /// This routine implements the logic to analyze the loop looking for the best
2172 /// block to layout at the top of the loop. Typically this is done to maximize
2173 /// fallthrough opportunities.
2174 MachineBasicBlock *
findBestLoopExit(const MachineLoop & L,const BlockFilterSet & LoopBlockSet,BlockFrequency & ExitFreq)2175 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2176 const BlockFilterSet &LoopBlockSet,
2177 BlockFrequency &ExitFreq) {
2178 // We don't want to layout the loop linearly in all cases. If the loop header
2179 // is just a normal basic block in the loop, we want to look for what block
2180 // within the loop is the best one to layout at the top. However, if the loop
2181 // header has be pre-merged into a chain due to predecessors not having
2182 // analyzable branches, *and* the predecessor it is merged with is *not* part
2183 // of the loop, rotating the header into the middle of the loop will create
2184 // a non-contiguous range of blocks which is Very Bad. So start with the
2185 // header and only rotate if safe.
2186 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2187 if (!LoopBlockSet.count(*HeaderChain.begin()))
2188 return nullptr;
2189
2190 BlockFrequency BestExitEdgeFreq;
2191 unsigned BestExitLoopDepth = 0;
2192 MachineBasicBlock *ExitingBB = nullptr;
2193 // If there are exits to outer loops, loop rotation can severely limit
2194 // fallthrough opportunities unless it selects such an exit. Keep a set of
2195 // blocks where rotating to exit with that block will reach an outer loop.
2196 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2197
2198 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2199 << getBlockName(L.getHeader()) << "\n");
2200 for (MachineBasicBlock *MBB : L.getBlocks()) {
2201 BlockChain &Chain = *BlockToChain[MBB];
2202 // Ensure that this block is at the end of a chain; otherwise it could be
2203 // mid-way through an inner loop or a successor of an unanalyzable branch.
2204 if (MBB != *std::prev(Chain.end()))
2205 continue;
2206
2207 // Now walk the successors. We need to establish whether this has a viable
2208 // exiting successor and whether it has a viable non-exiting successor.
2209 // We store the old exiting state and restore it if a viable looping
2210 // successor isn't found.
2211 MachineBasicBlock *OldExitingBB = ExitingBB;
2212 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2213 bool HasLoopingSucc = false;
2214 for (MachineBasicBlock *Succ : MBB->successors()) {
2215 if (Succ->isEHPad())
2216 continue;
2217 if (Succ == MBB)
2218 continue;
2219 BlockChain &SuccChain = *BlockToChain[Succ];
2220 // Don't split chains, either this chain or the successor's chain.
2221 if (&Chain == &SuccChain) {
2222 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2223 << getBlockName(Succ) << " (chain conflict)\n");
2224 continue;
2225 }
2226
2227 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2228 if (LoopBlockSet.count(Succ)) {
2229 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2230 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2231 HasLoopingSucc = true;
2232 continue;
2233 }
2234
2235 unsigned SuccLoopDepth = 0;
2236 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2237 SuccLoopDepth = ExitLoop->getLoopDepth();
2238 if (ExitLoop->contains(&L))
2239 BlocksExitingToOuterLoop.insert(MBB);
2240 }
2241
2242 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2243 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2244 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2245 << "] (";
2246 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2247 // Note that we bias this toward an existing layout successor to retain
2248 // incoming order in the absence of better information. The exit must have
2249 // a frequency higher than the current exit before we consider breaking
2250 // the layout.
2251 BranchProbability Bias(100 - ExitBlockBias, 100);
2252 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2253 ExitEdgeFreq > BestExitEdgeFreq ||
2254 (MBB->isLayoutSuccessor(Succ) &&
2255 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2256 BestExitEdgeFreq = ExitEdgeFreq;
2257 ExitingBB = MBB;
2258 }
2259 }
2260
2261 if (!HasLoopingSucc) {
2262 // Restore the old exiting state, no viable looping successor was found.
2263 ExitingBB = OldExitingBB;
2264 BestExitEdgeFreq = OldBestExitEdgeFreq;
2265 }
2266 }
2267 // Without a candidate exiting block or with only a single block in the
2268 // loop, just use the loop header to layout the loop.
2269 if (!ExitingBB) {
2270 LLVM_DEBUG(
2271 dbgs() << " No other candidate exit blocks, using loop header\n");
2272 return nullptr;
2273 }
2274 if (L.getNumBlocks() == 1) {
2275 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2276 return nullptr;
2277 }
2278
2279 // Also, if we have exit blocks which lead to outer loops but didn't select
2280 // one of them as the exiting block we are rotating toward, disable loop
2281 // rotation altogether.
2282 if (!BlocksExitingToOuterLoop.empty() &&
2283 !BlocksExitingToOuterLoop.count(ExitingBB))
2284 return nullptr;
2285
2286 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2287 << "\n");
2288 ExitFreq = BestExitEdgeFreq;
2289 return ExitingBB;
2290 }
2291
2292 /// Check if there is a fallthrough to loop header Top.
2293 ///
2294 /// 1. Look for a Pred that can be layout before Top.
2295 /// 2. Check if Top is the most possible successor of Pred.
2296 bool
hasViableTopFallthrough(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)2297 MachineBlockPlacement::hasViableTopFallthrough(
2298 const MachineBasicBlock *Top,
2299 const BlockFilterSet &LoopBlockSet) {
2300 for (MachineBasicBlock *Pred : Top->predecessors()) {
2301 BlockChain *PredChain = BlockToChain[Pred];
2302 if (!LoopBlockSet.count(Pred) &&
2303 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2304 // Found a Pred block can be placed before Top.
2305 // Check if Top is the best successor of Pred.
2306 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2307 bool TopOK = true;
2308 for (MachineBasicBlock *Succ : Pred->successors()) {
2309 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2310 BlockChain *SuccChain = BlockToChain[Succ];
2311 // Check if Succ can be placed after Pred.
2312 // Succ should not be in any chain, or it is the head of some chain.
2313 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2314 TopOK = false;
2315 break;
2316 }
2317 }
2318 if (TopOK)
2319 return true;
2320 }
2321 }
2322 return false;
2323 }
2324
2325 /// Attempt to rotate an exiting block to the bottom of the loop.
2326 ///
2327 /// Once we have built a chain, try to rotate it to line up the hot exit block
2328 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2329 /// branches. For example, if the loop has fallthrough into its header and out
2330 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,const MachineBasicBlock * ExitingBB,BlockFrequency ExitFreq,const BlockFilterSet & LoopBlockSet)2331 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2332 const MachineBasicBlock *ExitingBB,
2333 BlockFrequency ExitFreq,
2334 const BlockFilterSet &LoopBlockSet) {
2335 if (!ExitingBB)
2336 return;
2337
2338 MachineBasicBlock *Top = *LoopChain.begin();
2339 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2340
2341 // If ExitingBB is already the last one in a chain then nothing to do.
2342 if (Bottom == ExitingBB)
2343 return;
2344
2345 // The entry block should always be the first BB in a function.
2346 if (Top->isEntryBlock())
2347 return;
2348
2349 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2350
2351 // If the header has viable fallthrough, check whether the current loop
2352 // bottom is a viable exiting block. If so, bail out as rotating will
2353 // introduce an unnecessary branch.
2354 if (ViableTopFallthrough) {
2355 for (MachineBasicBlock *Succ : Bottom->successors()) {
2356 BlockChain *SuccChain = BlockToChain[Succ];
2357 if (!LoopBlockSet.count(Succ) &&
2358 (!SuccChain || Succ == *SuccChain->begin()))
2359 return;
2360 }
2361
2362 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2363 // frequency is larger than top fallthrough.
2364 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2365 if (FallThrough2Top >= ExitFreq)
2366 return;
2367 }
2368
2369 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2370 if (ExitIt == LoopChain.end())
2371 return;
2372
2373 // Rotating a loop exit to the bottom when there is a fallthrough to top
2374 // trades the entry fallthrough for an exit fallthrough.
2375 // If there is no bottom->top edge, but the chosen exit block does have
2376 // a fallthrough, we break that fallthrough for nothing in return.
2377
2378 // Let's consider an example. We have a built chain of basic blocks
2379 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2380 // By doing a rotation we get
2381 // Bk+1, ..., Bn, B1, ..., Bk
2382 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2383 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2384 // It might be compensated by fallthrough Bn -> B1.
2385 // So we have a condition to avoid creation of extra branch by loop rotation.
2386 // All below must be true to avoid loop rotation:
2387 // If there is a fallthrough to top (B1)
2388 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2389 // There is no fallthrough from bottom (Bn) to top (B1).
2390 // Please note that there is no exit fallthrough from Bn because we checked it
2391 // above.
2392 if (ViableTopFallthrough) {
2393 assert(std::next(ExitIt) != LoopChain.end() &&
2394 "Exit should not be last BB");
2395 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2396 if (ExitingBB->isSuccessor(NextBlockInChain))
2397 if (!Bottom->isSuccessor(Top))
2398 return;
2399 }
2400
2401 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2402 << " at bottom\n");
2403 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2404 }
2405
2406 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2407 ///
2408 /// With profile data, we can determine the cost in terms of missed fall through
2409 /// opportunities when rotating a loop chain and select the best rotation.
2410 /// Basically, there are three kinds of cost to consider for each rotation:
2411 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2412 /// the loop to the loop header.
2413 /// 2. The possibly missed fall through edges (if they exist) from the loop
2414 /// exits to BB out of the loop.
2415 /// 3. The missed fall through edge (if it exists) from the last BB to the
2416 /// first BB in the loop chain.
2417 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2418 /// We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2419 void MachineBlockPlacement::rotateLoopWithProfile(
2420 BlockChain &LoopChain, const MachineLoop &L,
2421 const BlockFilterSet &LoopBlockSet) {
2422 auto RotationPos = LoopChain.end();
2423 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2424
2425 // The entry block should always be the first BB in a function.
2426 if (ChainHeaderBB->isEntryBlock())
2427 return;
2428
2429 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2430
2431 // A utility lambda that scales up a block frequency by dividing it by a
2432 // branch probability which is the reciprocal of the scale.
2433 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2434 unsigned Scale) -> BlockFrequency {
2435 if (Scale == 0)
2436 return 0;
2437 // Use operator / between BlockFrequency and BranchProbability to implement
2438 // saturating multiplication.
2439 return Freq / BranchProbability(1, Scale);
2440 };
2441
2442 // Compute the cost of the missed fall-through edge to the loop header if the
2443 // chain head is not the loop header. As we only consider natural loops with
2444 // single header, this computation can be done only once.
2445 BlockFrequency HeaderFallThroughCost(0);
2446 for (auto *Pred : ChainHeaderBB->predecessors()) {
2447 BlockChain *PredChain = BlockToChain[Pred];
2448 if (!LoopBlockSet.count(Pred) &&
2449 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2450 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2451 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2452 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2453 // If the predecessor has only an unconditional jump to the header, we
2454 // need to consider the cost of this jump.
2455 if (Pred->succ_size() == 1)
2456 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2457 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2458 }
2459 }
2460
2461 // Here we collect all exit blocks in the loop, and for each exit we find out
2462 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2463 // as the sum of frequencies of exit edges we collect here, excluding the exit
2464 // edge from the tail of the loop chain.
2465 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2466 for (auto *BB : LoopChain) {
2467 auto LargestExitEdgeProb = BranchProbability::getZero();
2468 for (auto *Succ : BB->successors()) {
2469 BlockChain *SuccChain = BlockToChain[Succ];
2470 if (!LoopBlockSet.count(Succ) &&
2471 (!SuccChain || Succ == *SuccChain->begin())) {
2472 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2473 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2474 }
2475 }
2476 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2477 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2478 ExitsWithFreq.emplace_back(BB, ExitFreq);
2479 }
2480 }
2481
2482 // In this loop we iterate every block in the loop chain and calculate the
2483 // cost assuming the block is the head of the loop chain. When the loop ends,
2484 // we should have found the best candidate as the loop chain's head.
2485 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2486 EndIter = LoopChain.end();
2487 Iter != EndIter; Iter++, TailIter++) {
2488 // TailIter is used to track the tail of the loop chain if the block we are
2489 // checking (pointed by Iter) is the head of the chain.
2490 if (TailIter == LoopChain.end())
2491 TailIter = LoopChain.begin();
2492
2493 auto TailBB = *TailIter;
2494
2495 // Calculate the cost by putting this BB to the top.
2496 BlockFrequency Cost = 0;
2497
2498 // If the current BB is the loop header, we need to take into account the
2499 // cost of the missed fall through edge from outside of the loop to the
2500 // header.
2501 if (Iter != LoopChain.begin())
2502 Cost += HeaderFallThroughCost;
2503
2504 // Collect the loop exit cost by summing up frequencies of all exit edges
2505 // except the one from the chain tail.
2506 for (auto &ExitWithFreq : ExitsWithFreq)
2507 if (TailBB != ExitWithFreq.first)
2508 Cost += ExitWithFreq.second;
2509
2510 // The cost of breaking the once fall-through edge from the tail to the top
2511 // of the loop chain. Here we need to consider three cases:
2512 // 1. If the tail node has only one successor, then we will get an
2513 // additional jmp instruction. So the cost here is (MisfetchCost +
2514 // JumpInstCost) * tail node frequency.
2515 // 2. If the tail node has two successors, then we may still get an
2516 // additional jmp instruction if the layout successor after the loop
2517 // chain is not its CFG successor. Note that the more frequently executed
2518 // jmp instruction will be put ahead of the other one. Assume the
2519 // frequency of those two branches are x and y, where x is the frequency
2520 // of the edge to the chain head, then the cost will be
2521 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2522 // 3. If the tail node has more than two successors (this rarely happens),
2523 // we won't consider any additional cost.
2524 if (TailBB->isSuccessor(*Iter)) {
2525 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2526 if (TailBB->succ_size() == 1)
2527 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2528 MisfetchCost + JumpInstCost);
2529 else if (TailBB->succ_size() == 2) {
2530 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2531 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2532 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2533 ? TailBBFreq * TailToHeadProb.getCompl()
2534 : TailToHeadFreq;
2535 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2536 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2537 }
2538 }
2539
2540 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2541 << getBlockName(*Iter)
2542 << " to the top: " << Cost.getFrequency() << "\n");
2543
2544 if (Cost < SmallestRotationCost) {
2545 SmallestRotationCost = Cost;
2546 RotationPos = Iter;
2547 }
2548 }
2549
2550 if (RotationPos != LoopChain.end()) {
2551 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2552 << " to the top\n");
2553 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2554 }
2555 }
2556
2557 /// Collect blocks in the given loop that are to be placed.
2558 ///
2559 /// When profile data is available, exclude cold blocks from the returned set;
2560 /// otherwise, collect all blocks in the loop.
2561 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(const MachineLoop & L)2562 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2563 BlockFilterSet LoopBlockSet;
2564
2565 // Filter cold blocks off from LoopBlockSet when profile data is available.
2566 // Collect the sum of frequencies of incoming edges to the loop header from
2567 // outside. If we treat the loop as a super block, this is the frequency of
2568 // the loop. Then for each block in the loop, we calculate the ratio between
2569 // its frequency and the frequency of the loop block. When it is too small,
2570 // don't add it to the loop chain. If there are outer loops, then this block
2571 // will be merged into the first outer loop chain for which this block is not
2572 // cold anymore. This needs precise profile data and we only do this when
2573 // profile data is available.
2574 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2575 BlockFrequency LoopFreq(0);
2576 for (auto *LoopPred : L.getHeader()->predecessors())
2577 if (!L.contains(LoopPred))
2578 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2579 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2580
2581 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2582 if (LoopBlockSet.count(LoopBB))
2583 continue;
2584 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2585 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2586 continue;
2587 BlockChain *Chain = BlockToChain[LoopBB];
2588 for (MachineBasicBlock *ChainBB : *Chain)
2589 LoopBlockSet.insert(ChainBB);
2590 }
2591 } else
2592 LoopBlockSet.insert(L.block_begin(), L.block_end());
2593
2594 return LoopBlockSet;
2595 }
2596
2597 /// Forms basic block chains from the natural loop structures.
2598 ///
2599 /// These chains are designed to preserve the existing *structure* of the code
2600 /// as much as possible. We can then stitch the chains together in a way which
2601 /// both preserves the topological structure and minimizes taken conditional
2602 /// branches.
buildLoopChains(const MachineLoop & L)2603 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2604 // First recurse through any nested loops, building chains for those inner
2605 // loops.
2606 for (const MachineLoop *InnerLoop : L)
2607 buildLoopChains(*InnerLoop);
2608
2609 assert(BlockWorkList.empty() &&
2610 "BlockWorkList not empty when starting to build loop chains.");
2611 assert(EHPadWorkList.empty() &&
2612 "EHPadWorkList not empty when starting to build loop chains.");
2613 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2614
2615 // Check if we have profile data for this function. If yes, we will rotate
2616 // this loop by modeling costs more precisely which requires the profile data
2617 // for better layout.
2618 bool RotateLoopWithProfile =
2619 ForcePreciseRotationCost ||
2620 (PreciseRotationCost && F->getFunction().hasProfileData());
2621
2622 // First check to see if there is an obviously preferable top block for the
2623 // loop. This will default to the header, but may end up as one of the
2624 // predecessors to the header if there is one which will result in strictly
2625 // fewer branches in the loop body.
2626 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2627
2628 // If we selected just the header for the loop top, look for a potentially
2629 // profitable exit block in the event that rotating the loop can eliminate
2630 // branches by placing an exit edge at the bottom.
2631 //
2632 // Loops are processed innermost to uttermost, make sure we clear
2633 // PreferredLoopExit before processing a new loop.
2634 PreferredLoopExit = nullptr;
2635 BlockFrequency ExitFreq;
2636 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2637 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2638
2639 BlockChain &LoopChain = *BlockToChain[LoopTop];
2640
2641 // FIXME: This is a really lame way of walking the chains in the loop: we
2642 // walk the blocks, and use a set to prevent visiting a particular chain
2643 // twice.
2644 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2645 assert(LoopChain.UnscheduledPredecessors == 0 &&
2646 "LoopChain should not have unscheduled predecessors.");
2647 UpdatedPreds.insert(&LoopChain);
2648
2649 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2650 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2651
2652 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2653
2654 if (RotateLoopWithProfile)
2655 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2656 else
2657 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2658
2659 LLVM_DEBUG({
2660 // Crash at the end so we get all of the debugging output first.
2661 bool BadLoop = false;
2662 if (LoopChain.UnscheduledPredecessors) {
2663 BadLoop = true;
2664 dbgs() << "Loop chain contains a block without its preds placed!\n"
2665 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2666 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2667 }
2668 for (MachineBasicBlock *ChainBB : LoopChain) {
2669 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2670 if (!LoopBlockSet.remove(ChainBB)) {
2671 // We don't mark the loop as bad here because there are real situations
2672 // where this can occur. For example, with an unanalyzable fallthrough
2673 // from a loop block to a non-loop block or vice versa.
2674 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2675 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2676 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2677 << " Bad block: " << getBlockName(ChainBB) << "\n";
2678 }
2679 }
2680
2681 if (!LoopBlockSet.empty()) {
2682 BadLoop = true;
2683 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2684 dbgs() << "Loop contains blocks never placed into a chain!\n"
2685 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2686 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2687 << " Bad block: " << getBlockName(LoopBB) << "\n";
2688 }
2689 assert(!BadLoop && "Detected problems with the placement of this loop.");
2690 });
2691
2692 BlockWorkList.clear();
2693 EHPadWorkList.clear();
2694 }
2695
buildCFGChains()2696 void MachineBlockPlacement::buildCFGChains() {
2697 // Ensure that every BB in the function has an associated chain to simplify
2698 // the assumptions of the remaining algorithm.
2699 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2700 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2701 ++FI) {
2702 MachineBasicBlock *BB = &*FI;
2703 BlockChain *Chain =
2704 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2705 // Also, merge any blocks which we cannot reason about and must preserve
2706 // the exact fallthrough behavior for.
2707 while (true) {
2708 Cond.clear();
2709 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2710 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2711 break;
2712
2713 MachineFunction::iterator NextFI = std::next(FI);
2714 MachineBasicBlock *NextBB = &*NextFI;
2715 // Ensure that the layout successor is a viable block, as we know that
2716 // fallthrough is a possibility.
2717 assert(NextFI != FE && "Can't fallthrough past the last block.");
2718 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2719 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2720 << "\n");
2721 Chain->merge(NextBB, nullptr);
2722 #ifndef NDEBUG
2723 BlocksWithUnanalyzableExits.insert(&*BB);
2724 #endif
2725 FI = NextFI;
2726 BB = NextBB;
2727 }
2728 }
2729
2730 // Build any loop-based chains.
2731 PreferredLoopExit = nullptr;
2732 for (MachineLoop *L : *MLI)
2733 buildLoopChains(*L);
2734
2735 assert(BlockWorkList.empty() &&
2736 "BlockWorkList should be empty before building final chain.");
2737 assert(EHPadWorkList.empty() &&
2738 "EHPadWorkList should be empty before building final chain.");
2739
2740 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2741 for (MachineBasicBlock &MBB : *F)
2742 fillWorkLists(&MBB, UpdatedPreds);
2743
2744 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2745 buildChain(&F->front(), FunctionChain);
2746
2747 #ifndef NDEBUG
2748 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2749 #endif
2750 LLVM_DEBUG({
2751 // Crash at the end so we get all of the debugging output first.
2752 bool BadFunc = false;
2753 FunctionBlockSetType FunctionBlockSet;
2754 for (MachineBasicBlock &MBB : *F)
2755 FunctionBlockSet.insert(&MBB);
2756
2757 for (MachineBasicBlock *ChainBB : FunctionChain)
2758 if (!FunctionBlockSet.erase(ChainBB)) {
2759 BadFunc = true;
2760 dbgs() << "Function chain contains a block not in the function!\n"
2761 << " Bad block: " << getBlockName(ChainBB) << "\n";
2762 }
2763
2764 if (!FunctionBlockSet.empty()) {
2765 BadFunc = true;
2766 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2767 dbgs() << "Function contains blocks never placed into a chain!\n"
2768 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2769 }
2770 assert(!BadFunc && "Detected problems with the block placement.");
2771 });
2772
2773 // Remember original layout ordering, so we can update terminators after
2774 // reordering to point to the original layout successor.
2775 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2776 F->getNumBlockIDs());
2777 {
2778 MachineBasicBlock *LastMBB = nullptr;
2779 for (auto &MBB : *F) {
2780 if (LastMBB != nullptr)
2781 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2782 LastMBB = &MBB;
2783 }
2784 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2785 }
2786
2787 // Splice the blocks into place.
2788 MachineFunction::iterator InsertPos = F->begin();
2789 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2790 for (MachineBasicBlock *ChainBB : FunctionChain) {
2791 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2792 : " ... ")
2793 << getBlockName(ChainBB) << "\n");
2794 if (InsertPos != MachineFunction::iterator(ChainBB))
2795 F->splice(InsertPos, ChainBB);
2796 else
2797 ++InsertPos;
2798
2799 // Update the terminator of the previous block.
2800 if (ChainBB == *FunctionChain.begin())
2801 continue;
2802 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2803
2804 // FIXME: It would be awesome of updateTerminator would just return rather
2805 // than assert when the branch cannot be analyzed in order to remove this
2806 // boiler plate.
2807 Cond.clear();
2808 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2809
2810 #ifndef NDEBUG
2811 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2812 // Given the exact block placement we chose, we may actually not _need_ to
2813 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2814 // do that at this point is a bug.
2815 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2816 !PrevBB->canFallThrough()) &&
2817 "Unexpected block with un-analyzable fallthrough!");
2818 Cond.clear();
2819 TBB = FBB = nullptr;
2820 }
2821 #endif
2822
2823 // The "PrevBB" is not yet updated to reflect current code layout, so,
2824 // o. it may fall-through to a block without explicit "goto" instruction
2825 // before layout, and no longer fall-through it after layout; or
2826 // o. just opposite.
2827 //
2828 // analyzeBranch() may return erroneous value for FBB when these two
2829 // situations take place. For the first scenario FBB is mistakenly set NULL;
2830 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2831 // mistakenly pointing to "*BI".
2832 // Thus, if the future change needs to use FBB before the layout is set, it
2833 // has to correct FBB first by using the code similar to the following:
2834 //
2835 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2836 // PrevBB->updateTerminator();
2837 // Cond.clear();
2838 // TBB = FBB = nullptr;
2839 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2840 // // FIXME: This should never take place.
2841 // TBB = FBB = nullptr;
2842 // }
2843 // }
2844 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2845 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2846 }
2847 }
2848
2849 // Fixup the last block.
2850 Cond.clear();
2851 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2852 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2853 MachineBasicBlock *PrevBB = &F->back();
2854 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2855 }
2856
2857 BlockWorkList.clear();
2858 EHPadWorkList.clear();
2859 }
2860
optimizeBranches()2861 void MachineBlockPlacement::optimizeBranches() {
2862 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2863 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2864
2865 // Now that all the basic blocks in the chain have the proper layout,
2866 // make a final call to analyzeBranch with AllowModify set.
2867 // Indeed, the target may be able to optimize the branches in a way we
2868 // cannot because all branches may not be analyzable.
2869 // E.g., the target may be able to remove an unconditional branch to
2870 // a fallthrough when it occurs after predicated terminators.
2871 for (MachineBasicBlock *ChainBB : FunctionChain) {
2872 Cond.clear();
2873 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2874 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2875 // If PrevBB has a two-way branch, try to re-order the branches
2876 // such that we branch to the successor with higher probability first.
2877 if (TBB && !Cond.empty() && FBB &&
2878 MBPI->getEdgeProbability(ChainBB, FBB) >
2879 MBPI->getEdgeProbability(ChainBB, TBB) &&
2880 !TII->reverseBranchCondition(Cond)) {
2881 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2882 << getBlockName(ChainBB) << "\n");
2883 LLVM_DEBUG(dbgs() << " Edge probability: "
2884 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2885 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2886 DebugLoc dl; // FIXME: this is nowhere
2887 TII->removeBranch(*ChainBB);
2888 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2889 }
2890 }
2891 }
2892 }
2893
alignBlocks()2894 void MachineBlockPlacement::alignBlocks() {
2895 // Walk through the backedges of the function now that we have fully laid out
2896 // the basic blocks and align the destination of each backedge. We don't rely
2897 // exclusively on the loop info here so that we can align backedges in
2898 // unnatural CFGs and backedges that were introduced purely because of the
2899 // loop rotations done during this layout pass.
2900 if (F->getFunction().hasMinSize() ||
2901 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2902 return;
2903 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2904 if (FunctionChain.begin() == FunctionChain.end())
2905 return; // Empty chain.
2906
2907 const BranchProbability ColdProb(1, 5); // 20%
2908 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2909 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2910 for (MachineBasicBlock *ChainBB : FunctionChain) {
2911 if (ChainBB == *FunctionChain.begin())
2912 continue;
2913
2914 // Don't align non-looping basic blocks. These are unlikely to execute
2915 // enough times to matter in practice. Note that we'll still handle
2916 // unnatural CFGs inside of a natural outer loop (the common case) and
2917 // rotated loops.
2918 MachineLoop *L = MLI->getLoopFor(ChainBB);
2919 if (!L)
2920 continue;
2921
2922 const Align Align = TLI->getPrefLoopAlignment(L);
2923 if (Align == 1)
2924 continue; // Don't care about loop alignment.
2925
2926 // If the block is cold relative to the function entry don't waste space
2927 // aligning it.
2928 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2929 if (Freq < WeightedEntryFreq)
2930 continue;
2931
2932 // If the block is cold relative to its loop header, don't align it
2933 // regardless of what edges into the block exist.
2934 MachineBasicBlock *LoopHeader = L->getHeader();
2935 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2936 if (Freq < (LoopHeaderFreq * ColdProb))
2937 continue;
2938
2939 // If the global profiles indicates so, don't align it.
2940 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2941 !TLI->alignLoopsWithOptSize())
2942 continue;
2943
2944 // Check for the existence of a non-layout predecessor which would benefit
2945 // from aligning this block.
2946 MachineBasicBlock *LayoutPred =
2947 &*std::prev(MachineFunction::iterator(ChainBB));
2948
2949 auto DetermineMaxAlignmentPadding = [&]() {
2950 // Set the maximum bytes allowed to be emitted for alignment.
2951 unsigned MaxBytes;
2952 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2953 MaxBytes = MaxBytesForAlignmentOverride;
2954 else
2955 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
2956 ChainBB->setMaxBytesForAlignment(MaxBytes);
2957 };
2958
2959 // Force alignment if all the predecessors are jumps. We already checked
2960 // that the block isn't cold above.
2961 if (!LayoutPred->isSuccessor(ChainBB)) {
2962 ChainBB->setAlignment(Align);
2963 DetermineMaxAlignmentPadding();
2964 continue;
2965 }
2966
2967 // Align this block if the layout predecessor's edge into this block is
2968 // cold relative to the block. When this is true, other predecessors make up
2969 // all of the hot entries into the block and thus alignment is likely to be
2970 // important.
2971 BranchProbability LayoutProb =
2972 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2973 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2974 if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2975 ChainBB->setAlignment(Align);
2976 DetermineMaxAlignmentPadding();
2977 }
2978 }
2979 }
2980
2981 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2982 /// it was duplicated into its chain predecessor and removed.
2983 /// \p BB - Basic block that may be duplicated.
2984 ///
2985 /// \p LPred - Chosen layout predecessor of \p BB.
2986 /// Updated to be the chain end if LPred is removed.
2987 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2988 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2989 /// Used to identify which blocks to update predecessor
2990 /// counts.
2991 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2992 /// chosen in the given order due to unnatural CFG
2993 /// only needed if \p BB is removed and
2994 /// \p PrevUnplacedBlockIt pointed to \p BB.
2995 /// @return true if \p BB was removed.
repeatedlyTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * & LPred,const MachineBasicBlock * LoopHeaderBB,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt)2996 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2997 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2998 const MachineBasicBlock *LoopHeaderBB,
2999 BlockChain &Chain, BlockFilterSet *BlockFilter,
3000 MachineFunction::iterator &PrevUnplacedBlockIt) {
3001 bool Removed, DuplicatedToLPred;
3002 bool DuplicatedToOriginalLPred;
3003 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
3004 PrevUnplacedBlockIt,
3005 DuplicatedToLPred);
3006 if (!Removed)
3007 return false;
3008 DuplicatedToOriginalLPred = DuplicatedToLPred;
3009 // Iteratively try to duplicate again. It can happen that a block that is
3010 // duplicated into is still small enough to be duplicated again.
3011 // No need to call markBlockSuccessors in this case, as the blocks being
3012 // duplicated from here on are already scheduled.
3013 while (DuplicatedToLPred && Removed) {
3014 MachineBasicBlock *DupBB, *DupPred;
3015 // The removal callback causes Chain.end() to be updated when a block is
3016 // removed. On the first pass through the loop, the chain end should be the
3017 // same as it was on function entry. On subsequent passes, because we are
3018 // duplicating the block at the end of the chain, if it is removed the
3019 // chain will have shrunk by one block.
3020 BlockChain::iterator ChainEnd = Chain.end();
3021 DupBB = *(--ChainEnd);
3022 // Now try to duplicate again.
3023 if (ChainEnd == Chain.begin())
3024 break;
3025 DupPred = *std::prev(ChainEnd);
3026 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
3027 PrevUnplacedBlockIt,
3028 DuplicatedToLPred);
3029 }
3030 // If BB was duplicated into LPred, it is now scheduled. But because it was
3031 // removed, markChainSuccessors won't be called for its chain. Instead we
3032 // call markBlockSuccessors for LPred to achieve the same effect. This must go
3033 // at the end because repeating the tail duplication can increase the number
3034 // of unscheduled predecessors.
3035 LPred = *std::prev(Chain.end());
3036 if (DuplicatedToOriginalLPred)
3037 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3038 return true;
3039 }
3040
3041 /// Tail duplicate \p BB into (some) predecessors if profitable.
3042 /// \p BB - Basic block that may be duplicated
3043 /// \p LPred - Chosen layout predecessor of \p BB
3044 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3045 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3046 /// Used to identify which blocks to update predecessor
3047 /// counts.
3048 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3049 /// chosen in the given order due to unnatural CFG
3050 /// only needed if \p BB is removed and
3051 /// \p PrevUnplacedBlockIt pointed to \p BB.
3052 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3053 /// \return - True if the block was duplicated into all preds and removed.
maybeTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * LPred,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt,bool & DuplicatedToLPred)3054 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3055 MachineBasicBlock *BB, MachineBasicBlock *LPred,
3056 BlockChain &Chain, BlockFilterSet *BlockFilter,
3057 MachineFunction::iterator &PrevUnplacedBlockIt,
3058 bool &DuplicatedToLPred) {
3059 DuplicatedToLPred = false;
3060 if (!shouldTailDuplicate(BB))
3061 return false;
3062
3063 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3064 << "\n");
3065
3066 // This has to be a callback because none of it can be done after
3067 // BB is deleted.
3068 bool Removed = false;
3069 auto RemovalCallback =
3070 [&](MachineBasicBlock *RemBB) {
3071 // Signal to outer function
3072 Removed = true;
3073
3074 // Conservative default.
3075 bool InWorkList = true;
3076 // Remove from the Chain and Chain Map
3077 if (BlockToChain.count(RemBB)) {
3078 BlockChain *Chain = BlockToChain[RemBB];
3079 InWorkList = Chain->UnscheduledPredecessors == 0;
3080 Chain->remove(RemBB);
3081 BlockToChain.erase(RemBB);
3082 }
3083
3084 // Handle the unplaced block iterator
3085 if (&(*PrevUnplacedBlockIt) == RemBB) {
3086 PrevUnplacedBlockIt++;
3087 }
3088
3089 // Handle the Work Lists
3090 if (InWorkList) {
3091 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3092 if (RemBB->isEHPad())
3093 RemoveList = EHPadWorkList;
3094 llvm::erase_value(RemoveList, RemBB);
3095 }
3096
3097 // Handle the filter set
3098 if (BlockFilter) {
3099 BlockFilter->remove(RemBB);
3100 }
3101
3102 // Remove the block from loop info.
3103 MLI->removeBlock(RemBB);
3104 if (RemBB == PreferredLoopExit)
3105 PreferredLoopExit = nullptr;
3106
3107 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3108 << getBlockName(RemBB) << "\n");
3109 };
3110 auto RemovalCallbackRef =
3111 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3112
3113 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3114 bool IsSimple = TailDup.isSimpleBB(BB);
3115 SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3116 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3117 if (F->getFunction().hasProfileData()) {
3118 // We can do partial duplication with precise profile information.
3119 findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3120 if (CandidatePreds.size() == 0)
3121 return false;
3122 if (CandidatePreds.size() < BB->pred_size())
3123 CandidatePtr = &CandidatePreds;
3124 }
3125 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3126 &RemovalCallbackRef, CandidatePtr);
3127
3128 // Update UnscheduledPredecessors to reflect tail-duplication.
3129 DuplicatedToLPred = false;
3130 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3131 // We're only looking for unscheduled predecessors that match the filter.
3132 BlockChain* PredChain = BlockToChain[Pred];
3133 if (Pred == LPred)
3134 DuplicatedToLPred = true;
3135 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3136 || PredChain == &Chain)
3137 continue;
3138 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3139 if (BlockFilter && !BlockFilter->count(NewSucc))
3140 continue;
3141 BlockChain *NewChain = BlockToChain[NewSucc];
3142 if (NewChain != &Chain && NewChain != PredChain)
3143 NewChain->UnscheduledPredecessors++;
3144 }
3145 }
3146 return Removed;
3147 }
3148
3149 // Count the number of actual machine instructions.
countMBBInstruction(MachineBasicBlock * MBB)3150 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3151 uint64_t InstrCount = 0;
3152 for (MachineInstr &MI : *MBB) {
3153 if (!MI.isPHI() && !MI.isMetaInstruction())
3154 InstrCount += 1;
3155 }
3156 return InstrCount;
3157 }
3158
3159 // The size cost of duplication is the instruction size of the duplicated block.
3160 // So we should scale the threshold accordingly. But the instruction size is not
3161 // available on all targets, so we use the number of instructions instead.
scaleThreshold(MachineBasicBlock * BB)3162 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3163 return DupThreshold.getFrequency() * countMBBInstruction(BB);
3164 }
3165
3166 // Returns true if BB is Pred's best successor.
isBestSuccessor(MachineBasicBlock * BB,MachineBasicBlock * Pred,BlockFilterSet * BlockFilter)3167 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3168 MachineBasicBlock *Pred,
3169 BlockFilterSet *BlockFilter) {
3170 if (BB == Pred)
3171 return false;
3172 if (BlockFilter && !BlockFilter->count(Pred))
3173 return false;
3174 BlockChain *PredChain = BlockToChain[Pred];
3175 if (PredChain && (Pred != *std::prev(PredChain->end())))
3176 return false;
3177
3178 // Find the successor with largest probability excluding BB.
3179 BranchProbability BestProb = BranchProbability::getZero();
3180 for (MachineBasicBlock *Succ : Pred->successors())
3181 if (Succ != BB) {
3182 if (BlockFilter && !BlockFilter->count(Succ))
3183 continue;
3184 BlockChain *SuccChain = BlockToChain[Succ];
3185 if (SuccChain && (Succ != *SuccChain->begin()))
3186 continue;
3187 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3188 if (SuccProb > BestProb)
3189 BestProb = SuccProb;
3190 }
3191
3192 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3193 if (BBProb <= BestProb)
3194 return false;
3195
3196 // Compute the number of reduced taken branches if Pred falls through to BB
3197 // instead of another successor. Then compare it with threshold.
3198 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3199 BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3200 return Gain > scaleThreshold(BB);
3201 }
3202
3203 // Find out the predecessors of BB and BB can be beneficially duplicated into
3204 // them.
findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock * > & Candidates,MachineBasicBlock * BB,BlockFilterSet * BlockFilter)3205 void MachineBlockPlacement::findDuplicateCandidates(
3206 SmallVectorImpl<MachineBasicBlock *> &Candidates,
3207 MachineBasicBlock *BB,
3208 BlockFilterSet *BlockFilter) {
3209 MachineBasicBlock *Fallthrough = nullptr;
3210 BranchProbability DefaultBranchProb = BranchProbability::getZero();
3211 BlockFrequency BBDupThreshold(scaleThreshold(BB));
3212 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3213 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3214
3215 // Sort for highest frequency.
3216 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3217 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3218 };
3219 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3220 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3221 };
3222 llvm::stable_sort(Succs, CmpSucc);
3223 llvm::stable_sort(Preds, CmpPred);
3224
3225 auto SuccIt = Succs.begin();
3226 if (SuccIt != Succs.end()) {
3227 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3228 }
3229
3230 // For each predecessors of BB, compute the benefit of duplicating BB,
3231 // if it is larger than the threshold, add it into Candidates.
3232 //
3233 // If we have following control flow.
3234 //
3235 // PB1 PB2 PB3 PB4
3236 // \ | / /\
3237 // \ | / / \
3238 // \ |/ / \
3239 // BB----/ OB
3240 // /\
3241 // / \
3242 // SB1 SB2
3243 //
3244 // And it can be partially duplicated as
3245 //
3246 // PB2+BB
3247 // | PB1 PB3 PB4
3248 // | | / /\
3249 // | | / / \
3250 // | |/ / \
3251 // | BB----/ OB
3252 // |\ /|
3253 // | X |
3254 // |/ \|
3255 // SB2 SB1
3256 //
3257 // The benefit of duplicating into a predecessor is defined as
3258 // Orig_taken_branch - Duplicated_taken_branch
3259 //
3260 // The Orig_taken_branch is computed with the assumption that predecessor
3261 // jumps to BB and the most possible successor is laid out after BB.
3262 //
3263 // The Duplicated_taken_branch is computed with the assumption that BB is
3264 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3265 // SB2 for PB2 in our case). If there is no available successor, the combined
3266 // block jumps to all BB's successor, like PB3 in this example.
3267 //
3268 // If a predecessor has multiple successors, so BB can't be duplicated into
3269 // it. But it can beneficially fall through to BB, and duplicate BB into other
3270 // predecessors.
3271 for (MachineBasicBlock *Pred : Preds) {
3272 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3273
3274 if (!TailDup.canTailDuplicate(BB, Pred)) {
3275 // BB can't be duplicated into Pred, but it is possible to be layout
3276 // below Pred.
3277 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3278 Fallthrough = Pred;
3279 if (SuccIt != Succs.end())
3280 SuccIt++;
3281 }
3282 continue;
3283 }
3284
3285 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3286 BlockFrequency DupCost;
3287 if (SuccIt == Succs.end()) {
3288 // Jump to all successors;
3289 if (Succs.size() > 0)
3290 DupCost += PredFreq;
3291 } else {
3292 // Fallthrough to *SuccIt, jump to all other successors;
3293 DupCost += PredFreq;
3294 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3295 }
3296
3297 assert(OrigCost >= DupCost);
3298 OrigCost -= DupCost;
3299 if (OrigCost > BBDupThreshold) {
3300 Candidates.push_back(Pred);
3301 if (SuccIt != Succs.end())
3302 SuccIt++;
3303 }
3304 }
3305
3306 // No predecessors can optimally fallthrough to BB.
3307 // So we can change one duplication into fallthrough.
3308 if (!Fallthrough) {
3309 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3310 Candidates[0] = Candidates.back();
3311 Candidates.pop_back();
3312 }
3313 }
3314 }
3315
initDupThreshold()3316 void MachineBlockPlacement::initDupThreshold() {
3317 DupThreshold = 0;
3318 if (!F->getFunction().hasProfileData())
3319 return;
3320
3321 // We prefer to use prifile count.
3322 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3323 if (HotThreshold != UINT64_MAX) {
3324 UseProfileCount = true;
3325 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3326 return;
3327 }
3328
3329 // Profile count is not available, we can use block frequency instead.
3330 BlockFrequency MaxFreq = 0;
3331 for (MachineBasicBlock &MBB : *F) {
3332 BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3333 if (Freq > MaxFreq)
3334 MaxFreq = Freq;
3335 }
3336
3337 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3338 DupThreshold = MaxFreq * ThresholdProb;
3339 UseProfileCount = false;
3340 }
3341
runOnMachineFunction(MachineFunction & MF)3342 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3343 if (skipFunction(MF.getFunction()))
3344 return false;
3345
3346 // Check for single-block functions and skip them.
3347 if (std::next(MF.begin()) == MF.end())
3348 return false;
3349
3350 F = &MF;
3351 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3352 MBFI = std::make_unique<MBFIWrapper>(
3353 getAnalysis<MachineBlockFrequencyInfo>());
3354 MLI = &getAnalysis<MachineLoopInfo>();
3355 TII = MF.getSubtarget().getInstrInfo();
3356 TLI = MF.getSubtarget().getTargetLowering();
3357 MPDT = nullptr;
3358 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3359
3360 initDupThreshold();
3361
3362 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3363 // there are no MachineLoops.
3364 PreferredLoopExit = nullptr;
3365
3366 assert(BlockToChain.empty() &&
3367 "BlockToChain map should be empty before starting placement.");
3368 assert(ComputedEdges.empty() &&
3369 "Computed Edge map should be empty before starting placement.");
3370
3371 unsigned TailDupSize = TailDupPlacementThreshold;
3372 // If only the aggressive threshold is explicitly set, use it.
3373 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3374 TailDupPlacementThreshold.getNumOccurrences() == 0)
3375 TailDupSize = TailDupPlacementAggressiveThreshold;
3376
3377 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3378 // For aggressive optimization, we can adjust some thresholds to be less
3379 // conservative.
3380 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3381 // At O3 we should be more willing to copy blocks for tail duplication. This
3382 // increases size pressure, so we only do it at O3
3383 // Do this unless only the regular threshold is explicitly set.
3384 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3385 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3386 TailDupSize = TailDupPlacementAggressiveThreshold;
3387 }
3388
3389 // If there's no threshold provided through options, query the target
3390 // information for a threshold instead.
3391 if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3392 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3393 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3394 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3395
3396 if (allowTailDupPlacement()) {
3397 MPDT = &getAnalysis<MachinePostDominatorTree>();
3398 bool OptForSize = MF.getFunction().hasOptSize() ||
3399 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3400 if (OptForSize)
3401 TailDupSize = 1;
3402 bool PreRegAlloc = false;
3403 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3404 /* LayoutMode */ true, TailDupSize);
3405 precomputeTriangleChains();
3406 }
3407
3408 buildCFGChains();
3409
3410 // Changing the layout can create new tail merging opportunities.
3411 // TailMerge can create jump into if branches that make CFG irreducible for
3412 // HW that requires structured CFG.
3413 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3414 PassConfig->getEnableTailMerge() &&
3415 BranchFoldPlacement;
3416 // No tail merging opportunities if the block number is less than four.
3417 if (MF.size() > 3 && EnableTailMerge) {
3418 unsigned TailMergeSize = TailDupSize + 1;
3419 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3420 *MBFI, *MBPI, PSI, TailMergeSize);
3421
3422 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3423 /*AfterPlacement=*/true)) {
3424 // Redo the layout if tail merging creates/removes/moves blocks.
3425 BlockToChain.clear();
3426 ComputedEdges.clear();
3427 // Must redo the post-dominator tree if blocks were changed.
3428 if (MPDT)
3429 MPDT->runOnMachineFunction(MF);
3430 ChainAllocator.DestroyAll();
3431 buildCFGChains();
3432 }
3433 }
3434
3435 // Apply a post-processing optimizing block placement.
3436 if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3437 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) {
3438 // Find a new placement and modify the layout of the blocks in the function.
3439 applyExtTsp();
3440
3441 // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3442 createCFGChainExtTsp();
3443 }
3444
3445 optimizeBranches();
3446 alignBlocks();
3447
3448 BlockToChain.clear();
3449 ComputedEdges.clear();
3450 ChainAllocator.DestroyAll();
3451
3452 bool HasMaxBytesOverride =
3453 MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3454
3455 if (AlignAllBlock)
3456 // Align all of the blocks in the function to a specific alignment.
3457 for (MachineBasicBlock &MBB : MF) {
3458 if (HasMaxBytesOverride)
3459 MBB.setAlignment(Align(1ULL << AlignAllBlock),
3460 MaxBytesForAlignmentOverride);
3461 else
3462 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3463 }
3464 else if (AlignAllNonFallThruBlocks) {
3465 // Align all of the blocks that have no fall-through predecessors to a
3466 // specific alignment.
3467 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3468 auto LayoutPred = std::prev(MBI);
3469 if (!LayoutPred->isSuccessor(&*MBI)) {
3470 if (HasMaxBytesOverride)
3471 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3472 MaxBytesForAlignmentOverride);
3473 else
3474 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3475 }
3476 }
3477 }
3478 if (ViewBlockLayoutWithBFI != GVDT_None &&
3479 (ViewBlockFreqFuncName.empty() ||
3480 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3481 if (RenumberBlocksBeforeView)
3482 MF.RenumberBlocks();
3483 MBFI->view("MBP." + MF.getName(), false);
3484 }
3485
3486 // We always return true as we have no way to track whether the final order
3487 // differs from the original order.
3488 return true;
3489 }
3490
applyExtTsp()3491 void MachineBlockPlacement::applyExtTsp() {
3492 // Prepare data; blocks are indexed by their index in the current ordering.
3493 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3494 BlockIndex.reserve(F->size());
3495 std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3496 CurrentBlockOrder.reserve(F->size());
3497 size_t NumBlocks = 0;
3498 for (const MachineBasicBlock &MBB : *F) {
3499 BlockIndex[&MBB] = NumBlocks++;
3500 CurrentBlockOrder.push_back(&MBB);
3501 }
3502
3503 auto BlockSizes = std::vector<uint64_t>(F->size());
3504 auto BlockCounts = std::vector<uint64_t>(F->size());
3505 std::vector<EdgeCountT> JumpCounts;
3506 for (MachineBasicBlock &MBB : *F) {
3507 // Getting the block frequency.
3508 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3509 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3510 // Getting the block size:
3511 // - approximate the size of an instruction by 4 bytes, and
3512 // - ignore debug instructions.
3513 // Note: getting the exact size of each block is target-dependent and can be
3514 // done by extending the interface of MCCodeEmitter. Experimentally we do
3515 // not see a perf improvement with the exact block sizes.
3516 auto NonDbgInsts =
3517 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3518 int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3519 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3520 // Getting jump frequencies.
3521 for (MachineBasicBlock *Succ : MBB.successors()) {
3522 auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3523 BlockFrequency JumpFreq = BlockFreq * EP;
3524 auto Jump = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3525 JumpCounts.push_back(std::make_pair(Jump, JumpFreq.getFrequency()));
3526 }
3527 }
3528
3529 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3530 << " with profile = " << F->getFunction().hasProfileData()
3531 << " (" << F->getName().str() << ")"
3532 << "\n");
3533 LLVM_DEBUG(
3534 dbgs() << format(" original layout score: %0.2f\n",
3535 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3536
3537 // Run the layout algorithm.
3538 auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3539 std::vector<const MachineBasicBlock *> NewBlockOrder;
3540 NewBlockOrder.reserve(F->size());
3541 for (uint64_t Node : NewOrder) {
3542 NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3543 }
3544 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n",
3545 calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3546 JumpCounts)));
3547
3548 // Assign new block order.
3549 assignBlockOrder(NewBlockOrder);
3550 }
3551
assignBlockOrder(const std::vector<const MachineBasicBlock * > & NewBlockOrder)3552 void MachineBlockPlacement::assignBlockOrder(
3553 const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3554 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3555 F->RenumberBlocks();
3556
3557 bool HasChanges = false;
3558 for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3559 if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3560 HasChanges = true;
3561 break;
3562 }
3563 }
3564 // Stop early if the new block order is identical to the existing one.
3565 if (!HasChanges)
3566 return;
3567
3568 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3569 for (auto &MBB : *F) {
3570 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3571 }
3572
3573 // Sort basic blocks in the function according to the computed order.
3574 DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3575 for (const MachineBasicBlock *MBB : NewBlockOrder) {
3576 NewIndex[MBB] = NewIndex.size();
3577 }
3578 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3579 return NewIndex[&L] < NewIndex[&R];
3580 });
3581
3582 // Update basic block branches by inserting explicit fallthrough branches
3583 // when required and re-optimize branches when possible.
3584 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3585 SmallVector<MachineOperand, 4> Cond;
3586 for (auto &MBB : *F) {
3587 MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3588 MachineFunction::iterator EndIt = MBB.getParent()->end();
3589 auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3590 // If this block had a fallthrough before we need an explicit unconditional
3591 // branch to that block if the fallthrough block is not adjacent to the
3592 // block in the new order.
3593 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3594 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3595 }
3596
3597 // It might be possible to optimize branches by flipping the condition.
3598 Cond.clear();
3599 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3600 if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3601 continue;
3602 MBB.updateTerminator(FTMBB);
3603 }
3604
3605 #ifndef NDEBUG
3606 // Make sure we correctly constructed all branches.
3607 F->verify(this, "After optimized block reordering");
3608 #endif
3609 }
3610
createCFGChainExtTsp()3611 void MachineBlockPlacement::createCFGChainExtTsp() {
3612 BlockToChain.clear();
3613 ComputedEdges.clear();
3614 ChainAllocator.DestroyAll();
3615
3616 MachineBasicBlock *HeadBB = &F->front();
3617 BlockChain *FunctionChain =
3618 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3619
3620 for (MachineBasicBlock &MBB : *F) {
3621 if (HeadBB == &MBB)
3622 continue; // Ignore head of the chain
3623 FunctionChain->merge(&MBB, nullptr);
3624 }
3625 }
3626
3627 namespace {
3628
3629 /// A pass to compute block placement statistics.
3630 ///
3631 /// A separate pass to compute interesting statistics for evaluating block
3632 /// placement. This is separate from the actual placement pass so that they can
3633 /// be computed in the absence of any placement transformations or when using
3634 /// alternative placement strategies.
3635 class MachineBlockPlacementStats : public MachineFunctionPass {
3636 /// A handle to the branch probability pass.
3637 const MachineBranchProbabilityInfo *MBPI;
3638
3639 /// A handle to the function-wide block frequency pass.
3640 const MachineBlockFrequencyInfo *MBFI;
3641
3642 public:
3643 static char ID; // Pass identification, replacement for typeid
3644
MachineBlockPlacementStats()3645 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3646 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3647 }
3648
3649 bool runOnMachineFunction(MachineFunction &F) override;
3650
getAnalysisUsage(AnalysisUsage & AU) const3651 void getAnalysisUsage(AnalysisUsage &AU) const override {
3652 AU.addRequired<MachineBranchProbabilityInfo>();
3653 AU.addRequired<MachineBlockFrequencyInfo>();
3654 AU.setPreservesAll();
3655 MachineFunctionPass::getAnalysisUsage(AU);
3656 }
3657 };
3658
3659 } // end anonymous namespace
3660
3661 char MachineBlockPlacementStats::ID = 0;
3662
3663 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3664
3665 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3666 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)3667 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3668 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3669 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3670 "Basic Block Placement Stats", false, false)
3671
3672 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3673 // Check for single-block functions and skip them.
3674 if (std::next(F.begin()) == F.end())
3675 return false;
3676
3677 if (!isFunctionInPrintList(F.getName()))
3678 return false;
3679
3680 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3681 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3682
3683 for (MachineBasicBlock &MBB : F) {
3684 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3685 Statistic &NumBranches =
3686 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3687 Statistic &BranchTakenFreq =
3688 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3689 for (MachineBasicBlock *Succ : MBB.successors()) {
3690 // Skip if this successor is a fallthrough.
3691 if (MBB.isLayoutSuccessor(Succ))
3692 continue;
3693
3694 BlockFrequency EdgeFreq =
3695 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3696 ++NumBranches;
3697 BranchTakenFreq += EdgeFreq.getFrequency();
3698 }
3699 }
3700
3701 return false;
3702 }
3703