1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <iterator>
32 #include <optional>
33
34 #define DEBUG_TYPE "cgscc"
35
36 using namespace llvm;
37
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
42 "abort-on-max-devirt-iterations-reached",
43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44 "pass is reached"));
45
46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
47
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn<LazyCallGraph::SCC>;
50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
52 LazyCallGraph &, CGSCCUpdateResult &>;
53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
55 LazyCallGraph::SCC, LazyCallGraph &>;
56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
57
58 /// Explicitly specialize the pass manager run method to handle call graph
59 /// updates.
60 template <>
61 PreservedAnalyses
62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & G,CGSCCUpdateResult & UR)63 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
64 CGSCCAnalysisManager &AM,
65 LazyCallGraph &G, CGSCCUpdateResult &UR) {
66 // Request PassInstrumentation from analysis manager, will use it to run
67 // instrumenting callbacks for the passes later.
68 PassInstrumentation PI =
69 AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
70
71 PreservedAnalyses PA = PreservedAnalyses::all();
72
73 // The SCC may be refined while we are running passes over it, so set up
74 // a pointer that we can update.
75 LazyCallGraph::SCC *C = &InitialC;
76
77 // Get Function analysis manager from its proxy.
78 FunctionAnalysisManager &FAM =
79 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
80
81 for (auto &Pass : Passes) {
82 // Check the PassInstrumentation's BeforePass callbacks before running the
83 // pass, skip its execution completely if asked to (callback returns false).
84 if (!PI.runBeforePass(*Pass, *C))
85 continue;
86
87 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
88
89 if (UR.InvalidatedSCCs.count(C))
90 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
91 else
92 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
93
94 // Update the SCC if necessary.
95 C = UR.UpdatedC ? UR.UpdatedC : C;
96 if (UR.UpdatedC) {
97 // If C is updated, also create a proxy and update FAM inside the result.
98 auto *ResultFAMCP =
99 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
100 ResultFAMCP->updateFAM(FAM);
101 }
102
103 // Intersect the final preserved analyses to compute the aggregate
104 // preserved set for this pass manager.
105 PA.intersect(PassPA);
106
107 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
108 // current SCC may simply need to be skipped if invalid.
109 if (UR.InvalidatedSCCs.count(C)) {
110 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
111 break;
112 }
113
114 // Check that we didn't miss any update scenario.
115 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
116
117 // Update the analysis manager as each pass runs and potentially
118 // invalidates analyses.
119 AM.invalidate(*C, PassPA);
120 }
121
122 // Before we mark all of *this* SCC's analyses as preserved below, intersect
123 // this with the cross-SCC preserved analysis set. This is used to allow
124 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
125 // for them.
126 UR.CrossSCCPA.intersect(PA);
127
128 // Invalidation was handled after each pass in the above loop for the current
129 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
130 // preserved. We mark this with a set so that we don't need to inspect each
131 // one individually.
132 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
133
134 return PA;
135 }
136
137 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)138 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
139 // Setup the CGSCC analysis manager from its proxy.
140 CGSCCAnalysisManager &CGAM =
141 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
142
143 // Get the call graph for this module.
144 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
145
146 // Get Function analysis manager from its proxy.
147 FunctionAnalysisManager &FAM =
148 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
149
150 // We keep worklists to allow us to push more work onto the pass manager as
151 // the passes are run.
152 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
153 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
154
155 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
156 // iterating off the worklists.
157 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
158 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
159
160 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
161 InlinedInternalEdges;
162
163 CGSCCUpdateResult UR = {
164 RCWorklist, CWorklist, InvalidRefSCCSet,
165 InvalidSCCSet, nullptr, PreservedAnalyses::all(),
166 InlinedInternalEdges, {}};
167
168 // Request PassInstrumentation from analysis manager, will use it to run
169 // instrumenting callbacks for the passes later.
170 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
171
172 PreservedAnalyses PA = PreservedAnalyses::all();
173 CG.buildRefSCCs();
174 for (LazyCallGraph::RefSCC &RC :
175 llvm::make_early_inc_range(CG.postorder_ref_sccs())) {
176 assert(RCWorklist.empty() &&
177 "Should always start with an empty RefSCC worklist");
178 // The postorder_ref_sccs range we are walking is lazily constructed, so
179 // we only push the first one onto the worklist. The worklist allows us
180 // to capture *new* RefSCCs created during transformations.
181 //
182 // We really want to form RefSCCs lazily because that makes them cheaper
183 // to update as the program is simplified and allows us to have greater
184 // cache locality as forming a RefSCC touches all the parts of all the
185 // functions within that RefSCC.
186 //
187 // We also eagerly increment the iterator to the next position because
188 // the CGSCC passes below may delete the current RefSCC.
189 RCWorklist.insert(&RC);
190
191 do {
192 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
193 if (InvalidRefSCCSet.count(RC)) {
194 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
195 continue;
196 }
197
198 assert(CWorklist.empty() &&
199 "Should always start with an empty SCC worklist");
200
201 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
202 << "\n");
203
204 // The top of the worklist may *also* be the same SCC we just ran over
205 // (and invalidated for). Keep track of that last SCC we processed due
206 // to SCC update to avoid redundant processing when an SCC is both just
207 // updated itself and at the top of the worklist.
208 LazyCallGraph::SCC *LastUpdatedC = nullptr;
209
210 // Push the initial SCCs in reverse post-order as we'll pop off the
211 // back and so see this in post-order.
212 for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
213 CWorklist.insert(&C);
214
215 do {
216 LazyCallGraph::SCC *C = CWorklist.pop_back_val();
217 // Due to call graph mutations, we may have invalid SCCs or SCCs from
218 // other RefSCCs in the worklist. The invalid ones are dead and the
219 // other RefSCCs should be queued above, so we just need to skip both
220 // scenarios here.
221 if (InvalidSCCSet.count(C)) {
222 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
223 continue;
224 }
225 if (LastUpdatedC == C) {
226 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
227 continue;
228 }
229 // We used to also check if the current SCC is part of the current
230 // RefSCC and bail if it wasn't, since it should be in RCWorklist.
231 // However, this can cause compile time explosions in some cases on
232 // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
233 // huge RefSCC can become their own child RefSCC, we create one child
234 // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
235 // the huge RefSCC, and repeat. By visiting all SCCs in the original
236 // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
237 // rather one pass of the RefSCC creating one child RefSCC at a time.
238
239 // Ensure we can proxy analysis updates from the CGSCC analysis manager
240 // into the the Function analysis manager by getting a proxy here.
241 // This also needs to update the FunctionAnalysisManager, as this may be
242 // the first time we see this SCC.
243 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
244 FAM);
245
246 // Each time we visit a new SCC pulled off the worklist,
247 // a transformation of a child SCC may have also modified this parent
248 // and invalidated analyses. So we invalidate using the update record's
249 // cross-SCC preserved set. This preserved set is intersected by any
250 // CGSCC pass that handles invalidation (primarily pass managers) prior
251 // to marking its SCC as preserved. That lets us track everything that
252 // might need invalidation across SCCs without excessive invalidations
253 // on a single SCC.
254 //
255 // This essentially allows SCC passes to freely invalidate analyses
256 // of any ancestor SCC. If this becomes detrimental to successfully
257 // caching analyses, we could force each SCC pass to manually
258 // invalidate the analyses for any SCCs other than themselves which
259 // are mutated. However, that seems to lose the robustness of the
260 // pass-manager driven invalidation scheme.
261 CGAM.invalidate(*C, UR.CrossSCCPA);
262
263 do {
264 // Check that we didn't miss any update scenario.
265 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
266 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
267
268 LastUpdatedC = UR.UpdatedC;
269 UR.UpdatedC = nullptr;
270
271 // Check the PassInstrumentation's BeforePass callbacks before
272 // running the pass, skip its execution completely if asked to
273 // (callback returns false).
274 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
275 continue;
276
277 PreservedAnalyses PassPA = Pass->run(*C, CGAM, CG, UR);
278
279 if (UR.InvalidatedSCCs.count(C))
280 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
281 else
282 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
283
284 // Update the SCC and RefSCC if necessary.
285 C = UR.UpdatedC ? UR.UpdatedC : C;
286
287 if (UR.UpdatedC) {
288 // If we're updating the SCC, also update the FAM inside the proxy's
289 // result.
290 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
291 FAM);
292 }
293
294 // Intersect with the cross-SCC preserved set to capture any
295 // cross-SCC invalidation.
296 UR.CrossSCCPA.intersect(PassPA);
297 // Intersect the preserved set so that invalidation of module
298 // analyses will eventually occur when the module pass completes.
299 PA.intersect(PassPA);
300
301 // If the CGSCC pass wasn't able to provide a valid updated SCC,
302 // the current SCC may simply need to be skipped if invalid.
303 if (UR.InvalidatedSCCs.count(C)) {
304 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
305 break;
306 }
307
308 // Check that we didn't miss any update scenario.
309 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
310
311 // We handle invalidating the CGSCC analysis manager's information
312 // for the (potentially updated) SCC here. Note that any other SCCs
313 // whose structure has changed should have been invalidated by
314 // whatever was updating the call graph. This SCC gets invalidated
315 // late as it contains the nodes that were actively being
316 // processed.
317 CGAM.invalidate(*C, PassPA);
318
319 // The pass may have restructured the call graph and refined the
320 // current SCC and/or RefSCC. We need to update our current SCC and
321 // RefSCC pointers to follow these. Also, when the current SCC is
322 // refined, re-run the SCC pass over the newly refined SCC in order
323 // to observe the most precise SCC model available. This inherently
324 // cannot cycle excessively as it only happens when we split SCCs
325 // apart, at most converging on a DAG of single nodes.
326 // FIXME: If we ever start having RefSCC passes, we'll want to
327 // iterate there too.
328 if (UR.UpdatedC)
329 LLVM_DEBUG(dbgs()
330 << "Re-running SCC passes after a refinement of the "
331 "current SCC: "
332 << *UR.UpdatedC << "\n");
333
334 // Note that both `C` and `RC` may at this point refer to deleted,
335 // invalid SCC and RefSCCs respectively. But we will short circuit
336 // the processing when we check them in the loop above.
337 } while (UR.UpdatedC);
338 } while (!CWorklist.empty());
339
340 // We only need to keep internal inlined edge information within
341 // a RefSCC, clear it to save on space and let the next time we visit
342 // any of these functions have a fresh start.
343 InlinedInternalEdges.clear();
344 } while (!RCWorklist.empty());
345 }
346
347 // By definition we preserve the call garph, all SCC analyses, and the
348 // analysis proxies by handling them above and in any nested pass managers.
349 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
350 PA.preserve<LazyCallGraphAnalysis>();
351 PA.preserve<CGSCCAnalysisManagerModuleProxy>();
352 PA.preserve<FunctionAnalysisManagerModuleProxy>();
353 return PA;
354 }
355
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)356 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
357 CGSCCAnalysisManager &AM,
358 LazyCallGraph &CG,
359 CGSCCUpdateResult &UR) {
360 PreservedAnalyses PA = PreservedAnalyses::all();
361 PassInstrumentation PI =
362 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
363
364 // The SCC may be refined while we are running passes over it, so set up
365 // a pointer that we can update.
366 LazyCallGraph::SCC *C = &InitialC;
367
368 // Struct to track the counts of direct and indirect calls in each function
369 // of the SCC.
370 struct CallCount {
371 int Direct;
372 int Indirect;
373 };
374
375 // Put value handles on all of the indirect calls and return the number of
376 // direct calls for each function in the SCC.
377 auto ScanSCC = [](LazyCallGraph::SCC &C,
378 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
379 assert(CallHandles.empty() && "Must start with a clear set of handles.");
380
381 SmallDenseMap<Function *, CallCount> CallCounts;
382 CallCount CountLocal = {0, 0};
383 for (LazyCallGraph::Node &N : C) {
384 CallCount &Count =
385 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
386 .first->second;
387 for (Instruction &I : instructions(N.getFunction()))
388 if (auto *CB = dyn_cast<CallBase>(&I)) {
389 if (CB->getCalledFunction()) {
390 ++Count.Direct;
391 } else {
392 ++Count.Indirect;
393 CallHandles.insert({CB, WeakTrackingVH(CB)});
394 }
395 }
396 }
397
398 return CallCounts;
399 };
400
401 UR.IndirectVHs.clear();
402 // Populate the initial call handles and get the initial call counts.
403 auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
404
405 for (int Iteration = 0;; ++Iteration) {
406 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
407 continue;
408
409 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
410
411 if (UR.InvalidatedSCCs.count(C))
412 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
413 else
414 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
415
416 PA.intersect(PassPA);
417
418 // If the SCC structure has changed, bail immediately and let the outer
419 // CGSCC layer handle any iteration to reflect the refined structure.
420 if (UR.UpdatedC && UR.UpdatedC != C)
421 break;
422
423 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
424 // current SCC may simply need to be skipped if invalid.
425 if (UR.InvalidatedSCCs.count(C)) {
426 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
427 break;
428 }
429
430 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
431
432 // Check whether any of the handles were devirtualized.
433 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
434 if (P.second) {
435 if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
436 if (CB->getCalledFunction()) {
437 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
438 return true;
439 }
440 }
441 }
442 return false;
443 });
444
445 // Rescan to build up a new set of handles and count how many direct
446 // calls remain. If we decide to iterate, this also sets up the input to
447 // the next iteration.
448 UR.IndirectVHs.clear();
449 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
450
451 // If we haven't found an explicit devirtualization already see if we
452 // have decreased the number of indirect calls and increased the number
453 // of direct calls for any function in the SCC. This can be fooled by all
454 // manner of transformations such as DCE and other things, but seems to
455 // work well in practice.
456 if (!Devirt)
457 // Iterate over the keys in NewCallCounts, if Function also exists in
458 // CallCounts, make the check below.
459 for (auto &Pair : NewCallCounts) {
460 auto &CallCountNew = Pair.second;
461 auto CountIt = CallCounts.find(Pair.first);
462 if (CountIt != CallCounts.end()) {
463 const auto &CallCountOld = CountIt->second;
464 if (CallCountOld.Indirect > CallCountNew.Indirect &&
465 CallCountOld.Direct < CallCountNew.Direct) {
466 Devirt = true;
467 break;
468 }
469 }
470 }
471
472 if (!Devirt) {
473 break;
474 }
475
476 // Otherwise, if we've already hit our max, we're done.
477 if (Iteration >= MaxIterations) {
478 if (AbortOnMaxDevirtIterationsReached)
479 report_fatal_error("Max devirtualization iterations reached");
480 LLVM_DEBUG(
481 dbgs() << "Found another devirtualization after hitting the max "
482 "number of repetitions ("
483 << MaxIterations << ") on SCC: " << *C << "\n");
484 break;
485 }
486
487 LLVM_DEBUG(
488 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
489 << *C << "\n");
490
491 // Move over the new call counts in preparation for iterating.
492 CallCounts = std::move(NewCallCounts);
493
494 // Update the analysis manager with each run and intersect the total set
495 // of preserved analyses so we're ready to iterate.
496 AM.invalidate(*C, PassPA);
497 }
498
499 // Note that we don't add any preserved entries here unlike a more normal
500 // "pass manager" because we only handle invalidation *between* iterations,
501 // not after the last iteration.
502 return PA;
503 }
504
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)505 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
506 CGSCCAnalysisManager &AM,
507 LazyCallGraph &CG,
508 CGSCCUpdateResult &UR) {
509 // Setup the function analysis manager from its proxy.
510 FunctionAnalysisManager &FAM =
511 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
512
513 SmallVector<LazyCallGraph::Node *, 4> Nodes;
514 for (LazyCallGraph::Node &N : C)
515 Nodes.push_back(&N);
516
517 // The SCC may get split while we are optimizing functions due to deleting
518 // edges. If this happens, the current SCC can shift, so keep track of
519 // a pointer we can overwrite.
520 LazyCallGraph::SCC *CurrentC = &C;
521
522 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
523
524 PreservedAnalyses PA = PreservedAnalyses::all();
525 for (LazyCallGraph::Node *N : Nodes) {
526 // Skip nodes from other SCCs. These may have been split out during
527 // processing. We'll eventually visit those SCCs and pick up the nodes
528 // there.
529 if (CG.lookupSCC(*N) != CurrentC)
530 continue;
531
532 Function &F = N->getFunction();
533
534 if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
535 continue;
536
537 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
538 if (!PI.runBeforePass<Function>(*Pass, F))
539 continue;
540
541 PreservedAnalyses PassPA = Pass->run(F, FAM);
542 PI.runAfterPass<Function>(*Pass, F, PassPA);
543
544 // We know that the function pass couldn't have invalidated any other
545 // function's analyses (that's the contract of a function pass), so
546 // directly handle the function analysis manager's invalidation here.
547 FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
548 if (NoRerun)
549 (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F);
550
551 // Then intersect the preserved set so that invalidation of module
552 // analyses will eventually occur when the module pass completes.
553 PA.intersect(std::move(PassPA));
554
555 // If the call graph hasn't been preserved, update it based on this
556 // function pass. This may also update the current SCC to point to
557 // a smaller, more refined SCC.
558 auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
559 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
560 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
561 AM, UR, FAM);
562 assert(CG.lookupSCC(*N) == CurrentC &&
563 "Current SCC not updated to the SCC containing the current node!");
564 }
565 }
566
567 // By definition we preserve the proxy. And we preserve all analyses on
568 // Functions. This precludes *any* invalidation of function analyses by the
569 // proxy, but that's OK because we've taken care to invalidate analyses in
570 // the function analysis manager incrementally above.
571 PA.preserveSet<AllAnalysesOn<Function>>();
572 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
573
574 // We've also ensured that we updated the call graph along the way.
575 PA.preserve<LazyCallGraphAnalysis>();
576
577 return PA;
578 }
579
invalidate(Module & M,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator & Inv)580 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
581 Module &M, const PreservedAnalyses &PA,
582 ModuleAnalysisManager::Invalidator &Inv) {
583 // If literally everything is preserved, we're done.
584 if (PA.areAllPreserved())
585 return false; // This is still a valid proxy.
586
587 // If this proxy or the call graph is going to be invalidated, we also need
588 // to clear all the keys coming from that analysis.
589 //
590 // We also directly invalidate the FAM's module proxy if necessary, and if
591 // that proxy isn't preserved we can't preserve this proxy either. We rely on
592 // it to handle module -> function analysis invalidation in the face of
593 // structural changes and so if it's unavailable we conservatively clear the
594 // entire SCC layer as well rather than trying to do invalidation ourselves.
595 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
596 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
597 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
598 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
599 InnerAM->clear();
600
601 // And the proxy itself should be marked as invalid so that we can observe
602 // the new call graph. This isn't strictly necessary because we cheat
603 // above, but is still useful.
604 return true;
605 }
606
607 // Directly check if the relevant set is preserved so we can short circuit
608 // invalidating SCCs below.
609 bool AreSCCAnalysesPreserved =
610 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
611
612 // Ok, we have a graph, so we can propagate the invalidation down into it.
613 G->buildRefSCCs();
614 for (auto &RC : G->postorder_ref_sccs())
615 for (auto &C : RC) {
616 std::optional<PreservedAnalyses> InnerPA;
617
618 // Check to see whether the preserved set needs to be adjusted based on
619 // module-level analysis invalidation triggering deferred invalidation
620 // for this SCC.
621 if (auto *OuterProxy =
622 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
623 for (const auto &OuterInvalidationPair :
624 OuterProxy->getOuterInvalidations()) {
625 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
626 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
627 if (Inv.invalidate(OuterAnalysisID, M, PA)) {
628 if (!InnerPA)
629 InnerPA = PA;
630 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
631 InnerPA->abandon(InnerAnalysisID);
632 }
633 }
634
635 // Check if we needed a custom PA set. If so we'll need to run the inner
636 // invalidation.
637 if (InnerPA) {
638 InnerAM->invalidate(C, *InnerPA);
639 continue;
640 }
641
642 // Otherwise we only need to do invalidation if the original PA set didn't
643 // preserve all SCC analyses.
644 if (!AreSCCAnalysesPreserved)
645 InnerAM->invalidate(C, PA);
646 }
647
648 // Return false to indicate that this result is still a valid proxy.
649 return false;
650 }
651
652 template <>
653 CGSCCAnalysisManagerModuleProxy::Result
run(Module & M,ModuleAnalysisManager & AM)654 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
655 // Force the Function analysis manager to also be available so that it can
656 // be accessed in an SCC analysis and proxied onward to function passes.
657 // FIXME: It is pretty awkward to just drop the result here and assert that
658 // we can find it again later.
659 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
660
661 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
662 }
663
664 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
665
666 FunctionAnalysisManagerCGSCCProxy::Result
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG)667 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
668 CGSCCAnalysisManager &AM,
669 LazyCallGraph &CG) {
670 // Note: unconditionally getting checking that the proxy exists may get it at
671 // this point. There are cases when this is being run unnecessarily, but
672 // it is cheap and having the assertion in place is more valuable.
673 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
674 Module &M = *C.begin()->getFunction().getParent();
675 bool ProxyExists =
676 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
677 assert(ProxyExists &&
678 "The CGSCC pass manager requires that the FAM module proxy is run "
679 "on the module prior to entering the CGSCC walk");
680 (void)ProxyExists;
681
682 // We just return an empty result. The caller will use the updateFAM interface
683 // to correctly register the relevant FunctionAnalysisManager based on the
684 // context in which this proxy is run.
685 return Result();
686 }
687
invalidate(LazyCallGraph::SCC & C,const PreservedAnalyses & PA,CGSCCAnalysisManager::Invalidator & Inv)688 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
689 LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
690 CGSCCAnalysisManager::Invalidator &Inv) {
691 // If literally everything is preserved, we're done.
692 if (PA.areAllPreserved())
693 return false; // This is still a valid proxy.
694
695 // All updates to preserve valid results are done below, so we don't need to
696 // invalidate this proxy.
697 //
698 // Note that in order to preserve this proxy, a module pass must ensure that
699 // the FAM has been completely updated to handle the deletion of functions.
700 // Specifically, any FAM-cached results for those functions need to have been
701 // forcibly cleared. When preserved, this proxy will only invalidate results
702 // cached on functions *still in the module* at the end of the module pass.
703 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
704 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
705 for (LazyCallGraph::Node &N : C)
706 FAM->invalidate(N.getFunction(), PA);
707
708 return false;
709 }
710
711 // Directly check if the relevant set is preserved.
712 bool AreFunctionAnalysesPreserved =
713 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
714
715 // Now walk all the functions to see if any inner analysis invalidation is
716 // necessary.
717 for (LazyCallGraph::Node &N : C) {
718 Function &F = N.getFunction();
719 std::optional<PreservedAnalyses> FunctionPA;
720
721 // Check to see whether the preserved set needs to be pruned based on
722 // SCC-level analysis invalidation that triggers deferred invalidation
723 // registered with the outer analysis manager proxy for this function.
724 if (auto *OuterProxy =
725 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
726 for (const auto &OuterInvalidationPair :
727 OuterProxy->getOuterInvalidations()) {
728 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
729 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
730 if (Inv.invalidate(OuterAnalysisID, C, PA)) {
731 if (!FunctionPA)
732 FunctionPA = PA;
733 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
734 FunctionPA->abandon(InnerAnalysisID);
735 }
736 }
737
738 // Check if we needed a custom PA set, and if so we'll need to run the
739 // inner invalidation.
740 if (FunctionPA) {
741 FAM->invalidate(F, *FunctionPA);
742 continue;
743 }
744
745 // Otherwise we only need to do invalidation if the original PA set didn't
746 // preserve all function analyses.
747 if (!AreFunctionAnalysesPreserved)
748 FAM->invalidate(F, PA);
749 }
750
751 // Return false to indicate that this result is still a valid proxy.
752 return false;
753 }
754
755 } // end namespace llvm
756
757 /// When a new SCC is created for the graph we first update the
758 /// FunctionAnalysisManager in the Proxy's result.
759 /// As there might be function analysis results cached for the functions now in
760 /// that SCC, two forms of updates are required.
761 ///
762 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
763 /// created so that any subsequent invalidation events to the SCC are
764 /// propagated to the function analysis results cached for functions within it.
765 ///
766 /// Second, if any of the functions within the SCC have analysis results with
767 /// outer analysis dependencies, then those dependencies would point to the
768 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
769 /// function analyses so that they don't retain stale handles.
updateNewSCCFunctionAnalyses(LazyCallGraph::SCC & C,LazyCallGraph & G,CGSCCAnalysisManager & AM,FunctionAnalysisManager & FAM)770 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
771 LazyCallGraph &G,
772 CGSCCAnalysisManager &AM,
773 FunctionAnalysisManager &FAM) {
774 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
775
776 // Now walk the functions in this SCC and invalidate any function analysis
777 // results that might have outer dependencies on an SCC analysis.
778 for (LazyCallGraph::Node &N : C) {
779 Function &F = N.getFunction();
780
781 auto *OuterProxy =
782 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
783 if (!OuterProxy)
784 // No outer analyses were queried, nothing to do.
785 continue;
786
787 // Forcibly abandon all the inner analyses with dependencies, but
788 // invalidate nothing else.
789 auto PA = PreservedAnalyses::all();
790 for (const auto &OuterInvalidationPair :
791 OuterProxy->getOuterInvalidations()) {
792 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
793 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
794 PA.abandon(InnerAnalysisID);
795 }
796
797 // Now invalidate anything we found.
798 FAM.invalidate(F, PA);
799 }
800 }
801
802 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
803 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
804 /// added SCCs.
805 ///
806 /// The range of new SCCs must be in postorder already. The SCC they were split
807 /// out of must be provided as \p C. The current node being mutated and
808 /// triggering updates must be passed as \p N.
809 ///
810 /// This function returns the SCC containing \p N. This will be either \p C if
811 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
812 template <typename SCCRangeT>
813 static LazyCallGraph::SCC *
incorporateNewSCCRange(const SCCRangeT & NewSCCRange,LazyCallGraph & G,LazyCallGraph::Node & N,LazyCallGraph::SCC * C,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR)814 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
815 LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
816 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
817 using SCC = LazyCallGraph::SCC;
818
819 if (NewSCCRange.empty())
820 return C;
821
822 // Add the current SCC to the worklist as its shape has changed.
823 UR.CWorklist.insert(C);
824 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
825 << "\n");
826
827 SCC *OldC = C;
828
829 // Update the current SCC. Note that if we have new SCCs, this must actually
830 // change the SCC.
831 assert(C != &*NewSCCRange.begin() &&
832 "Cannot insert new SCCs without changing current SCC!");
833 C = &*NewSCCRange.begin();
834 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
835
836 // If we had a cached FAM proxy originally, we will want to create more of
837 // them for each SCC that was split off.
838 FunctionAnalysisManager *FAM = nullptr;
839 if (auto *FAMProxy =
840 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
841 FAM = &FAMProxy->getManager();
842
843 // We need to propagate an invalidation call to all but the newly current SCC
844 // because the outer pass manager won't do that for us after splitting them.
845 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
846 // there are preserved analysis we can avoid invalidating them here for
847 // split-off SCCs.
848 // We know however that this will preserve any FAM proxy so go ahead and mark
849 // that.
850 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
851 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
852 AM.invalidate(*OldC, PA);
853
854 // Ensure the now-current SCC's function analyses are updated.
855 if (FAM)
856 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
857
858 for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
859 assert(C != &NewC && "No need to re-visit the current SCC!");
860 assert(OldC != &NewC && "Already handled the original SCC!");
861 UR.CWorklist.insert(&NewC);
862 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
863
864 // Ensure new SCCs' function analyses are updated.
865 if (FAM)
866 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
867
868 // Also propagate a normal invalidation to the new SCC as only the current
869 // will get one from the pass manager infrastructure.
870 AM.invalidate(NewC, PA);
871 }
872 return C;
873 }
874
updateCGAndAnalysisManagerForPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM,bool FunctionPass)875 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
876 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
877 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
878 FunctionAnalysisManager &FAM, bool FunctionPass) {
879 using Node = LazyCallGraph::Node;
880 using Edge = LazyCallGraph::Edge;
881 using SCC = LazyCallGraph::SCC;
882 using RefSCC = LazyCallGraph::RefSCC;
883
884 RefSCC &InitialRC = InitialC.getOuterRefSCC();
885 SCC *C = &InitialC;
886 RefSCC *RC = &InitialRC;
887 Function &F = N.getFunction();
888
889 // Walk the function body and build up the set of retained, promoted, and
890 // demoted edges.
891 SmallVector<Constant *, 16> Worklist;
892 SmallPtrSet<Constant *, 16> Visited;
893 SmallPtrSet<Node *, 16> RetainedEdges;
894 SmallSetVector<Node *, 4> PromotedRefTargets;
895 SmallSetVector<Node *, 4> DemotedCallTargets;
896 SmallSetVector<Node *, 4> NewCallEdges;
897 SmallSetVector<Node *, 4> NewRefEdges;
898
899 // First walk the function and handle all called functions. We do this first
900 // because if there is a single call edge, whether there are ref edges is
901 // irrelevant.
902 for (Instruction &I : instructions(F)) {
903 if (auto *CB = dyn_cast<CallBase>(&I)) {
904 if (Function *Callee = CB->getCalledFunction()) {
905 if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
906 Node *CalleeN = G.lookup(*Callee);
907 assert(CalleeN &&
908 "Visited function should already have an associated node");
909 Edge *E = N->lookup(*CalleeN);
910 assert((E || !FunctionPass) &&
911 "No function transformations should introduce *new* "
912 "call edges! Any new calls should be modeled as "
913 "promoted existing ref edges!");
914 bool Inserted = RetainedEdges.insert(CalleeN).second;
915 (void)Inserted;
916 assert(Inserted && "We should never visit a function twice.");
917 if (!E)
918 NewCallEdges.insert(CalleeN);
919 else if (!E->isCall())
920 PromotedRefTargets.insert(CalleeN);
921 }
922 } else {
923 // We can miss devirtualization if an indirect call is created then
924 // promoted before updateCGAndAnalysisManagerForPass runs.
925 auto *Entry = UR.IndirectVHs.find(CB);
926 if (Entry == UR.IndirectVHs.end())
927 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
928 else if (!Entry->second)
929 Entry->second = WeakTrackingVH(CB);
930 }
931 }
932 }
933
934 // Now walk all references.
935 for (Instruction &I : instructions(F))
936 for (Value *Op : I.operand_values())
937 if (auto *OpC = dyn_cast<Constant>(Op))
938 if (Visited.insert(OpC).second)
939 Worklist.push_back(OpC);
940
941 auto VisitRef = [&](Function &Referee) {
942 Node *RefereeN = G.lookup(Referee);
943 assert(RefereeN &&
944 "Visited function should already have an associated node");
945 Edge *E = N->lookup(*RefereeN);
946 assert((E || !FunctionPass) &&
947 "No function transformations should introduce *new* ref "
948 "edges! Any new ref edges would require IPO which "
949 "function passes aren't allowed to do!");
950 bool Inserted = RetainedEdges.insert(RefereeN).second;
951 (void)Inserted;
952 assert(Inserted && "We should never visit a function twice.");
953 if (!E)
954 NewRefEdges.insert(RefereeN);
955 else if (E->isCall())
956 DemotedCallTargets.insert(RefereeN);
957 };
958 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
959
960 // Handle new ref edges.
961 for (Node *RefTarget : NewRefEdges) {
962 SCC &TargetC = *G.lookupSCC(*RefTarget);
963 RefSCC &TargetRC = TargetC.getOuterRefSCC();
964 (void)TargetRC;
965 // TODO: This only allows trivial edges to be added for now.
966 #ifdef EXPENSIVE_CHECKS
967 assert((RC == &TargetRC ||
968 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
969 #endif
970 RC->insertTrivialRefEdge(N, *RefTarget);
971 }
972
973 // Handle new call edges.
974 for (Node *CallTarget : NewCallEdges) {
975 SCC &TargetC = *G.lookupSCC(*CallTarget);
976 RefSCC &TargetRC = TargetC.getOuterRefSCC();
977 (void)TargetRC;
978 // TODO: This only allows trivial edges to be added for now.
979 #ifdef EXPENSIVE_CHECKS
980 assert((RC == &TargetRC ||
981 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
982 #endif
983 // Add a trivial ref edge to be promoted later on alongside
984 // PromotedRefTargets.
985 RC->insertTrivialRefEdge(N, *CallTarget);
986 }
987
988 // Include synthetic reference edges to known, defined lib functions.
989 for (auto *LibFn : G.getLibFunctions())
990 // While the list of lib functions doesn't have repeats, don't re-visit
991 // anything handled above.
992 if (!Visited.count(LibFn))
993 VisitRef(*LibFn);
994
995 // First remove all of the edges that are no longer present in this function.
996 // The first step makes these edges uniformly ref edges and accumulates them
997 // into a separate data structure so removal doesn't invalidate anything.
998 SmallVector<Node *, 4> DeadTargets;
999 for (Edge &E : *N) {
1000 if (RetainedEdges.count(&E.getNode()))
1001 continue;
1002
1003 SCC &TargetC = *G.lookupSCC(E.getNode());
1004 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1005 if (&TargetRC == RC && E.isCall()) {
1006 if (C != &TargetC) {
1007 // For separate SCCs this is trivial.
1008 RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1009 } else {
1010 // Now update the call graph.
1011 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1012 G, N, C, AM, UR);
1013 }
1014 }
1015
1016 // Now that this is ready for actual removal, put it into our list.
1017 DeadTargets.push_back(&E.getNode());
1018 }
1019 // Remove the easy cases quickly and actually pull them out of our list.
1020 llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1021 SCC &TargetC = *G.lookupSCC(*TargetN);
1022 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1023
1024 // We can't trivially remove internal targets, so skip
1025 // those.
1026 if (&TargetRC == RC)
1027 return false;
1028
1029 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1030 << *TargetN << "'\n");
1031 RC->removeOutgoingEdge(N, *TargetN);
1032 return true;
1033 });
1034
1035 // Now do a batch removal of the internal ref edges left.
1036 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1037 if (!NewRefSCCs.empty()) {
1038 // The old RefSCC is dead, mark it as such.
1039 UR.InvalidatedRefSCCs.insert(RC);
1040
1041 // Note that we don't bother to invalidate analyses as ref-edge
1042 // connectivity is not really observable in any way and is intended
1043 // exclusively to be used for ordering of transforms rather than for
1044 // analysis conclusions.
1045
1046 // Update RC to the "bottom".
1047 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1048 RC = &C->getOuterRefSCC();
1049 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1050
1051 // The RC worklist is in reverse postorder, so we enqueue the new ones in
1052 // RPO except for the one which contains the source node as that is the
1053 // "bottom" we will continue processing in the bottom-up walk.
1054 assert(NewRefSCCs.front() == RC &&
1055 "New current RefSCC not first in the returned list!");
1056 for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1057 assert(NewRC != RC && "Should not encounter the current RefSCC further "
1058 "in the postorder list of new RefSCCs.");
1059 UR.RCWorklist.insert(NewRC);
1060 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1061 << *NewRC << "\n");
1062 }
1063 }
1064
1065 // Next demote all the call edges that are now ref edges. This helps make
1066 // the SCCs small which should minimize the work below as we don't want to
1067 // form cycles that this would break.
1068 for (Node *RefTarget : DemotedCallTargets) {
1069 SCC &TargetC = *G.lookupSCC(*RefTarget);
1070 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1071
1072 // The easy case is when the target RefSCC is not this RefSCC. This is
1073 // only supported when the target RefSCC is a child of this RefSCC.
1074 if (&TargetRC != RC) {
1075 #ifdef EXPENSIVE_CHECKS
1076 assert(RC->isAncestorOf(TargetRC) &&
1077 "Cannot potentially form RefSCC cycles here!");
1078 #endif
1079 RC->switchOutgoingEdgeToRef(N, *RefTarget);
1080 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1081 << "' to '" << *RefTarget << "'\n");
1082 continue;
1083 }
1084
1085 // We are switching an internal call edge to a ref edge. This may split up
1086 // some SCCs.
1087 if (C != &TargetC) {
1088 // For separate SCCs this is trivial.
1089 RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1090 continue;
1091 }
1092
1093 // Now update the call graph.
1094 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1095 C, AM, UR);
1096 }
1097
1098 // We added a ref edge earlier for new call edges, promote those to call edges
1099 // alongside PromotedRefTargets.
1100 for (Node *E : NewCallEdges)
1101 PromotedRefTargets.insert(E);
1102
1103 // Now promote ref edges into call edges.
1104 for (Node *CallTarget : PromotedRefTargets) {
1105 SCC &TargetC = *G.lookupSCC(*CallTarget);
1106 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1107
1108 // The easy case is when the target RefSCC is not this RefSCC. This is
1109 // only supported when the target RefSCC is a child of this RefSCC.
1110 if (&TargetRC != RC) {
1111 #ifdef EXPENSIVE_CHECKS
1112 assert(RC->isAncestorOf(TargetRC) &&
1113 "Cannot potentially form RefSCC cycles here!");
1114 #endif
1115 RC->switchOutgoingEdgeToCall(N, *CallTarget);
1116 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1117 << "' to '" << *CallTarget << "'\n");
1118 continue;
1119 }
1120 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1121 << N << "' to '" << *CallTarget << "'\n");
1122
1123 // Otherwise we are switching an internal ref edge to a call edge. This
1124 // may merge away some SCCs, and we add those to the UpdateResult. We also
1125 // need to make sure to update the worklist in the event SCCs have moved
1126 // before the current one in the post-order sequence
1127 bool HasFunctionAnalysisProxy = false;
1128 auto InitialSCCIndex = RC->find(*C) - RC->begin();
1129 bool FormedCycle = RC->switchInternalEdgeToCall(
1130 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1131 for (SCC *MergedC : MergedSCCs) {
1132 assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1133
1134 HasFunctionAnalysisProxy |=
1135 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1136 *MergedC) != nullptr;
1137
1138 // Mark that this SCC will no longer be valid.
1139 UR.InvalidatedSCCs.insert(MergedC);
1140
1141 // FIXME: We should really do a 'clear' here to forcibly release
1142 // memory, but we don't have a good way of doing that and
1143 // preserving the function analyses.
1144 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1145 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1146 AM.invalidate(*MergedC, PA);
1147 }
1148 });
1149
1150 // If we formed a cycle by creating this call, we need to update more data
1151 // structures.
1152 if (FormedCycle) {
1153 C = &TargetC;
1154 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1155
1156 // If one of the invalidated SCCs had a cached proxy to a function
1157 // analysis manager, we need to create a proxy in the new current SCC as
1158 // the invalidated SCCs had their functions moved.
1159 if (HasFunctionAnalysisProxy)
1160 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1161
1162 // Any analyses cached for this SCC are no longer precise as the shape
1163 // has changed by introducing this cycle. However, we have taken care to
1164 // update the proxies so it remains valide.
1165 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1166 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1167 AM.invalidate(*C, PA);
1168 }
1169 auto NewSCCIndex = RC->find(*C) - RC->begin();
1170 // If we have actually moved an SCC to be topologically "below" the current
1171 // one due to merging, we will need to revisit the current SCC after
1172 // visiting those moved SCCs.
1173 //
1174 // It is critical that we *do not* revisit the current SCC unless we
1175 // actually move SCCs in the process of merging because otherwise we may
1176 // form a cycle where an SCC is split apart, merged, split, merged and so
1177 // on infinitely.
1178 if (InitialSCCIndex < NewSCCIndex) {
1179 // Put our current SCC back onto the worklist as we'll visit other SCCs
1180 // that are now definitively ordered prior to the current one in the
1181 // post-order sequence, and may end up observing more precise context to
1182 // optimize the current SCC.
1183 UR.CWorklist.insert(C);
1184 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1185 << "\n");
1186 // Enqueue in reverse order as we pop off the back of the worklist.
1187 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1188 RC->begin() + NewSCCIndex))) {
1189 UR.CWorklist.insert(&MovedC);
1190 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1191 << MovedC << "\n");
1192 }
1193 }
1194 }
1195
1196 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1197 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1198 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1199
1200 // Record the current SCC for higher layers of the CGSCC pass manager now that
1201 // all the updates have been applied.
1202 if (C != &InitialC)
1203 UR.UpdatedC = C;
1204
1205 return *C;
1206 }
1207
updateCGAndAnalysisManagerForFunctionPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1208 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1209 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1210 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1211 FunctionAnalysisManager &FAM) {
1212 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1213 /* FunctionPass */ true);
1214 }
updateCGAndAnalysisManagerForCGSCCPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1215 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1216 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1217 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1218 FunctionAnalysisManager &FAM) {
1219 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1220 /* FunctionPass */ false);
1221 }
1222