1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/TypeFinder.h"
20 #include "llvm/Support/Error.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include <utility>
23 using namespace llvm;
24
25 //===----------------------------------------------------------------------===//
26 // TypeMap implementation.
27 //===----------------------------------------------------------------------===//
28
29 namespace {
30 class TypeMapTy : public ValueMapTypeRemapper {
31 /// This is a mapping from a source type to a destination type to use.
32 DenseMap<Type *, Type *> MappedTypes;
33
34 /// When checking to see if two subgraphs are isomorphic, we speculatively
35 /// add types to MappedTypes, but keep track of them here in case we need to
36 /// roll back.
37 SmallVector<Type *, 16> SpeculativeTypes;
38
39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
40
41 /// This is a list of non-opaque structs in the source module that are mapped
42 /// to an opaque struct in the destination module.
43 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
44
45 /// This is the set of opaque types in the destination modules who are
46 /// getting a body from the source module.
47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
48
49 public:
TypeMapTy(IRMover::IdentifiedStructTypeSet & DstStructTypesSet)50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51 : DstStructTypesSet(DstStructTypesSet) {}
52
53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54 /// Indicate that the specified type in the destination module is conceptually
55 /// equivalent to the specified type in the source module.
56 void addTypeMapping(Type *DstTy, Type *SrcTy);
57
58 /// Produce a body for an opaque type in the dest module from a type
59 /// definition in the source module.
60 void linkDefinedTypeBodies();
61
62 /// Return the mapped type to use for the specified input type from the
63 /// source module.
64 Type *get(Type *SrcTy);
65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
66
67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
68
get(FunctionType * T)69 FunctionType *get(FunctionType *T) {
70 return cast<FunctionType>(get((Type *)T));
71 }
72
73 private:
remapType(Type * SrcTy)74 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
75
76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
77 };
78 }
79
addTypeMapping(Type * DstTy,Type * SrcTy)80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81 assert(SpeculativeTypes.empty());
82 assert(SpeculativeDstOpaqueTypes.empty());
83
84 // Check to see if these types are recursively isomorphic and establish a
85 // mapping between them if so.
86 if (!areTypesIsomorphic(DstTy, SrcTy)) {
87 // Oops, they aren't isomorphic. Just discard this request by rolling out
88 // any speculative mappings we've established.
89 for (Type *Ty : SpeculativeTypes)
90 MappedTypes.erase(Ty);
91
92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93 SpeculativeDstOpaqueTypes.size());
94 for (StructType *Ty : SpeculativeDstOpaqueTypes)
95 DstResolvedOpaqueTypes.erase(Ty);
96 } else {
97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98 // and all its descendants to lower amount of renaming in LLVM context
99 // Renaming occurs because we load all source modules to the same context
100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101 // As a result we may get several different types in the destination
102 // module, which are in fact the same.
103 for (Type *Ty : SpeculativeTypes)
104 if (auto *STy = dyn_cast<StructType>(Ty))
105 if (STy->hasName())
106 STy->setName("");
107 }
108 SpeculativeTypes.clear();
109 SpeculativeDstOpaqueTypes.clear();
110 }
111
112 /// Recursively walk this pair of types, returning true if they are isomorphic,
113 /// false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115 // Two types with differing kinds are clearly not isomorphic.
116 if (DstTy->getTypeID() != SrcTy->getTypeID())
117 return false;
118
119 // If we have an entry in the MappedTypes table, then we have our answer.
120 Type *&Entry = MappedTypes[SrcTy];
121 if (Entry)
122 return Entry == DstTy;
123
124 // Two identical types are clearly isomorphic. Remember this
125 // non-speculatively.
126 if (DstTy == SrcTy) {
127 Entry = DstTy;
128 return true;
129 }
130
131 // Okay, we have two types with identical kinds that we haven't seen before.
132
133 // If this is an opaque struct type, special case it.
134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135 // Mapping an opaque type to any struct, just keep the dest struct.
136 if (SSTy->isOpaque()) {
137 Entry = DstTy;
138 SpeculativeTypes.push_back(SrcTy);
139 return true;
140 }
141
142 // Mapping a non-opaque source type to an opaque dest. If this is the first
143 // type that we're mapping onto this destination type then we succeed. Keep
144 // the dest, but fill it in later. If this is the second (different) type
145 // that we're trying to map onto the same opaque type then we fail.
146 if (cast<StructType>(DstTy)->isOpaque()) {
147 // We can only map one source type onto the opaque destination type.
148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149 return false;
150 SrcDefinitionsToResolve.push_back(SSTy);
151 SpeculativeTypes.push_back(SrcTy);
152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153 Entry = DstTy;
154 return true;
155 }
156 }
157
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
161
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170 return false;
171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172 StructType *SSTy = cast<StructType>(SrcTy);
173 if (DSTy->isLiteral() != SSTy->isLiteral() ||
174 DSTy->isPacked() != SSTy->isPacked())
175 return false;
176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177 if (DSeqTy->getNumElements() !=
178 cast<SequentialType>(SrcTy)->getNumElements())
179 return false;
180 }
181
182 // Otherwise, we speculate that these two types will line up and recursively
183 // check the subelements.
184 Entry = DstTy;
185 SpeculativeTypes.push_back(SrcTy);
186
187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188 if (!areTypesIsomorphic(DstTy->getContainedType(I),
189 SrcTy->getContainedType(I)))
190 return false;
191
192 // If everything seems to have lined up, then everything is great.
193 return true;
194 }
195
linkDefinedTypeBodies()196 void TypeMapTy::linkDefinedTypeBodies() {
197 SmallVector<Type *, 16> Elements;
198 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200 assert(DstSTy->isOpaque());
201
202 // Map the body of the source type over to a new body for the dest type.
203 Elements.resize(SrcSTy->getNumElements());
204 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205 Elements[I] = get(SrcSTy->getElementType(I));
206
207 DstSTy->setBody(Elements, SrcSTy->isPacked());
208 DstStructTypesSet.switchToNonOpaque(DstSTy);
209 }
210 SrcDefinitionsToResolve.clear();
211 DstResolvedOpaqueTypes.clear();
212 }
213
finishType(StructType * DTy,StructType * STy,ArrayRef<Type * > ETypes)214 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215 ArrayRef<Type *> ETypes) {
216 DTy->setBody(ETypes, STy->isPacked());
217
218 // Steal STy's name.
219 if (STy->hasName()) {
220 SmallString<16> TmpName = STy->getName();
221 STy->setName("");
222 DTy->setName(TmpName);
223 }
224
225 DstStructTypesSet.addNonOpaque(DTy);
226 }
227
get(Type * Ty)228 Type *TypeMapTy::get(Type *Ty) {
229 SmallPtrSet<StructType *, 8> Visited;
230 return get(Ty, Visited);
231 }
232
get(Type * Ty,SmallPtrSet<StructType *,8> & Visited)233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234 // If we already have an entry for this type, return it.
235 Type **Entry = &MappedTypes[Ty];
236 if (*Entry)
237 return *Entry;
238
239 // These are types that LLVM itself will unique.
240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
241
242 if (!IsUniqued) {
243 StructType *STy = cast<StructType>(Ty);
244 // This is actually a type from the destination module, this can be reached
245 // when this type is loaded in another module, added to DstStructTypesSet,
246 // and then we reach the same type in another module where it has not been
247 // added to MappedTypes. (PR37684)
248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249 DstStructTypesSet.hasType(STy))
250 return *Entry = STy;
251
252 #ifndef NDEBUG
253 for (auto &Pair : MappedTypes) {
254 assert(!(Pair.first != Ty && Pair.second == Ty) &&
255 "mapping to a source type");
256 }
257 #endif
258
259 if (!Visited.insert(STy).second) {
260 StructType *DTy = StructType::create(Ty->getContext());
261 return *Entry = DTy;
262 }
263 }
264
265 // If this is not a recursive type, then just map all of the elements and
266 // then rebuild the type from inside out.
267 SmallVector<Type *, 4> ElementTypes;
268
269 // If there are no element types to map, then the type is itself. This is
270 // true for the anonymous {} struct, things like 'float', integers, etc.
271 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272 return *Entry = Ty;
273
274 // Remap all of the elements, keeping track of whether any of them change.
275 bool AnyChange = false;
276 ElementTypes.resize(Ty->getNumContainedTypes());
277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
280 }
281
282 // If we found our type while recursively processing stuff, just use it.
283 Entry = &MappedTypes[Ty];
284 if (*Entry) {
285 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286 if (DTy->isOpaque()) {
287 auto *STy = cast<StructType>(Ty);
288 finishType(DTy, STy, ElementTypes);
289 }
290 }
291 return *Entry;
292 }
293
294 // If all of the element types mapped directly over and the type is not
295 // a named struct, then the type is usable as-is.
296 if (!AnyChange && IsUniqued)
297 return *Entry = Ty;
298
299 // Otherwise, rebuild a modified type.
300 switch (Ty->getTypeID()) {
301 default:
302 llvm_unreachable("unknown derived type to remap");
303 case Type::ArrayTyID:
304 return *Entry = ArrayType::get(ElementTypes[0],
305 cast<ArrayType>(Ty)->getNumElements());
306 case Type::VectorTyID:
307 return *Entry = VectorType::get(ElementTypes[0],
308 cast<VectorType>(Ty)->getNumElements());
309 case Type::PointerTyID:
310 return *Entry = PointerType::get(ElementTypes[0],
311 cast<PointerType>(Ty)->getAddressSpace());
312 case Type::FunctionTyID:
313 return *Entry = FunctionType::get(ElementTypes[0],
314 makeArrayRef(ElementTypes).slice(1),
315 cast<FunctionType>(Ty)->isVarArg());
316 case Type::StructTyID: {
317 auto *STy = cast<StructType>(Ty);
318 bool IsPacked = STy->isPacked();
319 if (IsUniqued)
320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
321
322 // If the type is opaque, we can just use it directly.
323 if (STy->isOpaque()) {
324 DstStructTypesSet.addOpaque(STy);
325 return *Entry = Ty;
326 }
327
328 if (StructType *OldT =
329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330 STy->setName("");
331 return *Entry = OldT;
332 }
333
334 if (!AnyChange) {
335 DstStructTypesSet.addNonOpaque(STy);
336 return *Entry = Ty;
337 }
338
339 StructType *DTy = StructType::create(Ty->getContext());
340 finishType(DTy, STy, ElementTypes);
341 return *Entry = DTy;
342 }
343 }
344 }
345
LinkDiagnosticInfo(DiagnosticSeverity Severity,const Twine & Msg)346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347 const Twine &Msg)
348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
print(DiagnosticPrinter & DP) const349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
350
351 //===----------------------------------------------------------------------===//
352 // IRLinker implementation.
353 //===----------------------------------------------------------------------===//
354
355 namespace {
356 class IRLinker;
357
358 /// Creates prototypes for functions that are lazily linked on the fly. This
359 /// speeds up linking for modules with many/ lazily linked functions of which
360 /// few get used.
361 class GlobalValueMaterializer final : public ValueMaterializer {
362 IRLinker &TheIRLinker;
363
364 public:
GlobalValueMaterializer(IRLinker & TheIRLinker)365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366 Value *materialize(Value *V) override;
367 };
368
369 class LocalValueMaterializer final : public ValueMaterializer {
370 IRLinker &TheIRLinker;
371
372 public:
LocalValueMaterializer(IRLinker & TheIRLinker)373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374 Value *materialize(Value *V) override;
375 };
376
377 /// Type of the Metadata map in \a ValueToValueMapTy.
378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
379
380 /// This is responsible for keeping track of the state used for moving data
381 /// from SrcM to DstM.
382 class IRLinker {
383 Module &DstM;
384 std::unique_ptr<Module> SrcM;
385
386 /// See IRMover::move().
387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
388
389 TypeMapTy TypeMap;
390 GlobalValueMaterializer GValMaterializer;
391 LocalValueMaterializer LValMaterializer;
392
393 /// A metadata map that's shared between IRLinker instances.
394 MDMapT &SharedMDs;
395
396 /// Mapping of values from what they used to be in Src, to what they are now
397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
398 /// due to the use of Value handles which the Linker doesn't actually need,
399 /// but this allows us to reuse the ValueMapper code.
400 ValueToValueMapTy ValueMap;
401 ValueToValueMapTy IndirectSymbolValueMap;
402
403 DenseSet<GlobalValue *> ValuesToLink;
404 std::vector<GlobalValue *> Worklist;
405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
406
maybeAdd(GlobalValue * GV)407 void maybeAdd(GlobalValue *GV) {
408 if (ValuesToLink.insert(GV).second)
409 Worklist.push_back(GV);
410 }
411
412 /// Whether we are importing globals for ThinLTO, as opposed to linking the
413 /// source module. If this flag is set, it means that we can rely on some
414 /// other object file to define any non-GlobalValue entities defined by the
415 /// source module. This currently causes us to not link retained types in
416 /// debug info metadata and module inline asm.
417 bool IsPerformingImport;
418
419 /// Set to true when all global value body linking is complete (including
420 /// lazy linking). Used to prevent metadata linking from creating new
421 /// references.
422 bool DoneLinkingBodies = false;
423
424 /// The Error encountered during materialization. We use an Optional here to
425 /// avoid needing to manage an unconsumed success value.
426 Optional<Error> FoundError;
setError(Error E)427 void setError(Error E) {
428 if (E)
429 FoundError = std::move(E);
430 }
431
432 /// Most of the errors produced by this module are inconvertible StringErrors.
433 /// This convenience function lets us return one of those more easily.
stringErr(const Twine & T)434 Error stringErr(const Twine &T) {
435 return make_error<StringError>(T, inconvertibleErrorCode());
436 }
437
438 /// Entry point for mapping values and alternate context for mapping aliases.
439 ValueMapper Mapper;
440 unsigned IndirectSymbolMCID;
441
442 /// Handles cloning of a global values from the source module into
443 /// the destination module, including setting the attributes and visibility.
444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
445
emitWarning(const Twine & Message)446 void emitWarning(const Twine &Message) {
447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
448 }
449
450 /// Given a global in the source module, return the global in the
451 /// destination module that is being linked to, if any.
getLinkedToGlobal(const GlobalValue * SrcGV)452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
453 // If the source has no name it can't link. If it has local linkage,
454 // there is no name match-up going on.
455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
456 return nullptr;
457
458 // Otherwise see if we have a match in the destination module's symtab.
459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
460 if (!DGV)
461 return nullptr;
462
463 // If we found a global with the same name in the dest module, but it has
464 // internal linkage, we are really not doing any linkage here.
465 if (DGV->hasLocalLinkage())
466 return nullptr;
467
468 // Otherwise, we do in fact link to the destination global.
469 return DGV;
470 }
471
472 void computeTypeMapping();
473
474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
475 const GlobalVariable *SrcGV);
476
477 /// Given the GlobaValue \p SGV in the source module, and the matching
478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
479 /// into the destination module.
480 ///
481 /// Note this code may call the client-provided \p AddLazyFor.
482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
484 bool ForIndirectSymbol);
485
486 Error linkModuleFlagsMetadata();
487
488 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
489 Error linkFunctionBody(Function &Dst, Function &Src);
490 void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
491 GlobalIndirectSymbol &Src);
492 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
493
494 /// Replace all types in the source AttributeList with the
495 /// corresponding destination type.
496 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
497
498 /// Functions that take care of cloning a specific global value type
499 /// into the destination module.
500 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
501 Function *copyFunctionProto(const Function *SF);
502 GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);
503
504 /// Perform "replace all uses with" operations. These work items need to be
505 /// performed as part of materialization, but we postpone them to happen after
506 /// materialization is done. The materializer called by ValueMapper is not
507 /// expected to delete constants, as ValueMapper is holding pointers to some
508 /// of them, but constant destruction may be indirectly triggered by RAUW.
509 /// Hence, the need to move this out of the materialization call chain.
510 void flushRAUWWorklist();
511
512 /// When importing for ThinLTO, prevent importing of types listed on
513 /// the DICompileUnit that we don't need a copy of in the importing
514 /// module.
515 void prepareCompileUnitsForImport();
516 void linkNamedMDNodes();
517
518 public:
IRLinker(Module & DstM,MDMapT & SharedMDs,IRMover::IdentifiedStructTypeSet & Set,std::unique_ptr<Module> SrcM,ArrayRef<GlobalValue * > ValuesToLink,std::function<void (GlobalValue &,IRMover::ValueAdder)> AddLazyFor,bool IsPerformingImport)519 IRLinker(Module &DstM, MDMapT &SharedMDs,
520 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
521 ArrayRef<GlobalValue *> ValuesToLink,
522 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
523 bool IsPerformingImport)
524 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
525 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
526 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
527 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
528 &GValMaterializer),
529 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
530 IndirectSymbolValueMap, &LValMaterializer)) {
531 ValueMap.getMDMap() = std::move(SharedMDs);
532 for (GlobalValue *GV : ValuesToLink)
533 maybeAdd(GV);
534 if (IsPerformingImport)
535 prepareCompileUnitsForImport();
536 }
~IRLinker()537 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
538
539 Error run();
540 Value *materialize(Value *V, bool ForIndirectSymbol);
541 };
542 }
543
544 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
545 /// table. This is good for all clients except for us. Go through the trouble
546 /// to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)547 static void forceRenaming(GlobalValue *GV, StringRef Name) {
548 // If the global doesn't force its name or if it already has the right name,
549 // there is nothing for us to do.
550 if (GV->hasLocalLinkage() || GV->getName() == Name)
551 return;
552
553 Module *M = GV->getParent();
554
555 // If there is a conflict, rename the conflict.
556 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
557 GV->takeName(ConflictGV);
558 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
559 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
560 } else {
561 GV->setName(Name); // Force the name back
562 }
563 }
564
materialize(Value * SGV)565 Value *GlobalValueMaterializer::materialize(Value *SGV) {
566 return TheIRLinker.materialize(SGV, false);
567 }
568
materialize(Value * SGV)569 Value *LocalValueMaterializer::materialize(Value *SGV) {
570 return TheIRLinker.materialize(SGV, true);
571 }
572
materialize(Value * V,bool ForIndirectSymbol)573 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
574 auto *SGV = dyn_cast<GlobalValue>(V);
575 if (!SGV)
576 return nullptr;
577
578 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
579 if (!NewProto) {
580 setError(NewProto.takeError());
581 return nullptr;
582 }
583 if (!*NewProto)
584 return nullptr;
585
586 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
587 if (!New)
588 return *NewProto;
589
590 // If we already created the body, just return.
591 if (auto *F = dyn_cast<Function>(New)) {
592 if (!F->isDeclaration())
593 return New;
594 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
595 if (V->hasInitializer() || V->hasAppendingLinkage())
596 return New;
597 } else {
598 auto *IS = cast<GlobalIndirectSymbol>(New);
599 if (IS->getIndirectSymbol())
600 return New;
601 }
602
603 // When linking a global for an indirect symbol, it will always be linked.
604 // However we need to check if it was not already scheduled to satisfy a
605 // reference from a regular global value initializer. We know if it has been
606 // schedule if the "New" GlobalValue that is mapped here for the indirect
607 // symbol is the same as the one already mapped. If there is an entry in the
608 // ValueMap but the value is different, it means that the value already had a
609 // definition in the destination module (linkonce for instance), but we need a
610 // new definition for the indirect symbol ("New" will be different.
611 if (ForIndirectSymbol && ValueMap.lookup(SGV) == New)
612 return New;
613
614 if (ForIndirectSymbol || shouldLink(New, *SGV))
615 setError(linkGlobalValueBody(*New, *SGV));
616
617 return New;
618 }
619
620 /// Loop through the global variables in the src module and merge them into the
621 /// dest module.
copyGlobalVariableProto(const GlobalVariable * SGVar)622 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
623 // No linking to be performed or linking from the source: simply create an
624 // identical version of the symbol over in the dest module... the
625 // initializer will be filled in later by LinkGlobalInits.
626 GlobalVariable *NewDGV =
627 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
628 SGVar->isConstant(), GlobalValue::ExternalLinkage,
629 /*init*/ nullptr, SGVar->getName(),
630 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
631 SGVar->getAddressSpace());
632 NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment()));
633 NewDGV->copyAttributesFrom(SGVar);
634 return NewDGV;
635 }
636
mapAttributeTypes(LLVMContext & C,AttributeList Attrs)637 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
638 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
639 if (Attrs.hasAttribute(i, Attribute::ByVal)) {
640 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
641 if (!Ty)
642 continue;
643
644 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
645 Attrs = Attrs.addAttribute(
646 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
647 }
648 }
649 return Attrs;
650 }
651
652 /// Link the function in the source module into the destination module if
653 /// needed, setting up mapping information.
copyFunctionProto(const Function * SF)654 Function *IRLinker::copyFunctionProto(const Function *SF) {
655 // If there is no linkage to be performed or we are linking from the source,
656 // bring SF over.
657 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
658 GlobalValue::ExternalLinkage,
659 SF->getAddressSpace(), SF->getName(), &DstM);
660 F->copyAttributesFrom(SF);
661 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
662 return F;
663 }
664
665 /// Set up prototypes for any indirect symbols that come over from the source
666 /// module.
667 GlobalValue *
copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol * SGIS)668 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
669 // If there is no linkage to be performed or we're linking from the source,
670 // bring over SGA.
671 auto *Ty = TypeMap.get(SGIS->getValueType());
672 GlobalIndirectSymbol *GIS;
673 if (isa<GlobalAlias>(SGIS))
674 GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
675 GlobalValue::ExternalLinkage, SGIS->getName(),
676 &DstM);
677 else
678 GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
679 GlobalValue::ExternalLinkage, SGIS->getName(),
680 nullptr, &DstM);
681 GIS->copyAttributesFrom(SGIS);
682 return GIS;
683 }
684
copyGlobalValueProto(const GlobalValue * SGV,bool ForDefinition)685 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
686 bool ForDefinition) {
687 GlobalValue *NewGV;
688 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
689 NewGV = copyGlobalVariableProto(SGVar);
690 } else if (auto *SF = dyn_cast<Function>(SGV)) {
691 NewGV = copyFunctionProto(SF);
692 } else {
693 if (ForDefinition)
694 NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
695 else if (SGV->getValueType()->isFunctionTy())
696 NewGV =
697 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
698 GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
699 SGV->getName(), &DstM);
700 else
701 NewGV =
702 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
703 /*isConstant*/ false, GlobalValue::ExternalLinkage,
704 /*init*/ nullptr, SGV->getName(),
705 /*insertbefore*/ nullptr,
706 SGV->getThreadLocalMode(), SGV->getAddressSpace());
707 }
708
709 if (ForDefinition)
710 NewGV->setLinkage(SGV->getLinkage());
711 else if (SGV->hasExternalWeakLinkage())
712 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
713
714 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
715 // Metadata for global variables and function declarations is copied eagerly.
716 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
717 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
718 }
719
720 // Remove these copied constants in case this stays a declaration, since
721 // they point to the source module. If the def is linked the values will
722 // be mapped in during linkFunctionBody.
723 if (auto *NewF = dyn_cast<Function>(NewGV)) {
724 NewF->setPersonalityFn(nullptr);
725 NewF->setPrefixData(nullptr);
726 NewF->setPrologueData(nullptr);
727 }
728
729 return NewGV;
730 }
731
getTypeNamePrefix(StringRef Name)732 static StringRef getTypeNamePrefix(StringRef Name) {
733 size_t DotPos = Name.rfind('.');
734 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
735 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
736 ? Name
737 : Name.substr(0, DotPos);
738 }
739
740 /// Loop over all of the linked values to compute type mappings. For example,
741 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
742 /// types 'Foo' but one got renamed when the module was loaded into the same
743 /// LLVMContext.
computeTypeMapping()744 void IRLinker::computeTypeMapping() {
745 for (GlobalValue &SGV : SrcM->globals()) {
746 GlobalValue *DGV = getLinkedToGlobal(&SGV);
747 if (!DGV)
748 continue;
749
750 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
751 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
752 continue;
753 }
754
755 // Unify the element type of appending arrays.
756 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
757 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
758 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
759 }
760
761 for (GlobalValue &SGV : *SrcM)
762 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
763 if (DGV->getType() == SGV.getType()) {
764 // If the types of DGV and SGV are the same, it means that DGV is from
765 // the source module and got added to DstM from a shared metadata. We
766 // shouldn't map this type to itself in case the type's components get
767 // remapped to a new type from DstM (for instance, during the loop over
768 // SrcM->getIdentifiedStructTypes() below).
769 continue;
770 }
771
772 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
773 }
774
775 for (GlobalValue &SGV : SrcM->aliases())
776 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
777 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
778
779 // Incorporate types by name, scanning all the types in the source module.
780 // At this point, the destination module may have a type "%foo = { i32 }" for
781 // example. When the source module got loaded into the same LLVMContext, if
782 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
783 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
784 for (StructType *ST : Types) {
785 if (!ST->hasName())
786 continue;
787
788 if (TypeMap.DstStructTypesSet.hasType(ST)) {
789 // This is actually a type from the destination module.
790 // getIdentifiedStructTypes() can have found it by walking debug info
791 // metadata nodes, some of which get linked by name when ODR Type Uniquing
792 // is enabled on the Context, from the source to the destination module.
793 continue;
794 }
795
796 auto STTypePrefix = getTypeNamePrefix(ST->getName());
797 if (STTypePrefix.size()== ST->getName().size())
798 continue;
799
800 // Check to see if the destination module has a struct with the prefix name.
801 StructType *DST = DstM.getTypeByName(STTypePrefix);
802 if (!DST)
803 continue;
804
805 // Don't use it if this actually came from the source module. They're in
806 // the same LLVMContext after all. Also don't use it unless the type is
807 // actually used in the destination module. This can happen in situations
808 // like this:
809 //
810 // Module A Module B
811 // -------- --------
812 // %Z = type { %A } %B = type { %C.1 }
813 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
814 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
815 // %C = type { i8* } %B.3 = type { %C.1 }
816 //
817 // When we link Module B with Module A, the '%B' in Module B is
818 // used. However, that would then use '%C.1'. But when we process '%C.1',
819 // we prefer to take the '%C' version. So we are then left with both
820 // '%C.1' and '%C' being used for the same types. This leads to some
821 // variables using one type and some using the other.
822 if (TypeMap.DstStructTypesSet.hasType(DST))
823 TypeMap.addTypeMapping(DST, ST);
824 }
825
826 // Now that we have discovered all of the type equivalences, get a body for
827 // any 'opaque' types in the dest module that are now resolved.
828 TypeMap.linkDefinedTypeBodies();
829 }
830
getArrayElements(const Constant * C,SmallVectorImpl<Constant * > & Dest)831 static void getArrayElements(const Constant *C,
832 SmallVectorImpl<Constant *> &Dest) {
833 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
834
835 for (unsigned i = 0; i != NumElements; ++i)
836 Dest.push_back(C->getAggregateElement(i));
837 }
838
839 /// If there were any appending global variables, link them together now.
840 Expected<Constant *>
linkAppendingVarProto(GlobalVariable * DstGV,const GlobalVariable * SrcGV)841 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
842 const GlobalVariable *SrcGV) {
843 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
844 ->getElementType();
845
846 // FIXME: This upgrade is done during linking to support the C API. Once the
847 // old form is deprecated, we should move this upgrade to
848 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
849 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
850 StringRef Name = SrcGV->getName();
851 bool IsNewStructor = false;
852 bool IsOldStructor = false;
853 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
854 if (cast<StructType>(EltTy)->getNumElements() == 3)
855 IsNewStructor = true;
856 else
857 IsOldStructor = true;
858 }
859
860 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
861 if (IsOldStructor) {
862 auto &ST = *cast<StructType>(EltTy);
863 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
864 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
865 }
866
867 uint64_t DstNumElements = 0;
868 if (DstGV) {
869 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
870 DstNumElements = DstTy->getNumElements();
871
872 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
873 return stringErr(
874 "Linking globals named '" + SrcGV->getName() +
875 "': can only link appending global with another appending "
876 "global!");
877
878 // Check to see that they two arrays agree on type.
879 if (EltTy != DstTy->getElementType())
880 return stringErr("Appending variables with different element types!");
881 if (DstGV->isConstant() != SrcGV->isConstant())
882 return stringErr("Appending variables linked with different const'ness!");
883
884 if (DstGV->getAlignment() != SrcGV->getAlignment())
885 return stringErr(
886 "Appending variables with different alignment need to be linked!");
887
888 if (DstGV->getVisibility() != SrcGV->getVisibility())
889 return stringErr(
890 "Appending variables with different visibility need to be linked!");
891
892 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
893 return stringErr(
894 "Appending variables with different unnamed_addr need to be linked!");
895
896 if (DstGV->getSection() != SrcGV->getSection())
897 return stringErr(
898 "Appending variables with different section name need to be linked!");
899 }
900
901 SmallVector<Constant *, 16> SrcElements;
902 getArrayElements(SrcGV->getInitializer(), SrcElements);
903
904 if (IsNewStructor) {
905 auto It = remove_if(SrcElements, [this](Constant *E) {
906 auto *Key =
907 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
908 if (!Key)
909 return false;
910 GlobalValue *DGV = getLinkedToGlobal(Key);
911 return !shouldLink(DGV, *Key);
912 });
913 SrcElements.erase(It, SrcElements.end());
914 }
915 uint64_t NewSize = DstNumElements + SrcElements.size();
916 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
917
918 // Create the new global variable.
919 GlobalVariable *NG = new GlobalVariable(
920 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
921 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
922 SrcGV->getAddressSpace());
923
924 NG->copyAttributesFrom(SrcGV);
925 forceRenaming(NG, SrcGV->getName());
926
927 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
928
929 Mapper.scheduleMapAppendingVariable(*NG,
930 DstGV ? DstGV->getInitializer() : nullptr,
931 IsOldStructor, SrcElements);
932
933 // Replace any uses of the two global variables with uses of the new
934 // global.
935 if (DstGV) {
936 RAUWWorklist.push_back(
937 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
938 }
939
940 return Ret;
941 }
942
shouldLink(GlobalValue * DGV,GlobalValue & SGV)943 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
944 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
945 return true;
946
947 if (DGV && !DGV->isDeclarationForLinker())
948 return false;
949
950 if (SGV.isDeclaration() || DoneLinkingBodies)
951 return false;
952
953 // Callback to the client to give a chance to lazily add the Global to the
954 // list of value to link.
955 bool LazilyAdded = false;
956 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
957 maybeAdd(&GV);
958 LazilyAdded = true;
959 });
960 return LazilyAdded;
961 }
962
linkGlobalValueProto(GlobalValue * SGV,bool ForIndirectSymbol)963 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
964 bool ForIndirectSymbol) {
965 GlobalValue *DGV = getLinkedToGlobal(SGV);
966
967 bool ShouldLink = shouldLink(DGV, *SGV);
968
969 // just missing from map
970 if (ShouldLink) {
971 auto I = ValueMap.find(SGV);
972 if (I != ValueMap.end())
973 return cast<Constant>(I->second);
974
975 I = IndirectSymbolValueMap.find(SGV);
976 if (I != IndirectSymbolValueMap.end())
977 return cast<Constant>(I->second);
978 }
979
980 if (!ShouldLink && ForIndirectSymbol)
981 DGV = nullptr;
982
983 // Handle the ultra special appending linkage case first.
984 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
985 if (SGV->hasAppendingLinkage())
986 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
987 cast<GlobalVariable>(SGV));
988
989 GlobalValue *NewGV;
990 if (DGV && !ShouldLink) {
991 NewGV = DGV;
992 } else {
993 // If we are done linking global value bodies (i.e. we are performing
994 // metadata linking), don't link in the global value due to this
995 // reference, simply map it to null.
996 if (DoneLinkingBodies)
997 return nullptr;
998
999 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1000 if (ShouldLink || !ForIndirectSymbol)
1001 forceRenaming(NewGV, SGV->getName());
1002 }
1003
1004 // Overloaded intrinsics have overloaded types names as part of their
1005 // names. If we renamed overloaded types we should rename the intrinsic
1006 // as well.
1007 if (Function *F = dyn_cast<Function>(NewGV))
1008 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
1009 NewGV = Remangled.getValue();
1010
1011 if (ShouldLink || ForIndirectSymbol) {
1012 if (const Comdat *SC = SGV->getComdat()) {
1013 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1014 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1015 DC->setSelectionKind(SC->getSelectionKind());
1016 GO->setComdat(DC);
1017 }
1018 }
1019 }
1020
1021 if (!ShouldLink && ForIndirectSymbol)
1022 NewGV->setLinkage(GlobalValue::InternalLinkage);
1023
1024 Constant *C = NewGV;
1025 // Only create a bitcast if necessary. In particular, with
1026 // DebugTypeODRUniquing we may reach metadata in the destination module
1027 // containing a GV from the source module, in which case SGV will be
1028 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1029 // assumes it is being invoked on a type in the source module.
1030 if (DGV && NewGV != SGV) {
1031 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1032 NewGV, TypeMap.get(SGV->getType()));
1033 }
1034
1035 if (DGV && NewGV != DGV) {
1036 // Schedule "replace all uses with" to happen after materializing is
1037 // done. It is not safe to do it now, since ValueMapper may be holding
1038 // pointers to constants that will get deleted if RAUW runs.
1039 RAUWWorklist.push_back(std::make_pair(
1040 DGV,
1041 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1042 }
1043
1044 return C;
1045 }
1046
1047 /// Update the initializers in the Dest module now that all globals that may be
1048 /// referenced are in Dest.
linkGlobalVariable(GlobalVariable & Dst,GlobalVariable & Src)1049 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1050 // Figure out what the initializer looks like in the dest module.
1051 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1052 }
1053
1054 /// Copy the source function over into the dest function and fix up references
1055 /// to values. At this point we know that Dest is an external function, and
1056 /// that Src is not.
linkFunctionBody(Function & Dst,Function & Src)1057 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1058 assert(Dst.isDeclaration() && !Src.isDeclaration());
1059
1060 // Materialize if needed.
1061 if (Error Err = Src.materialize())
1062 return Err;
1063
1064 // Link in the operands without remapping.
1065 if (Src.hasPrefixData())
1066 Dst.setPrefixData(Src.getPrefixData());
1067 if (Src.hasPrologueData())
1068 Dst.setPrologueData(Src.getPrologueData());
1069 if (Src.hasPersonalityFn())
1070 Dst.setPersonalityFn(Src.getPersonalityFn());
1071
1072 // Copy over the metadata attachments without remapping.
1073 Dst.copyMetadata(&Src, 0);
1074
1075 // Steal arguments and splice the body of Src into Dst.
1076 Dst.stealArgumentListFrom(Src);
1077 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1078
1079 // Everything has been moved over. Remap it.
1080 Mapper.scheduleRemapFunction(Dst);
1081 return Error::success();
1082 }
1083
linkIndirectSymbolBody(GlobalIndirectSymbol & Dst,GlobalIndirectSymbol & Src)1084 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
1085 GlobalIndirectSymbol &Src) {
1086 Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
1087 IndirectSymbolMCID);
1088 }
1089
linkGlobalValueBody(GlobalValue & Dst,GlobalValue & Src)1090 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1091 if (auto *F = dyn_cast<Function>(&Src))
1092 return linkFunctionBody(cast<Function>(Dst), *F);
1093 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1094 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1095 return Error::success();
1096 }
1097 linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
1098 return Error::success();
1099 }
1100
flushRAUWWorklist()1101 void IRLinker::flushRAUWWorklist() {
1102 for (const auto &Elem : RAUWWorklist) {
1103 GlobalValue *Old;
1104 Value *New;
1105 std::tie(Old, New) = Elem;
1106
1107 Old->replaceAllUsesWith(New);
1108 Old->eraseFromParent();
1109 }
1110 RAUWWorklist.clear();
1111 }
1112
prepareCompileUnitsForImport()1113 void IRLinker::prepareCompileUnitsForImport() {
1114 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1115 if (!SrcCompileUnits)
1116 return;
1117 // When importing for ThinLTO, prevent importing of types listed on
1118 // the DICompileUnit that we don't need a copy of in the importing
1119 // module. They will be emitted by the originating module.
1120 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1121 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1122 assert(CU && "Expected valid compile unit");
1123 // Enums, macros, and retained types don't need to be listed on the
1124 // imported DICompileUnit. This means they will only be imported
1125 // if reached from the mapped IR. Do this by setting their value map
1126 // entries to nullptr, which will automatically prevent their importing
1127 // when reached from the DICompileUnit during metadata mapping.
1128 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1129 ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1130 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1131 // The original definition (or at least its debug info - if the variable is
1132 // internalized an optimized away) will remain in the source module, so
1133 // there's no need to import them.
1134 // If LLVM ever does more advanced optimizations on global variables
1135 // (removing/localizing write operations, for instance) that can track
1136 // through debug info, this decision may need to be revisited - but do so
1137 // with care when it comes to debug info size. Emitting small CUs containing
1138 // only a few imported entities into every destination module may be very
1139 // size inefficient.
1140 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1141
1142 // Imported entities only need to be mapped in if they have local
1143 // scope, as those might correspond to an imported entity inside a
1144 // function being imported (any locally scoped imported entities that
1145 // don't end up referenced by an imported function will not be emitted
1146 // into the object). Imported entities not in a local scope
1147 // (e.g. on the namespace) only need to be emitted by the originating
1148 // module. Create a list of the locally scoped imported entities, and
1149 // replace the source CUs imported entity list with the new list, so
1150 // only those are mapped in.
1151 // FIXME: Locally-scoped imported entities could be moved to the
1152 // functions they are local to instead of listing them on the CU, and
1153 // we would naturally only link in those needed by function importing.
1154 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1155 bool ReplaceImportedEntities = false;
1156 for (auto *IE : CU->getImportedEntities()) {
1157 DIScope *Scope = IE->getScope();
1158 assert(Scope && "Invalid Scope encoding!");
1159 if (isa<DILocalScope>(Scope))
1160 AllImportedModules.emplace_back(IE);
1161 else
1162 ReplaceImportedEntities = true;
1163 }
1164 if (ReplaceImportedEntities) {
1165 if (!AllImportedModules.empty())
1166 CU->replaceImportedEntities(MDTuple::get(
1167 CU->getContext(),
1168 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1169 AllImportedModules.end())));
1170 else
1171 // If there were no local scope imported entities, we can map
1172 // the whole list to nullptr.
1173 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1174 }
1175 }
1176 }
1177
1178 /// Insert all of the named MDNodes in Src into the Dest module.
linkNamedMDNodes()1179 void IRLinker::linkNamedMDNodes() {
1180 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1181 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1182 // Don't link module flags here. Do them separately.
1183 if (&NMD == SrcModFlags)
1184 continue;
1185 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1186 // Add Src elements into Dest node.
1187 for (const MDNode *Op : NMD.operands())
1188 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1189 }
1190 }
1191
1192 /// Merge the linker flags in Src into the Dest module.
linkModuleFlagsMetadata()1193 Error IRLinker::linkModuleFlagsMetadata() {
1194 // If the source module has no module flags, we are done.
1195 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1196 if (!SrcModFlags)
1197 return Error::success();
1198
1199 // If the destination module doesn't have module flags yet, then just copy
1200 // over the source module's flags.
1201 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1202 if (DstModFlags->getNumOperands() == 0) {
1203 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1204 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1205
1206 return Error::success();
1207 }
1208
1209 // First build a map of the existing module flags and requirements.
1210 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1211 SmallSetVector<MDNode *, 16> Requirements;
1212 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1213 MDNode *Op = DstModFlags->getOperand(I);
1214 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1215 MDString *ID = cast<MDString>(Op->getOperand(1));
1216
1217 if (Behavior->getZExtValue() == Module::Require) {
1218 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1219 } else {
1220 Flags[ID] = std::make_pair(Op, I);
1221 }
1222 }
1223
1224 // Merge in the flags from the source module, and also collect its set of
1225 // requirements.
1226 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1227 MDNode *SrcOp = SrcModFlags->getOperand(I);
1228 ConstantInt *SrcBehavior =
1229 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1230 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1231 MDNode *DstOp;
1232 unsigned DstIndex;
1233 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1234 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1235
1236 // If this is a requirement, add it and continue.
1237 if (SrcBehaviorValue == Module::Require) {
1238 // If the destination module does not already have this requirement, add
1239 // it.
1240 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1241 DstModFlags->addOperand(SrcOp);
1242 }
1243 continue;
1244 }
1245
1246 // If there is no existing flag with this ID, just add it.
1247 if (!DstOp) {
1248 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1249 DstModFlags->addOperand(SrcOp);
1250 continue;
1251 }
1252
1253 // Otherwise, perform a merge.
1254 ConstantInt *DstBehavior =
1255 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1256 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1257
1258 auto overrideDstValue = [&]() {
1259 DstModFlags->setOperand(DstIndex, SrcOp);
1260 Flags[ID].first = SrcOp;
1261 };
1262
1263 // If either flag has override behavior, handle it first.
1264 if (DstBehaviorValue == Module::Override) {
1265 // Diagnose inconsistent flags which both have override behavior.
1266 if (SrcBehaviorValue == Module::Override &&
1267 SrcOp->getOperand(2) != DstOp->getOperand(2))
1268 return stringErr("linking module flags '" + ID->getString() +
1269 "': IDs have conflicting override values in '" +
1270 SrcM->getModuleIdentifier() + "' and '" +
1271 DstM.getModuleIdentifier() + "'");
1272 continue;
1273 } else if (SrcBehaviorValue == Module::Override) {
1274 // Update the destination flag to that of the source.
1275 overrideDstValue();
1276 continue;
1277 }
1278
1279 // Diagnose inconsistent merge behavior types.
1280 if (SrcBehaviorValue != DstBehaviorValue) {
1281 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1282 DstBehaviorValue == Module::Warning) ||
1283 (DstBehaviorValue == Module::Max &&
1284 SrcBehaviorValue == Module::Warning);
1285 if (!MaxAndWarn)
1286 return stringErr("linking module flags '" + ID->getString() +
1287 "': IDs have conflicting behaviors in '" +
1288 SrcM->getModuleIdentifier() + "' and '" +
1289 DstM.getModuleIdentifier() + "'");
1290 }
1291
1292 auto replaceDstValue = [&](MDNode *New) {
1293 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1294 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1295 DstModFlags->setOperand(DstIndex, Flag);
1296 Flags[ID].first = Flag;
1297 };
1298
1299 // Emit a warning if the values differ and either source or destination
1300 // request Warning behavior.
1301 if ((DstBehaviorValue == Module::Warning ||
1302 SrcBehaviorValue == Module::Warning) &&
1303 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1304 std::string Str;
1305 raw_string_ostream(Str)
1306 << "linking module flags '" << ID->getString()
1307 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1308 << "' from " << SrcM->getModuleIdentifier() << " with '"
1309 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1310 << ')';
1311 emitWarning(Str);
1312 }
1313
1314 // Choose the maximum if either source or destination request Max behavior.
1315 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1316 ConstantInt *DstValue =
1317 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1318 ConstantInt *SrcValue =
1319 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1320
1321 // The resulting flag should have a Max behavior, and contain the maximum
1322 // value from between the source and destination values.
1323 Metadata *FlagOps[] = {
1324 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1325 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1326 ->getOperand(2)};
1327 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1328 DstModFlags->setOperand(DstIndex, Flag);
1329 Flags[ID].first = Flag;
1330 continue;
1331 }
1332
1333 // Perform the merge for standard behavior types.
1334 switch (SrcBehaviorValue) {
1335 case Module::Require:
1336 case Module::Override:
1337 llvm_unreachable("not possible");
1338 case Module::Error: {
1339 // Emit an error if the values differ.
1340 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1341 return stringErr("linking module flags '" + ID->getString() +
1342 "': IDs have conflicting values in '" +
1343 SrcM->getModuleIdentifier() + "' and '" +
1344 DstM.getModuleIdentifier() + "'");
1345 continue;
1346 }
1347 case Module::Warning: {
1348 break;
1349 }
1350 case Module::Max: {
1351 break;
1352 }
1353 case Module::Append: {
1354 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1355 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1356 SmallVector<Metadata *, 8> MDs;
1357 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1358 MDs.append(DstValue->op_begin(), DstValue->op_end());
1359 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1360
1361 replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1362 break;
1363 }
1364 case Module::AppendUnique: {
1365 SmallSetVector<Metadata *, 16> Elts;
1366 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1367 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1368 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1369 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1370
1371 replaceDstValue(MDNode::get(DstM.getContext(),
1372 makeArrayRef(Elts.begin(), Elts.end())));
1373 break;
1374 }
1375 }
1376
1377 }
1378
1379 // Check all of the requirements.
1380 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1381 MDNode *Requirement = Requirements[I];
1382 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1383 Metadata *ReqValue = Requirement->getOperand(1);
1384
1385 MDNode *Op = Flags[Flag].first;
1386 if (!Op || Op->getOperand(2) != ReqValue)
1387 return stringErr("linking module flags '" + Flag->getString() +
1388 "': does not have the required value");
1389 }
1390 return Error::success();
1391 }
1392
1393 /// Return InlineAsm adjusted with target-specific directives if required.
1394 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1395 /// to support mixing module-level inline assembly from ARM and Thumb modules.
adjustInlineAsm(const std::string & InlineAsm,const Triple & Triple)1396 static std::string adjustInlineAsm(const std::string &InlineAsm,
1397 const Triple &Triple) {
1398 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1399 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1400 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1401 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1402 return InlineAsm;
1403 }
1404
run()1405 Error IRLinker::run() {
1406 // Ensure metadata materialized before value mapping.
1407 if (SrcM->getMaterializer())
1408 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1409 return Err;
1410
1411 // Inherit the target data from the source module if the destination module
1412 // doesn't have one already.
1413 if (DstM.getDataLayout().isDefault())
1414 DstM.setDataLayout(SrcM->getDataLayout());
1415
1416 if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1417 emitWarning("Linking two modules of different data layouts: '" +
1418 SrcM->getModuleIdentifier() + "' is '" +
1419 SrcM->getDataLayoutStr() + "' whereas '" +
1420 DstM.getModuleIdentifier() + "' is '" +
1421 DstM.getDataLayoutStr() + "'\n");
1422 }
1423
1424 // Copy the target triple from the source to dest if the dest's is empty.
1425 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1426 DstM.setTargetTriple(SrcM->getTargetTriple());
1427
1428 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1429
1430 if (!SrcM->getTargetTriple().empty()&&
1431 !SrcTriple.isCompatibleWith(DstTriple))
1432 emitWarning("Linking two modules of different target triples: " +
1433 SrcM->getModuleIdentifier() + "' is '" +
1434 SrcM->getTargetTriple() + "' whereas '" +
1435 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1436 "'\n");
1437
1438 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1439
1440 // Append the module inline asm string.
1441 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1442 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1443 SrcTriple);
1444 if (DstM.getModuleInlineAsm().empty())
1445 DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1446 else
1447 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1448 SrcModuleInlineAsm);
1449 }
1450
1451 // Loop over all of the linked values to compute type mappings.
1452 computeTypeMapping();
1453
1454 std::reverse(Worklist.begin(), Worklist.end());
1455 while (!Worklist.empty()) {
1456 GlobalValue *GV = Worklist.back();
1457 Worklist.pop_back();
1458
1459 // Already mapped.
1460 if (ValueMap.find(GV) != ValueMap.end() ||
1461 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1462 continue;
1463
1464 assert(!GV->isDeclaration());
1465 Mapper.mapValue(*GV);
1466 if (FoundError)
1467 return std::move(*FoundError);
1468 flushRAUWWorklist();
1469 }
1470
1471 // Note that we are done linking global value bodies. This prevents
1472 // metadata linking from creating new references.
1473 DoneLinkingBodies = true;
1474 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1475
1476 // Remap all of the named MDNodes in Src into the DstM module. We do this
1477 // after linking GlobalValues so that MDNodes that reference GlobalValues
1478 // are properly remapped.
1479 linkNamedMDNodes();
1480
1481 // Merge the module flags into the DstM module.
1482 return linkModuleFlagsMetadata();
1483 }
1484
KeyTy(ArrayRef<Type * > E,bool P)1485 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1486 : ETypes(E), IsPacked(P) {}
1487
KeyTy(const StructType * ST)1488 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1489 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1490
operator ==(const KeyTy & That) const1491 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1492 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1493 }
1494
operator !=(const KeyTy & That) const1495 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1496 return !this->operator==(That);
1497 }
1498
getEmptyKey()1499 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1500 return DenseMapInfo<StructType *>::getEmptyKey();
1501 }
1502
getTombstoneKey()1503 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1504 return DenseMapInfo<StructType *>::getTombstoneKey();
1505 }
1506
getHashValue(const KeyTy & Key)1507 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1508 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1509 Key.IsPacked);
1510 }
1511
getHashValue(const StructType * ST)1512 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1513 return getHashValue(KeyTy(ST));
1514 }
1515
isEqual(const KeyTy & LHS,const StructType * RHS)1516 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1517 const StructType *RHS) {
1518 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1519 return false;
1520 return LHS == KeyTy(RHS);
1521 }
1522
isEqual(const StructType * LHS,const StructType * RHS)1523 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1524 const StructType *RHS) {
1525 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1526 return LHS == RHS;
1527 return KeyTy(LHS) == KeyTy(RHS);
1528 }
1529
addNonOpaque(StructType * Ty)1530 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1531 assert(!Ty->isOpaque());
1532 NonOpaqueStructTypes.insert(Ty);
1533 }
1534
switchToNonOpaque(StructType * Ty)1535 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1536 assert(!Ty->isOpaque());
1537 NonOpaqueStructTypes.insert(Ty);
1538 bool Removed = OpaqueStructTypes.erase(Ty);
1539 (void)Removed;
1540 assert(Removed);
1541 }
1542
addOpaque(StructType * Ty)1543 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1544 assert(Ty->isOpaque());
1545 OpaqueStructTypes.insert(Ty);
1546 }
1547
1548 StructType *
findNonOpaque(ArrayRef<Type * > ETypes,bool IsPacked)1549 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1550 bool IsPacked) {
1551 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1552 auto I = NonOpaqueStructTypes.find_as(Key);
1553 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1554 }
1555
hasType(StructType * Ty)1556 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1557 if (Ty->isOpaque())
1558 return OpaqueStructTypes.count(Ty);
1559 auto I = NonOpaqueStructTypes.find(Ty);
1560 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1561 }
1562
IRMover(Module & M)1563 IRMover::IRMover(Module &M) : Composite(M) {
1564 TypeFinder StructTypes;
1565 StructTypes.run(M, /* OnlyNamed */ false);
1566 for (StructType *Ty : StructTypes) {
1567 if (Ty->isOpaque())
1568 IdentifiedStructTypes.addOpaque(Ty);
1569 else
1570 IdentifiedStructTypes.addNonOpaque(Ty);
1571 }
1572 // Self-map metadatas in the destination module. This is needed when
1573 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1574 // destination module may be reached from the source module.
1575 for (auto *MD : StructTypes.getVisitedMetadata()) {
1576 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1577 }
1578 }
1579
move(std::unique_ptr<Module> Src,ArrayRef<GlobalValue * > ValuesToLink,std::function<void (GlobalValue &,ValueAdder Add)> AddLazyFor,bool IsPerformingImport)1580 Error IRMover::move(
1581 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1582 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1583 bool IsPerformingImport) {
1584 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1585 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1586 IsPerformingImport);
1587 Error E = TheIRLinker.run();
1588 Composite.dropTriviallyDeadConstantArrays();
1589 return E;
1590 }
1591