xref: /aosp_15_r20/external/swiftshader/third_party/SPIRV-Tools/include/spirv-tools/optimizer.hpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
17 
18 #include <memory>
19 #include <ostream>
20 #include <string>
21 #include <unordered_map>
22 #include <unordered_set>
23 #include <utility>
24 #include <vector>
25 
26 #include "libspirv.hpp"
27 
28 namespace spvtools {
29 
30 namespace opt {
31 class Pass;
32 struct DescriptorSetAndBinding;
33 }  // namespace opt
34 
35 // C++ interface for SPIR-V optimization functionalities. It wraps the context
36 // (including target environment and the corresponding SPIR-V grammar) and
37 // provides methods for registering optimization passes and optimizing.
38 //
39 // Instances of this class provides basic thread-safety guarantee.
40 class SPIRV_TOOLS_EXPORT Optimizer {
41  public:
42   // The token for an optimization pass. It is returned via one of the
43   // Create*Pass() standalone functions at the end of this header file and
44   // consumed by the RegisterPass() method. Tokens are one-time objects that
45   // only support move; copying is not allowed.
46   struct PassToken {
47     struct SPIRV_TOOLS_LOCAL Impl;  // Opaque struct for holding internal data.
48 
49     PassToken(std::unique_ptr<Impl>);
50 
51     // Tokens for built-in passes should be created using Create*Pass functions
52     // below; for out-of-tree passes, use this constructor instead.
53     // Note that this API isn't guaranteed to be stable and may change without
54     // preserving source or binary compatibility in the future.
55     PassToken(std::unique_ptr<opt::Pass>&& pass);
56 
57     // Tokens can only be moved. Copying is disabled.
58     PassToken(const PassToken&) = delete;
59     PassToken(PassToken&&);
60     PassToken& operator=(const PassToken&) = delete;
61     PassToken& operator=(PassToken&&);
62 
63     ~PassToken();
64 
65     std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
66   };
67 
68   // Constructs an instance with the given target |env|, which is used to decode
69   // the binaries to be optimized later.
70   //
71   // The instance will have an empty message consumer, which ignores all
72   // messages from the library. Use SetMessageConsumer() to supply a consumer
73   // if messages are of concern.
74   explicit Optimizer(spv_target_env env);
75 
76   // Disables copy/move constructor/assignment operations.
77   Optimizer(const Optimizer&) = delete;
78   Optimizer(Optimizer&&) = delete;
79   Optimizer& operator=(const Optimizer&) = delete;
80   Optimizer& operator=(Optimizer&&) = delete;
81 
82   // Destructs this instance.
83   ~Optimizer();
84 
85   // Sets the message consumer to the given |consumer|. The |consumer| will be
86   // invoked once for each message communicated from the library.
87   void SetMessageConsumer(MessageConsumer consumer);
88 
89   // Returns a reference to the registered message consumer.
90   const MessageConsumer& consumer() const;
91 
92   // Registers the given |pass| to this optimizer. Passes will be run in the
93   // exact order of registration. The token passed in will be consumed by this
94   // method.
95   Optimizer& RegisterPass(PassToken&& pass);
96 
97   // Registers passes that attempt to improve performance of generated code.
98   // This sequence of passes is subject to constant review and will change
99   // from time to time.
100   //
101   // If |preserve_interface| is true, all non-io variables in the entry point
102   // interface are considered live and are not eliminated.
103   Optimizer& RegisterPerformancePasses();
104   Optimizer& RegisterPerformancePasses(bool preserve_interface);
105 
106   // Registers passes that attempt to improve the size of generated code.
107   // This sequence of passes is subject to constant review and will change
108   // from time to time.
109   //
110   // If |preserve_interface| is true, all non-io variables in the entry point
111   // interface are considered live and are not eliminated.
112   Optimizer& RegisterSizePasses();
113   Optimizer& RegisterSizePasses(bool preserve_interface);
114 
115   // Registers passes that attempt to legalize the generated code.
116   //
117   // Note: this recipe is specially designed for legalizing SPIR-V. It should be
118   // used by compilers after translating HLSL source code literally. It should
119   // *not* be used by general workloads for performance or size improvement.
120   //
121   // This sequence of passes is subject to constant review and will change
122   // from time to time.
123   //
124   // If |preserve_interface| is true, all non-io variables in the entry point
125   // interface are considered live and are not eliminated.
126   Optimizer& RegisterLegalizationPasses();
127   Optimizer& RegisterLegalizationPasses(bool preserve_interface);
128 
129   // Register passes specified in the list of |flags|.  Each flag must be a
130   // string of a form accepted by Optimizer::FlagHasValidForm().
131   //
132   // If the list of flags contains an invalid entry, it returns false and an
133   // error message is emitted to the MessageConsumer object (use
134   // Optimizer::SetMessageConsumer to define a message consumer, if needed).
135   //
136   // If |preserve_interface| is true, all non-io variables in the entry point
137   // interface are considered live and are not eliminated.
138   //
139   // If all the passes are registered successfully, it returns true.
140   bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
141   bool RegisterPassesFromFlags(const std::vector<std::string>& flags,
142                                bool preserve_interface);
143 
144   // Registers the optimization pass associated with |flag|.  This only accepts
145   // |flag| values of the form "--pass_name[=pass_args]".  If no such pass
146   // exists, it returns false.  Otherwise, the pass is registered and it returns
147   // true.
148   //
149   // The following flags have special meaning:
150   //
151   // -O: Registers all performance optimization passes
152   //     (Optimizer::RegisterPerformancePasses)
153   //
154   // -Os: Registers all size optimization passes
155   //      (Optimizer::RegisterSizePasses).
156   //
157   // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
158   //                  HLSL front-end.
159   //
160   // If |preserve_interface| is true, all non-io variables in the entry point
161   // interface are considered live and are not eliminated.
162   bool RegisterPassFromFlag(const std::string& flag);
163   bool RegisterPassFromFlag(const std::string& flag, bool preserve_interface);
164 
165   // Validates that |flag| has a valid format.  Strings accepted:
166   //
167   // --pass_name[=pass_args]
168   // -O
169   // -Os
170   //
171   // If |flag| takes one of the forms above, it returns true.  Otherwise, it
172   // returns false.
173   bool FlagHasValidForm(const std::string& flag) const;
174 
175   // Allows changing, after creation time, the target environment to be
176   // optimized for and validated.  Should be called before calling Run().
177   void SetTargetEnv(const spv_target_env env);
178 
179   // Optimizes the given SPIR-V module |original_binary| and writes the
180   // optimized binary into |optimized_binary|. The optimized binary uses
181   // the same SPIR-V version as the original binary.
182   //
183   // Returns true on successful optimization, whether or not the module is
184   // modified. Returns false if |original_binary| fails to validate or if errors
185   // occur when processing |original_binary| using any of the registered passes.
186   // In that case, no further passes are executed and the contents in
187   // |optimized_binary| may be invalid.
188   //
189   // By default, the binary is validated before any transforms are performed,
190   // and optionally after each transform.  Validation uses SPIR-V spec rules
191   // for the SPIR-V version named in the binary's header (at word offset 1).
192   // Additionally, if the target environment is a client API (such as
193   // Vulkan 1.1), then validate for that client API version, to the extent
194   // that it is verifiable from data in the binary itself.
195   //
196   // It's allowed to alias |original_binary| to the start of |optimized_binary|.
197   bool Run(const uint32_t* original_binary, size_t original_binary_size,
198            std::vector<uint32_t>* optimized_binary) const;
199 
200   // DEPRECATED: Same as above, except passes |options| to the validator when
201   // trying to validate the binary.  If |skip_validation| is true, then the
202   // caller is guaranteeing that |original_binary| is valid, and the validator
203   // will not be run.  The |max_id_bound| is the limit on the max id in the
204   // module.
205   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
206            std::vector<uint32_t>* optimized_binary,
207            const ValidatorOptions& options, bool skip_validation) const;
208 
209   // Same as above, except it takes an options object.  See the documentation
210   // for |OptimizerOptions| to see which options can be set.
211   //
212   // By default, the binary is validated before any transforms are performed,
213   // and optionally after each transform.  Validation uses SPIR-V spec rules
214   // for the SPIR-V version named in the binary's header (at word offset 1).
215   // Additionally, if the target environment is a client API (such as
216   // Vulkan 1.1), then validate for that client API version, to the extent
217   // that it is verifiable from data in the binary itself, or from the
218   // validator options set on the optimizer options.
219   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
220            std::vector<uint32_t>* optimized_binary,
221            const spv_optimizer_options opt_options) const;
222 
223   // Returns a vector of strings with all the pass names added to this
224   // optimizer's pass manager. These strings are valid until the associated
225   // pass manager is destroyed.
226   std::vector<const char*> GetPassNames() const;
227 
228   // Sets the option to print the disassembly before each pass and after the
229   // last pass.  If |out| is null, then no output is generated.  Otherwise,
230   // output is sent to the |out| output stream.
231   Optimizer& SetPrintAll(std::ostream* out);
232 
233   // Sets the option to print the resource utilization of each pass. If |out|
234   // is null, then no output is generated. Otherwise, output is sent to the
235   // |out| output stream.
236   Optimizer& SetTimeReport(std::ostream* out);
237 
238   // Sets the option to validate the module after each pass.
239   Optimizer& SetValidateAfterAll(bool validate);
240 
241  private:
242   struct SPIRV_TOOLS_LOCAL Impl;  // Opaque struct for holding internal data.
243   std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
244 };
245 
246 // Creates a null pass.
247 // A null pass does nothing to the SPIR-V module to be optimized.
248 Optimizer::PassToken CreateNullPass();
249 
250 // Creates a strip-debug-info pass.
251 // A strip-debug-info pass removes all debug instructions (as documented in
252 // Section 3.42.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
253 Optimizer::PassToken CreateStripDebugInfoPass();
254 
255 // [Deprecated] This will create a strip-nonsemantic-info pass.  See below.
256 Optimizer::PassToken CreateStripReflectInfoPass();
257 
258 // Creates a strip-nonsemantic-info pass.
259 // A strip-nonsemantic-info pass removes all reflections and explicitly
260 // non-semantic instructions.
261 Optimizer::PassToken CreateStripNonSemanticInfoPass();
262 
263 // Creates an eliminate-dead-functions pass.
264 // An eliminate-dead-functions pass will remove all functions that are not in
265 // the call trees rooted at entry points and exported functions.  These
266 // functions are not needed because they will never be called.
267 Optimizer::PassToken CreateEliminateDeadFunctionsPass();
268 
269 // Creates an eliminate-dead-members pass.
270 // An eliminate-dead-members pass will remove all unused members of structures.
271 // This will not affect the data layout of the remaining members.
272 Optimizer::PassToken CreateEliminateDeadMembersPass();
273 
274 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
275 // to the default values in the form of string.
276 // A set-spec-constant-default-value pass sets the default values for the
277 // spec constants that have SpecId decorations (i.e., those defined by
278 // OpSpecConstant{|True|False} instructions).
279 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
280     const std::unordered_map<uint32_t, std::string>& id_value_map);
281 
282 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
283 // to the default values in the form of bit pattern.
284 // A set-spec-constant-default-value pass sets the default values for the
285 // spec constants that have SpecId decorations (i.e., those defined by
286 // OpSpecConstant{|True|False} instructions).
287 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
288     const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
289 
290 // Creates a flatten-decoration pass.
291 // A flatten-decoration pass replaces grouped decorations with equivalent
292 // ungrouped decorations.  That is, it replaces each OpDecorationGroup
293 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
294 // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
295 // The pass does not attempt to preserve debug information for instructions
296 // it removes.
297 Optimizer::PassToken CreateFlattenDecorationPass();
298 
299 // Creates a freeze-spec-constant-value pass.
300 // A freeze-spec-constant pass specializes the value of spec constants to
301 // their default values. This pass only processes the spec constants that have
302 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
303 // OpSpecConstantFalse instructions) and replaces them with their normal
304 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
305 // corresponding SpecId annotation instructions will also be removed. This
306 // pass does not fold the newly added normal constants and does not process
307 // other spec constants defined by OpSpecConstantComposite or
308 // OpSpecConstantOp.
309 Optimizer::PassToken CreateFreezeSpecConstantValuePass();
310 
311 // Creates a fold-spec-constant-op-and-composite pass.
312 // A fold-spec-constant-op-and-composite pass folds spec constants defined by
313 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
314 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
315 // OpConstantComposite instructions. Note that spec constants defined with
316 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
317 // not handled, as these instructions indicate their value are not determined
318 // and can be changed in future. A spec constant is foldable if all of its
319 // value(s) can be determined from the module. E.g., an integer spec constant
320 // defined with OpSpecConstantOp instruction can be folded if its value won't
321 // change later. This pass will replace the original OpSpecConstantOp
322 // instruction with an OpConstant instruction. When folding composite spec
323 // constants, new instructions may be inserted to define the components of the
324 // composite constant first, then the original spec constants will be replaced
325 // by OpConstantComposite instructions.
326 //
327 // There are some operations not supported yet:
328 //   OpSConvert, OpFConvert, OpQuantizeToF16 and
329 //   all the operations under Kernel capability.
330 // TODO(qining): Add support for the operations listed above.
331 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
332 
333 // Creates a unify-constant pass.
334 // A unify-constant pass de-duplicates the constants. Constants with the exact
335 // same value and identical form will be unified and only one constant will
336 // be kept for each unique pair of type and value.
337 // There are several cases not handled by this pass:
338 //  1) Constants defined by OpConstantNull instructions (null constants) and
339 //  constants defined by OpConstantFalse, OpConstant or OpConstantComposite
340 //  with value 0 (zero-valued normal constants) are not considered equivalent.
341 //  So null constants won't be used to replace zero-valued normal constants,
342 //  vice versa.
343 //  2) Whenever there are decorations to the constant's result id id, the
344 //  constant won't be handled, which means, it won't be used to replace any
345 //  other constants, neither can other constants replace it.
346 //  3) NaN in float point format with different bit patterns are not unified.
347 Optimizer::PassToken CreateUnifyConstantPass();
348 
349 // Creates a eliminate-dead-constant pass.
350 // A eliminate-dead-constant pass removes dead constants, including normal
351 // constants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
352 // OpConstantFalse and spec constants defined by OpSpecConstant,
353 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
354 // OpSpecConstantOp.
355 Optimizer::PassToken CreateEliminateDeadConstantPass();
356 
357 // Creates a strength-reduction pass.
358 // A strength-reduction pass will look for opportunities to replace an
359 // instruction with an equivalent and less expensive one.  For example,
360 // multiplying by a power of 2 can be replaced by a bit shift.
361 Optimizer::PassToken CreateStrengthReductionPass();
362 
363 // Creates a block merge pass.
364 // This pass searches for blocks with a single Branch to a block with no
365 // other predecessors and merges the blocks into a single block. Continue
366 // blocks and Merge blocks are not candidates for the second block.
367 //
368 // The pass is most useful after Dead Branch Elimination, which can leave
369 // such sequences of blocks. Merging them makes subsequent passes more
370 // effective, such as single block local store-load elimination.
371 //
372 // While this pass reduces the number of occurrences of this sequence, at
373 // this time it does not guarantee all such sequences are eliminated.
374 //
375 // Presence of phi instructions can inhibit this optimization. Handling
376 // these is left for future improvements.
377 Optimizer::PassToken CreateBlockMergePass();
378 
379 // Creates an exhaustive inline pass.
380 // An exhaustive inline pass attempts to exhaustively inline all function
381 // calls in all functions in an entry point call tree. The intent is to enable,
382 // albeit through brute force, analysis and optimization across function
383 // calls by subsequent optimization passes. As the inlining is exhaustive,
384 // there is no attempt to optimize for size or runtime performance. Functions
385 // that are not in the call tree of an entry point are not changed.
386 Optimizer::PassToken CreateInlineExhaustivePass();
387 
388 // Creates an opaque inline pass.
389 // An opaque inline pass inlines all function calls in all functions in all
390 // entry point call trees where the called function contains an opaque type
391 // in either its parameter types or return type. An opaque type is currently
392 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
393 // through brute force, analysis and optimization across these function calls
394 // by subsequent passes in order to remove the storing of opaque types which is
395 // not legal in Vulkan. Functions that are not in the call tree of an entry
396 // point are not changed.
397 Optimizer::PassToken CreateInlineOpaquePass();
398 
399 // Creates a single-block local variable load/store elimination pass.
400 // For every entry point function, do single block memory optimization of
401 // function variables referenced only with non-access-chain loads and stores.
402 // For each targeted variable load, if previous store to that variable in the
403 // block, replace the load's result id with the value id of the store.
404 // If previous load within the block, replace the current load's result id
405 // with the previous load's result id. In either case, delete the current
406 // load. Finally, check if any remaining stores are useless, and delete store
407 // and variable if possible.
408 //
409 // The presence of access chain references and function calls can inhibit
410 // the above optimization.
411 //
412 // Only modules with relaxed logical addressing (see opt/instruction.h) are
413 // currently processed.
414 //
415 // This pass is most effective if preceded by Inlining and
416 // LocalAccessChainConvert. This pass will reduce the work needed to be done
417 // by LocalSingleStoreElim and LocalMultiStoreElim.
418 //
419 // Only functions in the call tree of an entry point are processed.
420 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
421 
422 // Create dead branch elimination pass.
423 // For each entry point function, this pass will look for SelectionMerge
424 // BranchConditionals with constant condition and convert to a Branch to
425 // the indicated label. It will delete resulting dead blocks.
426 //
427 // For all phi functions in merge block, replace all uses with the id
428 // corresponding to the living predecessor.
429 //
430 // Note that some branches and blocks may be left to avoid creating invalid
431 // control flow. Improving this is left to future work.
432 //
433 // This pass is most effective when preceded by passes which eliminate
434 // local loads and stores, effectively propagating constant values where
435 // possible.
436 Optimizer::PassToken CreateDeadBranchElimPass();
437 
438 // Creates an SSA local variable load/store elimination pass.
439 // For every entry point function, eliminate all loads and stores of function
440 // scope variables only referenced with non-access-chain loads and stores.
441 // Eliminate the variables as well.
442 //
443 // The presence of access chain references and function calls can inhibit
444 // the above optimization.
445 //
446 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
447 // are currently processed. Currently modules with any extensions enabled are
448 // not processed. This is left for future work.
449 //
450 // This pass is most effective if preceded by Inlining and
451 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
452 // will reduce the work that this pass has to do.
453 Optimizer::PassToken CreateLocalMultiStoreElimPass();
454 
455 // Creates a local access chain conversion pass.
456 // A local access chain conversion pass identifies all function scope
457 // variables which are accessed only with loads, stores and access chains
458 // with constant indices. It then converts all loads and stores of such
459 // variables into equivalent sequences of loads, stores, extracts and inserts.
460 //
461 // This pass only processes entry point functions. It currently only converts
462 // non-nested, non-ptr access chains. It does not process modules with
463 // non-32-bit integer types present. Optional memory access options on loads
464 // and stores are ignored as we are only processing function scope variables.
465 //
466 // This pass unifies access to these variables to a single mode and simplifies
467 // subsequent analysis and elimination of these variables along with their
468 // loads and stores allowing values to propagate to their points of use where
469 // possible.
470 Optimizer::PassToken CreateLocalAccessChainConvertPass();
471 
472 // Creates a local single store elimination pass.
473 // For each entry point function, this pass eliminates loads and stores for
474 // function scope variable that are stored to only once, where possible. Only
475 // whole variable loads and stores are eliminated; access-chain references are
476 // not optimized. Replace all loads of such variables with the value that is
477 // stored and eliminate any resulting dead code.
478 //
479 // Currently, the presence of access chains and function calls can inhibit this
480 // pass, however the Inlining and LocalAccessChainConvert passes can make it
481 // more effective. In additional, many non-load/store memory operations are
482 // not supported and will prohibit optimization of a function. Support of
483 // these operations are future work.
484 //
485 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
486 // are currently processed.
487 //
488 // This pass will reduce the work needed to be done by LocalSingleBlockElim
489 // and LocalMultiStoreElim and can improve the effectiveness of other passes
490 // such as DeadBranchElimination which depend on values for their analysis.
491 Optimizer::PassToken CreateLocalSingleStoreElimPass();
492 
493 // Creates an insert/extract elimination pass.
494 // This pass processes each entry point function in the module, searching for
495 // extracts on a sequence of inserts. It further searches the sequence for an
496 // insert with indices identical to the extract. If such an insert can be
497 // found before hitting a conflicting insert, the extract's result id is
498 // replaced with the id of the values from the insert.
499 //
500 // Besides removing extracts this pass enables subsequent dead code elimination
501 // passes to delete the inserts. This pass performs best after access chains are
502 // converted to inserts and extracts and local loads and stores are eliminated.
503 Optimizer::PassToken CreateInsertExtractElimPass();
504 
505 // Creates a dead insert elimination pass.
506 // This pass processes each entry point function in the module, searching for
507 // unreferenced inserts into composite types. These are most often unused
508 // stores to vector components. They are unused because they are never
509 // referenced, or because there is another insert to the same component between
510 // the insert and the reference. After removing the inserts, dead code
511 // elimination is attempted on the inserted values.
512 //
513 // This pass performs best after access chains are converted to inserts and
514 // extracts and local loads and stores are eliminated. While executing this
515 // pass can be advantageous on its own, it is also advantageous to execute
516 // this pass after CreateInsertExtractPass() as it will remove any unused
517 // inserts created by that pass.
518 Optimizer::PassToken CreateDeadInsertElimPass();
519 
520 // Create aggressive dead code elimination pass
521 // This pass eliminates unused code from the module. In addition,
522 // it detects and eliminates code which may have spurious uses but which do
523 // not contribute to the output of the function. The most common cause of
524 // such code sequences is summations in loops whose result is no longer used
525 // due to dead code elimination. This optimization has additional compile
526 // time cost over standard dead code elimination.
527 //
528 // This pass only processes entry point functions. It also only processes
529 // shaders with relaxed logical addressing (see opt/instruction.h). It
530 // currently will not process functions with function calls. Unreachable
531 // functions are deleted.
532 //
533 // This pass will be made more effective by first running passes that remove
534 // dead control flow and inlines function calls.
535 //
536 // This pass can be especially useful after running Local Access Chain
537 // Conversion, which tends to cause cycles of dead code to be left after
538 // Store/Load elimination passes are completed. These cycles cannot be
539 // eliminated with standard dead code elimination.
540 //
541 // If |preserve_interface| is true, all non-io variables in the entry point
542 // interface are considered live and are not eliminated. This mode is needed
543 // by GPU-Assisted validation instrumentation, where a change in the interface
544 // is not allowed.
545 //
546 // If |remove_outputs| is true, allow outputs to be removed from the interface.
547 // This is only safe if the caller knows that there is no corresponding input
548 // variable in the following shader. It is false by default.
549 Optimizer::PassToken CreateAggressiveDCEPass();
550 Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface);
551 Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface,
552                                              bool remove_outputs);
553 
554 // Creates a remove-unused-interface-variables pass.
555 // Removes variables referenced on the |OpEntryPoint| instruction that are not
556 // referenced in the entry point function or any function in its call tree. Note
557 // that this could cause the shader interface to no longer match other shader
558 // stages.
559 Optimizer::PassToken CreateRemoveUnusedInterfaceVariablesPass();
560 
561 // Creates an empty pass.
562 // This is deprecated and will be removed.
563 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
564 //                https://github.com/KhronosGroup/glslang/pull/2440
565 Optimizer::PassToken CreatePropagateLineInfoPass();
566 
567 // Creates an empty pass.
568 // This is deprecated and will be removed.
569 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
570 //                https://github.com/KhronosGroup/glslang/pull/2440
571 Optimizer::PassToken CreateRedundantLineInfoElimPass();
572 
573 // Creates a compact ids pass.
574 // The pass remaps result ids to a compact and gapless range starting from %1.
575 Optimizer::PassToken CreateCompactIdsPass();
576 
577 // Creates a remove duplicate pass.
578 // This pass removes various duplicates:
579 // * duplicate capabilities;
580 // * duplicate extended instruction imports;
581 // * duplicate types;
582 // * duplicate decorations.
583 Optimizer::PassToken CreateRemoveDuplicatesPass();
584 
585 // Creates a CFG cleanup pass.
586 // This pass removes cruft from the control flow graph of functions that are
587 // reachable from entry points and exported functions. It currently includes the
588 // following functionality:
589 //
590 // - Removal of unreachable basic blocks.
591 Optimizer::PassToken CreateCFGCleanupPass();
592 
593 // Create dead variable elimination pass.
594 // This pass will delete module scope variables, along with their decorations,
595 // that are not referenced.
596 Optimizer::PassToken CreateDeadVariableEliminationPass();
597 
598 // create merge return pass.
599 // changes functions that have multiple return statements so they have a single
600 // return statement.
601 //
602 // for structured control flow it is assumed that the only unreachable blocks in
603 // the function are trivial merge and continue blocks.
604 //
605 // a trivial merge block contains the label and an opunreachable instructions,
606 // nothing else.  a trivial continue block contain a label and an opbranch to
607 // the header, nothing else.
608 //
609 // these conditions are guaranteed to be met after running dead-branch
610 // elimination.
611 Optimizer::PassToken CreateMergeReturnPass();
612 
613 // Create value numbering pass.
614 // This pass will look for instructions in the same basic block that compute the
615 // same value, and remove the redundant ones.
616 Optimizer::PassToken CreateLocalRedundancyEliminationPass();
617 
618 // Create LICM pass.
619 // This pass will look for invariant instructions inside loops and hoist them to
620 // the loops preheader.
621 Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
622 
623 // Creates a loop fission pass.
624 // This pass will split all top level loops whose register pressure exceedes the
625 // given |threshold|.
626 Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
627 
628 // Creates a loop fusion pass.
629 // This pass will look for adjacent loops that are compatible and legal to be
630 // fused. The fuse all such loops as long as the register usage for the fused
631 // loop stays under the threshold defined by |max_registers_per_loop|.
632 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
633 
634 // Creates a loop peeling pass.
635 // This pass will look for conditions inside a loop that are true or false only
636 // for the N first or last iteration. For loop with such condition, those N
637 // iterations of the loop will be executed outside of the main loop.
638 // To limit code size explosion, the loop peeling can only happen if the code
639 // size growth for each loop is under |code_growth_threshold|.
640 Optimizer::PassToken CreateLoopPeelingPass();
641 
642 // Creates a loop unswitch pass.
643 // This pass will look for loop independent branch conditions and move the
644 // condition out of the loop and version the loop based on the taken branch.
645 // Works best after LICM and local multi store elimination pass.
646 Optimizer::PassToken CreateLoopUnswitchPass();
647 
648 // Create global value numbering pass.
649 // This pass will look for instructions where the same value is computed on all
650 // paths leading to the instruction.  Those instructions are deleted.
651 Optimizer::PassToken CreateRedundancyEliminationPass();
652 
653 // Create scalar replacement pass.
654 // This pass replaces composite function scope variables with variables for each
655 // element if those elements are accessed individually.  The parameter is a
656 // limit on the number of members in the composite variable that the pass will
657 // consider replacing.
658 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100);
659 
660 // Create a private to local pass.
661 // This pass looks for variables declared in the private storage class that are
662 // used in only one function.  Those variables are moved to the function storage
663 // class in the function that they are used.
664 Optimizer::PassToken CreatePrivateToLocalPass();
665 
666 // Creates a conditional constant propagation (CCP) pass.
667 // This pass implements the SSA-CCP algorithm in
668 //
669 //      Constant propagation with conditional branches,
670 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
671 //
672 // Constant values in expressions and conditional jumps are folded and
673 // simplified. This may reduce code size by removing never executed jump targets
674 // and computations with constant operands.
675 Optimizer::PassToken CreateCCPPass();
676 
677 // Creates a workaround driver bugs pass.  This pass attempts to work around
678 // a known driver bug (issue #1209) by identifying the bad code sequences and
679 // rewriting them.
680 //
681 // Current workaround: Avoid OpUnreachable instructions in loops.
682 Optimizer::PassToken CreateWorkaround1209Pass();
683 
684 // Creates a pass that converts if-then-else like assignments into OpSelect.
685 Optimizer::PassToken CreateIfConversionPass();
686 
687 // Creates a pass that will replace instructions that are not valid for the
688 // current shader stage by constants.  Has no effect on non-shader modules.
689 Optimizer::PassToken CreateReplaceInvalidOpcodePass();
690 
691 // Creates a pass that simplifies instructions using the instruction folder.
692 Optimizer::PassToken CreateSimplificationPass();
693 
694 // Create loop unroller pass.
695 // Creates a pass to unroll loops which have the "Unroll" loop control
696 // mask set. The loops must meet a specific criteria in order to be unrolled
697 // safely this criteria is checked before doing the unroll by the
698 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
699 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
700 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
701 
702 // Create the SSA rewrite pass.
703 // This pass converts load/store operations on function local variables into
704 // operations on SSA IDs.  This allows SSA optimizers to act on these variables.
705 // Only variables that are local to the function and of supported types are
706 // processed (see IsSSATargetVar for details).
707 Optimizer::PassToken CreateSSARewritePass();
708 
709 // Create pass to convert relaxed precision instructions to half precision.
710 // This pass converts as many relaxed float32 arithmetic operations to half as
711 // possible. It converts any float32 operands to half if needed. It converts
712 // any resulting half precision values back to float32 as needed. No variables
713 // are changed. No image operations are changed.
714 //
715 // Best if run after function scope store/load and composite operation
716 // eliminations are run. Also best if followed by instruction simplification,
717 // redundancy elimination and DCE.
718 Optimizer::PassToken CreateConvertRelaxedToHalfPass();
719 
720 // Create relax float ops pass.
721 // This pass decorates all float32 result instructions with RelaxedPrecision
722 // if not already so decorated.
723 Optimizer::PassToken CreateRelaxFloatOpsPass();
724 
725 // Create copy propagate arrays pass.
726 // This pass looks to copy propagate memory references for arrays.  It looks
727 // for specific code patterns to recognize array copies.
728 Optimizer::PassToken CreateCopyPropagateArraysPass();
729 
730 // Create a vector dce pass.
731 // This pass looks for components of vectors that are unused, and removes them
732 // from the vector.  Note this would still leave around lots of dead code that
733 // a pass of ADCE will be able to remove.
734 Optimizer::PassToken CreateVectorDCEPass();
735 
736 // Create a pass to reduce the size of loads.
737 // This pass looks for loads of structures where only a few of its members are
738 // used.  It replaces the loads feeding an OpExtract with an OpAccessChain and
739 // a load of the specific elements.  The parameter is a threshold to determine
740 // whether we have to replace the load or not.  If the ratio of the used
741 // components of the load is less than the threshold, we replace the load.
742 Optimizer::PassToken CreateReduceLoadSizePass(
743     double load_replacement_threshold = 0.9);
744 
745 // Create a pass to combine chained access chains.
746 // This pass looks for access chains fed by other access chains and combines
747 // them into a single instruction where possible.
748 Optimizer::PassToken CreateCombineAccessChainsPass();
749 
750 // Create a pass to instrument bindless descriptor checking
751 // This pass instruments all bindless references to check that descriptor
752 // array indices are inbounds, and if the descriptor indexing extension is
753 // enabled, that the descriptor has been initialized. If the reference is
754 // invalid, a record is written to the debug output buffer (if space allows)
755 // and a null value is returned. This pass is designed to support bindless
756 // validation in the Vulkan validation layers.
757 //
758 // TODO(greg-lunarg): Add support for buffer references. Currently only does
759 // checking for image references.
760 //
761 // Dead code elimination should be run after this pass as the original,
762 // potentially invalid code is not removed and could cause undefined behavior,
763 // including crashes. It may also be beneficial to run Simplification
764 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to
765 // optimize instrument code involving the testing of compile-time constants.
766 // It is also generally recommended that this pass (and all
767 // instrumentation passes) be run after any legalization and optimization
768 // passes. This will give better analysis for the instrumentation and avoid
769 // potentially de-optimizing the instrument code, for example, inlining
770 // the debug record output function throughout the module.
771 //
772 // The instrumentation will write |shader_id| in each output record
773 // to identify the shader module which generated the record.
774 Optimizer::PassToken CreateInstBindlessCheckPass(uint32_t shader_id);
775 
776 // Create a pass to instrument physical buffer address checking
777 // This pass instruments all physical buffer address references to check that
778 // all referenced bytes fall in a valid buffer. If the reference is
779 // invalid, a record is written to the debug output buffer (if space allows)
780 // and a null value is returned. This pass is designed to support buffer
781 // address validation in the Vulkan validation layers.
782 //
783 // Dead code elimination should be run after this pass as the original,
784 // potentially invalid code is not removed and could cause undefined behavior,
785 // including crashes. Instruction simplification would likely also be
786 // beneficial. It is also generally recommended that this pass (and all
787 // instrumentation passes) be run after any legalization and optimization
788 // passes. This will give better analysis for the instrumentation and avoid
789 // potentially de-optimizing the instrument code, for example, inlining
790 // the debug record output function throughout the module.
791 //
792 // The instrumentation will read and write buffers in debug
793 // descriptor set |desc_set|. It will write |shader_id| in each output record
794 // to identify the shader module which generated the record.
795 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t shader_id);
796 
797 // Create a pass to instrument OpDebugPrintf instructions.
798 // This pass replaces all OpDebugPrintf instructions with instructions to write
799 // a record containing the string id and the all specified values into a special
800 // printf output buffer (if space allows). This pass is designed to support
801 // the printf validation in the Vulkan validation layers.
802 //
803 // The instrumentation will write buffers in debug descriptor set |desc_set|.
804 // It will write |shader_id| in each output record to identify the shader
805 // module which generated the record.
806 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set,
807                                                uint32_t shader_id);
808 
809 // Create a pass to upgrade to the VulkanKHR memory model.
810 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
811 // Additionally, it modifies memory, image, atomic and barrier operations to
812 // conform to that model's requirements.
813 Optimizer::PassToken CreateUpgradeMemoryModelPass();
814 
815 // Create a pass to do code sinking.  Code sinking is a transformation
816 // where an instruction is moved into a more deeply nested construct.
817 Optimizer::PassToken CreateCodeSinkingPass();
818 
819 // Create a pass to fix incorrect storage classes.  In order to make code
820 // generation simpler, DXC may generate code where the storage classes do not
821 // match up correctly.  This pass will fix the errors that it can.
822 Optimizer::PassToken CreateFixStorageClassPass();
823 
824 // Creates a graphics robust access pass.
825 //
826 // This pass injects code to clamp indexed accesses to buffers and internal
827 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
828 //
829 // TODO(dneto): Clamps coordinates and sample index for pointer calculations
830 // into storage images (OpImageTexelPointer).  For an cube array image, it
831 // assumes the maximum layer count times 6 is at most 0xffffffff.
832 //
833 // NOTE: This pass will fail with a message if:
834 // - The module is not a Shader module.
835 // - The module declares VariablePointers, VariablePointersStorageBuffer, or
836 //   RuntimeDescriptorArrayEXT capabilities.
837 // - The module uses an addressing model other than Logical
838 // - Access chain indices are wider than 64 bits.
839 // - Access chain index for a struct is not an OpConstant integer or is out
840 //   of range. (The module is already invalid if that is the case.)
841 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
842 // wide.
843 //
844 // NOTE: Access chain indices are always treated as signed integers.  So
845 //   if an array has a fixed size of more than 2^31 elements, then elements
846 //   from 2^31 and above are never accessible with a 32-bit index,
847 //   signed or unsigned.  For this case, this pass will clamp the index
848 //   between 0 and at 2^31-1, inclusive.
849 //   Similarly, if an array has more then 2^15 element and is accessed with
850 //   a 16-bit index, then elements from 2^15 and above are not accessible.
851 //   In this case, the pass will clamp the index between 0 and 2^15-1
852 //   inclusive.
853 Optimizer::PassToken CreateGraphicsRobustAccessPass();
854 
855 // Create a pass to spread Volatile semantics to variables with SMIDNV,
856 // WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask,
857 // SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn
858 // decorations or OpLoad for them when the shader model is the ray generation,
859 // closest hit, miss, intersection, or callable. This pass can be used for
860 // VUID-StandaloneSpirv-VulkanMemoryModel-04678 and
861 // VUID-StandaloneSpirv-VulkanMemoryModel-04679 (See "Standalone SPIR-V
862 // Validation" section of Vulkan spec "Appendix A: Vulkan Environment for
863 // SPIR-V"). When the SPIR-V version is 1.6 or above, the pass also spreads
864 // the Volatile semantics to a variable with HelperInvocation BuiltIn decoration
865 // in the fragement shader.
866 Optimizer::PassToken CreateSpreadVolatileSemanticsPass();
867 
868 // Create a pass to replace a descriptor access using variable index.
869 // This pass replaces every access using a variable index to array variable
870 // |desc| that has a DescriptorSet and Binding decorations with a constant
871 // element of the array. In order to replace the access using a variable index
872 // with the constant element, it uses a switch statement.
873 Optimizer::PassToken CreateReplaceDescArrayAccessUsingVarIndexPass();
874 
875 // Create descriptor scalar replacement pass.
876 // This pass replaces every array variable |desc| that has a DescriptorSet and
877 // Binding decorations with a new variable for each element of the array.
878 // Suppose |desc| was bound at binding |b|.  Then the variable corresponding to
879 // |desc[i]| will have binding |b+i|.  The descriptor set will be the same.  It
880 // is assumed that no other variable already has a binding that will used by one
881 // of the new variables.  If not, the pass will generate invalid Spir-V.  All
882 // accesses to |desc| must be OpAccessChain instructions with a literal index
883 // for the first index.
884 Optimizer::PassToken CreateDescriptorScalarReplacementPass();
885 
886 // Create a pass to replace each OpKill instruction with a function call to a
887 // function that has a single OpKill.  Also replace each OpTerminateInvocation
888 // instruction  with a function call to a function that has a single
889 // OpTerminateInvocation.  This allows more code to be inlined.
890 Optimizer::PassToken CreateWrapOpKillPass();
891 
892 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
893 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
894 // capabilities.
895 Optimizer::PassToken CreateAmdExtToKhrPass();
896 
897 // Replaces the internal version of GLSLstd450 InterpolateAt* extended
898 // instructions with the externally valid version. The internal version allows
899 // an OpLoad of the interpolant for the first argument. This pass removes the
900 // OpLoad and replaces it with its pointer. glslang and possibly other
901 // frontends will create the internal version for HLSL. This pass will be part
902 // of HLSL legalization and should be called after interpolants have been
903 // propagated into their final positions.
904 Optimizer::PassToken CreateInterpolateFixupPass();
905 
906 // Removes unused components from composite input variables. Current
907 // implementation just removes trailing unused components from input arrays
908 // and structs. The pass performs best after maximizing dead code removal.
909 // A subsequent dead code elimination pass would be beneficial in removing
910 // newly unused component types.
911 //
912 // WARNING: This pass can only be safely applied standalone to vertex shaders
913 // as it can otherwise cause interface incompatibilities with the preceding
914 // shader in the pipeline. If applied to non-vertex shaders, the user should
915 // follow by applying EliminateDeadOutputStores and
916 // EliminateDeadOutputComponents to the preceding shader.
917 Optimizer::PassToken CreateEliminateDeadInputComponentsPass();
918 
919 // Removes unused components from composite output variables. Current
920 // implementation just removes trailing unused components from output arrays
921 // and structs. The pass performs best after eliminating dead output stores.
922 // A subsequent dead code elimination pass would be beneficial in removing
923 // newly unused component types. Currently only supports vertex and fragment
924 // shaders.
925 //
926 // WARNING: This pass cannot be safely applied standalone as it can cause
927 // interface incompatibility with the following shader in the pipeline. The
928 // user should first apply EliminateDeadInputComponents to the following
929 // shader, then apply EliminateDeadOutputStores to this shader.
930 Optimizer::PassToken CreateEliminateDeadOutputComponentsPass();
931 
932 // Removes unused components from composite input variables. This safe
933 // version will not cause interface incompatibilities since it only changes
934 // vertex shaders. The current implementation just removes trailing unused
935 // components from input structs and input arrays. The pass performs best
936 // after maximizing dead code removal. A subsequent dead code elimination
937 // pass would be beneficial in removing newly unused component types.
938 Optimizer::PassToken CreateEliminateDeadInputComponentsSafePass();
939 
940 // Analyzes shader and populates |live_locs| and |live_builtins|. Best results
941 // will be obtained if shader has all dead code eliminated first. |live_locs|
942 // and |live_builtins| are subsequently used when calling
943 // CreateEliminateDeadOutputStoresPass on the preceding shader. Currently only
944 // supports tesc, tese, geom, and frag shaders.
945 Optimizer::PassToken CreateAnalyzeLiveInputPass(
946     std::unordered_set<uint32_t>* live_locs,
947     std::unordered_set<uint32_t>* live_builtins);
948 
949 // Removes stores to output locations not listed in |live_locs| or
950 // |live_builtins|. Best results are obtained if constant propagation is
951 // performed first. A subsequent call to ADCE will eliminate any dead code
952 // created by the removal of the stores. A subsequent call to
953 // CreateEliminateDeadOutputComponentsPass will eliminate any dead output
954 // components created by the elimination of the stores. Currently only supports
955 // vert, tesc, tese, and geom shaders.
956 Optimizer::PassToken CreateEliminateDeadOutputStoresPass(
957     std::unordered_set<uint32_t>* live_locs,
958     std::unordered_set<uint32_t>* live_builtins);
959 
960 // Creates a convert-to-sampled-image pass to convert images and/or
961 // samplers with given pairs of descriptor set and binding to sampled image.
962 // If a pair of an image and a sampler have the same pair of descriptor set and
963 // binding that is one of the given pairs, they will be converted to a sampled
964 // image. In addition, if only an image has the descriptor set and binding that
965 // is one of the given pairs, it will be converted to a sampled image as well.
966 Optimizer::PassToken CreateConvertToSampledImagePass(
967     const std::vector<opt::DescriptorSetAndBinding>&
968         descriptor_set_binding_pairs);
969 
970 // Create an interface-variable-scalar-replacement pass that replaces array or
971 // matrix interface variables with a series of scalar or vector interface
972 // variables. For example, it replaces `float3 foo[2]` with `float3 foo0, foo1`.
973 Optimizer::PassToken CreateInterfaceVariableScalarReplacementPass();
974 
975 // Creates a remove-dont-inline pass to remove the |DontInline| function control
976 // from every function in the module.  This is useful if you want the inliner to
977 // inline these functions some reason.
978 Optimizer::PassToken CreateRemoveDontInlinePass();
979 // Create a fix-func-call-param pass to fix non memory argument for the function
980 // call, as spirv-validation requires function parameters to be an memory
981 // object, currently the pass would remove accesschain pointer argument passed
982 // to the function
983 Optimizer::PassToken CreateFixFuncCallArgumentsPass();
984 
985 // Creates a trim-capabilities pass.
986 // This pass removes unused capabilities for a given module, and if possible,
987 // associated extensions.
988 // See `trim_capabilities.h` for the list of supported capabilities.
989 //
990 // If the module contains unsupported capabilities, this pass will ignore them.
991 // This should be fine in most cases, but could yield to incorrect results if
992 // the unknown capability interacts with one of the trimmed capabilities.
993 Optimizer::PassToken CreateTrimCapabilitiesPass();
994 
995 // Creates a switch-descriptorset pass.
996 // This pass changes any DescriptorSet decorations with the value |ds_from| to
997 // use the new value |ds_to|.
998 Optimizer::PassToken CreateSwitchDescriptorSetPass(uint32_t ds_from,
999                                                    uint32_t ds_to);
1000 
1001 // Creates an invocation interlock placement pass.
1002 // This pass ensures that an entry point will have at most one
1003 // OpBeginInterlockInvocationEXT and one OpEndInterlockInvocationEXT, in that
1004 // order.
1005 Optimizer::PassToken CreateInvocationInterlockPlacementPass();
1006 
1007 // Creates a pass to add/remove maximal reconvergence execution mode.
1008 // This pass either adds or removes maximal reconvergence from all entry points.
1009 Optimizer::PassToken CreateModifyMaximalReconvergencePass(bool add);
1010 }  // namespace spvtools
1011 
1012 #endif  // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
1013