1 // Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "VkBuffer.hpp"
16
17 #include "VkConfig.hpp"
18 #include "VkDeviceMemory.hpp"
19
20 #include <algorithm>
21 #include <cstring>
22 #include <limits>
23
24 namespace vk {
25
Buffer(const VkBufferCreateInfo * pCreateInfo,void * mem)26 Buffer::Buffer(const VkBufferCreateInfo *pCreateInfo, void *mem)
27 : flags(pCreateInfo->flags)
28 , size(pCreateInfo->size)
29 , usage(pCreateInfo->usage)
30 , sharingMode(pCreateInfo->sharingMode)
31 {
32 if(pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT)
33 {
34 queueFamilyIndexCount = pCreateInfo->queueFamilyIndexCount;
35 queueFamilyIndices = reinterpret_cast<uint32_t *>(mem);
36 memcpy(queueFamilyIndices, pCreateInfo->pQueueFamilyIndices, sizeof(uint32_t) * queueFamilyIndexCount);
37 }
38
39 const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
40 for(; nextInfo != nullptr; nextInfo = nextInfo->pNext)
41 {
42 if(nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO)
43 {
44 const auto *externalInfo = reinterpret_cast<const VkExternalMemoryBufferCreateInfo *>(nextInfo);
45 supportedExternalMemoryHandleTypes = externalInfo->handleTypes;
46 }
47 else if(nextInfo->sType == VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO)
48 {
49 const auto *opaqueCaptureAddressInfo = reinterpret_cast<const VkBufferOpaqueCaptureAddressCreateInfo *>(nextInfo);
50 opaqueCaptureAddress = opaqueCaptureAddressInfo->opaqueCaptureAddress;
51 }
52 }
53 }
54
destroy(const VkAllocationCallbacks * pAllocator)55 void Buffer::destroy(const VkAllocationCallbacks *pAllocator)
56 {
57 vk::freeHostMemory(queueFamilyIndices, pAllocator);
58 }
59
ComputeRequiredAllocationSize(const VkBufferCreateInfo * pCreateInfo)60 size_t Buffer::ComputeRequiredAllocationSize(const VkBufferCreateInfo *pCreateInfo)
61 {
62 return (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) ? sizeof(uint32_t) * pCreateInfo->queueFamilyIndexCount : 0;
63 }
64
GetMemoryRequirements(VkDeviceSize size,VkBufferUsageFlags usage)65 const VkMemoryRequirements Buffer::GetMemoryRequirements(VkDeviceSize size, VkBufferUsageFlags usage)
66 {
67 VkMemoryRequirements memoryRequirements = {};
68
69 memoryRequirements.size = size;
70 memoryRequirements.alignment = vk::MEMORY_REQUIREMENTS_OFFSET_ALIGNMENT;
71
72 if(usage & (VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT))
73 {
74 memoryRequirements.alignment = std::max(memoryRequirements.alignment, vk::MIN_TEXEL_BUFFER_OFFSET_ALIGNMENT);
75 }
76
77 if(usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)
78 {
79 memoryRequirements.alignment = std::max(memoryRequirements.alignment, vk::MIN_STORAGE_BUFFER_OFFSET_ALIGNMENT);
80 }
81
82 if(usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
83 {
84 memoryRequirements.alignment = std::max(memoryRequirements.alignment, vk::MIN_UNIFORM_BUFFER_OFFSET_ALIGNMENT);
85 }
86
87 memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT;
88
89 return memoryRequirements;
90 }
91
getMemoryRequirements() const92 const VkMemoryRequirements Buffer::getMemoryRequirements() const
93 {
94 return GetMemoryRequirements(size, usage);
95 }
96
canBindToMemory(DeviceMemory * pDeviceMemory) const97 bool Buffer::canBindToMemory(DeviceMemory *pDeviceMemory) const
98 {
99 return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes);
100 }
101
bind(DeviceMemory * pDeviceMemory,VkDeviceSize pMemoryOffset)102 void Buffer::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset)
103 {
104 memory = pDeviceMemory->getOffsetPointer(pMemoryOffset);
105 }
106
copyFrom(const void * srcMemory,VkDeviceSize pSize,VkDeviceSize pOffset)107 void Buffer::copyFrom(const void *srcMemory, VkDeviceSize pSize, VkDeviceSize pOffset)
108 {
109 ASSERT((pSize + pOffset) <= size);
110
111 memcpy(getOffsetPointer(pOffset), srcMemory, pSize);
112 }
113
copyTo(void * dstMemory,VkDeviceSize pSize,VkDeviceSize pOffset) const114 void Buffer::copyTo(void *dstMemory, VkDeviceSize pSize, VkDeviceSize pOffset) const
115 {
116 ASSERT((pSize + pOffset) <= size);
117
118 memcpy(dstMemory, getOffsetPointer(pOffset), pSize);
119 }
120
copyTo(Buffer * dstBuffer,const VkBufferCopy2KHR & pRegion) const121 void Buffer::copyTo(Buffer *dstBuffer, const VkBufferCopy2KHR &pRegion) const
122 {
123 copyTo(dstBuffer->getOffsetPointer(pRegion.dstOffset), pRegion.size, pRegion.srcOffset);
124 }
125
fill(VkDeviceSize dstOffset,VkDeviceSize fillSize,uint32_t data)126 void Buffer::fill(VkDeviceSize dstOffset, VkDeviceSize fillSize, uint32_t data)
127 {
128 size_t bytes = (fillSize == VK_WHOLE_SIZE) ? (size - dstOffset) : fillSize;
129
130 ASSERT((bytes + dstOffset) <= size);
131
132 uint32_t *memToWrite = static_cast<uint32_t *>(getOffsetPointer(dstOffset));
133
134 // Vulkan 1.1 spec: "If VK_WHOLE_SIZE is used and the remaining size of the buffer is
135 // not a multiple of 4, then the nearest smaller multiple is used."
136 for(; bytes >= 4; bytes -= 4, memToWrite++)
137 {
138 *memToWrite = data;
139 }
140 }
141
update(VkDeviceSize dstOffset,VkDeviceSize dataSize,const void * pData)142 void Buffer::update(VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData)
143 {
144 ASSERT((dataSize + dstOffset) <= size);
145
146 memcpy(getOffsetPointer(dstOffset), pData, dataSize);
147 }
148
getOffsetPointer(VkDeviceSize offset) const149 void *Buffer::getOffsetPointer(VkDeviceSize offset) const
150 {
151 return reinterpret_cast<uint8_t *>(memory) + offset;
152 }
153
getOpaqueCaptureAddress() const154 uint64_t Buffer::getOpaqueCaptureAddress() const
155 {
156 return (opaqueCaptureAddress != 0) ? opaqueCaptureAddress : static_cast<uint64_t>(reinterpret_cast<uintptr_t>(memory));
157 }
158
end() const159 uint8_t *Buffer::end() const
160 {
161 return reinterpret_cast<uint8_t *>(getOffsetPointer(size + 1));
162 }
163
164 } // namespace vk
165