1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "Debug.hpp"
16 #include "Print.hpp"
17 #include "Reactor.hpp"
18 #include "ReactorDebugInfo.hpp"
19 #include "SIMD.hpp"
20
21 #include "ExecutableMemory.hpp"
22 #include "Optimizer.hpp"
23 #include "PragmaInternals.hpp"
24
25 #include "src/IceCfg.h"
26 #include "src/IceCfgNode.h"
27 #include "src/IceELFObjectWriter.h"
28 #include "src/IceELFStreamer.h"
29 #include "src/IceGlobalContext.h"
30 #include "src/IceGlobalInits.h"
31 #include "src/IceTypes.h"
32
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/FileSystem.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_os_ostream.h"
37
38 #include "marl/event.h"
39
40 #if __has_feature(memory_sanitizer)
41 # include <sanitizer/msan_interface.h>
42 #endif
43
44 #if defined(_WIN32)
45 # ifndef WIN32_LEAN_AND_MEAN
46 # define WIN32_LEAN_AND_MEAN
47 # endif // !WIN32_LEAN_AND_MEAN
48 # ifndef NOMINMAX
49 # define NOMINMAX
50 # endif // !NOMINMAX
51 # include <Windows.h>
52 #endif
53
54 #include <array>
55 #include <cmath>
56 #include <iostream>
57 #include <limits>
58 #include <mutex>
59
60 // Subzero utility functions
61 // These functions only accept and return Subzero (Ice) types, and do not access any globals.
62 namespace {
63 namespace sz {
64
createFunction(Ice::GlobalContext * context,Ice::Type returnType,const std::vector<Ice::Type> & paramTypes)65 Ice::Cfg *createFunction(Ice::GlobalContext *context, Ice::Type returnType, const std::vector<Ice::Type> ¶mTypes)
66 {
67 uint32_t sequenceNumber = 0;
68 auto *function = Ice::Cfg::create(context, sequenceNumber).release();
69
70 function->setStackSizeLimit(512 * 1024); // 512 KiB
71
72 Ice::CfgLocalAllocatorScope allocScope{ function };
73
74 for(auto type : paramTypes)
75 {
76 Ice::Variable *arg = function->makeVariable(type);
77 function->addArg(arg);
78 }
79
80 Ice::CfgNode *node = function->makeNode();
81 function->setEntryNode(node);
82
83 return function;
84 }
85
getPointerType(Ice::Type elementType)86 Ice::Type getPointerType(Ice::Type elementType)
87 {
88 if(sizeof(void *) == 8)
89 {
90 return Ice::IceType_i64;
91 }
92 else
93 {
94 return Ice::IceType_i32;
95 }
96 }
97
allocateStackVariable(Ice::Cfg * function,Ice::Type type,int arraySize=0)98 Ice::Variable *allocateStackVariable(Ice::Cfg *function, Ice::Type type, int arraySize = 0)
99 {
100 int typeSize = Ice::typeWidthInBytes(type);
101 int totalSize = typeSize * (arraySize ? arraySize : 1);
102
103 auto bytes = Ice::ConstantInteger32::create(function->getContext(), Ice::IceType_i32, totalSize);
104 auto address = function->makeVariable(getPointerType(type));
105 auto alloca = Ice::InstAlloca::create(function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size.
106 function->getEntryNode()->getInsts().push_front(alloca);
107
108 ASSERT(!rr::getPragmaState(rr::InitializeLocalVariables) && "Subzero does not support initializing local variables");
109
110 return address;
111 }
112
getConstantPointer(Ice::GlobalContext * context,const void * ptr)113 Ice::Constant *getConstantPointer(Ice::GlobalContext *context, const void *ptr)
114 {
115 if(sizeof(void *) == 8)
116 {
117 return context->getConstantInt64(reinterpret_cast<intptr_t>(ptr));
118 }
119 else
120 {
121 return context->getConstantInt32(reinterpret_cast<intptr_t>(ptr));
122 }
123 }
124
125 // TODO(amaiorano): remove this prototype once these are moved to separate header/cpp
126 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType);
127
128 // Wrapper for calls on C functions with Ice types
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,Ice::Operand * callTarget,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)129 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, Ice::Operand *callTarget, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
130 {
131 Ice::Variable *ret = nullptr;
132
133 // Subzero doesn't support boolean return values. Replace with an i32 temporarily,
134 // then truncate result to bool.
135 // TODO(b/151158858): Add support to Subzero's InstCall for bool-returning functions
136 const bool returningBool = (retTy == Ice::IceType_i1);
137 if(returningBool)
138 {
139 ret = function->makeVariable(Ice::IceType_i32);
140 }
141 else if(retTy != Ice::IceType_void)
142 {
143 ret = function->makeVariable(retTy);
144 }
145
146 auto call = Ice::InstCall::create(function, iceArgs.size(), ret, callTarget, false, false, isVariadic);
147 for(auto arg : iceArgs)
148 {
149 call->addArg(arg);
150 }
151
152 basicBlock->appendInst(call);
153
154 if(returningBool)
155 {
156 // Truncate result to bool so that if any (lsb) bits were set, result will be true
157 ret = createTruncate(function, basicBlock, ret, Ice::IceType_i1);
158 }
159
160 return ret;
161 }
162
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,const void * fptr,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)163 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, const void *fptr, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
164 {
165 Ice::Operand *callTarget = getConstantPointer(function->getContext(), fptr);
166 return Call(function, basicBlock, retTy, callTarget, iceArgs, isVariadic);
167 }
168
169 // Wrapper for calls on C functions with Ice types
170 template<typename Return, typename... CArgs, typename... RArgs>
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Return (fptr)(CArgs...),RArgs &&...args)171 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Return(fptr)(CArgs...), RArgs &&...args)
172 {
173 static_assert(sizeof...(CArgs) == sizeof...(RArgs), "Expected number of args don't match");
174
175 Ice::Type retTy = T(rr::CToReactorT<Return>::type());
176 std::vector<Ice::Operand *> iceArgs{ std::forward<RArgs>(args)... };
177 return Call(function, basicBlock, retTy, reinterpret_cast<const void *>(fptr), iceArgs, false);
178 }
179
createTruncate(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * from,Ice::Type toType)180 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType)
181 {
182 Ice::Variable *to = function->makeVariable(toType);
183 Ice::InstCast *cast = Ice::InstCast::create(function, Ice::InstCast::Trunc, to, from);
184 basicBlock->appendInst(cast);
185 return to;
186 }
187
createLoad(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * ptr,Ice::Type type,unsigned int align)188 Ice::Variable *createLoad(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *ptr, Ice::Type type, unsigned int align)
189 {
190 Ice::Variable *result = function->makeVariable(type);
191 auto load = Ice::InstLoad::create(function, result, ptr, align);
192 basicBlock->appendInst(load);
193
194 return result;
195 }
196
197 } // namespace sz
198 } // namespace
199
200 namespace rr {
201 class ELFMemoryStreamer;
202 class CoroutineGenerator;
203 } // namespace rr
204
205 namespace {
206
207 // Used to automatically invoke llvm_shutdown() when driver is unloaded
208 llvm::llvm_shutdown_obj llvmShutdownObj;
209
210 Ice::GlobalContext *context = nullptr;
211 Ice::Cfg *function = nullptr;
212 Ice::CfgNode *entryBlock = nullptr;
213 Ice::CfgNode *basicBlockTop = nullptr;
214 Ice::CfgNode *basicBlock = nullptr;
215 Ice::CfgLocalAllocatorScope *allocator = nullptr;
216 rr::ELFMemoryStreamer *routine = nullptr;
217
218 std::mutex codegenMutex;
219
220 Ice::ELFFileStreamer *elfFile = nullptr;
221 Ice::Fdstream *out = nullptr;
222
223 // Coroutine globals
224 rr::Type *coroYieldType = nullptr;
225 std::shared_ptr<rr::CoroutineGenerator> coroGen;
getOrCreateScheduler()226 marl::Scheduler &getOrCreateScheduler()
227 {
228 static auto scheduler = [] {
229 marl::Scheduler::Config cfg;
230 cfg.setWorkerThreadCount(8);
231 return std::make_unique<marl::Scheduler>(cfg);
232 }();
233
234 return *scheduler;
235 }
236
237 rr::Nucleus::OptimizerCallback *optimizerCallback = nullptr;
238
239 } // Anonymous namespace
240
241 namespace {
242
243 #if !defined(__i386__) && defined(_M_IX86)
244 # define __i386__ 1
245 #endif
246
247 #if !defined(__x86_64__) && (defined(_M_AMD64) || defined(_M_X64))
248 # define __x86_64__ 1
249 #endif
250
toIce(int level)251 Ice::OptLevel toIce(int level)
252 {
253 switch(level)
254 {
255 // Note that O0 and O1 are not implemented by Subzero
256 case 0: return Ice::Opt_m1;
257 case 1: return Ice::Opt_m1;
258 case 2: return Ice::Opt_2;
259 case 3: return Ice::Opt_2;
260 default: UNREACHABLE("Unknown Optimization Level %d", int(level));
261 }
262 return Ice::Opt_2;
263 }
264
stdToIceMemoryOrder(std::memory_order memoryOrder)265 Ice::Intrinsics::MemoryOrder stdToIceMemoryOrder(std::memory_order memoryOrder)
266 {
267 switch(memoryOrder)
268 {
269 case std::memory_order_relaxed: return Ice::Intrinsics::MemoryOrderRelaxed;
270 case std::memory_order_consume: return Ice::Intrinsics::MemoryOrderConsume;
271 case std::memory_order_acquire: return Ice::Intrinsics::MemoryOrderAcquire;
272 case std::memory_order_release: return Ice::Intrinsics::MemoryOrderRelease;
273 case std::memory_order_acq_rel: return Ice::Intrinsics::MemoryOrderAcquireRelease;
274 case std::memory_order_seq_cst: return Ice::Intrinsics::MemoryOrderSequentiallyConsistent;
275 }
276 return Ice::Intrinsics::MemoryOrderInvalid;
277 }
278
279 class CPUID
280 {
281 public:
282 const static bool ARM;
283 const static bool SSE4_1;
284
285 private:
cpuid(int registers[4],int info)286 static void cpuid(int registers[4], int info)
287 {
288 #if defined(__i386__) || defined(__x86_64__)
289 # if defined(_WIN32)
290 __cpuid(registers, info);
291 # else
292 __asm volatile("cpuid"
293 : "=a"(registers[0]), "=b"(registers[1]), "=c"(registers[2]), "=d"(registers[3])
294 : "a"(info));
295 # endif
296 #else
297 registers[0] = 0;
298 registers[1] = 0;
299 registers[2] = 0;
300 registers[3] = 0;
301 #endif
302 }
303
detectARM()304 constexpr static bool detectARM()
305 {
306 #if defined(__arm__) || defined(__aarch64__)
307 return true;
308 #elif defined(__i386__) || defined(__x86_64__)
309 return false;
310 #elif defined(__mips__)
311 return false;
312 #else
313 # error "Unknown architecture"
314 #endif
315 }
316
detectSSE4_1()317 static bool detectSSE4_1()
318 {
319 #if defined(__i386__) || defined(__x86_64__)
320 int registers[4];
321 cpuid(registers, 1);
322 return (registers[2] & 0x00080000) != 0;
323 #else
324 return false;
325 #endif
326 }
327 };
328
329 constexpr bool CPUID::ARM = CPUID::detectARM();
330 const bool CPUID::SSE4_1 = CPUID::detectSSE4_1();
331 constexpr bool emulateIntrinsics = false;
332 constexpr bool emulateMismatchedBitCast = CPUID::ARM;
333
334 constexpr bool subzeroDumpEnabled = false;
335 constexpr bool subzeroEmitTextAsm = false;
336
337 #if !ALLOW_DUMP
338 static_assert(!subzeroDumpEnabled, "Compile Subzero with ALLOW_DUMP=1 for subzeroDumpEnabled");
339 static_assert(!subzeroEmitTextAsm, "Compile Subzero with ALLOW_DUMP=1 for subzeroEmitTextAsm");
340 #endif
341
342 } // anonymous namespace
343
344 namespace rr {
345
346 const int SIMD::Width = 4;
347
backendName()348 std::string Caps::backendName()
349 {
350 return "Subzero";
351 }
352
coroutinesSupported()353 bool Caps::coroutinesSupported()
354 {
355 return true;
356 }
357
fmaIsFast()358 bool Caps::fmaIsFast()
359 {
360 // TODO(b/214591655): Subzero currently never emits FMA instructions. std::fma() is called instead.
361 return false;
362 }
363
364 enum EmulatedType
365 {
366 EmulatedShift = 16,
367 EmulatedV2 = 2 << EmulatedShift,
368 EmulatedV4 = 4 << EmulatedShift,
369 EmulatedV8 = 8 << EmulatedShift,
370 EmulatedBits = EmulatedV2 | EmulatedV4 | EmulatedV8,
371
372 Type_v2i32 = Ice::IceType_v4i32 | EmulatedV2,
373 Type_v4i16 = Ice::IceType_v8i16 | EmulatedV4,
374 Type_v2i16 = Ice::IceType_v8i16 | EmulatedV2,
375 Type_v8i8 = Ice::IceType_v16i8 | EmulatedV8,
376 Type_v4i8 = Ice::IceType_v16i8 | EmulatedV4,
377 Type_v2f32 = Ice::IceType_v4f32 | EmulatedV2,
378 };
379
380 class Value : public Ice::Operand
381 {};
382 class SwitchCases : public Ice::InstSwitch
383 {};
384 class BasicBlock : public Ice::CfgNode
385 {};
386
T(Type * t)387 Ice::Type T(Type *t)
388 {
389 static_assert(static_cast<unsigned int>(Ice::IceType_NUM) < static_cast<unsigned int>(EmulatedBits), "Ice::Type overlaps with our emulated types!");
390 return (Ice::Type)(reinterpret_cast<std::intptr_t>(t) & ~EmulatedBits);
391 }
392
T(Ice::Type t)393 Type *T(Ice::Type t)
394 {
395 return reinterpret_cast<Type *>(t);
396 }
397
T(EmulatedType t)398 Type *T(EmulatedType t)
399 {
400 return reinterpret_cast<Type *>(t);
401 }
402
T(const std::vector<Type * > & types)403 std::vector<Ice::Type> T(const std::vector<Type *> &types)
404 {
405 std::vector<Ice::Type> result;
406 result.reserve(types.size());
407 for(auto &t : types)
408 {
409 result.push_back(T(t));
410 }
411 return result;
412 }
413
V(Ice::Operand * v)414 Value *V(Ice::Operand *v)
415 {
416 return reinterpret_cast<Value *>(v);
417 }
418
V(Value * v)419 Ice::Operand *V(Value *v)
420 {
421 return reinterpret_cast<Ice::Operand *>(v);
422 }
423
V(const std::vector<Value * > & values)424 std::vector<Ice::Operand *> V(const std::vector<Value *> &values)
425 {
426 std::vector<Ice::Operand *> result;
427 result.reserve(values.size());
428 for(auto &v : values)
429 {
430 result.push_back(V(v));
431 }
432 return result;
433 }
434
B(Ice::CfgNode * b)435 BasicBlock *B(Ice::CfgNode *b)
436 {
437 return reinterpret_cast<BasicBlock *>(b);
438 }
439
typeSize(Type * type)440 static size_t typeSize(Type *type)
441 {
442 if(reinterpret_cast<std::intptr_t>(type) & EmulatedBits)
443 {
444 switch(reinterpret_cast<std::intptr_t>(type))
445 {
446 case Type_v2i32: return 8;
447 case Type_v4i16: return 8;
448 case Type_v2i16: return 4;
449 case Type_v8i8: return 8;
450 case Type_v4i8: return 4;
451 case Type_v2f32: return 8;
452 default: ASSERT(false);
453 }
454 }
455
456 return Ice::typeWidthInBytes(T(type));
457 }
458
finalizeFunction()459 static void finalizeFunction()
460 {
461 // Create a return if none was added
462 if(::basicBlock->getInsts().empty() || ::basicBlock->getInsts().back().getKind() != Ice::Inst::Ret)
463 {
464 Nucleus::createRetVoid();
465 }
466
467 // Connect the entry block to the top of the initial basic block
468 auto br = Ice::InstBr::create(::function, ::basicBlockTop);
469 ::entryBlock->appendInst(br);
470 }
471
472 using ElfHeader = std::conditional<sizeof(void *) == 8, Elf64_Ehdr, Elf32_Ehdr>::type;
473 using SectionHeader = std::conditional<sizeof(void *) == 8, Elf64_Shdr, Elf32_Shdr>::type;
474
sectionHeader(const ElfHeader * elfHeader)475 inline const SectionHeader *sectionHeader(const ElfHeader *elfHeader)
476 {
477 return reinterpret_cast<const SectionHeader *>((intptr_t)elfHeader + elfHeader->e_shoff);
478 }
479
elfSection(const ElfHeader * elfHeader,int index)480 inline const SectionHeader *elfSection(const ElfHeader *elfHeader, int index)
481 {
482 return §ionHeader(elfHeader)[index];
483 }
484
relocateSymbol(const ElfHeader * elfHeader,const Elf32_Rel & relocation,const SectionHeader & relocationTable)485 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf32_Rel &relocation, const SectionHeader &relocationTable)
486 {
487 const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
488
489 uint32_t index = relocation.getSymbol();
490 int table = relocationTable.sh_link;
491 void *symbolValue = nullptr;
492
493 if(index != SHN_UNDEF)
494 {
495 if(table == SHN_UNDEF) return nullptr;
496 const SectionHeader *symbolTable = elfSection(elfHeader, table);
497
498 uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
499 if(index >= symtab_entries)
500 {
501 ASSERT(index < symtab_entries && "Symbol Index out of range");
502 return nullptr;
503 }
504
505 intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
506 Elf32_Sym &symbol = ((Elf32_Sym *)symbolAddress)[index];
507 uint16_t section = symbol.st_shndx;
508
509 if(section != SHN_UNDEF && section < SHN_LORESERVE)
510 {
511 const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
512 symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
513 }
514 else
515 {
516 return nullptr;
517 }
518 }
519
520 intptr_t address = (intptr_t)elfHeader + target->sh_offset;
521 unaligned_ptr<int32_t> patchSite = (void *)(address + relocation.r_offset);
522
523 if(CPUID::ARM)
524 {
525 switch(relocation.getType())
526 {
527 case R_ARM_NONE:
528 // No relocation
529 break;
530 case R_ARM_MOVW_ABS_NC:
531 {
532 uint32_t thumb = 0; // Calls to Thumb code not supported.
533 uint32_t lo = (uint32_t)(intptr_t)symbolValue | thumb;
534 *patchSite = (*patchSite & 0xFFF0F000) | ((lo & 0xF000) << 4) | (lo & 0x0FFF);
535 }
536 break;
537 case R_ARM_MOVT_ABS:
538 {
539 uint32_t hi = (uint32_t)(intptr_t)(symbolValue) >> 16;
540 *patchSite = (*patchSite & 0xFFF0F000) | ((hi & 0xF000) << 4) | (hi & 0x0FFF);
541 }
542 break;
543 default:
544 ASSERT(false && "Unsupported relocation type");
545 return nullptr;
546 }
547 }
548 else
549 {
550 switch(relocation.getType())
551 {
552 case R_386_NONE:
553 // No relocation
554 break;
555 case R_386_32:
556 *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite);
557 break;
558 case R_386_PC32:
559 *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite);
560 break;
561 default:
562 ASSERT(false && "Unsupported relocation type");
563 return nullptr;
564 }
565 }
566
567 return symbolValue;
568 }
569
relocateSymbol(const ElfHeader * elfHeader,const Elf64_Rela & relocation,const SectionHeader & relocationTable)570 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf64_Rela &relocation, const SectionHeader &relocationTable)
571 {
572 const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
573
574 uint32_t index = relocation.getSymbol();
575 int table = relocationTable.sh_link;
576 void *symbolValue = nullptr;
577
578 if(index != SHN_UNDEF)
579 {
580 if(table == SHN_UNDEF) return nullptr;
581 const SectionHeader *symbolTable = elfSection(elfHeader, table);
582
583 uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
584 if(index >= symtab_entries)
585 {
586 ASSERT(index < symtab_entries && "Symbol Index out of range");
587 return nullptr;
588 }
589
590 intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
591 Elf64_Sym &symbol = ((Elf64_Sym *)symbolAddress)[index];
592 uint16_t section = symbol.st_shndx;
593
594 if(section != SHN_UNDEF && section < SHN_LORESERVE)
595 {
596 const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
597 symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
598 }
599 else
600 {
601 return nullptr;
602 }
603 }
604
605 intptr_t address = (intptr_t)elfHeader + target->sh_offset;
606 unaligned_ptr<int32_t> patchSite32 = (void *)(address + relocation.r_offset);
607 unaligned_ptr<int64_t> patchSite64 = (void *)(address + relocation.r_offset);
608
609 switch(relocation.getType())
610 {
611 case R_X86_64_NONE:
612 // No relocation
613 break;
614 case R_X86_64_64:
615 *patchSite64 = (int64_t)((intptr_t)symbolValue + *patchSite64 + relocation.r_addend);
616 break;
617 case R_X86_64_PC32:
618 *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 - (intptr_t)patchSite32 + relocation.r_addend);
619 break;
620 case R_X86_64_32S:
621 *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 + relocation.r_addend);
622 break;
623 default:
624 ASSERT(false && "Unsupported relocation type");
625 return nullptr;
626 }
627
628 return symbolValue;
629 }
630
631 struct EntryPoint
632 {
633 const void *entry;
634 size_t codeSize = 0;
635 };
636
loadImage(uint8_t * const elfImage,const std::vector<const char * > & functionNames)637 std::vector<EntryPoint> loadImage(uint8_t *const elfImage, const std::vector<const char *> &functionNames)
638 {
639 ASSERT(functionNames.size() > 0);
640 std::vector<EntryPoint> entryPoints(functionNames.size());
641
642 ElfHeader *elfHeader = (ElfHeader *)elfImage;
643
644 // TODO: assert?
645 if(!elfHeader->checkMagic())
646 {
647 return {};
648 }
649
650 // Expect ELF bitness to match platform
651 ASSERT(sizeof(void *) == 8 ? elfHeader->getFileClass() == ELFCLASS64 : elfHeader->getFileClass() == ELFCLASS32);
652 #if defined(__i386__)
653 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_386);
654 #elif defined(__x86_64__)
655 ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_X86_64);
656 #elif defined(__arm__)
657 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_ARM);
658 #elif defined(__aarch64__)
659 ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_AARCH64);
660 #elif defined(__mips__)
661 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_MIPS);
662 #else
663 # error "Unsupported platform"
664 #endif
665
666 SectionHeader *sectionHeader = (SectionHeader *)(elfImage + elfHeader->e_shoff);
667
668 for(int i = 0; i < elfHeader->e_shnum; i++)
669 {
670 if(sectionHeader[i].sh_type == SHT_PROGBITS)
671 {
672 if(sectionHeader[i].sh_flags & SHF_EXECINSTR)
673 {
674 auto findSectionNameEntryIndex = [&]() -> size_t {
675 auto sectionNameOffset = sectionHeader[elfHeader->e_shstrndx].sh_offset + sectionHeader[i].sh_name;
676 const char *sectionName = reinterpret_cast<const char *>(elfImage + sectionNameOffset);
677
678 for(size_t j = 0; j < functionNames.size(); ++j)
679 {
680 if(strstr(sectionName, functionNames[j]) != nullptr)
681 {
682 return j;
683 }
684 }
685
686 UNREACHABLE("Failed to find executable section that matches input function names");
687 return static_cast<size_t>(-1);
688 };
689
690 size_t index = findSectionNameEntryIndex();
691 entryPoints[index].entry = elfImage + sectionHeader[i].sh_offset;
692 entryPoints[index].codeSize = sectionHeader[i].sh_size;
693 }
694 }
695 else if(sectionHeader[i].sh_type == SHT_REL)
696 {
697 ASSERT(sizeof(void *) == 4 && "UNIMPLEMENTED"); // Only expected/implemented for 32-bit code
698
699 for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
700 {
701 const Elf32_Rel &relocation = ((const Elf32_Rel *)(elfImage + sectionHeader[i].sh_offset))[index];
702 relocateSymbol(elfHeader, relocation, sectionHeader[i]);
703 }
704 }
705 else if(sectionHeader[i].sh_type == SHT_RELA)
706 {
707 ASSERT(sizeof(void *) == 8 && "UNIMPLEMENTED"); // Only expected/implemented for 64-bit code
708
709 for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
710 {
711 const Elf64_Rela &relocation = ((const Elf64_Rela *)(elfImage + sectionHeader[i].sh_offset))[index];
712 relocateSymbol(elfHeader, relocation, sectionHeader[i]);
713 }
714 }
715 }
716
717 return entryPoints;
718 }
719
720 template<typename T>
721 struct ExecutableAllocator
722 {
ExecutableAllocatorrr::ExecutableAllocator723 ExecutableAllocator() {}
724 template<class U>
ExecutableAllocatorrr::ExecutableAllocator725 ExecutableAllocator(const ExecutableAllocator<U> &other)
726 {}
727
728 using value_type = T;
729 using size_type = std::size_t;
730
allocaterr::ExecutableAllocator731 T *allocate(size_type n)
732 {
733 return (T *)allocateMemoryPages(
734 sizeof(T) * n, PERMISSION_READ | PERMISSION_WRITE, true);
735 }
736
deallocaterr::ExecutableAllocator737 void deallocate(T *p, size_type n)
738 {
739 deallocateMemoryPages(p, sizeof(T) * n);
740 }
741 };
742
743 class ELFMemoryStreamer : public Ice::ELFStreamer, public Routine
744 {
745 ELFMemoryStreamer(const ELFMemoryStreamer &) = delete;
746 ELFMemoryStreamer &operator=(const ELFMemoryStreamer &) = delete;
747
748 public:
ELFMemoryStreamer()749 ELFMemoryStreamer()
750 : Routine()
751 {
752 position = 0;
753 buffer.reserve(0x1000);
754 }
755
~ELFMemoryStreamer()756 ~ELFMemoryStreamer() override
757 {
758 }
759
write8(uint8_t Value)760 void write8(uint8_t Value) override
761 {
762 if(position == (uint64_t)buffer.size())
763 {
764 buffer.push_back(Value);
765 position++;
766 }
767 else if(position < (uint64_t)buffer.size())
768 {
769 buffer[position] = Value;
770 position++;
771 }
772 else
773 ASSERT(false && "UNIMPLEMENTED");
774 }
775
writeBytes(llvm::StringRef Bytes)776 void writeBytes(llvm::StringRef Bytes) override
777 {
778 std::size_t oldSize = buffer.size();
779 buffer.resize(oldSize + Bytes.size());
780 memcpy(&buffer[oldSize], Bytes.begin(), Bytes.size());
781 position += Bytes.size();
782 }
783
tell() const784 uint64_t tell() const override
785 {
786 return position;
787 }
788
seek(uint64_t Off)789 void seek(uint64_t Off) override
790 {
791 position = Off;
792 }
793
loadImageAndGetEntryPoints(const std::vector<const char * > & functionNames)794 std::vector<EntryPoint> loadImageAndGetEntryPoints(const std::vector<const char *> &functionNames)
795 {
796 auto entryPoints = loadImage(&buffer[0], functionNames);
797
798 #if defined(_WIN32)
799 FlushInstructionCache(GetCurrentProcess(), NULL, 0);
800 #else
801 for(auto &entryPoint : entryPoints)
802 {
803 __builtin___clear_cache((char *)entryPoint.entry, (char *)entryPoint.entry + entryPoint.codeSize);
804 }
805 #endif
806
807 return entryPoints;
808 }
809
finalize()810 void finalize()
811 {
812 position = std::numeric_limits<std::size_t>::max(); // Can't stream more data after this
813
814 protectMemoryPages(&buffer[0], buffer.size(), PERMISSION_READ | PERMISSION_EXECUTE);
815 }
816
setEntry(int index,const void * func)817 void setEntry(int index, const void *func)
818 {
819 ASSERT(func);
820 funcs[index] = func;
821 }
822
getEntry(int index) const823 const void *getEntry(int index) const override
824 {
825 ASSERT(funcs[index]);
826 return funcs[index];
827 }
828
addConstantData(const void * data,size_t size,size_t alignment=1)829 const void *addConstantData(const void *data, size_t size, size_t alignment = 1)
830 {
831 // Check if we already have a suitable constant.
832 for(const auto &c : constantsPool)
833 {
834 void *ptr = c.data.get();
835 size_t space = c.space;
836
837 void *alignedPtr = std::align(alignment, size, ptr, space);
838
839 if(space < size)
840 {
841 continue;
842 }
843
844 if(memcmp(data, alignedPtr, size) == 0)
845 {
846 return alignedPtr;
847 }
848 }
849
850 // TODO(b/148086935): Replace with a buffer allocator.
851 size_t space = size + alignment;
852 auto buf = std::unique_ptr<uint8_t[]>(new uint8_t[space]);
853 void *ptr = buf.get();
854 void *alignedPtr = std::align(alignment, size, ptr, space);
855 ASSERT(alignedPtr);
856 memcpy(alignedPtr, data, size);
857 constantsPool.emplace_back(std::move(buf), space);
858
859 return alignedPtr;
860 }
861
862 private:
863 struct Constant
864 {
Constantrr::ELFMemoryStreamer::Constant865 Constant(std::unique_ptr<uint8_t[]> data, size_t space)
866 : data(std::move(data))
867 , space(space)
868 {}
869
870 std::unique_ptr<uint8_t[]> data;
871 size_t space;
872 };
873
874 std::array<const void *, Nucleus::CoroutineEntryCount> funcs = {};
875 std::vector<uint8_t, ExecutableAllocator<uint8_t>> buffer;
876 std::size_t position;
877 std::vector<Constant> constantsPool;
878 };
879
880 #ifdef ENABLE_RR_PRINT
VPrintf(const std::vector<Value * > & vals)881 void VPrintf(const std::vector<Value *> &vals)
882 {
883 sz::Call(::function, ::basicBlock, Ice::IceType_i32, reinterpret_cast<const void *>(rr::DebugPrintf), V(vals), true);
884 }
885 #endif // ENABLE_RR_PRINT
886
Nucleus()887 Nucleus::Nucleus()
888 {
889 ::codegenMutex.lock(); // SubzeroReactor is currently not thread safe
890
891 Ice::ClFlags &Flags = Ice::ClFlags::Flags;
892 Ice::ClFlags::getParsedClFlags(Flags);
893
894 #if defined(__arm__)
895 Flags.setTargetArch(Ice::Target_ARM32);
896 Flags.setTargetInstructionSet(Ice::ARM32InstructionSet_HWDivArm);
897 #elif defined(__mips__)
898 Flags.setTargetArch(Ice::Target_MIPS32);
899 Flags.setTargetInstructionSet(Ice::BaseInstructionSet);
900 #else // x86
901 Flags.setTargetArch(sizeof(void *) == 8 ? Ice::Target_X8664 : Ice::Target_X8632);
902 Flags.setTargetInstructionSet(CPUID::SSE4_1 ? Ice::X86InstructionSet_SSE4_1 : Ice::X86InstructionSet_SSE2);
903 #endif
904 Flags.setOutFileType(Ice::FT_Elf);
905 Flags.setOptLevel(toIce(rr::getPragmaState(rr::OptimizationLevel)));
906 Flags.setVerbose(subzeroDumpEnabled ? Ice::IceV_Most : Ice::IceV_None);
907 Flags.setDisableHybridAssembly(true);
908
909 // Emit functions into separate sections in the ELF so we can find them by name
910 Flags.setFunctionSections(true);
911
912 static llvm::raw_os_ostream cout(std::cout);
913 static llvm::raw_os_ostream cerr(std::cerr);
914
915 if(subzeroEmitTextAsm)
916 {
917 // Decorate text asm with liveness info
918 Flags.setDecorateAsm(true);
919 }
920
921 if(false) // Write out to a file
922 {
923 std::error_code errorCode;
924 ::out = new Ice::Fdstream("out.o", errorCode, llvm::sys::fs::F_None);
925 ::elfFile = new Ice::ELFFileStreamer(*out);
926 ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfFile);
927 }
928 else
929 {
930 ELFMemoryStreamer *elfMemory = new ELFMemoryStreamer();
931 ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfMemory);
932 ::routine = elfMemory;
933 }
934
935 #if !__has_feature(memory_sanitizer)
936 // thread_local variables in shared libraries are initialized at load-time,
937 // but this is not observed by MemorySanitizer if the loader itself was not
938 // instrumented, leading to false-positive uninitialized variable errors.
939 ASSERT(Variable::unmaterializedVariables == nullptr);
940 #endif
941 Variable::unmaterializedVariables = new Variable::UnmaterializedVariables{};
942 }
943
~Nucleus()944 Nucleus::~Nucleus()
945 {
946 delete Variable::unmaterializedVariables;
947 Variable::unmaterializedVariables = nullptr;
948
949 delete ::routine;
950 ::routine = nullptr;
951
952 delete ::allocator;
953 ::allocator = nullptr;
954
955 delete ::function;
956 ::function = nullptr;
957
958 delete ::context;
959 ::context = nullptr;
960
961 delete ::elfFile;
962 ::elfFile = nullptr;
963
964 delete ::out;
965 ::out = nullptr;
966
967 ::entryBlock = nullptr;
968 ::basicBlock = nullptr;
969 ::basicBlockTop = nullptr;
970
971 ::codegenMutex.unlock();
972 }
973
974 // This function lowers and produces executable binary code in memory for the input functions,
975 // and returns a Routine with the entry points to these functions.
976 template<size_t Count>
acquireRoutine(Ice::Cfg * const (& functions)[Count],const char * const (& names)[Count])977 static std::shared_ptr<Routine> acquireRoutine(Ice::Cfg *const (&functions)[Count], const char *const (&names)[Count])
978 {
979 // This logic is modeled after the IceCompiler, as well as GlobalContext::translateFunctions
980 // and GlobalContext::emitItems.
981
982 if(subzeroDumpEnabled)
983 {
984 // Output dump strings immediately, rather than once buffer is full. Useful for debugging.
985 ::context->getStrDump().SetUnbuffered();
986 }
987
988 ::context->emitFileHeader();
989
990 // Translate
991
992 for(size_t i = 0; i < Count; ++i)
993 {
994 Ice::Cfg *currFunc = functions[i];
995
996 // Install function allocator in TLS for Cfg-specific container allocators
997 Ice::CfgLocalAllocatorScope allocScope(currFunc);
998
999 currFunc->setFunctionName(Ice::GlobalString::createWithString(::context, names[i]));
1000
1001 if(::optimizerCallback)
1002 {
1003 Nucleus::OptimizerReport report;
1004 rr::optimize(currFunc, &report);
1005 ::optimizerCallback(&report);
1006 ::optimizerCallback = nullptr;
1007 }
1008 else
1009 {
1010 rr::optimize(currFunc);
1011 }
1012
1013 currFunc->computeInOutEdges();
1014 ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1015
1016 currFunc->translate();
1017 ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1018
1019 currFunc->getAssembler<>()->setInternal(currFunc->getInternal());
1020
1021 if(subzeroEmitTextAsm)
1022 {
1023 currFunc->emit();
1024 }
1025
1026 currFunc->emitIAS();
1027
1028 if(currFunc->hasError())
1029 {
1030 return nullptr;
1031 }
1032 }
1033
1034 // Emit items
1035
1036 ::context->lowerGlobals("");
1037
1038 auto objectWriter = ::context->getObjectWriter();
1039
1040 for(size_t i = 0; i < Count; ++i)
1041 {
1042 Ice::Cfg *currFunc = functions[i];
1043
1044 // Accumulate globals from functions to emit into the "last" section at the end
1045 auto globals = currFunc->getGlobalInits();
1046 if(globals && !globals->empty())
1047 {
1048 ::context->getGlobals()->merge(globals.get());
1049 }
1050
1051 auto assembler = currFunc->releaseAssembler();
1052 assembler->alignFunction();
1053 objectWriter->writeFunctionCode(currFunc->getFunctionName(), currFunc->getInternal(), assembler.get());
1054 }
1055
1056 ::context->lowerGlobals("last");
1057 ::context->lowerConstants();
1058 ::context->lowerJumpTables();
1059
1060 objectWriter->setUndefinedSyms(::context->getConstantExternSyms());
1061 ::context->emitTargetRODataSections();
1062 objectWriter->writeNonUserSections();
1063
1064 // Done compiling functions, get entry pointers to each of them
1065 auto entryPoints = ::routine->loadImageAndGetEntryPoints({ names, names + Count });
1066 ASSERT(entryPoints.size() == Count);
1067 for(size_t i = 0; i < entryPoints.size(); ++i)
1068 {
1069 ::routine->setEntry(i, entryPoints[i].entry);
1070 }
1071
1072 ::routine->finalize();
1073
1074 Routine *handoffRoutine = ::routine;
1075 ::routine = nullptr;
1076
1077 return std::shared_ptr<Routine>(handoffRoutine);
1078 }
1079
acquireRoutine(const char * name)1080 std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name)
1081 {
1082 finalizeFunction();
1083 return rr::acquireRoutine({ ::function }, { name });
1084 }
1085
allocateStackVariable(Type * t,int arraySize)1086 Value *Nucleus::allocateStackVariable(Type *t, int arraySize)
1087 {
1088 Ice::Type type = T(t);
1089 int typeSize = Ice::typeWidthInBytes(type);
1090 int totalSize = typeSize * (arraySize ? arraySize : 1);
1091
1092 auto bytes = Ice::ConstantInteger32::create(::context, Ice::IceType_i32, totalSize);
1093 auto address = ::function->makeVariable(T(getPointerType(t)));
1094 auto alloca = Ice::InstAlloca::create(::function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size.
1095 ::function->getEntryNode()->getInsts().push_front(alloca);
1096
1097 return V(address);
1098 }
1099
createBasicBlock()1100 BasicBlock *Nucleus::createBasicBlock()
1101 {
1102 return B(::function->makeNode());
1103 }
1104
getInsertBlock()1105 BasicBlock *Nucleus::getInsertBlock()
1106 {
1107 return B(::basicBlock);
1108 }
1109
setInsertBlock(BasicBlock * basicBlock)1110 void Nucleus::setInsertBlock(BasicBlock *basicBlock)
1111 {
1112 // ASSERT(::basicBlock->getInsts().back().getTerminatorEdges().size() >= 0 && "Previous basic block must have a terminator");
1113
1114 ::basicBlock = basicBlock;
1115 }
1116
createFunction(Type * returnType,const std::vector<Type * > & paramTypes)1117 void Nucleus::createFunction(Type *returnType, const std::vector<Type *> ¶mTypes)
1118 {
1119 ASSERT(::function == nullptr);
1120 ASSERT(::allocator == nullptr);
1121 ASSERT(::entryBlock == nullptr);
1122 ASSERT(::basicBlock == nullptr);
1123 ASSERT(::basicBlockTop == nullptr);
1124
1125 ::function = sz::createFunction(::context, T(returnType), T(paramTypes));
1126
1127 // NOTE: The scoped allocator sets the TLS allocator to the one in the function. This global one
1128 // becomes invalid if another one is created; for example, when creating await and destroy functions
1129 // for coroutines, in which case, we must make sure to create a new scoped allocator for ::function again.
1130 // TODO: Get rid of this as a global, and create scoped allocs in every Nucleus function instead.
1131 ::allocator = new Ice::CfgLocalAllocatorScope(::function);
1132
1133 ::entryBlock = ::function->getEntryNode();
1134 ::basicBlock = ::function->makeNode();
1135 ::basicBlockTop = ::basicBlock;
1136 }
1137
getArgument(unsigned int index)1138 Value *Nucleus::getArgument(unsigned int index)
1139 {
1140 return V(::function->getArgs()[index]);
1141 }
1142
createRetVoid()1143 void Nucleus::createRetVoid()
1144 {
1145 RR_DEBUG_INFO_UPDATE_LOC();
1146
1147 // Code generated after this point is unreachable, so any variables
1148 // being read can safely return an undefined value. We have to avoid
1149 // materializing variables after the terminator ret instruction.
1150 Variable::killUnmaterialized();
1151
1152 Ice::InstRet *ret = Ice::InstRet::create(::function);
1153 ::basicBlock->appendInst(ret);
1154 }
1155
createRet(Value * v)1156 void Nucleus::createRet(Value *v)
1157 {
1158 RR_DEBUG_INFO_UPDATE_LOC();
1159
1160 // Code generated after this point is unreachable, so any variables
1161 // being read can safely return an undefined value. We have to avoid
1162 // materializing variables after the terminator ret instruction.
1163 Variable::killUnmaterialized();
1164
1165 Ice::InstRet *ret = Ice::InstRet::create(::function, v);
1166 ::basicBlock->appendInst(ret);
1167 }
1168
createBr(BasicBlock * dest)1169 void Nucleus::createBr(BasicBlock *dest)
1170 {
1171 RR_DEBUG_INFO_UPDATE_LOC();
1172 Variable::materializeAll();
1173
1174 auto br = Ice::InstBr::create(::function, dest);
1175 ::basicBlock->appendInst(br);
1176 }
1177
createCondBr(Value * cond,BasicBlock * ifTrue,BasicBlock * ifFalse)1178 void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse)
1179 {
1180 RR_DEBUG_INFO_UPDATE_LOC();
1181 Variable::materializeAll();
1182
1183 auto br = Ice::InstBr::create(::function, cond, ifTrue, ifFalse);
1184 ::basicBlock->appendInst(br);
1185 }
1186
isCommutative(Ice::InstArithmetic::OpKind op)1187 static bool isCommutative(Ice::InstArithmetic::OpKind op)
1188 {
1189 switch(op)
1190 {
1191 case Ice::InstArithmetic::Add:
1192 case Ice::InstArithmetic::Fadd:
1193 case Ice::InstArithmetic::Mul:
1194 case Ice::InstArithmetic::Fmul:
1195 case Ice::InstArithmetic::And:
1196 case Ice::InstArithmetic::Or:
1197 case Ice::InstArithmetic::Xor:
1198 return true;
1199 default:
1200 return false;
1201 }
1202 }
1203
createArithmetic(Ice::InstArithmetic::OpKind op,Value * lhs,Value * rhs)1204 static Value *createArithmetic(Ice::InstArithmetic::OpKind op, Value *lhs, Value *rhs)
1205 {
1206 ASSERT(lhs->getType() == rhs->getType() || llvm::isa<Ice::Constant>(rhs));
1207
1208 bool swapOperands = llvm::isa<Ice::Constant>(lhs) && isCommutative(op);
1209
1210 Ice::Variable *result = ::function->makeVariable(lhs->getType());
1211 Ice::InstArithmetic *arithmetic = Ice::InstArithmetic::create(::function, op, result, swapOperands ? rhs : lhs, swapOperands ? lhs : rhs);
1212 ::basicBlock->appendInst(arithmetic);
1213
1214 return V(result);
1215 }
1216
createAdd(Value * lhs,Value * rhs)1217 Value *Nucleus::createAdd(Value *lhs, Value *rhs)
1218 {
1219 RR_DEBUG_INFO_UPDATE_LOC();
1220 return createArithmetic(Ice::InstArithmetic::Add, lhs, rhs);
1221 }
1222
createSub(Value * lhs,Value * rhs)1223 Value *Nucleus::createSub(Value *lhs, Value *rhs)
1224 {
1225 RR_DEBUG_INFO_UPDATE_LOC();
1226 return createArithmetic(Ice::InstArithmetic::Sub, lhs, rhs);
1227 }
1228
createMul(Value * lhs,Value * rhs)1229 Value *Nucleus::createMul(Value *lhs, Value *rhs)
1230 {
1231 RR_DEBUG_INFO_UPDATE_LOC();
1232 return createArithmetic(Ice::InstArithmetic::Mul, lhs, rhs);
1233 }
1234
createUDiv(Value * lhs,Value * rhs)1235 Value *Nucleus::createUDiv(Value *lhs, Value *rhs)
1236 {
1237 RR_DEBUG_INFO_UPDATE_LOC();
1238 return createArithmetic(Ice::InstArithmetic::Udiv, lhs, rhs);
1239 }
1240
createSDiv(Value * lhs,Value * rhs)1241 Value *Nucleus::createSDiv(Value *lhs, Value *rhs)
1242 {
1243 RR_DEBUG_INFO_UPDATE_LOC();
1244 return createArithmetic(Ice::InstArithmetic::Sdiv, lhs, rhs);
1245 }
1246
createFAdd(Value * lhs,Value * rhs)1247 Value *Nucleus::createFAdd(Value *lhs, Value *rhs)
1248 {
1249 RR_DEBUG_INFO_UPDATE_LOC();
1250 return createArithmetic(Ice::InstArithmetic::Fadd, lhs, rhs);
1251 }
1252
createFSub(Value * lhs,Value * rhs)1253 Value *Nucleus::createFSub(Value *lhs, Value *rhs)
1254 {
1255 RR_DEBUG_INFO_UPDATE_LOC();
1256 return createArithmetic(Ice::InstArithmetic::Fsub, lhs, rhs);
1257 }
1258
createFMul(Value * lhs,Value * rhs)1259 Value *Nucleus::createFMul(Value *lhs, Value *rhs)
1260 {
1261 RR_DEBUG_INFO_UPDATE_LOC();
1262 return createArithmetic(Ice::InstArithmetic::Fmul, lhs, rhs);
1263 }
1264
createFDiv(Value * lhs,Value * rhs)1265 Value *Nucleus::createFDiv(Value *lhs, Value *rhs)
1266 {
1267 RR_DEBUG_INFO_UPDATE_LOC();
1268 return createArithmetic(Ice::InstArithmetic::Fdiv, lhs, rhs);
1269 }
1270
createURem(Value * lhs,Value * rhs)1271 Value *Nucleus::createURem(Value *lhs, Value *rhs)
1272 {
1273 RR_DEBUG_INFO_UPDATE_LOC();
1274 return createArithmetic(Ice::InstArithmetic::Urem, lhs, rhs);
1275 }
1276
createSRem(Value * lhs,Value * rhs)1277 Value *Nucleus::createSRem(Value *lhs, Value *rhs)
1278 {
1279 RR_DEBUG_INFO_UPDATE_LOC();
1280 return createArithmetic(Ice::InstArithmetic::Srem, lhs, rhs);
1281 }
1282
createFRem(Value * lhs,Value * rhs)1283 Value *Nucleus::createFRem(Value *lhs, Value *rhs)
1284 {
1285 RR_DEBUG_INFO_UPDATE_LOC();
1286 // TODO(b/148139679) Fix Subzero generating invalid code for FRem on vector types
1287 // createArithmetic(Ice::InstArithmetic::Frem, lhs, rhs);
1288 UNIMPLEMENTED("b/148139679 Nucleus::createFRem");
1289 return nullptr;
1290 }
1291
createShl(Value * lhs,Value * rhs)1292 Value *Nucleus::createShl(Value *lhs, Value *rhs)
1293 {
1294 RR_DEBUG_INFO_UPDATE_LOC();
1295 return createArithmetic(Ice::InstArithmetic::Shl, lhs, rhs);
1296 }
1297
createLShr(Value * lhs,Value * rhs)1298 Value *Nucleus::createLShr(Value *lhs, Value *rhs)
1299 {
1300 RR_DEBUG_INFO_UPDATE_LOC();
1301 return createArithmetic(Ice::InstArithmetic::Lshr, lhs, rhs);
1302 }
1303
createAShr(Value * lhs,Value * rhs)1304 Value *Nucleus::createAShr(Value *lhs, Value *rhs)
1305 {
1306 RR_DEBUG_INFO_UPDATE_LOC();
1307 return createArithmetic(Ice::InstArithmetic::Ashr, lhs, rhs);
1308 }
1309
createAnd(Value * lhs,Value * rhs)1310 Value *Nucleus::createAnd(Value *lhs, Value *rhs)
1311 {
1312 RR_DEBUG_INFO_UPDATE_LOC();
1313 return createArithmetic(Ice::InstArithmetic::And, lhs, rhs);
1314 }
1315
createOr(Value * lhs,Value * rhs)1316 Value *Nucleus::createOr(Value *lhs, Value *rhs)
1317 {
1318 RR_DEBUG_INFO_UPDATE_LOC();
1319 return createArithmetic(Ice::InstArithmetic::Or, lhs, rhs);
1320 }
1321
createXor(Value * lhs,Value * rhs)1322 Value *Nucleus::createXor(Value *lhs, Value *rhs)
1323 {
1324 RR_DEBUG_INFO_UPDATE_LOC();
1325 return createArithmetic(Ice::InstArithmetic::Xor, lhs, rhs);
1326 }
1327
createNeg(Value * v)1328 Value *Nucleus::createNeg(Value *v)
1329 {
1330 RR_DEBUG_INFO_UPDATE_LOC();
1331 return createSub(createNullValue(T(v->getType())), v);
1332 }
1333
createFNeg(Value * v)1334 Value *Nucleus::createFNeg(Value *v)
1335 {
1336 RR_DEBUG_INFO_UPDATE_LOC();
1337 std::vector<double> c = { -0.0 };
1338 Value *negativeZero = Ice::isVectorType(v->getType()) ? createConstantVector(c, T(v->getType())) : V(::context->getConstantFloat(-0.0f));
1339
1340 return createFSub(negativeZero, v);
1341 }
1342
createNot(Value * v)1343 Value *Nucleus::createNot(Value *v)
1344 {
1345 RR_DEBUG_INFO_UPDATE_LOC();
1346 if(Ice::isScalarIntegerType(v->getType()))
1347 {
1348 return createXor(v, V(::context->getConstantInt(v->getType(), -1)));
1349 }
1350 else // Vector
1351 {
1352 std::vector<int64_t> c = { -1 };
1353 return createXor(v, createConstantVector(c, T(v->getType())));
1354 }
1355 }
1356
validateAtomicAndMemoryOrderArgs(bool atomic,std::memory_order memoryOrder)1357 static void validateAtomicAndMemoryOrderArgs(bool atomic, std::memory_order memoryOrder)
1358 {
1359 #if defined(__i386__) || defined(__x86_64__)
1360 // We're good, atomics and strictest memory order (except seq_cst) are guaranteed.
1361 // Note that sequential memory ordering could be guaranteed by using x86's LOCK prefix.
1362 // Note also that relaxed memory order could be implemented using MOVNTPS and friends.
1363 #else
1364 if(atomic)
1365 {
1366 UNIMPLEMENTED("b/150475088 Atomic load/store not implemented for current platform");
1367 }
1368 if(memoryOrder != std::memory_order_relaxed)
1369 {
1370 UNIMPLEMENTED("b/150475088 Memory order other than memory_order_relaxed not implemented for current platform");
1371 }
1372 #endif
1373
1374 // Vulkan doesn't allow sequential memory order
1375 ASSERT(memoryOrder != std::memory_order_seq_cst);
1376 }
1377
createLoad(Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1378 Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1379 {
1380 RR_DEBUG_INFO_UPDATE_LOC();
1381 validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1382
1383 int valueType = (int)reinterpret_cast<intptr_t>(type);
1384 Ice::Variable *result = nullptr;
1385
1386 if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack.
1387 {
1388 if(emulateIntrinsics)
1389 {
1390 if(typeSize(type) == 4)
1391 {
1392 auto pointer = RValue<Pointer<Byte>>(ptr);
1393 Int x = *Pointer<Int>(pointer);
1394
1395 Int4 vector;
1396 vector = Insert(vector, x, 0);
1397
1398 result = ::function->makeVariable(T(type));
1399 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1400 ::basicBlock->appendInst(bitcast);
1401 }
1402 else if(typeSize(type) == 8)
1403 {
1404 ASSERT_MSG(!atomic, "Emulated 64-bit loads are not atomic");
1405 auto pointer = RValue<Pointer<Byte>>(ptr);
1406 Int x = *Pointer<Int>(pointer);
1407 Int y = *Pointer<Int>(pointer + 4);
1408
1409 Int4 vector;
1410 vector = Insert(vector, x, 0);
1411 vector = Insert(vector, y, 1);
1412
1413 result = ::function->makeVariable(T(type));
1414 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1415 ::basicBlock->appendInst(bitcast);
1416 }
1417 else
1418 UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1419 }
1420 else
1421 {
1422 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::LoadSubVector, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
1423 result = ::function->makeVariable(T(type));
1424 auto load = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
1425 load->addArg(ptr);
1426 load->addArg(::context->getConstantInt32(typeSize(type)));
1427 ::basicBlock->appendInst(load);
1428 }
1429 }
1430 else
1431 {
1432 result = sz::createLoad(::function, ::basicBlock, V(ptr), T(type), align);
1433 }
1434
1435 ASSERT(result);
1436 return V(result);
1437 }
1438
createStore(Value * value,Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1439 Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1440 {
1441 RR_DEBUG_INFO_UPDATE_LOC();
1442 validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1443
1444 #if __has_feature(memory_sanitizer)
1445 // Mark all (non-stack) memory writes as initialized by calling __msan_unpoison
1446 if(align != 0)
1447 {
1448 auto call = Ice::InstCall::create(::function, 2, nullptr, ::context->getConstantInt64(reinterpret_cast<intptr_t>(__msan_unpoison)), false);
1449 call->addArg(ptr);
1450 call->addArg(::context->getConstantInt64(typeSize(type)));
1451 ::basicBlock->appendInst(call);
1452 }
1453 #endif
1454
1455 int valueType = (int)reinterpret_cast<intptr_t>(type);
1456
1457 if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack.
1458 {
1459 if(emulateIntrinsics)
1460 {
1461 if(typeSize(type) == 4)
1462 {
1463 Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1464 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1465 ::basicBlock->appendInst(bitcast);
1466
1467 RValue<Int4> v(V(vector));
1468
1469 auto pointer = RValue<Pointer<Byte>>(ptr);
1470 Int x = Extract(v, 0);
1471 *Pointer<Int>(pointer) = x;
1472 }
1473 else if(typeSize(type) == 8)
1474 {
1475 ASSERT_MSG(!atomic, "Emulated 64-bit stores are not atomic");
1476 Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1477 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1478 ::basicBlock->appendInst(bitcast);
1479
1480 RValue<Int4> v(V(vector));
1481
1482 auto pointer = RValue<Pointer<Byte>>(ptr);
1483 Int x = Extract(v, 0);
1484 *Pointer<Int>(pointer) = x;
1485 Int y = Extract(v, 1);
1486 *Pointer<Int>(pointer + 4) = y;
1487 }
1488 else
1489 UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1490 }
1491 else
1492 {
1493 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::StoreSubVector, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1494 auto store = Ice::InstIntrinsic::create(::function, 3, nullptr, intrinsic);
1495 store->addArg(value);
1496 store->addArg(ptr);
1497 store->addArg(::context->getConstantInt32(typeSize(type)));
1498 ::basicBlock->appendInst(store);
1499 }
1500 }
1501 else
1502 {
1503 ASSERT(value->getType() == T(type));
1504
1505 auto store = Ice::InstStore::create(::function, V(value), V(ptr), align);
1506 ::basicBlock->appendInst(store);
1507 }
1508
1509 return value;
1510 }
1511
createGEP(Value * ptr,Type * type,Value * index,bool unsignedIndex)1512 Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex)
1513 {
1514 RR_DEBUG_INFO_UPDATE_LOC();
1515 ASSERT(index->getType() == Ice::IceType_i32);
1516
1517 if(auto *constant = llvm::dyn_cast<Ice::ConstantInteger32>(index))
1518 {
1519 int32_t offset = constant->getValue() * (int)typeSize(type);
1520
1521 if(offset == 0)
1522 {
1523 return ptr;
1524 }
1525
1526 return createAdd(ptr, createConstantInt(offset));
1527 }
1528
1529 if(!Ice::isByteSizedType(T(type)))
1530 {
1531 index = createMul(index, createConstantInt((int)typeSize(type)));
1532 }
1533
1534 if(sizeof(void *) == 8)
1535 {
1536 if(unsignedIndex)
1537 {
1538 index = createZExt(index, T(Ice::IceType_i64));
1539 }
1540 else
1541 {
1542 index = createSExt(index, T(Ice::IceType_i64));
1543 }
1544 }
1545
1546 return createAdd(ptr, index);
1547 }
1548
createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp,Value * ptr,Value * value,std::memory_order memoryOrder)1549 static Value *createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp, Value *ptr, Value *value, std::memory_order memoryOrder)
1550 {
1551 Ice::Variable *result = ::function->makeVariable(value->getType());
1552
1553 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicRMW, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1554 auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1555 auto op = ::context->getConstantInt32(rmwOp);
1556 auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
1557 inst->addArg(op);
1558 inst->addArg(ptr);
1559 inst->addArg(value);
1560 inst->addArg(order);
1561 ::basicBlock->appendInst(inst);
1562
1563 return V(result);
1564 }
1565
createAtomicAdd(Value * ptr,Value * value,std::memory_order memoryOrder)1566 Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder)
1567 {
1568 RR_DEBUG_INFO_UPDATE_LOC();
1569 return createAtomicRMW(Ice::Intrinsics::AtomicAdd, ptr, value, memoryOrder);
1570 }
1571
createAtomicSub(Value * ptr,Value * value,std::memory_order memoryOrder)1572 Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder)
1573 {
1574 RR_DEBUG_INFO_UPDATE_LOC();
1575 return createAtomicRMW(Ice::Intrinsics::AtomicSub, ptr, value, memoryOrder);
1576 }
1577
createAtomicAnd(Value * ptr,Value * value,std::memory_order memoryOrder)1578 Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder)
1579 {
1580 RR_DEBUG_INFO_UPDATE_LOC();
1581 return createAtomicRMW(Ice::Intrinsics::AtomicAnd, ptr, value, memoryOrder);
1582 }
1583
createAtomicOr(Value * ptr,Value * value,std::memory_order memoryOrder)1584 Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder)
1585 {
1586 RR_DEBUG_INFO_UPDATE_LOC();
1587 return createAtomicRMW(Ice::Intrinsics::AtomicOr, ptr, value, memoryOrder);
1588 }
1589
createAtomicXor(Value * ptr,Value * value,std::memory_order memoryOrder)1590 Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder)
1591 {
1592 RR_DEBUG_INFO_UPDATE_LOC();
1593 return createAtomicRMW(Ice::Intrinsics::AtomicXor, ptr, value, memoryOrder);
1594 }
1595
createAtomicExchange(Value * ptr,Value * value,std::memory_order memoryOrder)1596 Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder)
1597 {
1598 RR_DEBUG_INFO_UPDATE_LOC();
1599 return createAtomicRMW(Ice::Intrinsics::AtomicExchange, ptr, value, memoryOrder);
1600 }
1601
createAtomicCompareExchange(Value * ptr,Value * value,Value * compare,std::memory_order memoryOrderEqual,std::memory_order memoryOrderUnequal)1602 Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal)
1603 {
1604 RR_DEBUG_INFO_UPDATE_LOC();
1605 Ice::Variable *result = ::function->makeVariable(value->getType());
1606
1607 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicCmpxchg, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1608 auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1609 auto orderEq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderEqual));
1610 auto orderNeq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderUnequal));
1611 inst->addArg(ptr);
1612 inst->addArg(compare);
1613 inst->addArg(value);
1614 inst->addArg(orderEq);
1615 inst->addArg(orderNeq);
1616 ::basicBlock->appendInst(inst);
1617
1618 return V(result);
1619 }
1620
createCast(Ice::InstCast::OpKind op,Value * v,Type * destType)1621 static Value *createCast(Ice::InstCast::OpKind op, Value *v, Type *destType)
1622 {
1623 if(v->getType() == T(destType))
1624 {
1625 return v;
1626 }
1627
1628 Ice::Variable *result = ::function->makeVariable(T(destType));
1629 Ice::InstCast *cast = Ice::InstCast::create(::function, op, result, v);
1630 ::basicBlock->appendInst(cast);
1631
1632 return V(result);
1633 }
1634
createTrunc(Value * v,Type * destType)1635 Value *Nucleus::createTrunc(Value *v, Type *destType)
1636 {
1637 RR_DEBUG_INFO_UPDATE_LOC();
1638 return createCast(Ice::InstCast::Trunc, v, destType);
1639 }
1640
createZExt(Value * v,Type * destType)1641 Value *Nucleus::createZExt(Value *v, Type *destType)
1642 {
1643 RR_DEBUG_INFO_UPDATE_LOC();
1644 return createCast(Ice::InstCast::Zext, v, destType);
1645 }
1646
createSExt(Value * v,Type * destType)1647 Value *Nucleus::createSExt(Value *v, Type *destType)
1648 {
1649 RR_DEBUG_INFO_UPDATE_LOC();
1650 return createCast(Ice::InstCast::Sext, v, destType);
1651 }
1652
createFPToUI(Value * v,Type * destType)1653 Value *Nucleus::createFPToUI(Value *v, Type *destType)
1654 {
1655 RR_DEBUG_INFO_UPDATE_LOC();
1656 return createCast(Ice::InstCast::Fptoui, v, destType);
1657 }
1658
createFPToSI(Value * v,Type * destType)1659 Value *Nucleus::createFPToSI(Value *v, Type *destType)
1660 {
1661 RR_DEBUG_INFO_UPDATE_LOC();
1662 return createCast(Ice::InstCast::Fptosi, v, destType);
1663 }
1664
createSIToFP(Value * v,Type * destType)1665 Value *Nucleus::createSIToFP(Value *v, Type *destType)
1666 {
1667 RR_DEBUG_INFO_UPDATE_LOC();
1668 return createCast(Ice::InstCast::Sitofp, v, destType);
1669 }
1670
createFPTrunc(Value * v,Type * destType)1671 Value *Nucleus::createFPTrunc(Value *v, Type *destType)
1672 {
1673 RR_DEBUG_INFO_UPDATE_LOC();
1674 return createCast(Ice::InstCast::Fptrunc, v, destType);
1675 }
1676
createFPExt(Value * v,Type * destType)1677 Value *Nucleus::createFPExt(Value *v, Type *destType)
1678 {
1679 RR_DEBUG_INFO_UPDATE_LOC();
1680 return createCast(Ice::InstCast::Fpext, v, destType);
1681 }
1682
createBitCast(Value * v,Type * destType)1683 Value *Nucleus::createBitCast(Value *v, Type *destType)
1684 {
1685 RR_DEBUG_INFO_UPDATE_LOC();
1686 // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need
1687 // support for casting between scalars and wide vectors. For platforms where this is not supported,
1688 // emulate them by writing to the stack and reading back as the destination type.
1689 if(emulateMismatchedBitCast || (v->getType() == Ice::Type::IceType_i64))
1690 {
1691 if(!Ice::isVectorType(v->getType()) && Ice::isVectorType(T(destType)))
1692 {
1693 Value *address = allocateStackVariable(destType);
1694 createStore(v, address, T(v->getType()));
1695 return createLoad(address, destType);
1696 }
1697 else if(Ice::isVectorType(v->getType()) && !Ice::isVectorType(T(destType)))
1698 {
1699 Value *address = allocateStackVariable(T(v->getType()));
1700 createStore(v, address, T(v->getType()));
1701 return createLoad(address, destType);
1702 }
1703 }
1704
1705 return createCast(Ice::InstCast::Bitcast, v, destType);
1706 }
1707
createIntCompare(Ice::InstIcmp::ICond condition,Value * lhs,Value * rhs)1708 static Value *createIntCompare(Ice::InstIcmp::ICond condition, Value *lhs, Value *rhs)
1709 {
1710 ASSERT(lhs->getType() == rhs->getType());
1711
1712 auto result = ::function->makeVariable(Ice::isScalarIntegerType(lhs->getType()) ? Ice::IceType_i1 : lhs->getType());
1713 auto cmp = Ice::InstIcmp::create(::function, condition, result, lhs, rhs);
1714 ::basicBlock->appendInst(cmp);
1715
1716 return V(result);
1717 }
1718
createICmpEQ(Value * lhs,Value * rhs)1719 Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs)
1720 {
1721 RR_DEBUG_INFO_UPDATE_LOC();
1722 return createIntCompare(Ice::InstIcmp::Eq, lhs, rhs);
1723 }
1724
createICmpNE(Value * lhs,Value * rhs)1725 Value *Nucleus::createICmpNE(Value *lhs, Value *rhs)
1726 {
1727 RR_DEBUG_INFO_UPDATE_LOC();
1728 return createIntCompare(Ice::InstIcmp::Ne, lhs, rhs);
1729 }
1730
createICmpUGT(Value * lhs,Value * rhs)1731 Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs)
1732 {
1733 RR_DEBUG_INFO_UPDATE_LOC();
1734 return createIntCompare(Ice::InstIcmp::Ugt, lhs, rhs);
1735 }
1736
createICmpUGE(Value * lhs,Value * rhs)1737 Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs)
1738 {
1739 RR_DEBUG_INFO_UPDATE_LOC();
1740 return createIntCompare(Ice::InstIcmp::Uge, lhs, rhs);
1741 }
1742
createICmpULT(Value * lhs,Value * rhs)1743 Value *Nucleus::createICmpULT(Value *lhs, Value *rhs)
1744 {
1745 RR_DEBUG_INFO_UPDATE_LOC();
1746 return createIntCompare(Ice::InstIcmp::Ult, lhs, rhs);
1747 }
1748
createICmpULE(Value * lhs,Value * rhs)1749 Value *Nucleus::createICmpULE(Value *lhs, Value *rhs)
1750 {
1751 RR_DEBUG_INFO_UPDATE_LOC();
1752 return createIntCompare(Ice::InstIcmp::Ule, lhs, rhs);
1753 }
1754
createICmpSGT(Value * lhs,Value * rhs)1755 Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs)
1756 {
1757 RR_DEBUG_INFO_UPDATE_LOC();
1758 return createIntCompare(Ice::InstIcmp::Sgt, lhs, rhs);
1759 }
1760
createICmpSGE(Value * lhs,Value * rhs)1761 Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs)
1762 {
1763 RR_DEBUG_INFO_UPDATE_LOC();
1764 return createIntCompare(Ice::InstIcmp::Sge, lhs, rhs);
1765 }
1766
createICmpSLT(Value * lhs,Value * rhs)1767 Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs)
1768 {
1769 RR_DEBUG_INFO_UPDATE_LOC();
1770 return createIntCompare(Ice::InstIcmp::Slt, lhs, rhs);
1771 }
1772
createICmpSLE(Value * lhs,Value * rhs)1773 Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs)
1774 {
1775 RR_DEBUG_INFO_UPDATE_LOC();
1776 return createIntCompare(Ice::InstIcmp::Sle, lhs, rhs);
1777 }
1778
createFloatCompare(Ice::InstFcmp::FCond condition,Value * lhs,Value * rhs)1779 static Value *createFloatCompare(Ice::InstFcmp::FCond condition, Value *lhs, Value *rhs)
1780 {
1781 ASSERT(lhs->getType() == rhs->getType());
1782 ASSERT(Ice::isScalarFloatingType(lhs->getType()) || lhs->getType() == Ice::IceType_v4f32);
1783
1784 auto result = ::function->makeVariable(Ice::isScalarFloatingType(lhs->getType()) ? Ice::IceType_i1 : Ice::IceType_v4i32);
1785 auto cmp = Ice::InstFcmp::create(::function, condition, result, lhs, rhs);
1786 ::basicBlock->appendInst(cmp);
1787
1788 return V(result);
1789 }
1790
createFCmpOEQ(Value * lhs,Value * rhs)1791 Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs)
1792 {
1793 RR_DEBUG_INFO_UPDATE_LOC();
1794 return createFloatCompare(Ice::InstFcmp::Oeq, lhs, rhs);
1795 }
1796
createFCmpOGT(Value * lhs,Value * rhs)1797 Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs)
1798 {
1799 RR_DEBUG_INFO_UPDATE_LOC();
1800 return createFloatCompare(Ice::InstFcmp::Ogt, lhs, rhs);
1801 }
1802
createFCmpOGE(Value * lhs,Value * rhs)1803 Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs)
1804 {
1805 RR_DEBUG_INFO_UPDATE_LOC();
1806 return createFloatCompare(Ice::InstFcmp::Oge, lhs, rhs);
1807 }
1808
createFCmpOLT(Value * lhs,Value * rhs)1809 Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs)
1810 {
1811 RR_DEBUG_INFO_UPDATE_LOC();
1812 return createFloatCompare(Ice::InstFcmp::Olt, lhs, rhs);
1813 }
1814
createFCmpOLE(Value * lhs,Value * rhs)1815 Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs)
1816 {
1817 RR_DEBUG_INFO_UPDATE_LOC();
1818 return createFloatCompare(Ice::InstFcmp::Ole, lhs, rhs);
1819 }
1820
createFCmpONE(Value * lhs,Value * rhs)1821 Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs)
1822 {
1823 RR_DEBUG_INFO_UPDATE_LOC();
1824 return createFloatCompare(Ice::InstFcmp::One, lhs, rhs);
1825 }
1826
createFCmpORD(Value * lhs,Value * rhs)1827 Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs)
1828 {
1829 RR_DEBUG_INFO_UPDATE_LOC();
1830 return createFloatCompare(Ice::InstFcmp::Ord, lhs, rhs);
1831 }
1832
createFCmpUNO(Value * lhs,Value * rhs)1833 Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs)
1834 {
1835 RR_DEBUG_INFO_UPDATE_LOC();
1836 return createFloatCompare(Ice::InstFcmp::Uno, lhs, rhs);
1837 }
1838
createFCmpUEQ(Value * lhs,Value * rhs)1839 Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs)
1840 {
1841 RR_DEBUG_INFO_UPDATE_LOC();
1842 return createFloatCompare(Ice::InstFcmp::Ueq, lhs, rhs);
1843 }
1844
createFCmpUGT(Value * lhs,Value * rhs)1845 Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs)
1846 {
1847 RR_DEBUG_INFO_UPDATE_LOC();
1848 return createFloatCompare(Ice::InstFcmp::Ugt, lhs, rhs);
1849 }
1850
createFCmpUGE(Value * lhs,Value * rhs)1851 Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs)
1852 {
1853 RR_DEBUG_INFO_UPDATE_LOC();
1854 return createFloatCompare(Ice::InstFcmp::Uge, lhs, rhs);
1855 }
1856
createFCmpULT(Value * lhs,Value * rhs)1857 Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs)
1858 {
1859 RR_DEBUG_INFO_UPDATE_LOC();
1860 return createFloatCompare(Ice::InstFcmp::Ult, lhs, rhs);
1861 }
1862
createFCmpULE(Value * lhs,Value * rhs)1863 Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs)
1864 {
1865 RR_DEBUG_INFO_UPDATE_LOC();
1866 return createFloatCompare(Ice::InstFcmp::Ule, lhs, rhs);
1867 }
1868
createFCmpUNE(Value * lhs,Value * rhs)1869 Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs)
1870 {
1871 RR_DEBUG_INFO_UPDATE_LOC();
1872 return createFloatCompare(Ice::InstFcmp::Une, lhs, rhs);
1873 }
1874
createExtractElement(Value * vector,Type * type,int index)1875 Value *Nucleus::createExtractElement(Value *vector, Type *type, int index)
1876 {
1877 RR_DEBUG_INFO_UPDATE_LOC();
1878 auto result = ::function->makeVariable(T(type));
1879 auto extract = Ice::InstExtractElement::create(::function, result, V(vector), ::context->getConstantInt32(index));
1880 ::basicBlock->appendInst(extract);
1881
1882 return V(result);
1883 }
1884
createInsertElement(Value * vector,Value * element,int index)1885 Value *Nucleus::createInsertElement(Value *vector, Value *element, int index)
1886 {
1887 RR_DEBUG_INFO_UPDATE_LOC();
1888 auto result = ::function->makeVariable(vector->getType());
1889 auto insert = Ice::InstInsertElement::create(::function, result, vector, element, ::context->getConstantInt32(index));
1890 ::basicBlock->appendInst(insert);
1891
1892 return V(result);
1893 }
1894
createShuffleVector(Value * V1,Value * V2,std::vector<int> select)1895 Value *Nucleus::createShuffleVector(Value *V1, Value *V2, std::vector<int> select)
1896 {
1897 RR_DEBUG_INFO_UPDATE_LOC();
1898 ASSERT(V1->getType() == V2->getType());
1899
1900 size_t size = Ice::typeNumElements(V1->getType());
1901 auto result = ::function->makeVariable(V1->getType());
1902 auto shuffle = Ice::InstShuffleVector::create(::function, result, V1, V2);
1903
1904 const size_t selectSize = select.size();
1905 for(size_t i = 0; i < size; i++)
1906 {
1907 shuffle->addIndex(llvm::cast<Ice::ConstantInteger32>(::context->getConstantInt32(select[i % selectSize])));
1908 }
1909
1910 ::basicBlock->appendInst(shuffle);
1911
1912 return V(result);
1913 }
1914
createSelect(Value * C,Value * ifTrue,Value * ifFalse)1915 Value *Nucleus::createSelect(Value *C, Value *ifTrue, Value *ifFalse)
1916 {
1917 RR_DEBUG_INFO_UPDATE_LOC();
1918 ASSERT(ifTrue->getType() == ifFalse->getType());
1919
1920 auto result = ::function->makeVariable(ifTrue->getType());
1921 auto *select = Ice::InstSelect::create(::function, result, C, ifTrue, ifFalse);
1922 ::basicBlock->appendInst(select);
1923
1924 return V(result);
1925 }
1926
createSwitch(Value * control,BasicBlock * defaultBranch,unsigned numCases)1927 SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases)
1928 {
1929 RR_DEBUG_INFO_UPDATE_LOC();
1930 auto switchInst = Ice::InstSwitch::create(::function, numCases, control, defaultBranch);
1931 ::basicBlock->appendInst(switchInst);
1932
1933 return reinterpret_cast<SwitchCases *>(switchInst);
1934 }
1935
addSwitchCase(SwitchCases * switchCases,int label,BasicBlock * branch)1936 void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch)
1937 {
1938 RR_DEBUG_INFO_UPDATE_LOC();
1939 switchCases->addBranch(label, label, branch);
1940 }
1941
createUnreachable()1942 void Nucleus::createUnreachable()
1943 {
1944 RR_DEBUG_INFO_UPDATE_LOC();
1945 Ice::InstUnreachable *unreachable = Ice::InstUnreachable::create(::function);
1946 ::basicBlock->appendInst(unreachable);
1947 }
1948
getType(Value * value)1949 Type *Nucleus::getType(Value *value)
1950 {
1951 return T(V(value)->getType());
1952 }
1953
getContainedType(Type * vectorType)1954 Type *Nucleus::getContainedType(Type *vectorType)
1955 {
1956 Ice::Type vecTy = T(vectorType);
1957 switch(vecTy)
1958 {
1959 case Ice::IceType_v4i1: return T(Ice::IceType_i1);
1960 case Ice::IceType_v8i1: return T(Ice::IceType_i1);
1961 case Ice::IceType_v16i1: return T(Ice::IceType_i1);
1962 case Ice::IceType_v16i8: return T(Ice::IceType_i8);
1963 case Ice::IceType_v8i16: return T(Ice::IceType_i16);
1964 case Ice::IceType_v4i32: return T(Ice::IceType_i32);
1965 case Ice::IceType_v4f32: return T(Ice::IceType_f32);
1966 default:
1967 ASSERT_MSG(false, "getContainedType: input type is not a vector type");
1968 return {};
1969 }
1970 }
1971
getPointerType(Type * ElementType)1972 Type *Nucleus::getPointerType(Type *ElementType)
1973 {
1974 return T(sz::getPointerType(T(ElementType)));
1975 }
1976
getNaturalIntType()1977 static constexpr Ice::Type getNaturalIntType()
1978 {
1979 constexpr size_t intSize = sizeof(int);
1980 static_assert(intSize == 4 || intSize == 8, "");
1981 return intSize == 4 ? Ice::IceType_i32 : Ice::IceType_i64;
1982 }
1983
getPrintfStorageType(Type * valueType)1984 Type *Nucleus::getPrintfStorageType(Type *valueType)
1985 {
1986 Ice::Type valueTy = T(valueType);
1987 switch(valueTy)
1988 {
1989 case Ice::IceType_i32:
1990 return T(getNaturalIntType());
1991
1992 case Ice::IceType_f32:
1993 return T(Ice::IceType_f64);
1994
1995 default:
1996 UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed");
1997 return {};
1998 }
1999 }
2000
createNullValue(Type * Ty)2001 Value *Nucleus::createNullValue(Type *Ty)
2002 {
2003 RR_DEBUG_INFO_UPDATE_LOC();
2004 if(Ice::isVectorType(T(Ty)))
2005 {
2006 ASSERT(Ice::typeNumElements(T(Ty)) <= 16);
2007 std::vector<int64_t> c = { 0 };
2008 return createConstantVector(c, Ty);
2009 }
2010 else
2011 {
2012 return V(::context->getConstantZero(T(Ty)));
2013 }
2014 }
2015
createConstantLong(int64_t i)2016 Value *Nucleus::createConstantLong(int64_t i)
2017 {
2018 RR_DEBUG_INFO_UPDATE_LOC();
2019 return V(::context->getConstantInt64(i));
2020 }
2021
createConstantInt(int i)2022 Value *Nucleus::createConstantInt(int i)
2023 {
2024 RR_DEBUG_INFO_UPDATE_LOC();
2025 return V(::context->getConstantInt32(i));
2026 }
2027
createConstantInt(unsigned int i)2028 Value *Nucleus::createConstantInt(unsigned int i)
2029 {
2030 RR_DEBUG_INFO_UPDATE_LOC();
2031 return V(::context->getConstantInt32(i));
2032 }
2033
createConstantBool(bool b)2034 Value *Nucleus::createConstantBool(bool b)
2035 {
2036 RR_DEBUG_INFO_UPDATE_LOC();
2037 return V(::context->getConstantInt1(b));
2038 }
2039
createConstantByte(signed char i)2040 Value *Nucleus::createConstantByte(signed char i)
2041 {
2042 RR_DEBUG_INFO_UPDATE_LOC();
2043 return V(::context->getConstantInt8(i));
2044 }
2045
createConstantByte(unsigned char i)2046 Value *Nucleus::createConstantByte(unsigned char i)
2047 {
2048 RR_DEBUG_INFO_UPDATE_LOC();
2049 return V(::context->getConstantInt8(i));
2050 }
2051
createConstantShort(short i)2052 Value *Nucleus::createConstantShort(short i)
2053 {
2054 RR_DEBUG_INFO_UPDATE_LOC();
2055 return V(::context->getConstantInt16(i));
2056 }
2057
createConstantShort(unsigned short i)2058 Value *Nucleus::createConstantShort(unsigned short i)
2059 {
2060 RR_DEBUG_INFO_UPDATE_LOC();
2061 return V(::context->getConstantInt16(i));
2062 }
2063
createConstantFloat(float x)2064 Value *Nucleus::createConstantFloat(float x)
2065 {
2066 RR_DEBUG_INFO_UPDATE_LOC();
2067 return V(::context->getConstantFloat(x));
2068 }
2069
createNullPointer(Type * Ty)2070 Value *Nucleus::createNullPointer(Type *Ty)
2071 {
2072 RR_DEBUG_INFO_UPDATE_LOC();
2073 return createNullValue(T(sizeof(void *) == 8 ? Ice::IceType_i64 : Ice::IceType_i32));
2074 }
2075
IceConstantData(const void * data,size_t size,size_t alignment=1)2076 static Ice::Constant *IceConstantData(const void *data, size_t size, size_t alignment = 1)
2077 {
2078 return sz::getConstantPointer(::context, ::routine->addConstantData(data, size, alignment));
2079 }
2080
createConstantVector(std::vector<int64_t> constants,Type * type)2081 Value *Nucleus::createConstantVector(std::vector<int64_t> constants, Type *type)
2082 {
2083 RR_DEBUG_INFO_UPDATE_LOC();
2084 const int vectorSize = 16;
2085 ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize);
2086 const int alignment = vectorSize;
2087
2088 const auto &i = constants;
2089 const size_t s = constants.size();
2090
2091 // TODO(b/148082873): Fix global variable constants when generating multiple functions
2092 Ice::Constant *ptr = nullptr;
2093
2094 switch((int)reinterpret_cast<intptr_t>(type))
2095 {
2096 case Ice::IceType_v4i32:
2097 case Ice::IceType_v4i1:
2098 {
2099 const int initializer[4] = { (int)i[0 % s], (int)i[1 % s], (int)i[2 % s], (int)i[3 % s] };
2100 static_assert(sizeof(initializer) == vectorSize);
2101 ptr = IceConstantData(initializer, vectorSize, alignment);
2102 }
2103 break;
2104 case Ice::IceType_v8i16:
2105 case Ice::IceType_v8i1:
2106 {
2107 const short initializer[8] = { (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s], (short)i[4 % s], (short)i[5 % s], (short)i[6 % s], (short)i[7 % s] };
2108 static_assert(sizeof(initializer) == vectorSize);
2109 ptr = IceConstantData(initializer, vectorSize, alignment);
2110 }
2111 break;
2112 case Ice::IceType_v16i8:
2113 case Ice::IceType_v16i1:
2114 {
2115 const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s],
2116 (char)i[8 % s], (char)i[9 % s], (char)i[10 % s], (char)i[11 % s], (char)i[12 % s], (char)i[13 % s], (char)i[14 % s], (char)i[15 % s] };
2117 static_assert(sizeof(initializer) == vectorSize);
2118 ptr = IceConstantData(initializer, vectorSize, alignment);
2119 }
2120 break;
2121 case Type_v2i32:
2122 {
2123 const int initializer[4] = { (int)i[0 % s], (int)i[1 % s], (int)i[0 % s], (int)i[1 % s] };
2124 static_assert(sizeof(initializer) == vectorSize);
2125 ptr = IceConstantData(initializer, vectorSize, alignment);
2126 }
2127 break;
2128 case Type_v4i16:
2129 {
2130 const short initializer[8] = { (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s], (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s] };
2131 static_assert(sizeof(initializer) == vectorSize);
2132 ptr = IceConstantData(initializer, vectorSize, alignment);
2133 }
2134 break;
2135 case Type_v8i8:
2136 {
2137 const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s] };
2138 static_assert(sizeof(initializer) == vectorSize);
2139 ptr = IceConstantData(initializer, vectorSize, alignment);
2140 }
2141 break;
2142 case Type_v4i8:
2143 {
2144 const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s] };
2145 static_assert(sizeof(initializer) == vectorSize);
2146 ptr = IceConstantData(initializer, vectorSize, alignment);
2147 }
2148 break;
2149 default:
2150 UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type));
2151 }
2152
2153 ASSERT(ptr);
2154
2155 Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment);
2156 return V(result);
2157 }
2158
createConstantVector(std::vector<double> constants,Type * type)2159 Value *Nucleus::createConstantVector(std::vector<double> constants, Type *type)
2160 {
2161 RR_DEBUG_INFO_UPDATE_LOC();
2162 const int vectorSize = 16;
2163 ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize);
2164 const int alignment = vectorSize;
2165
2166 const auto &f = constants;
2167 const size_t s = constants.size();
2168
2169 // TODO(b/148082873): Fix global variable constants when generating multiple functions
2170 Ice::Constant *ptr = nullptr;
2171
2172 switch((int)reinterpret_cast<intptr_t>(type))
2173 {
2174 case Ice::IceType_v4f32:
2175 {
2176 const float initializer[4] = { (float)f[0 % s], (float)f[1 % s], (float)f[2 % s], (float)f[3 % s] };
2177 static_assert(sizeof(initializer) == vectorSize);
2178 ptr = IceConstantData(initializer, vectorSize, alignment);
2179 }
2180 break;
2181 case Type_v2f32:
2182 {
2183 const float initializer[4] = { (float)f[0 % s], (float)f[1 % s], (float)f[0 % s], (float)f[1 % s] };
2184 static_assert(sizeof(initializer) == vectorSize);
2185 ptr = IceConstantData(initializer, vectorSize, alignment);
2186 }
2187 break;
2188 default:
2189 UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type));
2190 }
2191
2192 ASSERT(ptr);
2193
2194 Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment);
2195 return V(result);
2196 }
2197
createConstantString(const char * v)2198 Value *Nucleus::createConstantString(const char *v)
2199 {
2200 // NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv
2201 return V(IceConstantData(v, strlen(v) + 1));
2202 }
2203
setOptimizerCallback(OptimizerCallback * callback)2204 void Nucleus::setOptimizerCallback(OptimizerCallback *callback)
2205 {
2206 ::optimizerCallback = callback;
2207 }
2208
type()2209 Type *Void::type()
2210 {
2211 return T(Ice::IceType_void);
2212 }
2213
type()2214 Type *Bool::type()
2215 {
2216 return T(Ice::IceType_i1);
2217 }
2218
type()2219 Type *Byte::type()
2220 {
2221 return T(Ice::IceType_i8);
2222 }
2223
type()2224 Type *SByte::type()
2225 {
2226 return T(Ice::IceType_i8);
2227 }
2228
type()2229 Type *Short::type()
2230 {
2231 return T(Ice::IceType_i16);
2232 }
2233
type()2234 Type *UShort::type()
2235 {
2236 return T(Ice::IceType_i16);
2237 }
2238
type()2239 Type *Byte4::type()
2240 {
2241 return T(Type_v4i8);
2242 }
2243
type()2244 Type *SByte4::type()
2245 {
2246 return T(Type_v4i8);
2247 }
2248
SaturateUnsigned(RValue<Short> x)2249 static RValue<Byte> SaturateUnsigned(RValue<Short> x)
2250 {
2251 return Byte(IfThenElse(Int(x) > 0xFF, Int(0xFF), IfThenElse(Int(x) < 0, Int(0), Int(x))));
2252 }
2253
Extract(RValue<Byte8> val,int i)2254 static RValue<Byte> Extract(RValue<Byte8> val, int i)
2255 {
2256 return RValue<Byte>(Nucleus::createExtractElement(val.value(), Byte::type(), i));
2257 }
2258
Insert(RValue<Byte8> val,RValue<Byte> element,int i)2259 static RValue<Byte8> Insert(RValue<Byte8> val, RValue<Byte> element, int i)
2260 {
2261 return RValue<Byte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2262 }
2263
AddSat(RValue<Byte8> x,RValue<Byte8> y)2264 RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y)
2265 {
2266 RR_DEBUG_INFO_UPDATE_LOC();
2267 if(emulateIntrinsics)
2268 {
2269 return Scalarize([](auto a, auto b) { return SaturateUnsigned(Short(Int(a) + Int(b))); }, x, y);
2270 }
2271 else
2272 {
2273 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2274 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2275 auto paddusb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2276 paddusb->addArg(x.value());
2277 paddusb->addArg(y.value());
2278 ::basicBlock->appendInst(paddusb);
2279
2280 return RValue<Byte8>(V(result));
2281 }
2282 }
2283
SubSat(RValue<Byte8> x,RValue<Byte8> y)2284 RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y)
2285 {
2286 RR_DEBUG_INFO_UPDATE_LOC();
2287 if(emulateIntrinsics)
2288 {
2289 return Scalarize([](auto a, auto b) { return SaturateUnsigned(Short(Int(a) - Int(b))); }, x, y);
2290 }
2291 else
2292 {
2293 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2294 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2295 auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2296 psubusw->addArg(x.value());
2297 psubusw->addArg(y.value());
2298 ::basicBlock->appendInst(psubusw);
2299
2300 return RValue<Byte8>(V(result));
2301 }
2302 }
2303
Extract(RValue<SByte8> val,int i)2304 RValue<SByte> Extract(RValue<SByte8> val, int i)
2305 {
2306 RR_DEBUG_INFO_UPDATE_LOC();
2307 return RValue<SByte>(Nucleus::createExtractElement(val.value(), SByte::type(), i));
2308 }
2309
Insert(RValue<SByte8> val,RValue<SByte> element,int i)2310 RValue<SByte8> Insert(RValue<SByte8> val, RValue<SByte> element, int i)
2311 {
2312 RR_DEBUG_INFO_UPDATE_LOC();
2313 return RValue<SByte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2314 }
2315
operator >>(RValue<SByte8> lhs,unsigned char rhs)2316 RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2317 {
2318 RR_DEBUG_INFO_UPDATE_LOC();
2319 if(emulateIntrinsics)
2320 {
2321 return Scalarize([rhs](auto a) { return a >> SByte(rhs); }, lhs);
2322 }
2323 else
2324 {
2325 #if defined(__i386__) || defined(__x86_64__)
2326 // SSE2 doesn't support byte vector shifts, so shift as shorts and recombine.
2327 RValue<Short4> hi = (As<Short4>(lhs) >> rhs) & Short4(0xFF00u);
2328 RValue<Short4> lo = As<Short4>(As<UShort4>((As<Short4>(lhs) << 8) >> rhs) >> 8);
2329
2330 return As<SByte8>(hi | lo);
2331 #else
2332 return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2333 #endif
2334 }
2335 }
2336
SignMask(RValue<Byte8> x)2337 RValue<Int> SignMask(RValue<Byte8> x)
2338 {
2339 RR_DEBUG_INFO_UPDATE_LOC();
2340 if(emulateIntrinsics || CPUID::ARM)
2341 {
2342 Byte8 xx = As<Byte8>(As<SByte8>(x) >> 7) & Byte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2343 return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2344 }
2345 else
2346 {
2347 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2348 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2349 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2350 movmsk->addArg(x.value());
2351 ::basicBlock->appendInst(movmsk);
2352
2353 return RValue<Int>(V(result)) & 0xFF;
2354 }
2355 }
2356
2357 // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y)
2358 // {
2359 // return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Ugt, x.value(), y.value()));
2360 // }
2361
CmpEQ(RValue<Byte8> x,RValue<Byte8> y)2362 RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y)
2363 {
2364 RR_DEBUG_INFO_UPDATE_LOC();
2365 return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2366 }
2367
type()2368 Type *Byte8::type()
2369 {
2370 return T(Type_v8i8);
2371 }
2372
2373 // RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs)
2374 // {
2375 // return RValue<SByte8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2376 // }
2377
2378 // RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2379 // {
2380 // return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2381 // }
2382
SaturateSigned(RValue<Short> x)2383 RValue<SByte> SaturateSigned(RValue<Short> x)
2384 {
2385 RR_DEBUG_INFO_UPDATE_LOC();
2386 return SByte(IfThenElse(Int(x) > 0x7F, Int(0x7F), IfThenElse(Int(x) < -0x80, Int(0x80), Int(x))));
2387 }
2388
AddSat(RValue<SByte8> x,RValue<SByte8> y)2389 RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y)
2390 {
2391 RR_DEBUG_INFO_UPDATE_LOC();
2392 if(emulateIntrinsics)
2393 {
2394 return Scalarize([](auto a, auto b) { return SaturateSigned(Short(Int(a) + Int(b))); }, x, y);
2395 }
2396 else
2397 {
2398 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2399 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2400 auto paddsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2401 paddsb->addArg(x.value());
2402 paddsb->addArg(y.value());
2403 ::basicBlock->appendInst(paddsb);
2404
2405 return RValue<SByte8>(V(result));
2406 }
2407 }
2408
SubSat(RValue<SByte8> x,RValue<SByte8> y)2409 RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y)
2410 {
2411 RR_DEBUG_INFO_UPDATE_LOC();
2412 if(emulateIntrinsics)
2413 {
2414 return Scalarize([](auto a, auto b) { return SaturateSigned(Short(Int(a) - Int(b))); }, x, y);
2415 }
2416 else
2417 {
2418 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2419 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2420 auto psubsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2421 psubsb->addArg(x.value());
2422 psubsb->addArg(y.value());
2423 ::basicBlock->appendInst(psubsb);
2424
2425 return RValue<SByte8>(V(result));
2426 }
2427 }
2428
SignMask(RValue<SByte8> x)2429 RValue<Int> SignMask(RValue<SByte8> x)
2430 {
2431 RR_DEBUG_INFO_UPDATE_LOC();
2432 if(emulateIntrinsics || CPUID::ARM)
2433 {
2434 SByte8 xx = (x >> 7) & SByte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2435 return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2436 }
2437 else
2438 {
2439 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2440 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2441 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2442 movmsk->addArg(x.value());
2443 ::basicBlock->appendInst(movmsk);
2444
2445 return RValue<Int>(V(result)) & 0xFF;
2446 }
2447 }
2448
CmpGT(RValue<SByte8> x,RValue<SByte8> y)2449 RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y)
2450 {
2451 RR_DEBUG_INFO_UPDATE_LOC();
2452 return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2453 }
2454
CmpEQ(RValue<SByte8> x,RValue<SByte8> y)2455 RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y)
2456 {
2457 RR_DEBUG_INFO_UPDATE_LOC();
2458 return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2459 }
2460
type()2461 Type *SByte8::type()
2462 {
2463 return T(Type_v8i8);
2464 }
2465
type()2466 Type *Byte16::type()
2467 {
2468 return T(Ice::IceType_v16i8);
2469 }
2470
type()2471 Type *SByte16::type()
2472 {
2473 return T(Ice::IceType_v16i8);
2474 }
2475
type()2476 Type *Short2::type()
2477 {
2478 return T(Type_v2i16);
2479 }
2480
type()2481 Type *UShort2::type()
2482 {
2483 return T(Type_v2i16);
2484 }
2485
Short4(RValue<Int4> cast)2486 Short4::Short4(RValue<Int4> cast)
2487 {
2488 std::vector<int> select = { 0, 2, 4, 6, 0, 2, 4, 6 };
2489 Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type());
2490 Value *packed = Nucleus::createShuffleVector(short8, short8, select);
2491
2492 Value *int2 = RValue<Int2>(Int2(As<Int4>(packed))).value();
2493 Value *short4 = Nucleus::createBitCast(int2, Short4::type());
2494
2495 storeValue(short4);
2496 }
2497
2498 // Short4::Short4(RValue<Float> cast)
2499 // {
2500 // }
2501
Short4(RValue<Float4> cast)2502 Short4::Short4(RValue<Float4> cast)
2503 {
2504 // TODO(b/150791192): Generalize and optimize
2505 auto smin = std::numeric_limits<short>::min();
2506 auto smax = std::numeric_limits<short>::max();
2507 *this = Short4(Int4(Max(Min(cast, Float4(smax)), Float4(smin))));
2508 }
2509
operator <<(RValue<Short4> lhs,unsigned char rhs)2510 RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs)
2511 {
2512 RR_DEBUG_INFO_UPDATE_LOC();
2513 if(emulateIntrinsics)
2514 {
2515 return Scalarize([rhs](auto x) { return x << Short(rhs); }, lhs);
2516 }
2517 else
2518 {
2519 return RValue<Short4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2520 }
2521 }
2522
operator >>(RValue<Short4> lhs,unsigned char rhs)2523 RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs)
2524 {
2525 RR_DEBUG_INFO_UPDATE_LOC();
2526 if(emulateIntrinsics)
2527 {
2528 return Scalarize([rhs](auto x) { return x >> Short(rhs); }, lhs);
2529 }
2530 else
2531 {
2532 return RValue<Short4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2533 }
2534 }
2535
Max(RValue<Short4> x,RValue<Short4> y)2536 RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y)
2537 {
2538 RR_DEBUG_INFO_UPDATE_LOC();
2539 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2540 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
2541 ::basicBlock->appendInst(cmp);
2542
2543 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2544 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2545 ::basicBlock->appendInst(select);
2546
2547 return RValue<Short4>(V(result));
2548 }
2549
Min(RValue<Short4> x,RValue<Short4> y)2550 RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y)
2551 {
2552 RR_DEBUG_INFO_UPDATE_LOC();
2553 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2554 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
2555 ::basicBlock->appendInst(cmp);
2556
2557 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2558 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2559 ::basicBlock->appendInst(select);
2560
2561 return RValue<Short4>(V(result));
2562 }
2563
SaturateSigned(RValue<Int> x)2564 RValue<Short> SaturateSigned(RValue<Int> x)
2565 {
2566 RR_DEBUG_INFO_UPDATE_LOC();
2567 return Short(IfThenElse(x > 0x7FFF, Int(0x7FFF), IfThenElse(x < -0x8000, Int(0x8000), x)));
2568 }
2569
AddSat(RValue<Short4> x,RValue<Short4> y)2570 RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y)
2571 {
2572 RR_DEBUG_INFO_UPDATE_LOC();
2573 if(emulateIntrinsics)
2574 {
2575 return Scalarize([](auto a, auto b) { return SaturateSigned(Int(a) + Int(b)); }, x, y);
2576 }
2577 else
2578 {
2579 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2580 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2581 auto paddsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2582 paddsw->addArg(x.value());
2583 paddsw->addArg(y.value());
2584 ::basicBlock->appendInst(paddsw);
2585
2586 return RValue<Short4>(V(result));
2587 }
2588 }
2589
SubSat(RValue<Short4> x,RValue<Short4> y)2590 RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y)
2591 {
2592 RR_DEBUG_INFO_UPDATE_LOC();
2593 if(emulateIntrinsics)
2594 {
2595 return Scalarize([](auto a, auto b) { return SaturateSigned(Int(a) - Int(b)); }, x, y);
2596 }
2597 else
2598 {
2599 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2600 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2601 auto psubsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2602 psubsw->addArg(x.value());
2603 psubsw->addArg(y.value());
2604 ::basicBlock->appendInst(psubsw);
2605
2606 return RValue<Short4>(V(result));
2607 }
2608 }
2609
MulHigh(RValue<Short4> x,RValue<Short4> y)2610 RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y)
2611 {
2612 RR_DEBUG_INFO_UPDATE_LOC();
2613 if(emulateIntrinsics)
2614 {
2615 return Scalarize([](auto a, auto b) { return Short((Int(a) * Int(b)) >> 16); }, x, y);
2616 }
2617 else
2618 {
2619 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2620 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2621 auto pmulhw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2622 pmulhw->addArg(x.value());
2623 pmulhw->addArg(y.value());
2624 ::basicBlock->appendInst(pmulhw);
2625
2626 return RValue<Short4>(V(result));
2627 }
2628 }
2629
MulAdd(RValue<Short4> x,RValue<Short4> y)2630 RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y)
2631 {
2632 RR_DEBUG_INFO_UPDATE_LOC();
2633 if(emulateIntrinsics)
2634 {
2635 Int2 result;
2636 result = Insert(result, Int(Extract(x, 0)) * Int(Extract(y, 0)) + Int(Extract(x, 1)) * Int(Extract(y, 1)), 0);
2637 result = Insert(result, Int(Extract(x, 2)) * Int(Extract(y, 2)) + Int(Extract(x, 3)) * Int(Extract(y, 3)), 1);
2638
2639 return result;
2640 }
2641 else
2642 {
2643 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2644 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyAddPairs, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2645 auto pmaddwd = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2646 pmaddwd->addArg(x.value());
2647 pmaddwd->addArg(y.value());
2648 ::basicBlock->appendInst(pmaddwd);
2649
2650 return As<Int2>(V(result));
2651 }
2652 }
2653
PackSigned(RValue<Short4> x,RValue<Short4> y)2654 RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y)
2655 {
2656 RR_DEBUG_INFO_UPDATE_LOC();
2657 if(emulateIntrinsics)
2658 {
2659 SByte8 result;
2660 result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
2661 result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
2662 result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
2663 result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
2664 result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
2665 result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
2666 result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
2667 result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
2668
2669 return result;
2670 }
2671 else
2672 {
2673 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2674 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2675 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2676 pack->addArg(x.value());
2677 pack->addArg(y.value());
2678 ::basicBlock->appendInst(pack);
2679
2680 return As<SByte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2681 }
2682 }
2683
PackUnsigned(RValue<Short4> x,RValue<Short4> y)2684 RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y)
2685 {
2686 RR_DEBUG_INFO_UPDATE_LOC();
2687 if(emulateIntrinsics)
2688 {
2689 Byte8 result;
2690 result = Insert(result, SaturateUnsigned(Extract(x, 0)), 0);
2691 result = Insert(result, SaturateUnsigned(Extract(x, 1)), 1);
2692 result = Insert(result, SaturateUnsigned(Extract(x, 2)), 2);
2693 result = Insert(result, SaturateUnsigned(Extract(x, 3)), 3);
2694 result = Insert(result, SaturateUnsigned(Extract(y, 0)), 4);
2695 result = Insert(result, SaturateUnsigned(Extract(y, 1)), 5);
2696 result = Insert(result, SaturateUnsigned(Extract(y, 2)), 6);
2697 result = Insert(result, SaturateUnsigned(Extract(y, 3)), 7);
2698
2699 return result;
2700 }
2701 else
2702 {
2703 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2704 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2705 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2706 pack->addArg(x.value());
2707 pack->addArg(y.value());
2708 ::basicBlock->appendInst(pack);
2709
2710 return As<Byte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2711 }
2712 }
2713
CmpGT(RValue<Short4> x,RValue<Short4> y)2714 RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y)
2715 {
2716 RR_DEBUG_INFO_UPDATE_LOC();
2717 return RValue<Short4>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2718 }
2719
CmpEQ(RValue<Short4> x,RValue<Short4> y)2720 RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y)
2721 {
2722 RR_DEBUG_INFO_UPDATE_LOC();
2723 return RValue<Short4>(Nucleus::createICmpEQ(x.value(), y.value()));
2724 }
2725
type()2726 Type *Short4::type()
2727 {
2728 return T(Type_v4i16);
2729 }
2730
UShort4(RValue<Float4> cast,bool saturate)2731 UShort4::UShort4(RValue<Float4> cast, bool saturate)
2732 {
2733 if(saturate)
2734 {
2735 if(CPUID::SSE4_1)
2736 {
2737 // x86 produces 0x80000000 on 32-bit integer overflow/underflow.
2738 // PackUnsigned takes care of 0x0000 saturation.
2739 Int4 int4(Min(cast, Float4(0xFFFF)));
2740 *this = As<UShort4>(PackUnsigned(int4, int4));
2741 }
2742 else if(CPUID::ARM)
2743 {
2744 // ARM saturates the 32-bit integer result on overflow/undeflow.
2745 Int4 int4(cast);
2746 *this = As<UShort4>(PackUnsigned(int4, int4));
2747 }
2748 else
2749 {
2750 *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000))));
2751 }
2752 }
2753 else
2754 {
2755 *this = Short4(Int4(cast));
2756 }
2757 }
2758
Extract(RValue<UShort4> val,int i)2759 RValue<UShort> Extract(RValue<UShort4> val, int i)
2760 {
2761 return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
2762 }
2763
operator <<(RValue<UShort4> lhs,unsigned char rhs)2764 RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs)
2765 {
2766 RR_DEBUG_INFO_UPDATE_LOC();
2767 if(emulateIntrinsics)
2768 {
2769 return Scalarize([rhs](auto x) { return x << UShort(rhs); }, lhs);
2770 }
2771 else
2772 {
2773 return RValue<UShort4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2774 }
2775 }
2776
operator >>(RValue<UShort4> lhs,unsigned char rhs)2777 RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs)
2778 {
2779 RR_DEBUG_INFO_UPDATE_LOC();
2780 if(emulateIntrinsics)
2781 {
2782 return Scalarize([rhs](auto x) { return x >> UShort(rhs); }, lhs);
2783 }
2784 else
2785 {
2786 return RValue<UShort4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2787 }
2788 }
2789
Max(RValue<UShort4> x,RValue<UShort4> y)2790 RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y)
2791 {
2792 RR_DEBUG_INFO_UPDATE_LOC();
2793 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2794 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
2795 ::basicBlock->appendInst(cmp);
2796
2797 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2798 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2799 ::basicBlock->appendInst(select);
2800
2801 return RValue<UShort4>(V(result));
2802 }
2803
Min(RValue<UShort4> x,RValue<UShort4> y)2804 RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y)
2805 {
2806 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2807 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
2808 ::basicBlock->appendInst(cmp);
2809
2810 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2811 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2812 ::basicBlock->appendInst(select);
2813
2814 return RValue<UShort4>(V(result));
2815 }
2816
SaturateUnsigned(RValue<Int> x)2817 RValue<UShort> SaturateUnsigned(RValue<Int> x)
2818 {
2819 RR_DEBUG_INFO_UPDATE_LOC();
2820 return UShort(IfThenElse(x > 0xFFFF, Int(0xFFFF), IfThenElse(x < 0, Int(0), x)));
2821 }
2822
AddSat(RValue<UShort4> x,RValue<UShort4> y)2823 RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y)
2824 {
2825 RR_DEBUG_INFO_UPDATE_LOC();
2826 if(emulateIntrinsics)
2827 {
2828 return Scalarize([](auto a, auto b) { return SaturateUnsigned(Int(a) + Int(b)); }, x, y);
2829 }
2830 else
2831 {
2832 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2833 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2834 auto paddusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2835 paddusw->addArg(x.value());
2836 paddusw->addArg(y.value());
2837 ::basicBlock->appendInst(paddusw);
2838
2839 return RValue<UShort4>(V(result));
2840 }
2841 }
2842
SubSat(RValue<UShort4> x,RValue<UShort4> y)2843 RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y)
2844 {
2845 RR_DEBUG_INFO_UPDATE_LOC();
2846 if(emulateIntrinsics)
2847 {
2848 return Scalarize([](auto a, auto b) { return SaturateUnsigned(Int(a) - Int(b)); }, x, y);
2849 }
2850 else
2851 {
2852 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2853 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2854 auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2855 psubusw->addArg(x.value());
2856 psubusw->addArg(y.value());
2857 ::basicBlock->appendInst(psubusw);
2858
2859 return RValue<UShort4>(V(result));
2860 }
2861 }
2862
MulHigh(RValue<UShort4> x,RValue<UShort4> y)2863 RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y)
2864 {
2865 RR_DEBUG_INFO_UPDATE_LOC();
2866 if(emulateIntrinsics)
2867 {
2868 return Scalarize([](auto a, auto b) { return UShort((UInt(a) * UInt(b)) >> 16); }, x, y);
2869 }
2870 else
2871 {
2872 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2873 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2874 auto pmulhuw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2875 pmulhuw->addArg(x.value());
2876 pmulhuw->addArg(y.value());
2877 ::basicBlock->appendInst(pmulhuw);
2878
2879 return RValue<UShort4>(V(result));
2880 }
2881 }
2882
MulHigh(RValue<Int4> x,RValue<Int4> y)2883 RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y)
2884 {
2885 RR_DEBUG_INFO_UPDATE_LOC();
2886 // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
2887
2888 return Scalarize([](auto a, auto b) { return Int((Long(a) * Long(b)) >> Long(Int(32))); }, x, y);
2889 }
2890
MulHigh(RValue<UInt4> x,RValue<UInt4> y)2891 RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y)
2892 {
2893 RR_DEBUG_INFO_UPDATE_LOC();
2894 // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
2895
2896 if(false) // Partial product based implementation.
2897 {
2898 auto xh = x >> 16;
2899 auto yh = y >> 16;
2900 auto xl = x & UInt4(0x0000FFFF);
2901 auto yl = y & UInt4(0x0000FFFF);
2902 auto xlyh = xl * yh;
2903 auto xhyl = xh * yl;
2904 auto xlyhh = xlyh >> 16;
2905 auto xhylh = xhyl >> 16;
2906 auto xlyhl = xlyh & UInt4(0x0000FFFF);
2907 auto xhyll = xhyl & UInt4(0x0000FFFF);
2908 auto xlylh = (xl * yl) >> 16;
2909 auto oflow = (xlyhl + xhyll + xlylh) >> 16;
2910
2911 return (xh * yh) + (xlyhh + xhylh) + oflow;
2912 }
2913
2914 return Scalarize([](auto a, auto b) { return UInt((Long(a) * Long(b)) >> Long(Int(32))); }, x, y);
2915 }
2916
Average(RValue<UShort4> x,RValue<UShort4> y)2917 RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)
2918 {
2919 RR_DEBUG_INFO_UPDATE_LOC();
2920 UNIMPLEMENTED_NO_BUG("RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)");
2921 return UShort4(0);
2922 }
2923
type()2924 Type *UShort4::type()
2925 {
2926 return T(Type_v4i16);
2927 }
2928
Extract(RValue<Short8> val,int i)2929 RValue<Short> Extract(RValue<Short8> val, int i)
2930 {
2931 RR_DEBUG_INFO_UPDATE_LOC();
2932 return RValue<Short>(Nucleus::createExtractElement(val.value(), Short::type(), i));
2933 }
2934
Insert(RValue<Short8> val,RValue<Short> element,int i)2935 RValue<Short8> Insert(RValue<Short8> val, RValue<Short> element, int i)
2936 {
2937 RR_DEBUG_INFO_UPDATE_LOC();
2938 return RValue<Short8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2939 }
2940
operator <<(RValue<Short8> lhs,unsigned char rhs)2941 RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs)
2942 {
2943 RR_DEBUG_INFO_UPDATE_LOC();
2944 if(emulateIntrinsics)
2945 {
2946 return Scalarize([rhs](auto x) { return x << Short(rhs); }, lhs);
2947 }
2948 else
2949 {
2950 return RValue<Short8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2951 }
2952 }
2953
operator >>(RValue<Short8> lhs,unsigned char rhs)2954 RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs)
2955 {
2956 RR_DEBUG_INFO_UPDATE_LOC();
2957 if(emulateIntrinsics)
2958 {
2959 return Scalarize([rhs](auto x) { return x >> Short(rhs); }, lhs);
2960 }
2961 else
2962 {
2963 return RValue<Short8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2964 }
2965 }
2966
MulAdd(RValue<Short8> x,RValue<Short8> y)2967 RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)
2968 {
2969 RR_DEBUG_INFO_UPDATE_LOC();
2970 UNIMPLEMENTED_NO_BUG("RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)");
2971 return Int4(0);
2972 }
2973
MulHigh(RValue<Short8> x,RValue<Short8> y)2974 RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)
2975 {
2976 RR_DEBUG_INFO_UPDATE_LOC();
2977 UNIMPLEMENTED_NO_BUG("RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)");
2978 return Short8(0);
2979 }
2980
type()2981 Type *Short8::type()
2982 {
2983 return T(Ice::IceType_v8i16);
2984 }
2985
Extract(RValue<UShort8> val,int i)2986 RValue<UShort> Extract(RValue<UShort8> val, int i)
2987 {
2988 RR_DEBUG_INFO_UPDATE_LOC();
2989 return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
2990 }
2991
Insert(RValue<UShort8> val,RValue<UShort> element,int i)2992 RValue<UShort8> Insert(RValue<UShort8> val, RValue<UShort> element, int i)
2993 {
2994 RR_DEBUG_INFO_UPDATE_LOC();
2995 return RValue<UShort8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2996 }
2997
operator <<(RValue<UShort8> lhs,unsigned char rhs)2998 RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs)
2999 {
3000 RR_DEBUG_INFO_UPDATE_LOC();
3001 if(emulateIntrinsics)
3002 {
3003 return Scalarize([rhs](auto x) { return x << UShort(rhs); }, lhs);
3004 }
3005 else
3006 {
3007 return RValue<UShort8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3008 }
3009 }
3010
operator >>(RValue<UShort8> lhs,unsigned char rhs)3011 RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs)
3012 {
3013 RR_DEBUG_INFO_UPDATE_LOC();
3014 if(emulateIntrinsics)
3015 {
3016 return Scalarize([rhs](auto x) { return x >> UShort(rhs); }, lhs);
3017 }
3018 else
3019 {
3020 return RValue<UShort8>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3021 }
3022 }
3023
MulHigh(RValue<UShort8> x,RValue<UShort8> y)3024 RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)
3025 {
3026 RR_DEBUG_INFO_UPDATE_LOC();
3027 UNIMPLEMENTED_NO_BUG("RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)");
3028 return UShort8(0);
3029 }
3030
type()3031 Type *UShort8::type()
3032 {
3033 return T(Ice::IceType_v8i16);
3034 }
3035
operator ++(Int & val,int)3036 RValue<Int> operator++(Int &val, int) // Post-increment
3037 {
3038 RR_DEBUG_INFO_UPDATE_LOC();
3039 RValue<Int> res = val;
3040 val += 1;
3041 return res;
3042 }
3043
operator ++(Int & val)3044 const Int &operator++(Int &val) // Pre-increment
3045 {
3046 RR_DEBUG_INFO_UPDATE_LOC();
3047 val += 1;
3048 return val;
3049 }
3050
operator --(Int & val,int)3051 RValue<Int> operator--(Int &val, int) // Post-decrement
3052 {
3053 RR_DEBUG_INFO_UPDATE_LOC();
3054 RValue<Int> res = val;
3055 val -= 1;
3056 return res;
3057 }
3058
operator --(Int & val)3059 const Int &operator--(Int &val) // Pre-decrement
3060 {
3061 RR_DEBUG_INFO_UPDATE_LOC();
3062 val -= 1;
3063 return val;
3064 }
3065
RoundInt(RValue<Float> cast)3066 RValue<Int> RoundInt(RValue<Float> cast)
3067 {
3068 RR_DEBUG_INFO_UPDATE_LOC();
3069 if(emulateIntrinsics || CPUID::ARM)
3070 {
3071 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3072 return Int((cast + Float(0x00C00000)) - Float(0x00C00000));
3073 }
3074 else
3075 {
3076 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3077 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3078 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3079 nearbyint->addArg(cast.value());
3080 ::basicBlock->appendInst(nearbyint);
3081
3082 return RValue<Int>(V(result));
3083 }
3084 }
3085
type()3086 Type *Int::type()
3087 {
3088 return T(Ice::IceType_i32);
3089 }
3090
type()3091 Type *Long::type()
3092 {
3093 return T(Ice::IceType_i64);
3094 }
3095
UInt(RValue<Float> cast)3096 UInt::UInt(RValue<Float> cast)
3097 {
3098 RR_DEBUG_INFO_UPDATE_LOC();
3099 // Smallest positive value representable in UInt, but not in Int
3100 const unsigned int ustart = 0x80000000u;
3101 const float ustartf = float(ustart);
3102
3103 // If the value is negative, store 0, otherwise store the result of the conversion
3104 storeValue((~(As<Int>(cast) >> 31) &
3105 // Check if the value can be represented as an Int
3106 IfThenElse(cast >= ustartf,
3107 // If the value is too large, subtract ustart and re-add it after conversion.
3108 As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)),
3109 // Otherwise, just convert normally
3110 Int(cast)))
3111 .value());
3112 }
3113
operator ++(UInt & val,int)3114 RValue<UInt> operator++(UInt &val, int) // Post-increment
3115 {
3116 RR_DEBUG_INFO_UPDATE_LOC();
3117 RValue<UInt> res = val;
3118 val += 1;
3119 return res;
3120 }
3121
operator ++(UInt & val)3122 const UInt &operator++(UInt &val) // Pre-increment
3123 {
3124 RR_DEBUG_INFO_UPDATE_LOC();
3125 val += 1;
3126 return val;
3127 }
3128
operator --(UInt & val,int)3129 RValue<UInt> operator--(UInt &val, int) // Post-decrement
3130 {
3131 RR_DEBUG_INFO_UPDATE_LOC();
3132 RValue<UInt> res = val;
3133 val -= 1;
3134 return res;
3135 }
3136
operator --(UInt & val)3137 const UInt &operator--(UInt &val) // Pre-decrement
3138 {
3139 RR_DEBUG_INFO_UPDATE_LOC();
3140 val -= 1;
3141 return val;
3142 }
3143
3144 // RValue<UInt> RoundUInt(RValue<Float> cast)
3145 // {
3146 // ASSERT(false && "UNIMPLEMENTED"); return RValue<UInt>(V(nullptr));
3147 // }
3148
type()3149 Type *UInt::type()
3150 {
3151 return T(Ice::IceType_i32);
3152 }
3153
3154 // Int2::Int2(RValue<Int> cast)
3155 // {
3156 // Value *extend = Nucleus::createZExt(cast.value(), Long::type());
3157 // Value *vector = Nucleus::createBitCast(extend, Int2::type());
3158 //
3159 // Constant *shuffle[2];
3160 // shuffle[0] = Nucleus::createConstantInt(0);
3161 // shuffle[1] = Nucleus::createConstantInt(0);
3162 //
3163 // Value *replicate = Nucleus::createShuffleVector(vector, UndefValue::get(Int2::type()), Nucleus::createConstantVector(shuffle, 2));
3164 //
3165 // storeValue(replicate);
3166 // }
3167
operator <<(RValue<Int2> lhs,unsigned char rhs)3168 RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs)
3169 {
3170 RR_DEBUG_INFO_UPDATE_LOC();
3171 if(emulateIntrinsics)
3172 {
3173 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
3174 }
3175 else
3176 {
3177 return RValue<Int2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3178 }
3179 }
3180
operator >>(RValue<Int2> lhs,unsigned char rhs)3181 RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs)
3182 {
3183 RR_DEBUG_INFO_UPDATE_LOC();
3184 if(emulateIntrinsics)
3185 {
3186 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
3187 }
3188 else
3189 {
3190 return RValue<Int2>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3191 }
3192 }
3193
type()3194 Type *Int2::type()
3195 {
3196 return T(Type_v2i32);
3197 }
3198
operator <<(RValue<UInt2> lhs,unsigned char rhs)3199 RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs)
3200 {
3201 RR_DEBUG_INFO_UPDATE_LOC();
3202 if(emulateIntrinsics)
3203 {
3204 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
3205 }
3206 else
3207 {
3208 return RValue<UInt2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3209 }
3210 }
3211
operator >>(RValue<UInt2> lhs,unsigned char rhs)3212 RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs)
3213 {
3214 RR_DEBUG_INFO_UPDATE_LOC();
3215 if(emulateIntrinsics)
3216 {
3217 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
3218 }
3219 else
3220 {
3221 return RValue<UInt2>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3222 }
3223 }
3224
type()3225 Type *UInt2::type()
3226 {
3227 return T(Type_v2i32);
3228 }
3229
Int4(RValue<Byte4> cast)3230 Int4::Int4(RValue<Byte4> cast)
3231 : XYZW(this)
3232 {
3233 RR_DEBUG_INFO_UPDATE_LOC();
3234 Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3235 Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3236
3237 Value *e;
3238 std::vector<int> swizzle = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 };
3239 Value *b = Nucleus::createBitCast(a, Byte16::type());
3240 Value *c = Nucleus::createShuffleVector(b, Nucleus::createNullValue(Byte16::type()), swizzle);
3241
3242 std::vector<int> swizzle2 = { 0, 8, 1, 9, 2, 10, 3, 11 };
3243 Value *d = Nucleus::createBitCast(c, Short8::type());
3244 e = Nucleus::createShuffleVector(d, Nucleus::createNullValue(Short8::type()), swizzle2);
3245
3246 Value *f = Nucleus::createBitCast(e, Int4::type());
3247 storeValue(f);
3248 }
3249
Int4(RValue<SByte4> cast)3250 Int4::Int4(RValue<SByte4> cast)
3251 : XYZW(this)
3252 {
3253 RR_DEBUG_INFO_UPDATE_LOC();
3254 Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3255 Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3256
3257 std::vector<int> swizzle = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 };
3258 Value *b = Nucleus::createBitCast(a, Byte16::type());
3259 Value *c = Nucleus::createShuffleVector(b, b, swizzle);
3260
3261 std::vector<int> swizzle2 = { 0, 0, 1, 1, 2, 2, 3, 3 };
3262 Value *d = Nucleus::createBitCast(c, Short8::type());
3263 Value *e = Nucleus::createShuffleVector(d, d, swizzle2);
3264
3265 *this = As<Int4>(e) >> 24;
3266 }
3267
Int4(RValue<Short4> cast)3268 Int4::Int4(RValue<Short4> cast)
3269 : XYZW(this)
3270 {
3271 RR_DEBUG_INFO_UPDATE_LOC();
3272 std::vector<int> swizzle = { 0, 0, 1, 1, 2, 2, 3, 3 };
3273 Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle);
3274
3275 *this = As<Int4>(c) >> 16;
3276 }
3277
Int4(RValue<UShort4> cast)3278 Int4::Int4(RValue<UShort4> cast)
3279 : XYZW(this)
3280 {
3281 RR_DEBUG_INFO_UPDATE_LOC();
3282 std::vector<int> swizzle = { 0, 8, 1, 9, 2, 10, 3, 11 };
3283 Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle);
3284 Value *d = Nucleus::createBitCast(c, Int4::type());
3285 storeValue(d);
3286 }
3287
Int4(RValue<Int> rhs)3288 Int4::Int4(RValue<Int> rhs)
3289 : XYZW(this)
3290 {
3291 RR_DEBUG_INFO_UPDATE_LOC();
3292 Value *vector = Nucleus::createBitCast(rhs.value(), Int4::type());
3293
3294 std::vector<int> swizzle = { 0 };
3295 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3296
3297 storeValue(replicate);
3298 }
3299
operator <<(RValue<Int4> lhs,unsigned char rhs)3300 RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs)
3301 {
3302 RR_DEBUG_INFO_UPDATE_LOC();
3303 if(emulateIntrinsics)
3304 {
3305 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
3306 }
3307 else
3308 {
3309 return RValue<Int4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3310 }
3311 }
3312
operator >>(RValue<Int4> lhs,unsigned char rhs)3313 RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs)
3314 {
3315 RR_DEBUG_INFO_UPDATE_LOC();
3316 if(emulateIntrinsics)
3317 {
3318 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
3319 }
3320 else
3321 {
3322 return RValue<Int4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3323 }
3324 }
3325
CmpEQ(RValue<Int4> x,RValue<Int4> y)3326 RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y)
3327 {
3328 RR_DEBUG_INFO_UPDATE_LOC();
3329 return RValue<Int4>(Nucleus::createICmpEQ(x.value(), y.value()));
3330 }
3331
CmpLT(RValue<Int4> x,RValue<Int4> y)3332 RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y)
3333 {
3334 RR_DEBUG_INFO_UPDATE_LOC();
3335 return RValue<Int4>(Nucleus::createICmpSLT(x.value(), y.value()));
3336 }
3337
CmpLE(RValue<Int4> x,RValue<Int4> y)3338 RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y)
3339 {
3340 RR_DEBUG_INFO_UPDATE_LOC();
3341 return RValue<Int4>(Nucleus::createICmpSLE(x.value(), y.value()));
3342 }
3343
CmpNEQ(RValue<Int4> x,RValue<Int4> y)3344 RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y)
3345 {
3346 RR_DEBUG_INFO_UPDATE_LOC();
3347 return RValue<Int4>(Nucleus::createICmpNE(x.value(), y.value()));
3348 }
3349
CmpNLT(RValue<Int4> x,RValue<Int4> y)3350 RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y)
3351 {
3352 RR_DEBUG_INFO_UPDATE_LOC();
3353 return RValue<Int4>(Nucleus::createICmpSGE(x.value(), y.value()));
3354 }
3355
CmpNLE(RValue<Int4> x,RValue<Int4> y)3356 RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y)
3357 {
3358 RR_DEBUG_INFO_UPDATE_LOC();
3359 return RValue<Int4>(Nucleus::createICmpSGT(x.value(), y.value()));
3360 }
3361
Abs(RValue<Int4> x)3362 RValue<Int4> Abs(RValue<Int4> x)
3363 {
3364 // TODO: Optimize.
3365 auto negative = x >> 31;
3366 return (x ^ negative) - negative;
3367 }
3368
Max(RValue<Int4> x,RValue<Int4> y)3369 RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y)
3370 {
3371 RR_DEBUG_INFO_UPDATE_LOC();
3372 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3373 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
3374 ::basicBlock->appendInst(cmp);
3375
3376 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3377 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3378 ::basicBlock->appendInst(select);
3379
3380 return RValue<Int4>(V(result));
3381 }
3382
Min(RValue<Int4> x,RValue<Int4> y)3383 RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y)
3384 {
3385 RR_DEBUG_INFO_UPDATE_LOC();
3386 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3387 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
3388 ::basicBlock->appendInst(cmp);
3389
3390 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3391 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3392 ::basicBlock->appendInst(select);
3393
3394 return RValue<Int4>(V(result));
3395 }
3396
RoundInt(RValue<Float4> cast)3397 RValue<Int4> RoundInt(RValue<Float4> cast)
3398 {
3399 RR_DEBUG_INFO_UPDATE_LOC();
3400 if(emulateIntrinsics || CPUID::ARM)
3401 {
3402 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3403 return Int4((cast + Float4(0x00C00000)) - Float4(0x00C00000));
3404 }
3405 else
3406 {
3407 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3408 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3409 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3410 nearbyint->addArg(cast.value());
3411 ::basicBlock->appendInst(nearbyint);
3412
3413 return RValue<Int4>(V(result));
3414 }
3415 }
3416
RoundIntClamped(RValue<Float4> cast)3417 RValue<Int4> RoundIntClamped(RValue<Float4> cast)
3418 {
3419 RR_DEBUG_INFO_UPDATE_LOC();
3420
3421 // cvtps2dq produces 0x80000000, a negative value, for input larger than
3422 // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0
3423 // saturate to 0x80000000.
3424 RValue<Float4> clamped = Min(cast, Float4(0x7FFFFF80));
3425
3426 if(emulateIntrinsics || CPUID::ARM)
3427 {
3428 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3429 return Int4((clamped + Float4(0x00C00000)) - Float4(0x00C00000));
3430 }
3431 else
3432 {
3433 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3434 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3435 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3436 nearbyint->addArg(clamped.value());
3437 ::basicBlock->appendInst(nearbyint);
3438
3439 return RValue<Int4>(V(result));
3440 }
3441 }
3442
PackSigned(RValue<Int4> x,RValue<Int4> y)3443 RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y)
3444 {
3445 RR_DEBUG_INFO_UPDATE_LOC();
3446 if(emulateIntrinsics)
3447 {
3448 Short8 result;
3449 result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
3450 result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
3451 result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
3452 result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
3453 result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
3454 result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
3455 result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
3456 result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
3457
3458 return result;
3459 }
3460 else
3461 {
3462 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3463 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3464 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3465 pack->addArg(x.value());
3466 pack->addArg(y.value());
3467 ::basicBlock->appendInst(pack);
3468
3469 return RValue<Short8>(V(result));
3470 }
3471 }
3472
PackUnsigned(RValue<Int4> x,RValue<Int4> y)3473 RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y)
3474 {
3475 RR_DEBUG_INFO_UPDATE_LOC();
3476 if(emulateIntrinsics || !(CPUID::SSE4_1 || CPUID::ARM))
3477 {
3478 RValue<Int4> sx = As<Int4>(x);
3479 RValue<Int4> bx = (sx & ~(sx >> 31)) - Int4(0x8000);
3480
3481 RValue<Int4> sy = As<Int4>(y);
3482 RValue<Int4> by = (sy & ~(sy >> 31)) - Int4(0x8000);
3483
3484 return As<UShort8>(PackSigned(bx, by) + Short8(0x8000u));
3485 }
3486 else
3487 {
3488 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3489 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3490 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3491 pack->addArg(x.value());
3492 pack->addArg(y.value());
3493 ::basicBlock->appendInst(pack);
3494
3495 return RValue<UShort8>(V(result));
3496 }
3497 }
3498
SignMask(RValue<Int4> x)3499 RValue<Int> SignMask(RValue<Int4> x)
3500 {
3501 RR_DEBUG_INFO_UPDATE_LOC();
3502 if(emulateIntrinsics || CPUID::ARM)
3503 {
3504 Int4 xx = (x >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
3505 return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
3506 }
3507 else
3508 {
3509 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3510 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3511 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3512 movmsk->addArg(x.value());
3513 ::basicBlock->appendInst(movmsk);
3514
3515 return RValue<Int>(V(result));
3516 }
3517 }
3518
type()3519 Type *Int4::type()
3520 {
3521 return T(Ice::IceType_v4i32);
3522 }
3523
UInt4(RValue<Float4> cast)3524 UInt4::UInt4(RValue<Float4> cast)
3525 : XYZW(this)
3526 {
3527 RR_DEBUG_INFO_UPDATE_LOC();
3528 // Smallest positive value representable in UInt, but not in Int
3529 const unsigned int ustart = 0x80000000u;
3530 const float ustartf = float(ustart);
3531
3532 // Check if the value can be represented as an Int
3533 Int4 uiValue = CmpNLT(cast, Float4(ustartf));
3534 // If the value is too large, subtract ustart and re-add it after conversion.
3535 uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) |
3536 // Otherwise, just convert normally
3537 (~uiValue & Int4(cast));
3538 // If the value is negative, store 0, otherwise store the result of the conversion
3539 storeValue((~(As<Int4>(cast) >> 31) & uiValue).value());
3540 }
3541
UInt4(RValue<UInt> rhs)3542 UInt4::UInt4(RValue<UInt> rhs)
3543 : XYZW(this)
3544 {
3545 RR_DEBUG_INFO_UPDATE_LOC();
3546 Value *vector = Nucleus::createBitCast(rhs.value(), UInt4::type());
3547
3548 std::vector<int> swizzle = { 0 };
3549 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3550
3551 storeValue(replicate);
3552 }
3553
operator <<(RValue<UInt4> lhs,unsigned char rhs)3554 RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs)
3555 {
3556 RR_DEBUG_INFO_UPDATE_LOC();
3557 if(emulateIntrinsics)
3558 {
3559 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
3560 }
3561 else
3562 {
3563 return RValue<UInt4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3564 }
3565 }
3566
operator >>(RValue<UInt4> lhs,unsigned char rhs)3567 RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs)
3568 {
3569 RR_DEBUG_INFO_UPDATE_LOC();
3570 if(emulateIntrinsics)
3571 {
3572 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
3573 }
3574 else
3575 {
3576 return RValue<UInt4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3577 }
3578 }
3579
CmpEQ(RValue<UInt4> x,RValue<UInt4> y)3580 RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y)
3581 {
3582 RR_DEBUG_INFO_UPDATE_LOC();
3583 return RValue<UInt4>(Nucleus::createICmpEQ(x.value(), y.value()));
3584 }
3585
CmpLT(RValue<UInt4> x,RValue<UInt4> y)3586 RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y)
3587 {
3588 RR_DEBUG_INFO_UPDATE_LOC();
3589 return RValue<UInt4>(Nucleus::createICmpULT(x.value(), y.value()));
3590 }
3591
CmpLE(RValue<UInt4> x,RValue<UInt4> y)3592 RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y)
3593 {
3594 RR_DEBUG_INFO_UPDATE_LOC();
3595 return RValue<UInt4>(Nucleus::createICmpULE(x.value(), y.value()));
3596 }
3597
CmpNEQ(RValue<UInt4> x,RValue<UInt4> y)3598 RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y)
3599 {
3600 RR_DEBUG_INFO_UPDATE_LOC();
3601 return RValue<UInt4>(Nucleus::createICmpNE(x.value(), y.value()));
3602 }
3603
CmpNLT(RValue<UInt4> x,RValue<UInt4> y)3604 RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y)
3605 {
3606 RR_DEBUG_INFO_UPDATE_LOC();
3607 return RValue<UInt4>(Nucleus::createICmpUGE(x.value(), y.value()));
3608 }
3609
CmpNLE(RValue<UInt4> x,RValue<UInt4> y)3610 RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y)
3611 {
3612 RR_DEBUG_INFO_UPDATE_LOC();
3613 return RValue<UInt4>(Nucleus::createICmpUGT(x.value(), y.value()));
3614 }
3615
Max(RValue<UInt4> x,RValue<UInt4> y)3616 RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y)
3617 {
3618 RR_DEBUG_INFO_UPDATE_LOC();
3619 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3620 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
3621 ::basicBlock->appendInst(cmp);
3622
3623 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3624 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3625 ::basicBlock->appendInst(select);
3626
3627 return RValue<UInt4>(V(result));
3628 }
3629
Min(RValue<UInt4> x,RValue<UInt4> y)3630 RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y)
3631 {
3632 RR_DEBUG_INFO_UPDATE_LOC();
3633 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3634 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
3635 ::basicBlock->appendInst(cmp);
3636
3637 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3638 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3639 ::basicBlock->appendInst(select);
3640
3641 return RValue<UInt4>(V(result));
3642 }
3643
type()3644 Type *UInt4::type()
3645 {
3646 return T(Ice::IceType_v4i32);
3647 }
3648
type()3649 Type *Half::type()
3650 {
3651 return T(Ice::IceType_i16);
3652 }
3653
Sqrt(RValue<Float> x)3654 RValue<Float> Sqrt(RValue<Float> x)
3655 {
3656 RR_DEBUG_INFO_UPDATE_LOC();
3657 Ice::Variable *result = ::function->makeVariable(Ice::IceType_f32);
3658 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3659 auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3660 sqrt->addArg(x.value());
3661 ::basicBlock->appendInst(sqrt);
3662
3663 return RValue<Float>(V(result));
3664 }
3665
Round(RValue<Float> x)3666 RValue<Float> Round(RValue<Float> x)
3667 {
3668 RR_DEBUG_INFO_UPDATE_LOC();
3669 return Float4(Round(Float4(x))).x;
3670 }
3671
Trunc(RValue<Float> x)3672 RValue<Float> Trunc(RValue<Float> x)
3673 {
3674 RR_DEBUG_INFO_UPDATE_LOC();
3675 return Float4(Trunc(Float4(x))).x;
3676 }
3677
Frac(RValue<Float> x)3678 RValue<Float> Frac(RValue<Float> x)
3679 {
3680 RR_DEBUG_INFO_UPDATE_LOC();
3681 return Float4(Frac(Float4(x))).x;
3682 }
3683
Floor(RValue<Float> x)3684 RValue<Float> Floor(RValue<Float> x)
3685 {
3686 RR_DEBUG_INFO_UPDATE_LOC();
3687 return Float4(Floor(Float4(x))).x;
3688 }
3689
Ceil(RValue<Float> x)3690 RValue<Float> Ceil(RValue<Float> x)
3691 {
3692 RR_DEBUG_INFO_UPDATE_LOC();
3693 return Float4(Ceil(Float4(x))).x;
3694 }
3695
type()3696 Type *Float::type()
3697 {
3698 return T(Ice::IceType_f32);
3699 }
3700
type()3701 Type *Float2::type()
3702 {
3703 return T(Type_v2f32);
3704 }
3705
Float4(RValue<Float> rhs)3706 Float4::Float4(RValue<Float> rhs)
3707 : XYZW(this)
3708 {
3709 RR_DEBUG_INFO_UPDATE_LOC();
3710 Value *vector = Nucleus::createBitCast(rhs.value(), Float4::type());
3711
3712 std::vector<int> swizzle = { 0 };
3713 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3714
3715 storeValue(replicate);
3716 }
3717
operator %(RValue<Float4> lhs,RValue<Float4> rhs)3718 RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs)
3719 {
3720 return ScalarizeCall(fmodf, lhs, rhs);
3721 }
3722
MulAdd(RValue<Float4> x,RValue<Float4> y,RValue<Float4> z)3723 RValue<Float4> MulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z)
3724 {
3725 // TODO(b/214591655): Use FMA when available.
3726 return x * y + z;
3727 }
3728
FMA(RValue<Float4> x,RValue<Float4> y,RValue<Float4> z)3729 RValue<Float4> FMA(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z)
3730 {
3731 // TODO(b/214591655): Use FMA instructions when available.
3732 return ScalarizeCall(fmaf, x, y, z);
3733 }
3734
Abs(RValue<Float4> x)3735 RValue<Float4> Abs(RValue<Float4> x)
3736 {
3737 // TODO: Optimize.
3738 Value *vector = Nucleus::createBitCast(x.value(), Int4::type());
3739 std::vector<int64_t> constantVector = { 0x7FFFFFFF };
3740 Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::type()));
3741
3742 return As<Float4>(result);
3743 }
3744
Max(RValue<Float4> x,RValue<Float4> y)3745 RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y)
3746 {
3747 RR_DEBUG_INFO_UPDATE_LOC();
3748 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3749 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value());
3750 ::basicBlock->appendInst(cmp);
3751
3752 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3753 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
3754 ::basicBlock->appendInst(select);
3755
3756 return RValue<Float4>(V(result));
3757 }
3758
Min(RValue<Float4> x,RValue<Float4> y)3759 RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y)
3760 {
3761 RR_DEBUG_INFO_UPDATE_LOC();
3762 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3763 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value());
3764 ::basicBlock->appendInst(cmp);
3765
3766 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3767 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
3768 ::basicBlock->appendInst(select);
3769
3770 return RValue<Float4>(V(result));
3771 }
3772
HasRcpApprox()3773 bool HasRcpApprox()
3774 {
3775 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3776 return false;
3777 }
3778
RcpApprox(RValue<Float4> x,bool exactAtPow2)3779 RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2)
3780 {
3781 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3782 UNREACHABLE("RValue<Float4> RcpApprox()");
3783 return { 0.0f };
3784 }
3785
RcpApprox(RValue<Float> x,bool exactAtPow2)3786 RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2)
3787 {
3788 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3789 UNREACHABLE("RValue<Float> RcpApprox()");
3790 return { 0.0f };
3791 }
3792
HasRcpSqrtApprox()3793 bool HasRcpSqrtApprox()
3794 {
3795 return false;
3796 }
3797
RcpSqrtApprox(RValue<Float4> x)3798 RValue<Float4> RcpSqrtApprox(RValue<Float4> x)
3799 {
3800 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3801 UNREACHABLE("RValue<Float4> RcpSqrtApprox()");
3802 return { 0.0f };
3803 }
3804
RcpSqrtApprox(RValue<Float> x)3805 RValue<Float> RcpSqrtApprox(RValue<Float> x)
3806 {
3807 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3808 UNREACHABLE("RValue<Float> RcpSqrtApprox()");
3809 return { 0.0f };
3810 }
3811
Sqrt(RValue<Float4> x)3812 RValue<Float4> Sqrt(RValue<Float4> x)
3813 {
3814 RR_DEBUG_INFO_UPDATE_LOC();
3815 if(emulateIntrinsics || CPUID::ARM)
3816 {
3817 Float4 result;
3818 result.x = Sqrt(Float(Float4(x).x));
3819 result.y = Sqrt(Float(Float4(x).y));
3820 result.z = Sqrt(Float(Float4(x).z));
3821 result.w = Sqrt(Float(Float4(x).w));
3822
3823 return result;
3824 }
3825 else
3826 {
3827 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3828 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3829 auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3830 sqrt->addArg(x.value());
3831 ::basicBlock->appendInst(sqrt);
3832
3833 return RValue<Float4>(V(result));
3834 }
3835 }
3836
SignMask(RValue<Float4> x)3837 RValue<Int> SignMask(RValue<Float4> x)
3838 {
3839 RR_DEBUG_INFO_UPDATE_LOC();
3840 if(emulateIntrinsics || CPUID::ARM)
3841 {
3842 Int4 xx = (As<Int4>(x) >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
3843 return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
3844 }
3845 else
3846 {
3847 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3848 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3849 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3850 movmsk->addArg(x.value());
3851 ::basicBlock->appendInst(movmsk);
3852
3853 return RValue<Int>(V(result));
3854 }
3855 }
3856
CmpEQ(RValue<Float4> x,RValue<Float4> y)3857 RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y)
3858 {
3859 RR_DEBUG_INFO_UPDATE_LOC();
3860 return RValue<Int4>(Nucleus::createFCmpOEQ(x.value(), y.value()));
3861 }
3862
CmpLT(RValue<Float4> x,RValue<Float4> y)3863 RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y)
3864 {
3865 RR_DEBUG_INFO_UPDATE_LOC();
3866 return RValue<Int4>(Nucleus::createFCmpOLT(x.value(), y.value()));
3867 }
3868
CmpLE(RValue<Float4> x,RValue<Float4> y)3869 RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y)
3870 {
3871 RR_DEBUG_INFO_UPDATE_LOC();
3872 return RValue<Int4>(Nucleus::createFCmpOLE(x.value(), y.value()));
3873 }
3874
CmpNEQ(RValue<Float4> x,RValue<Float4> y)3875 RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y)
3876 {
3877 RR_DEBUG_INFO_UPDATE_LOC();
3878 return RValue<Int4>(Nucleus::createFCmpONE(x.value(), y.value()));
3879 }
3880
CmpNLT(RValue<Float4> x,RValue<Float4> y)3881 RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y)
3882 {
3883 RR_DEBUG_INFO_UPDATE_LOC();
3884 return RValue<Int4>(Nucleus::createFCmpOGE(x.value(), y.value()));
3885 }
3886
CmpNLE(RValue<Float4> x,RValue<Float4> y)3887 RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y)
3888 {
3889 RR_DEBUG_INFO_UPDATE_LOC();
3890 return RValue<Int4>(Nucleus::createFCmpOGT(x.value(), y.value()));
3891 }
3892
CmpUEQ(RValue<Float4> x,RValue<Float4> y)3893 RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y)
3894 {
3895 RR_DEBUG_INFO_UPDATE_LOC();
3896 return RValue<Int4>(Nucleus::createFCmpUEQ(x.value(), y.value()));
3897 }
3898
CmpULT(RValue<Float4> x,RValue<Float4> y)3899 RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y)
3900 {
3901 RR_DEBUG_INFO_UPDATE_LOC();
3902 return RValue<Int4>(Nucleus::createFCmpULT(x.value(), y.value()));
3903 }
3904
CmpULE(RValue<Float4> x,RValue<Float4> y)3905 RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y)
3906 {
3907 RR_DEBUG_INFO_UPDATE_LOC();
3908 return RValue<Int4>(Nucleus::createFCmpULE(x.value(), y.value()));
3909 }
3910
CmpUNEQ(RValue<Float4> x,RValue<Float4> y)3911 RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y)
3912 {
3913 RR_DEBUG_INFO_UPDATE_LOC();
3914 return RValue<Int4>(Nucleus::createFCmpUNE(x.value(), y.value()));
3915 }
3916
CmpUNLT(RValue<Float4> x,RValue<Float4> y)3917 RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y)
3918 {
3919 RR_DEBUG_INFO_UPDATE_LOC();
3920 return RValue<Int4>(Nucleus::createFCmpUGE(x.value(), y.value()));
3921 }
3922
CmpUNLE(RValue<Float4> x,RValue<Float4> y)3923 RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y)
3924 {
3925 RR_DEBUG_INFO_UPDATE_LOC();
3926 return RValue<Int4>(Nucleus::createFCmpUGT(x.value(), y.value()));
3927 }
3928
Round(RValue<Float4> x)3929 RValue<Float4> Round(RValue<Float4> x)
3930 {
3931 RR_DEBUG_INFO_UPDATE_LOC();
3932 if(emulateIntrinsics || CPUID::ARM)
3933 {
3934 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3935 return (x + Float4(0x00C00000)) - Float4(0x00C00000);
3936 }
3937 else if(CPUID::SSE4_1)
3938 {
3939 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3940 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3941 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3942 round->addArg(x.value());
3943 round->addArg(::context->getConstantInt32(0));
3944 ::basicBlock->appendInst(round);
3945
3946 return RValue<Float4>(V(result));
3947 }
3948 else
3949 {
3950 return Float4(RoundInt(x));
3951 }
3952 }
3953
Trunc(RValue<Float4> x)3954 RValue<Float4> Trunc(RValue<Float4> x)
3955 {
3956 RR_DEBUG_INFO_UPDATE_LOC();
3957 if(CPUID::SSE4_1)
3958 {
3959 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3960 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3961 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3962 round->addArg(x.value());
3963 round->addArg(::context->getConstantInt32(3));
3964 ::basicBlock->appendInst(round);
3965
3966 return RValue<Float4>(V(result));
3967 }
3968 else
3969 {
3970 return Float4(Int4(x));
3971 }
3972 }
3973
Frac(RValue<Float4> x)3974 RValue<Float4> Frac(RValue<Float4> x)
3975 {
3976 RR_DEBUG_INFO_UPDATE_LOC();
3977 Float4 frc;
3978
3979 if(CPUID::SSE4_1)
3980 {
3981 frc = x - Floor(x);
3982 }
3983 else
3984 {
3985 frc = x - Float4(Int4(x)); // Signed fractional part.
3986
3987 frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f))); // Add 1.0 if negative.
3988 }
3989
3990 // x - floor(x) can be 1.0 for very small negative x.
3991 // Clamp against the value just below 1.0.
3992 return Min(frc, As<Float4>(Int4(0x3F7FFFFF)));
3993 }
3994
Floor(RValue<Float4> x)3995 RValue<Float4> Floor(RValue<Float4> x)
3996 {
3997 RR_DEBUG_INFO_UPDATE_LOC();
3998 if(CPUID::SSE4_1)
3999 {
4000 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4001 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4002 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4003 round->addArg(x.value());
4004 round->addArg(::context->getConstantInt32(1));
4005 ::basicBlock->appendInst(round);
4006
4007 return RValue<Float4>(V(result));
4008 }
4009 else
4010 {
4011 return x - Frac(x);
4012 }
4013 }
4014
Ceil(RValue<Float4> x)4015 RValue<Float4> Ceil(RValue<Float4> x)
4016 {
4017 RR_DEBUG_INFO_UPDATE_LOC();
4018 if(CPUID::SSE4_1)
4019 {
4020 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4021 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4022 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4023 round->addArg(x.value());
4024 round->addArg(::context->getConstantInt32(2));
4025 ::basicBlock->appendInst(round);
4026
4027 return RValue<Float4>(V(result));
4028 }
4029 else
4030 {
4031 return -Floor(-x);
4032 }
4033 }
4034
type()4035 Type *Float4::type()
4036 {
4037 return T(Ice::IceType_v4f32);
4038 }
4039
Ticks()4040 RValue<Long> Ticks()
4041 {
4042 RR_DEBUG_INFO_UPDATE_LOC();
4043 UNIMPLEMENTED_NO_BUG("RValue<Long> Ticks()");
4044 return Long(Int(0));
4045 }
4046
ConstantPointer(const void * ptr)4047 RValue<Pointer<Byte>> ConstantPointer(const void *ptr)
4048 {
4049 RR_DEBUG_INFO_UPDATE_LOC();
4050 return RValue<Pointer<Byte>>{ V(sz::getConstantPointer(::context, ptr)) };
4051 }
4052
ConstantData(const void * data,size_t size)4053 RValue<Pointer<Byte>> ConstantData(const void *data, size_t size)
4054 {
4055 RR_DEBUG_INFO_UPDATE_LOC();
4056 return RValue<Pointer<Byte>>{ V(IceConstantData(data, size)) };
4057 }
4058
Call(RValue<Pointer<Byte>> fptr,Type * retTy,std::initializer_list<Value * > args,std::initializer_list<Type * > argTys)4059 Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys)
4060 {
4061 RR_DEBUG_INFO_UPDATE_LOC();
4062 return V(sz::Call(::function, ::basicBlock, T(retTy), V(fptr.value()), V(args), false));
4063 }
4064
Breakpoint()4065 void Breakpoint()
4066 {
4067 RR_DEBUG_INFO_UPDATE_LOC();
4068 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Trap, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4069 auto trap = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4070 ::basicBlock->appendInst(trap);
4071 }
4072
createFence(std::memory_order memoryOrder)4073 void Nucleus::createFence(std::memory_order memoryOrder)
4074 {
4075 RR_DEBUG_INFO_UPDATE_LOC();
4076 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicFence, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4077 auto inst = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4078 auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
4079 inst->addArg(order);
4080 ::basicBlock->appendInst(inst);
4081 }
4082
createMaskedLoad(Value * ptr,Type * elTy,Value * mask,unsigned int alignment,bool zeroMaskedLanes)4083 Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes)
4084 {
4085 RR_DEBUG_INFO_UPDATE_LOC();
4086 UNIMPLEMENTED("b/155867273 Subzero createMaskedLoad()");
4087 return nullptr;
4088 }
4089
createMaskedStore(Value * ptr,Value * val,Value * mask,unsigned int alignment)4090 void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment)
4091 {
4092 RR_DEBUG_INFO_UPDATE_LOC();
4093 UNIMPLEMENTED("b/155867273 Subzero createMaskedStore()");
4094 }
4095
4096 template<typename T>
4097 struct UnderlyingType
4098 {
4099 using Type = typename decltype(rr::Extract(std::declval<RValue<T>>(), 0))::rvalue_underlying_type;
4100 };
4101
4102 template<typename T>
4103 using UnderlyingTypeT = typename UnderlyingType<T>::Type;
4104
4105 template<typename T, typename EL = UnderlyingTypeT<T>>
gather(T & out,RValue<Pointer<EL>> base,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment,bool zeroMaskedLanes)4106 static void gather(T &out, RValue<Pointer<EL>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes)
4107 {
4108 constexpr bool atomic = false;
4109 constexpr std::memory_order order = std::memory_order_relaxed;
4110
4111 Pointer<Byte> baseBytePtr = base;
4112
4113 out = T(0);
4114 for(int i = 0; i < SIMD::Width; i++)
4115 {
4116 If(Extract(mask, i) != 0)
4117 {
4118 auto offset = Extract(offsets, i);
4119 auto el = Load(Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order);
4120 out = Insert(out, el, i);
4121 }
4122 Else If(zeroMaskedLanes)
4123 {
4124 out = Insert(out, EL(0), i);
4125 }
4126 }
4127 }
4128
4129 template<typename T, typename EL = UnderlyingTypeT<T>>
scatter(RValue<Pointer<EL>> base,RValue<T> val,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment)4130 static void scatter(RValue<Pointer<EL>> base, RValue<T> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment)
4131 {
4132 constexpr bool atomic = false;
4133 constexpr std::memory_order order = std::memory_order_relaxed;
4134
4135 Pointer<Byte> baseBytePtr = base;
4136
4137 for(int i = 0; i < SIMD::Width; i++)
4138 {
4139 If(Extract(mask, i) != 0)
4140 {
4141 auto offset = Extract(offsets, i);
4142 Store(Extract(val, i), Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order);
4143 }
4144 }
4145 }
4146
Gather(RValue<Pointer<Float>> base,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment,bool zeroMaskedLanes)4147 RValue<SIMD::Float> Gather(RValue<Pointer<Float>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4148 {
4149 RR_DEBUG_INFO_UPDATE_LOC();
4150 SIMD::Float result{};
4151 gather(result, base, offsets, mask, alignment, zeroMaskedLanes);
4152 return result;
4153 }
4154
Gather(RValue<Pointer<Int>> base,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment,bool zeroMaskedLanes)4155 RValue<SIMD::Int> Gather(RValue<Pointer<Int>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4156 {
4157 RR_DEBUG_INFO_UPDATE_LOC();
4158 SIMD::Int result{};
4159 gather(result, base, offsets, mask, alignment, zeroMaskedLanes);
4160 return result;
4161 }
4162
Scatter(RValue<Pointer<Float>> base,RValue<SIMD::Float> val,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment)4163 void Scatter(RValue<Pointer<Float>> base, RValue<SIMD::Float> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment)
4164 {
4165 RR_DEBUG_INFO_UPDATE_LOC();
4166 scatter(base, val, offsets, mask, alignment);
4167 }
4168
Scatter(RValue<Pointer<Int>> base,RValue<SIMD::Int> val,RValue<SIMD::Int> offsets,RValue<SIMD::Int> mask,unsigned int alignment)4169 void Scatter(RValue<Pointer<Int>> base, RValue<SIMD::Int> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment)
4170 {
4171 RR_DEBUG_INFO_UPDATE_LOC();
4172 scatter<SIMD::Int>(base, val, offsets, mask, alignment);
4173 }
4174
Ctlz(RValue<UInt> x,bool isZeroUndef)4175 RValue<UInt> Ctlz(RValue<UInt> x, bool isZeroUndef)
4176 {
4177 RR_DEBUG_INFO_UPDATE_LOC();
4178 if(emulateIntrinsics)
4179 {
4180 UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4181 return UInt(0);
4182 }
4183 else
4184 {
4185 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4186 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Ctlz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4187 auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4188 ctlz->addArg(x.value());
4189 ::basicBlock->appendInst(ctlz);
4190
4191 return RValue<UInt>(V(result));
4192 }
4193 }
4194
Ctlz(RValue<UInt4> x,bool isZeroUndef)4195 RValue<UInt4> Ctlz(RValue<UInt4> x, bool isZeroUndef)
4196 {
4197 RR_DEBUG_INFO_UPDATE_LOC();
4198 if(emulateIntrinsics)
4199 {
4200 UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4201 return UInt4(0);
4202 }
4203 else
4204 {
4205 return Scalarize([isZeroUndef](auto a) { return Ctlz(a, isZeroUndef); }, x);
4206 }
4207 }
4208
Cttz(RValue<UInt> x,bool isZeroUndef)4209 RValue<UInt> Cttz(RValue<UInt> x, bool isZeroUndef)
4210 {
4211 RR_DEBUG_INFO_UPDATE_LOC();
4212 if(emulateIntrinsics)
4213 {
4214 UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4215 return UInt(0);
4216 }
4217 else
4218 {
4219 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4220 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Cttz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4221 auto cttz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4222 cttz->addArg(x.value());
4223 ::basicBlock->appendInst(cttz);
4224
4225 return RValue<UInt>(V(result));
4226 }
4227 }
4228
Cttz(RValue<UInt4> x,bool isZeroUndef)4229 RValue<UInt4> Cttz(RValue<UInt4> x, bool isZeroUndef)
4230 {
4231 RR_DEBUG_INFO_UPDATE_LOC();
4232 if(emulateIntrinsics)
4233 {
4234 UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4235 return UInt4(0);
4236 }
4237 else
4238 {
4239 return Scalarize([isZeroUndef](auto a) { return Cttz(a, isZeroUndef); }, x);
4240 }
4241 }
4242
4243 // TODO(b/148276653): Both atomicMin and atomicMax use a static (global) mutex that makes all min
4244 // operations for a given T mutually exclusive, rather than only the ones on the value pointed to
4245 // by ptr. Use a CAS loop, as is done for LLVMReactor's min/max atomic for Android.
4246 // TODO(b/148207274): Or, move this down into Subzero as a CAS-based operation.
4247 template<typename T>
atomicMin(T * ptr,T value)4248 static T atomicMin(T *ptr, T value)
4249 {
4250 static std::mutex m;
4251
4252 std::lock_guard<std::mutex> lock(m);
4253 T origValue = *ptr;
4254 *ptr = std::min(origValue, value);
4255 return origValue;
4256 }
4257
4258 template<typename T>
atomicMax(T * ptr,T value)4259 static T atomicMax(T *ptr, T value)
4260 {
4261 static std::mutex m;
4262
4263 std::lock_guard<std::mutex> lock(m);
4264 T origValue = *ptr;
4265 *ptr = std::max(origValue, value);
4266 return origValue;
4267 }
4268
MinAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4269 RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4270 {
4271 RR_DEBUG_INFO_UPDATE_LOC();
4272 return Call(atomicMin<int32_t>, x, y);
4273 }
4274
MinAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4275 RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4276 {
4277 RR_DEBUG_INFO_UPDATE_LOC();
4278 return Call(atomicMin<uint32_t>, x, y);
4279 }
4280
MaxAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4281 RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4282 {
4283 RR_DEBUG_INFO_UPDATE_LOC();
4284 return Call(atomicMax<int32_t>, x, y);
4285 }
4286
MaxAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4287 RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4288 {
4289 RR_DEBUG_INFO_UPDATE_LOC();
4290 return Call(atomicMax<uint32_t>, x, y);
4291 }
4292
EmitDebugLocation()4293 void EmitDebugLocation()
4294 {
4295 #ifdef ENABLE_RR_DEBUG_INFO
4296 emitPrintLocation(getCallerBacktrace());
4297 #endif // ENABLE_RR_DEBUG_INFO
4298 }
EmitDebugVariable(Value * value)4299 void EmitDebugVariable(Value *value) {}
FlushDebug()4300 void FlushDebug() {}
4301
4302 namespace {
4303 namespace coro {
4304
4305 // Instance data per generated coroutine
4306 // This is the "handle" type used for Coroutine functions
4307 // Lifetime: from yield to when CoroutineEntryDestroy generated function is called.
4308 struct CoroutineData
4309 {
4310 bool useInternalScheduler = false;
4311 bool done = false; // the coroutine should stop at the next yield()
4312 bool terminated = false; // the coroutine has finished.
4313 bool inRoutine = false; // is the coroutine currently executing?
4314 marl::Scheduler::Fiber *mainFiber = nullptr;
4315 marl::Scheduler::Fiber *routineFiber = nullptr;
4316 void *promisePtr = nullptr;
4317 };
4318
createCoroutineData()4319 CoroutineData *createCoroutineData()
4320 {
4321 return new CoroutineData{};
4322 }
4323
destroyCoroutineData(CoroutineData * coroData)4324 void destroyCoroutineData(CoroutineData *coroData)
4325 {
4326 delete coroData;
4327 }
4328
4329 // suspend() pauses execution of the coroutine, and resumes execution from the
4330 // caller's call to await().
4331 // Returns true if await() is called again, or false if coroutine_destroy()
4332 // is called.
suspend(Nucleus::CoroutineHandle handle)4333 bool suspend(Nucleus::CoroutineHandle handle)
4334 {
4335 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4336 ASSERT(marl::Scheduler::Fiber::current() == coroData->routineFiber);
4337 ASSERT(coroData->inRoutine);
4338 coroData->inRoutine = false;
4339 coroData->mainFiber->notify();
4340 while(!coroData->inRoutine)
4341 {
4342 coroData->routineFiber->wait();
4343 }
4344 return !coroData->done;
4345 }
4346
4347 // resume() is called by await(), blocking until the coroutine calls yield()
4348 // or the coroutine terminates.
resume(Nucleus::CoroutineHandle handle)4349 void resume(Nucleus::CoroutineHandle handle)
4350 {
4351 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4352 ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4353 ASSERT(!coroData->inRoutine);
4354 coroData->inRoutine = true;
4355 coroData->routineFiber->notify();
4356 while(coroData->inRoutine)
4357 {
4358 coroData->mainFiber->wait();
4359 }
4360 }
4361
4362 // stop() is called by coroutine_destroy(), signalling that it's done, then blocks
4363 // until the coroutine ends, and deletes the coroutine data.
stop(Nucleus::CoroutineHandle handle)4364 void stop(Nucleus::CoroutineHandle handle)
4365 {
4366 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4367 ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4368 ASSERT(!coroData->inRoutine);
4369 if(!coroData->terminated)
4370 {
4371 coroData->done = true;
4372 coroData->inRoutine = true;
4373 coroData->routineFiber->notify();
4374 while(!coroData->terminated)
4375 {
4376 coroData->mainFiber->wait();
4377 }
4378 }
4379 if(coroData->useInternalScheduler)
4380 {
4381 ::getOrCreateScheduler().unbind();
4382 }
4383 coro::destroyCoroutineData(coroData); // free the coroutine data.
4384 }
4385
4386 namespace detail {
4387 thread_local rr::Nucleus::CoroutineHandle coroHandle{};
4388 } // namespace detail
4389
setHandleParam(Nucleus::CoroutineHandle handle)4390 void setHandleParam(Nucleus::CoroutineHandle handle)
4391 {
4392 ASSERT(!detail::coroHandle);
4393 detail::coroHandle = handle;
4394 }
4395
getHandleParam()4396 Nucleus::CoroutineHandle getHandleParam()
4397 {
4398 ASSERT(detail::coroHandle);
4399 auto handle = detail::coroHandle;
4400 detail::coroHandle = {};
4401 return handle;
4402 }
4403
isDone(Nucleus::CoroutineHandle handle)4404 bool isDone(Nucleus::CoroutineHandle handle)
4405 {
4406 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4407 return coroData->done;
4408 }
4409
setPromisePtr(Nucleus::CoroutineHandle handle,void * promisePtr)4410 void setPromisePtr(Nucleus::CoroutineHandle handle, void *promisePtr)
4411 {
4412 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4413 coroData->promisePtr = promisePtr;
4414 }
4415
getPromisePtr(Nucleus::CoroutineHandle handle)4416 void *getPromisePtr(Nucleus::CoroutineHandle handle)
4417 {
4418 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4419 return coroData->promisePtr;
4420 }
4421
4422 } // namespace coro
4423 } // namespace
4424
4425 // Used to generate coroutines.
4426 // Lifetime: from yield to acquireCoroutine
4427 class CoroutineGenerator
4428 {
4429 public:
CoroutineGenerator()4430 CoroutineGenerator()
4431 {
4432 }
4433
4434 // Inserts instructions at the top of the current function to make it a coroutine.
generateCoroutineBegin()4435 void generateCoroutineBegin()
4436 {
4437 // Begin building the main coroutine_begin() function.
4438 // We insert these instructions at the top of the entry node,
4439 // before existing reactor-generated instructions.
4440
4441 // CoroutineHandle coroutine_begin(<Arguments>)
4442 // {
4443 // this->handle = coro::getHandleParam();
4444 //
4445 // YieldType promise;
4446 // coro::setPromisePtr(handle, &promise); // For await
4447 //
4448 // ... <REACTOR CODE> ...
4449 //
4450
4451 // this->handle = coro::getHandleParam();
4452 this->handle = sz::Call(::function, ::entryBlock, coro::getHandleParam);
4453
4454 // YieldType promise;
4455 // coro::setPromisePtr(handle, &promise); // For await
4456 this->promise = sz::allocateStackVariable(::function, T(::coroYieldType));
4457 sz::Call(::function, ::entryBlock, coro::setPromisePtr, this->handle, this->promise);
4458 }
4459
4460 // Adds instructions for Yield() calls at the current location of the main coroutine function.
generateYield(Value * val)4461 void generateYield(Value *val)
4462 {
4463 // ... <REACTOR CODE> ...
4464 //
4465 // promise = val;
4466 // if (!coro::suspend(handle)) {
4467 // return false; // coroutine has been stopped by the caller.
4468 // }
4469 //
4470 // ... <REACTOR CODE> ...
4471
4472 // promise = val;
4473 Nucleus::createStore(val, V(this->promise), ::coroYieldType);
4474
4475 // if (!coro::suspend(handle)) {
4476 auto result = sz::Call(::function, ::basicBlock, coro::suspend, this->handle);
4477 auto doneBlock = Nucleus::createBasicBlock();
4478 auto resumeBlock = Nucleus::createBasicBlock();
4479 Nucleus::createCondBr(V(result), resumeBlock, doneBlock);
4480
4481 // return false; // coroutine has been stopped by the caller.
4482 ::basicBlock = doneBlock;
4483 Nucleus::createRetVoid(); // coroutine return value is ignored.
4484
4485 // ... <REACTOR CODE> ...
4486 ::basicBlock = resumeBlock;
4487 }
4488
4489 using FunctionUniquePtr = std::unique_ptr<Ice::Cfg>;
4490
4491 // Generates the await function for the current coroutine.
4492 // Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateAwaitFunction()4493 static FunctionUniquePtr generateAwaitFunction()
4494 {
4495 // bool coroutine_await(CoroutineHandle handle, YieldType* out)
4496 // {
4497 // if (coro::isDone())
4498 // {
4499 // return false;
4500 // }
4501 // else // resume
4502 // {
4503 // YieldType* promise = coro::getPromisePtr(handle);
4504 // *out = *promise;
4505 // coro::resume(handle);
4506 // return true;
4507 // }
4508 // }
4509
4510 // Subzero doesn't support bool types (IceType_i1) as return type
4511 const Ice::Type ReturnType = Ice::IceType_i32;
4512 const Ice::Type YieldPtrType = sz::getPointerType(T(::coroYieldType));
4513 const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4514
4515 Ice::Cfg *awaitFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType, YieldPtrType });
4516 Ice::CfgLocalAllocatorScope scopedAlloc{ awaitFunc };
4517
4518 Ice::Variable *handle = awaitFunc->getArgs()[0];
4519 Ice::Variable *outPtr = awaitFunc->getArgs()[1];
4520
4521 auto doneBlock = awaitFunc->makeNode();
4522 {
4523 // return false;
4524 Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(0));
4525 doneBlock->appendInst(ret);
4526 }
4527
4528 auto resumeBlock = awaitFunc->makeNode();
4529 {
4530 // YieldType* promise = coro::getPromisePtr(handle);
4531 Ice::Variable *promise = sz::Call(awaitFunc, resumeBlock, coro::getPromisePtr, handle);
4532
4533 // *out = *promise;
4534 // Load promise value
4535 Ice::Variable *promiseVal = awaitFunc->makeVariable(T(::coroYieldType));
4536 auto load = Ice::InstLoad::create(awaitFunc, promiseVal, promise);
4537 resumeBlock->appendInst(load);
4538 // Then store it in output param
4539 auto store = Ice::InstStore::create(awaitFunc, promiseVal, outPtr);
4540 resumeBlock->appendInst(store);
4541
4542 // coro::resume(handle);
4543 sz::Call(awaitFunc, resumeBlock, coro::resume, handle);
4544
4545 // return true;
4546 Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(1));
4547 resumeBlock->appendInst(ret);
4548 }
4549
4550 // if (coro::isDone())
4551 // {
4552 // <doneBlock>
4553 // }
4554 // else // resume
4555 // {
4556 // <resumeBlock>
4557 // }
4558 Ice::CfgNode *bb = awaitFunc->getEntryNode();
4559 Ice::Variable *done = sz::Call(awaitFunc, bb, coro::isDone, handle);
4560 auto br = Ice::InstBr::create(awaitFunc, done, doneBlock, resumeBlock);
4561 bb->appendInst(br);
4562
4563 return FunctionUniquePtr{ awaitFunc };
4564 }
4565
4566 // Generates the destroy function for the current coroutine.
4567 // Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateDestroyFunction()4568 static FunctionUniquePtr generateDestroyFunction()
4569 {
4570 // void coroutine_destroy(Nucleus::CoroutineHandle handle)
4571 // {
4572 // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4573 // return;
4574 // }
4575
4576 const Ice::Type ReturnType = Ice::IceType_void;
4577 const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4578
4579 Ice::Cfg *destroyFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType });
4580 Ice::CfgLocalAllocatorScope scopedAlloc{ destroyFunc };
4581
4582 Ice::Variable *handle = destroyFunc->getArgs()[0];
4583
4584 auto *bb = destroyFunc->getEntryNode();
4585
4586 // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4587 sz::Call(destroyFunc, bb, coro::stop, handle);
4588
4589 // return;
4590 Ice::InstRet *ret = Ice::InstRet::create(destroyFunc);
4591 bb->appendInst(ret);
4592
4593 return FunctionUniquePtr{ destroyFunc };
4594 }
4595
4596 private:
4597 Ice::Variable *handle{};
4598 Ice::Variable *promise{};
4599 };
4600
invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle ()> beginFunc)4601 static Nucleus::CoroutineHandle invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle()> beginFunc)
4602 {
4603 // This doubles up as our coroutine handle
4604 auto coroData = coro::createCoroutineData();
4605
4606 coroData->useInternalScheduler = (marl::Scheduler::get() == nullptr);
4607 if(coroData->useInternalScheduler)
4608 {
4609 ::getOrCreateScheduler().bind();
4610 }
4611
4612 auto run = [=] {
4613 // Store handle in TLS so that the coroutine can grab it right away, before
4614 // any fiber switch occurs.
4615 coro::setHandleParam(coroData);
4616
4617 ASSERT(!coroData->routineFiber);
4618 coroData->routineFiber = marl::Scheduler::Fiber::current();
4619
4620 beginFunc();
4621
4622 ASSERT(coroData->inRoutine);
4623 coroData->done = true; // coroutine is done.
4624 coroData->terminated = true; // signal that the coroutine data is ready for freeing.
4625 coroData->inRoutine = false;
4626 coroData->mainFiber->notify();
4627 };
4628
4629 ASSERT(!coroData->mainFiber);
4630 coroData->mainFiber = marl::Scheduler::Fiber::current();
4631
4632 // block until the first yield or coroutine end
4633 ASSERT(!coroData->inRoutine);
4634 coroData->inRoutine = true;
4635 marl::schedule(marl::Task(run, marl::Task::Flags::SameThread));
4636 while(coroData->inRoutine)
4637 {
4638 coroData->mainFiber->wait();
4639 }
4640
4641 return coroData;
4642 }
4643
createCoroutine(Type * yieldType,const std::vector<Type * > & params)4644 void Nucleus::createCoroutine(Type *yieldType, const std::vector<Type *> ¶ms)
4645 {
4646 // Start by creating a regular function
4647 createFunction(yieldType, params);
4648
4649 // Save in case yield() is called
4650 ASSERT(::coroYieldType == nullptr); // Only one coroutine can be generated at once
4651 ::coroYieldType = yieldType;
4652 }
4653
yield(Value * val)4654 void Nucleus::yield(Value *val)
4655 {
4656 RR_DEBUG_INFO_UPDATE_LOC();
4657 Variable::materializeAll();
4658
4659 // On first yield, we start generating coroutine functions
4660 if(!::coroGen)
4661 {
4662 ::coroGen = std::make_shared<CoroutineGenerator>();
4663 ::coroGen->generateCoroutineBegin();
4664 }
4665
4666 ASSERT(::coroGen);
4667 ::coroGen->generateYield(val);
4668 }
4669
coroutineEntryAwaitStub(Nucleus::CoroutineHandle,void * yieldValue)4670 static bool coroutineEntryAwaitStub(Nucleus::CoroutineHandle, void *yieldValue)
4671 {
4672 return false;
4673 }
4674
coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)4675 static void coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)
4676 {
4677 }
4678
acquireCoroutine(const char * name)4679 std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name)
4680 {
4681 if(::coroGen)
4682 {
4683 // Finish generating coroutine functions
4684 {
4685 Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
4686 finalizeFunction();
4687 }
4688
4689 auto awaitFunc = ::coroGen->generateAwaitFunction();
4690 auto destroyFunc = ::coroGen->generateDestroyFunction();
4691
4692 // At this point, we no longer need the CoroutineGenerator.
4693 ::coroGen.reset();
4694 ::coroYieldType = nullptr;
4695
4696 auto routine = rr::acquireRoutine({ ::function, awaitFunc.get(), destroyFunc.get() },
4697 { name, "await", "destroy" });
4698
4699 return routine;
4700 }
4701 else
4702 {
4703 {
4704 Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
4705 finalizeFunction();
4706 }
4707
4708 ::coroYieldType = nullptr;
4709
4710 // Not an actual coroutine (no yields), so return stubs for await and destroy
4711 auto routine = rr::acquireRoutine({ ::function }, { name });
4712
4713 auto routineImpl = std::static_pointer_cast<ELFMemoryStreamer>(routine);
4714 routineImpl->setEntry(Nucleus::CoroutineEntryAwait, reinterpret_cast<const void *>(&coroutineEntryAwaitStub));
4715 routineImpl->setEntry(Nucleus::CoroutineEntryDestroy, reinterpret_cast<const void *>(&coroutineEntryDestroyStub));
4716 return routine;
4717 }
4718 }
4719
invokeCoroutineBegin(Routine & routine,std::function<Nucleus::CoroutineHandle ()> func)4720 Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func)
4721 {
4722 const bool isCoroutine = routine.getEntry(Nucleus::CoroutineEntryAwait) != reinterpret_cast<const void *>(&coroutineEntryAwaitStub);
4723
4724 if(isCoroutine)
4725 {
4726 return rr::invokeCoroutineBegin(func);
4727 }
4728 else
4729 {
4730 // For regular routines, just invoke the begin func directly
4731 return func();
4732 }
4733 }
4734
Int(RValue<scalar::Int> rhs)4735 SIMD::Int::Int(RValue<scalar::Int> rhs)
4736 : XYZW(this)
4737 {
4738 RR_DEBUG_INFO_UPDATE_LOC();
4739 Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::Int::type());
4740
4741 std::vector<int> swizzle = { 0 };
4742 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
4743
4744 storeValue(replicate);
4745 }
4746
operator <<(RValue<SIMD::Int> lhs,unsigned char rhs)4747 RValue<SIMD::Int> operator<<(RValue<SIMD::Int> lhs, unsigned char rhs)
4748 {
4749 RR_DEBUG_INFO_UPDATE_LOC();
4750 if(emulateIntrinsics)
4751 {
4752 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
4753 }
4754 else
4755 {
4756 return RValue<SIMD::Int>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
4757 }
4758 }
4759
operator >>(RValue<SIMD::Int> lhs,unsigned char rhs)4760 RValue<SIMD::Int> operator>>(RValue<SIMD::Int> lhs, unsigned char rhs)
4761 {
4762 RR_DEBUG_INFO_UPDATE_LOC();
4763 if(emulateIntrinsics)
4764 {
4765 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
4766 }
4767 else
4768 {
4769 return RValue<SIMD::Int>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
4770 }
4771 }
4772
CmpEQ(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4773 RValue<SIMD::Int> CmpEQ(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4774 {
4775 RR_DEBUG_INFO_UPDATE_LOC();
4776 return RValue<SIMD::Int>(Nucleus::createICmpEQ(x.value(), y.value()));
4777 }
4778
CmpLT(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4779 RValue<SIMD::Int> CmpLT(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4780 {
4781 RR_DEBUG_INFO_UPDATE_LOC();
4782 return RValue<SIMD::Int>(Nucleus::createICmpSLT(x.value(), y.value()));
4783 }
4784
CmpLE(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4785 RValue<SIMD::Int> CmpLE(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4786 {
4787 RR_DEBUG_INFO_UPDATE_LOC();
4788 return RValue<SIMD::Int>(Nucleus::createICmpSLE(x.value(), y.value()));
4789 }
4790
CmpNEQ(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4791 RValue<SIMD::Int> CmpNEQ(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4792 {
4793 RR_DEBUG_INFO_UPDATE_LOC();
4794 return RValue<SIMD::Int>(Nucleus::createICmpNE(x.value(), y.value()));
4795 }
4796
CmpNLT(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4797 RValue<SIMD::Int> CmpNLT(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4798 {
4799 RR_DEBUG_INFO_UPDATE_LOC();
4800 return RValue<SIMD::Int>(Nucleus::createICmpSGE(x.value(), y.value()));
4801 }
4802
CmpNLE(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4803 RValue<SIMD::Int> CmpNLE(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4804 {
4805 RR_DEBUG_INFO_UPDATE_LOC();
4806 return RValue<SIMD::Int>(Nucleus::createICmpSGT(x.value(), y.value()));
4807 }
4808
Abs(RValue<SIMD::Int> x)4809 RValue<SIMD::Int> Abs(RValue<SIMD::Int> x)
4810 {
4811 // TODO: Optimize.
4812 auto negative = x >> 31;
4813 return (x ^ negative) - negative;
4814 }
4815
Max(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4816 RValue<SIMD::Int> Max(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4817 {
4818 RR_DEBUG_INFO_UPDATE_LOC();
4819 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
4820 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
4821 ::basicBlock->appendInst(cmp);
4822
4823 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
4824 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
4825 ::basicBlock->appendInst(select);
4826
4827 return RValue<SIMD::Int>(V(result));
4828 }
4829
Min(RValue<SIMD::Int> x,RValue<SIMD::Int> y)4830 RValue<SIMD::Int> Min(RValue<SIMD::Int> x, RValue<SIMD::Int> y)
4831 {
4832 RR_DEBUG_INFO_UPDATE_LOC();
4833 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
4834 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
4835 ::basicBlock->appendInst(cmp);
4836
4837 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
4838 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
4839 ::basicBlock->appendInst(select);
4840
4841 return RValue<SIMD::Int>(V(result));
4842 }
4843
RoundInt(RValue<SIMD::Float> cast)4844 RValue<SIMD::Int> RoundInt(RValue<SIMD::Float> cast)
4845 {
4846 RR_DEBUG_INFO_UPDATE_LOC();
4847 if(emulateIntrinsics || CPUID::ARM)
4848 {
4849 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
4850 return SIMD::Int((cast + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000));
4851 }
4852 else
4853 {
4854 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
4855 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4856 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4857 nearbyint->addArg(cast.value());
4858 ::basicBlock->appendInst(nearbyint);
4859
4860 return RValue<SIMD::Int>(V(result));
4861 }
4862 }
4863
RoundIntClamped(RValue<SIMD::Float> cast)4864 RValue<SIMD::Int> RoundIntClamped(RValue<SIMD::Float> cast)
4865 {
4866 RR_DEBUG_INFO_UPDATE_LOC();
4867
4868 // cvtps2dq produces 0x80000000, a negative value, for input larger than
4869 // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0
4870 // saturate to 0x80000000.
4871 RValue<SIMD::Float> clamped = Min(cast, SIMD::Float(0x7FFFFF80));
4872
4873 if(emulateIntrinsics || CPUID::ARM)
4874 {
4875 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
4876 return SIMD::Int((clamped + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000));
4877 }
4878 else
4879 {
4880 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
4881 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4882 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4883 nearbyint->addArg(clamped.value());
4884 ::basicBlock->appendInst(nearbyint);
4885
4886 return RValue<SIMD::Int>(V(result));
4887 }
4888 }
4889
Extract128(RValue<SIMD::Int> val,int i)4890 RValue<Int4> Extract128(RValue<SIMD::Int> val, int i)
4891 {
4892 ASSERT(SIMD::Width == 4);
4893 ASSERT(i == 0);
4894
4895 return As<Int4>(val);
4896 }
4897
Insert128(RValue<SIMD::Int> val,RValue<Int4> element,int i)4898 RValue<SIMD::Int> Insert128(RValue<SIMD::Int> val, RValue<Int4> element, int i)
4899 {
4900 ASSERT(SIMD::Width == 4);
4901 ASSERT(i == 0);
4902
4903 return As<SIMD::Int>(element);
4904 }
4905
type()4906 Type *SIMD::Int::type()
4907 {
4908 return T(Ice::IceType_v4i32);
4909 }
4910
UInt(RValue<SIMD::Float> cast)4911 SIMD::UInt::UInt(RValue<SIMD::Float> cast)
4912 : XYZW(this)
4913 {
4914 RR_DEBUG_INFO_UPDATE_LOC();
4915 // Smallest positive value representable in UInt, but not in Int
4916 const unsigned int ustart = 0x80000000u;
4917 const float ustartf = float(ustart);
4918
4919 // Check if the value can be represented as an Int
4920 SIMD::Int uiValue = CmpNLT(cast, SIMD::Float(ustartf));
4921 // If the value is too large, subtract ustart and re-add it after conversion.
4922 uiValue = (uiValue & As<SIMD::Int>(As<SIMD::UInt>(SIMD::Int(cast - SIMD::Float(ustartf))) + SIMD::UInt(ustart))) |
4923 // Otherwise, just convert normally
4924 (~uiValue & SIMD::Int(cast));
4925 // If the value is negative, store 0, otherwise store the result of the conversion
4926 storeValue((~(As<SIMD::Int>(cast) >> 31) & uiValue).value());
4927 }
4928
UInt(RValue<scalar::UInt> rhs)4929 SIMD::UInt::UInt(RValue<scalar::UInt> rhs)
4930 : XYZW(this)
4931 {
4932 RR_DEBUG_INFO_UPDATE_LOC();
4933 Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::UInt::type());
4934
4935 std::vector<int> swizzle = { 0 };
4936 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
4937
4938 storeValue(replicate);
4939 }
4940
operator <<(RValue<SIMD::UInt> lhs,unsigned char rhs)4941 RValue<SIMD::UInt> operator<<(RValue<SIMD::UInt> lhs, unsigned char rhs)
4942 {
4943 RR_DEBUG_INFO_UPDATE_LOC();
4944 if(emulateIntrinsics)
4945 {
4946 return Scalarize([rhs](auto x) { return x << rhs; }, lhs);
4947 }
4948 else
4949 {
4950 return RValue<SIMD::UInt>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
4951 }
4952 }
4953
operator >>(RValue<SIMD::UInt> lhs,unsigned char rhs)4954 RValue<SIMD::UInt> operator>>(RValue<SIMD::UInt> lhs, unsigned char rhs)
4955 {
4956 RR_DEBUG_INFO_UPDATE_LOC();
4957 if(emulateIntrinsics)
4958 {
4959 return Scalarize([rhs](auto x) { return x >> rhs; }, lhs);
4960 }
4961 else
4962 {
4963 return RValue<SIMD::UInt>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
4964 }
4965 }
4966
CmpEQ(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4967 RValue<SIMD::UInt> CmpEQ(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4968 {
4969 RR_DEBUG_INFO_UPDATE_LOC();
4970 return RValue<SIMD::UInt>(Nucleus::createICmpEQ(x.value(), y.value()));
4971 }
4972
CmpLT(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4973 RValue<SIMD::UInt> CmpLT(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4974 {
4975 RR_DEBUG_INFO_UPDATE_LOC();
4976 return RValue<SIMD::UInt>(Nucleus::createICmpULT(x.value(), y.value()));
4977 }
4978
CmpLE(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4979 RValue<SIMD::UInt> CmpLE(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4980 {
4981 RR_DEBUG_INFO_UPDATE_LOC();
4982 return RValue<SIMD::UInt>(Nucleus::createICmpULE(x.value(), y.value()));
4983 }
4984
CmpNEQ(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4985 RValue<SIMD::UInt> CmpNEQ(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4986 {
4987 RR_DEBUG_INFO_UPDATE_LOC();
4988 return RValue<SIMD::UInt>(Nucleus::createICmpNE(x.value(), y.value()));
4989 }
4990
CmpNLT(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4991 RValue<SIMD::UInt> CmpNLT(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4992 {
4993 RR_DEBUG_INFO_UPDATE_LOC();
4994 return RValue<SIMD::UInt>(Nucleus::createICmpUGE(x.value(), y.value()));
4995 }
4996
CmpNLE(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)4997 RValue<SIMD::UInt> CmpNLE(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
4998 {
4999 RR_DEBUG_INFO_UPDATE_LOC();
5000 return RValue<SIMD::UInt>(Nucleus::createICmpUGT(x.value(), y.value()));
5001 }
5002
Max(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)5003 RValue<SIMD::UInt> Max(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
5004 {
5005 RR_DEBUG_INFO_UPDATE_LOC();
5006 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
5007 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
5008 ::basicBlock->appendInst(cmp);
5009
5010 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
5011 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
5012 ::basicBlock->appendInst(select);
5013
5014 return RValue<SIMD::UInt>(V(result));
5015 }
5016
Min(RValue<SIMD::UInt> x,RValue<SIMD::UInt> y)5017 RValue<SIMD::UInt> Min(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y)
5018 {
5019 RR_DEBUG_INFO_UPDATE_LOC();
5020 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
5021 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
5022 ::basicBlock->appendInst(cmp);
5023
5024 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
5025 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
5026 ::basicBlock->appendInst(select);
5027
5028 return RValue<SIMD::UInt>(V(result));
5029 }
5030
Extract128(RValue<SIMD::UInt> val,int i)5031 RValue<UInt4> Extract128(RValue<SIMD::UInt> val, int i)
5032 {
5033 ASSERT(SIMD::Width == 4);
5034 ASSERT(i == 0);
5035
5036 return As<UInt4>(val);
5037 }
5038
Insert128(RValue<SIMD::UInt> val,RValue<UInt4> element,int i)5039 RValue<SIMD::UInt> Insert128(RValue<SIMD::UInt> val, RValue<UInt4> element, int i)
5040 {
5041 ASSERT(SIMD::Width == 4);
5042 ASSERT(i == 0);
5043
5044 return As<SIMD::UInt>(element);
5045 }
5046
type()5047 Type *SIMD::UInt::type()
5048 {
5049 return T(Ice::IceType_v4i32);
5050 }
5051
Float(RValue<scalar::Float> rhs)5052 SIMD::Float::Float(RValue<scalar::Float> rhs)
5053 : XYZW(this)
5054 {
5055 RR_DEBUG_INFO_UPDATE_LOC();
5056 Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::Float::type());
5057
5058 std::vector<int> swizzle = { 0 };
5059 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
5060
5061 storeValue(replicate);
5062 }
5063
operator %(RValue<SIMD::Float> lhs,RValue<SIMD::Float> rhs)5064 RValue<SIMD::Float> operator%(RValue<SIMD::Float> lhs, RValue<SIMD::Float> rhs)
5065 {
5066 return ScalarizeCall(fmodf, lhs, rhs);
5067 }
5068
MulAdd(RValue<SIMD::Float> x,RValue<SIMD::Float> y,RValue<SIMD::Float> z)5069 RValue<SIMD::Float> MulAdd(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z)
5070 {
5071 // TODO(b/214591655): Use FMA when available.
5072 return x * y + z;
5073 }
5074
FMA(RValue<SIMD::Float> x,RValue<SIMD::Float> y,RValue<SIMD::Float> z)5075 RValue<SIMD::Float> FMA(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z)
5076 {
5077 // TODO(b/214591655): Use FMA instructions when available.
5078 return ScalarizeCall(fmaf, x, y, z);
5079 }
5080
Abs(RValue<SIMD::Float> x)5081 RValue<SIMD::Float> Abs(RValue<SIMD::Float> x)
5082 {
5083 // TODO: Optimize.
5084 Value *vector = Nucleus::createBitCast(x.value(), SIMD::Int::type());
5085 std::vector<int64_t> constantVector = { 0x7FFFFFFF };
5086 Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, SIMD::Int::type()));
5087
5088 return As<SIMD::Float>(result);
5089 }
5090
Max(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5091 RValue<SIMD::Float> Max(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5092 {
5093 RR_DEBUG_INFO_UPDATE_LOC();
5094 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
5095 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value());
5096 ::basicBlock->appendInst(cmp);
5097
5098 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5099 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
5100 ::basicBlock->appendInst(select);
5101
5102 return RValue<SIMD::Float>(V(result));
5103 }
5104
Min(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5105 RValue<SIMD::Float> Min(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5106 {
5107 RR_DEBUG_INFO_UPDATE_LOC();
5108 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
5109 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value());
5110 ::basicBlock->appendInst(cmp);
5111
5112 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5113 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
5114 ::basicBlock->appendInst(select);
5115
5116 return RValue<SIMD::Float>(V(result));
5117 }
5118
Sqrt(RValue<SIMD::Float> x)5119 RValue<SIMD::Float> Sqrt(RValue<SIMD::Float> x)
5120 {
5121 RR_DEBUG_INFO_UPDATE_LOC();
5122 if(emulateIntrinsics || CPUID::ARM)
5123 {
5124 return Scalarize([](auto a) { return Sqrt(a); }, x);
5125 }
5126 else
5127 {
5128 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5129 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
5130 auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
5131 sqrt->addArg(x.value());
5132 ::basicBlock->appendInst(sqrt);
5133
5134 return RValue<SIMD::Float>(V(result));
5135 }
5136 }
5137
CmpEQ(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5138 RValue<SIMD::Int> CmpEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5139 {
5140 RR_DEBUG_INFO_UPDATE_LOC();
5141 return RValue<SIMD::Int>(Nucleus::createFCmpOEQ(x.value(), y.value()));
5142 }
5143
CmpLT(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5144 RValue<SIMD::Int> CmpLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5145 {
5146 RR_DEBUG_INFO_UPDATE_LOC();
5147 return RValue<SIMD::Int>(Nucleus::createFCmpOLT(x.value(), y.value()));
5148 }
5149
CmpLE(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5150 RValue<SIMD::Int> CmpLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5151 {
5152 RR_DEBUG_INFO_UPDATE_LOC();
5153 return RValue<SIMD::Int>(Nucleus::createFCmpOLE(x.value(), y.value()));
5154 }
5155
CmpNEQ(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5156 RValue<SIMD::Int> CmpNEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5157 {
5158 RR_DEBUG_INFO_UPDATE_LOC();
5159 return RValue<SIMD::Int>(Nucleus::createFCmpONE(x.value(), y.value()));
5160 }
5161
CmpNLT(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5162 RValue<SIMD::Int> CmpNLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5163 {
5164 RR_DEBUG_INFO_UPDATE_LOC();
5165 return RValue<SIMD::Int>(Nucleus::createFCmpOGE(x.value(), y.value()));
5166 }
5167
CmpNLE(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5168 RValue<SIMD::Int> CmpNLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5169 {
5170 RR_DEBUG_INFO_UPDATE_LOC();
5171 return RValue<SIMD::Int>(Nucleus::createFCmpOGT(x.value(), y.value()));
5172 }
5173
CmpUEQ(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5174 RValue<SIMD::Int> CmpUEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5175 {
5176 RR_DEBUG_INFO_UPDATE_LOC();
5177 return RValue<SIMD::Int>(Nucleus::createFCmpUEQ(x.value(), y.value()));
5178 }
5179
CmpULT(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5180 RValue<SIMD::Int> CmpULT(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5181 {
5182 RR_DEBUG_INFO_UPDATE_LOC();
5183 return RValue<SIMD::Int>(Nucleus::createFCmpULT(x.value(), y.value()));
5184 }
5185
CmpULE(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5186 RValue<SIMD::Int> CmpULE(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5187 {
5188 RR_DEBUG_INFO_UPDATE_LOC();
5189 return RValue<SIMD::Int>(Nucleus::createFCmpULE(x.value(), y.value()));
5190 }
5191
CmpUNEQ(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5192 RValue<SIMD::Int> CmpUNEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5193 {
5194 RR_DEBUG_INFO_UPDATE_LOC();
5195 return RValue<SIMD::Int>(Nucleus::createFCmpUNE(x.value(), y.value()));
5196 }
5197
CmpUNLT(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5198 RValue<SIMD::Int> CmpUNLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5199 {
5200 RR_DEBUG_INFO_UPDATE_LOC();
5201 return RValue<SIMD::Int>(Nucleus::createFCmpUGE(x.value(), y.value()));
5202 }
5203
CmpUNLE(RValue<SIMD::Float> x,RValue<SIMD::Float> y)5204 RValue<SIMD::Int> CmpUNLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y)
5205 {
5206 RR_DEBUG_INFO_UPDATE_LOC();
5207 return RValue<SIMD::Int>(Nucleus::createFCmpUGT(x.value(), y.value()));
5208 }
5209
Round(RValue<SIMD::Float> x)5210 RValue<SIMD::Float> Round(RValue<SIMD::Float> x)
5211 {
5212 RR_DEBUG_INFO_UPDATE_LOC();
5213 if(emulateIntrinsics || CPUID::ARM)
5214 {
5215 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
5216 return (x + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000);
5217 }
5218 else if(CPUID::SSE4_1)
5219 {
5220 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5221 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
5222 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
5223 round->addArg(x.value());
5224 round->addArg(::context->getConstantInt32(0));
5225 ::basicBlock->appendInst(round);
5226
5227 return RValue<SIMD::Float>(V(result));
5228 }
5229 else
5230 {
5231 return SIMD::Float(RoundInt(x));
5232 }
5233 }
5234
Trunc(RValue<SIMD::Float> x)5235 RValue<SIMD::Float> Trunc(RValue<SIMD::Float> x)
5236 {
5237 RR_DEBUG_INFO_UPDATE_LOC();
5238 if(CPUID::SSE4_1)
5239 {
5240 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5241 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
5242 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
5243 round->addArg(x.value());
5244 round->addArg(::context->getConstantInt32(3));
5245 ::basicBlock->appendInst(round);
5246
5247 return RValue<SIMD::Float>(V(result));
5248 }
5249 else
5250 {
5251 return SIMD::Float(SIMD::Int(x));
5252 }
5253 }
5254
Frac(RValue<SIMD::Float> x)5255 RValue<SIMD::Float> Frac(RValue<SIMD::Float> x)
5256 {
5257 RR_DEBUG_INFO_UPDATE_LOC();
5258 SIMD::Float frc;
5259
5260 if(CPUID::SSE4_1)
5261 {
5262 frc = x - Floor(x);
5263 }
5264 else
5265 {
5266 frc = x - SIMD::Float(SIMD::Int(x)); // Signed fractional part.
5267
5268 frc += As<SIMD::Float>(As<SIMD::Int>(CmpNLE(SIMD::Float(0.0f), frc)) & As<SIMD::Int>(SIMD::Float(1.0f))); // Add 1.0 if negative.
5269 }
5270
5271 // x - floor(x) can be 1.0 for very small negative x.
5272 // Clamp against the value just below 1.0.
5273 return Min(frc, As<SIMD::Float>(SIMD::Int(0x3F7FFFFF)));
5274 }
5275
Floor(RValue<SIMD::Float> x)5276 RValue<SIMD::Float> Floor(RValue<SIMD::Float> x)
5277 {
5278 RR_DEBUG_INFO_UPDATE_LOC();
5279 if(CPUID::SSE4_1)
5280 {
5281 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5282 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
5283 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
5284 round->addArg(x.value());
5285 round->addArg(::context->getConstantInt32(1));
5286 ::basicBlock->appendInst(round);
5287
5288 return RValue<SIMD::Float>(V(result));
5289 }
5290 else
5291 {
5292 return x - Frac(x);
5293 }
5294 }
5295
Ceil(RValue<SIMD::Float> x)5296 RValue<SIMD::Float> Ceil(RValue<SIMD::Float> x)
5297 {
5298 RR_DEBUG_INFO_UPDATE_LOC();
5299 if(CPUID::SSE4_1)
5300 {
5301 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
5302 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
5303 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
5304 round->addArg(x.value());
5305 round->addArg(::context->getConstantInt32(2));
5306 ::basicBlock->appendInst(round);
5307
5308 return RValue<SIMD::Float>(V(result));
5309 }
5310 else
5311 {
5312 return -Floor(-x);
5313 }
5314 }
5315
Extract128(RValue<SIMD::Float> val,int i)5316 RValue<Float4> Extract128(RValue<SIMD::Float> val, int i)
5317 {
5318 ASSERT(SIMD::Width == 4);
5319 ASSERT(i == 0);
5320
5321 return As<Float4>(val);
5322 }
5323
Insert128(RValue<SIMD::Float> val,RValue<Float4> element,int i)5324 RValue<SIMD::Float> Insert128(RValue<SIMD::Float> val, RValue<Float4> element, int i)
5325 {
5326 ASSERT(SIMD::Width == 4);
5327 ASSERT(i == 0);
5328
5329 return As<SIMD::Float>(element);
5330 }
5331
type()5332 Type *SIMD::Float::type()
5333 {
5334 return T(Ice::IceType_v4f32);
5335 }
5336
5337 } // namespace rr
5338