xref: /aosp_15_r20/external/swiftshader/src/Device/PixelProcessor.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "PixelProcessor.hpp"
16 
17 #include "Primitive.hpp"
18 #include "Pipeline/Constants.hpp"
19 #include "Pipeline/PixelProgram.hpp"
20 #include "System/Debug.hpp"
21 #include "Vulkan/VkImageView.hpp"
22 #include "Vulkan/VkPipelineLayout.hpp"
23 
24 #include <cstring>
25 
26 namespace sw {
27 
computeHash()28 uint32_t PixelProcessor::States::computeHash()
29 {
30 	uint32_t *state = reinterpret_cast<uint32_t *>(this);
31 	uint32_t hash = 0;
32 
33 	for(unsigned int i = 0; i < sizeof(States) / sizeof(uint32_t); i++)
34 	{
35 		hash ^= state[i];
36 	}
37 
38 	return hash;
39 }
40 
operator ==(const State & state) const41 bool PixelProcessor::State::operator==(const State &state) const
42 {
43 	if(hash != state.hash)
44 	{
45 		return false;
46 	}
47 
48 	return *static_cast<const States *>(this) == static_cast<const States &>(state);
49 }
50 
PixelProcessor()51 PixelProcessor::PixelProcessor()
52 {
53 	setRoutineCacheSize(1024);
54 }
55 
setBlendConstant(const float4 & blendConstant)56 void PixelProcessor::setBlendConstant(const float4 &blendConstant)
57 {
58 	for(int i = 0; i < 4; i++)
59 	{
60 		factor.blendConstantF[i] = blendConstant[i];
61 		factor.invBlendConstantF[i] = 1.0f - blendConstant[i];
62 		factor.blendConstantU[i] = clamp(blendConstant[i], 0.0f, 1.0f);
63 		factor.invBlendConstantU[i] = 1.0f - clamp(blendConstant[i], 0.0f, 1.0f);
64 		factor.blendConstantS[i] = clamp(blendConstant[i], -1.0f, 1.0f);
65 		factor.invBlendConstantS[i] = 1.0f - clamp(blendConstant[i], -1.0f, 1.0f);
66 	}
67 }
68 
setRoutineCacheSize(int cacheSize)69 void PixelProcessor::setRoutineCacheSize(int cacheSize)
70 {
71 	routineCache = std::make_unique<RoutineCacheType>(clamp(cacheSize, 1, 65536));
72 }
73 
update(const vk::GraphicsState & pipelineState,const sw::SpirvShader * fragmentShader,const sw::SpirvShader * vertexShader,const vk::Attachments & attachments,bool occlusionEnabled) const74 const PixelProcessor::State PixelProcessor::update(const vk::GraphicsState &pipelineState, const sw::SpirvShader *fragmentShader, const sw::SpirvShader *vertexShader, const vk::Attachments &attachments, bool occlusionEnabled) const
75 {
76 	const vk::VertexInputInterfaceState &vertexInputInterfaceState = pipelineState.getVertexInputInterfaceState();
77 	const vk::PreRasterizationState &preRasterizationState = pipelineState.getPreRasterizationState();
78 	const vk::FragmentState &fragmentState = pipelineState.getFragmentState();
79 	const vk::FragmentOutputInterfaceState &fragmentOutputInterfaceState = pipelineState.getFragmentOutputInterfaceState();
80 
81 	State state;
82 
83 	state.numClipDistances = vertexShader->getNumOutputClipDistances();
84 	state.numCullDistances = vertexShader->getNumOutputCullDistances();
85 
86 	if(fragmentShader)
87 	{
88 		state.shaderID = fragmentShader->getIdentifier();
89 		state.pipelineLayoutIdentifier = fragmentState.getPipelineLayout()->identifier;
90 		state.robustBufferAccess = fragmentShader->getRobustBufferAccess();
91 	}
92 	else
93 	{
94 		state.shaderID = 0;
95 		state.pipelineLayoutIdentifier = 0;
96 		state.robustBufferAccess = false;
97 	}
98 
99 	state.alphaToCoverage = fragmentOutputInterfaceState.hasAlphaToCoverage();
100 	state.depthWriteEnable = fragmentState.depthWriteActive(attachments);
101 
102 	if(fragmentState.stencilActive(attachments))
103 	{
104 		state.stencilActive = true;
105 		state.frontStencil = fragmentState.getFrontStencil();
106 		state.backStencil = fragmentState.getBackStencil();
107 	}
108 
109 	state.depthFormat = attachments.depthFormat();
110 	state.depthBoundsTestActive = fragmentState.depthBoundsTestActive(attachments);
111 	state.minDepthBounds = fragmentState.getMinDepthBounds();
112 	state.maxDepthBounds = fragmentState.getMaxDepthBounds();
113 
114 	if(fragmentState.depthTestActive(attachments))
115 	{
116 		state.depthTestActive = true;
117 		state.depthCompareMode = fragmentState.getDepthCompareMode();
118 
119 		state.depthBias = preRasterizationState.getConstantDepthBias() != 0.0f || preRasterizationState.getSlopeDepthBias() != 0.0f;
120 
121 		bool pipelineDepthClamp = preRasterizationState.getDepthClampEnable();
122 		// "For fixed-point depth buffers, fragment depth values are always limited to the range [0,1] by clamping after depth bias addition is performed.
123 		//  Unless the VK_EXT_depth_range_unrestricted extension is enabled, fragment depth values are clamped even when the depth buffer uses a floating-point representation."
124 		state.depthClamp = pipelineDepthClamp || !state.depthFormat.isFloatFormat() || !preRasterizationState.hasDepthRangeUnrestricted();
125 
126 		if(pipelineDepthClamp)
127 		{
128 			const VkViewport viewport = preRasterizationState.getViewport();
129 			state.minDepthClamp = min(viewport.minDepth, viewport.maxDepth);
130 			state.maxDepthClamp = max(viewport.minDepth, viewport.maxDepth);
131 		}
132 		else if(state.depthClamp)
133 		{
134 			state.minDepthClamp = 0.0f;
135 			state.maxDepthClamp = 1.0f;
136 		}
137 	}
138 
139 	state.occlusionEnabled = occlusionEnabled;
140 
141 	bool fragmentContainsDiscard = (fragmentShader && fragmentShader->getAnalysis().ContainsDiscard);
142 	for(uint32_t location = 0; location < MAX_COLOR_BUFFERS; location++)
143 	{
144 		state.colorFormat[location] = attachments.colorFormat(location);
145 
146 		state.colorWriteMask |= fragmentOutputInterfaceState.colorWriteActive(location, attachments) << (4 * location);
147 		state.blendState[location] = fragmentOutputInterfaceState.getBlendState(location, attachments, fragmentContainsDiscard);
148 	}
149 
150 	const bool isBresenhamLine = vertexInputInterfaceState.isDrawLine(true, preRasterizationState.getPolygonMode()) &&
151 	                             preRasterizationState.getLineRasterizationMode() == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
152 
153 	state.multiSampleCount = static_cast<unsigned int>(fragmentOutputInterfaceState.getSampleCount());
154 	state.multiSampleMask = fragmentOutputInterfaceState.getMultiSampleMask();
155 	state.enableMultiSampling = state.multiSampleCount > 1 && !isBresenhamLine;
156 
157 	// SampleId and SamplePosition require per-sample fragment shader invocations, so the Vulkan spec
158 	// requires turning on sample shading if either of them is present in the shader:
159 	// "If a fragment shader entry point's interface includes an input variable decorated with SampleId,
160 	//  Sample Shading is considered enabled with a minSampleShading value of 1.0."
161 	// "If a fragment shader entry point's interface includes an input variable decorated with SamplePosition,
162 	//  Sample Shading is considered enabled with a minSampleShading value of 1.0."
163 	bool shaderContainsSampleDecoration = fragmentShader && (fragmentShader->hasBuiltinInput(spv::BuiltInSampleId) ||
164 	                                                         fragmentShader->hasBuiltinInput(spv::BuiltInSamplePosition));
165 
166 	if(shaderContainsSampleDecoration)
167 	{
168 		state.sampleShadingEnabled = true;
169 		state.minSampleShading = 1.0f;
170 	}
171 	else
172 	{
173 		state.sampleShadingEnabled = fragmentOutputInterfaceState.hasSampleShadingEnabled();
174 		state.minSampleShading = fragmentOutputInterfaceState.getMinSampleShading();
175 	}
176 
177 	if(state.enableMultiSampling && fragmentShader)
178 	{
179 		state.centroid = fragmentShader->getAnalysis().NeedsCentroid;
180 	}
181 
182 	state.frontFace = preRasterizationState.getFrontFace();
183 
184 	state.hash = state.computeHash();
185 
186 	return state;
187 }
188 
routine(const State & state,const vk::PipelineLayout * pipelineLayout,const SpirvShader * pixelShader,const vk::Attachments & attachments,const vk::DescriptorSet::Bindings & descriptorSets)189 PixelProcessor::RoutineType PixelProcessor::routine(const State &state,
190                                                     const vk::PipelineLayout *pipelineLayout,
191                                                     const SpirvShader *pixelShader,
192                                                     const vk::Attachments &attachments,
193                                                     const vk::DescriptorSet::Bindings &descriptorSets)
194 {
195 	auto routine = routineCache->lookup(state);
196 
197 	if(!routine)
198 	{
199 		QuadRasterizer *generator = new PixelProgram(state, pipelineLayout, pixelShader, attachments, descriptorSets);
200 		generator->generate();
201 		routine = (*generator)("PixelRoutine_%0.8X", state.shaderID);
202 		delete generator;
203 
204 		routineCache->add(state, routine);
205 	}
206 
207 	return routine;
208 }
209 
210 }  // namespace sw
211