1cbuffer _UniformBuffer : register(b0, space0) 2{ 3 float4 _7_colorGreen : packoffset(c0); 4 float4 _7_colorRed : packoffset(c1); 5}; 6 7 8static float4 sk_FragColor; 9 10struct SPIRV_Cross_Output 11{ 12 float4 sk_FragColor : SV_Target0; 13}; 14 15// Returns the inverse of a matrix, by using the algorithm of calculating the classical 16// adjoint and dividing by the determinant. The contents of the matrix are changed. 17float2x2 spvInverse(float2x2 m) 18{ 19 float2x2 adj; // The adjoint matrix (inverse after dividing by determinant) 20 21 // Create the transpose of the cofactors, as the classical adjoint of the matrix. 22 adj[0][0] = m[1][1]; 23 adj[0][1] = -m[0][1]; 24 25 adj[1][0] = -m[1][0]; 26 adj[1][1] = m[0][0]; 27 28 // Calculate the determinant as a combination of the cofactors of the first row. 29 float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]); 30 31 // Divide the classical adjoint matrix by the determinant. 32 // If determinant is zero, matrix is not invertable, so leave it unchanged. 33 return (det != 0.0f) ? (adj * (1.0f / det)) : m; 34} 35 36// Returns the determinant of a 2x2 matrix. 37float spvDet2x2(float a1, float a2, float b1, float b2) 38{ 39 return a1 * b2 - b1 * a2; 40} 41 42// Returns the inverse of a matrix, by using the algorithm of calculating the classical 43// adjoint and dividing by the determinant. The contents of the matrix are changed. 44float3x3 spvInverse(float3x3 m) 45{ 46 float3x3 adj; // The adjoint matrix (inverse after dividing by determinant) 47 48 // Create the transpose of the cofactors, as the classical adjoint of the matrix. 49 adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]); 50 adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]); 51 adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]); 52 53 adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]); 54 adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]); 55 adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]); 56 57 adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]); 58 adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]); 59 adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]); 60 61 // Calculate the determinant as a combination of the cofactors of the first row. 62 float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]); 63 64 // Divide the classical adjoint matrix by the determinant. 65 // If determinant is zero, matrix is not invertable, so leave it unchanged. 66 return (det != 0.0f) ? (adj * (1.0f / det)) : m; 67} 68 69// Returns the determinant of a 3x3 matrix. 70float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3) 71{ 72 return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3); 73} 74 75// Returns the inverse of a matrix, by using the algorithm of calculating the classical 76// adjoint and dividing by the determinant. The contents of the matrix are changed. 77float4x4 spvInverse(float4x4 m) 78{ 79 float4x4 adj; // The adjoint matrix (inverse after dividing by determinant) 80 81 // Create the transpose of the cofactors, as the classical adjoint of the matrix. 82 adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); 83 adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); 84 adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]); 85 adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]); 86 87 adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); 88 adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); 89 adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]); 90 adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]); 91 92 adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); 93 adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); 94 adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]); 95 adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]); 96 97 adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); 98 adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); 99 adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]); 100 adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]); 101 102 // Calculate the determinant as a combination of the cofactors of the first row. 103 float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]); 104 105 // Divide the classical adjoint matrix by the determinant. 106 // If determinant is zero, matrix is not invertable, so leave it unchanged. 107 return (det != 0.0f) ? (adj * (1.0f / det)) : m; 108} 109 110float4 main(float2 _21) 111{ 112 float2x2 matrix2x2 = float2x2(float2(1.0f, 2.0f), float2(3.0f, 4.0f)); 113 float2x2 inv2x2 = float2x2(float2(-2.0f, 1.0f), float2(1.5f, -0.5f)); 114 float3x3 inv3x3 = float3x3(float3(-24.0f, 18.0f, 5.0f), float3(20.0f, -15.0f, -4.0f), float3(-5.0f, 4.0f, 1.0f)); 115 float4x4 inv4x4 = float4x4(float4(-2.0f, -0.5f, 1.0f, 0.5f), float4(1.0f, 0.5f, 0.0f, -0.5f), float4(-8.0f, -1.0f, 2.0f, 2.0f), float4(3.0f, 0.5f, -1.0f, -0.5f)); 116 float Zero = _7_colorGreen.z; 117 bool _93 = false; 118 if (all(bool2(float2(-2.0f, 1.0f).x == float2(-2.0f, 1.0f).x, float2(-2.0f, 1.0f).y == float2(-2.0f, 1.0f).y)) && all(bool2(float2(1.5f, -0.5f).x == float2(1.5f, -0.5f).x, float2(1.5f, -0.5f).y == float2(1.5f, -0.5f).y))) 119 { 120 _93 = (all(bool3(float3(-24.0f, 18.0f, 5.0f).x == float3(-24.0f, 18.0f, 5.0f).x, float3(-24.0f, 18.0f, 5.0f).y == float3(-24.0f, 18.0f, 5.0f).y, float3(-24.0f, 18.0f, 5.0f).z == float3(-24.0f, 18.0f, 5.0f).z)) && all(bool3(float3(20.0f, -15.0f, -4.0f).x == float3(20.0f, -15.0f, -4.0f).x, float3(20.0f, -15.0f, -4.0f).y == float3(20.0f, -15.0f, -4.0f).y, float3(20.0f, -15.0f, -4.0f).z == float3(20.0f, -15.0f, -4.0f).z))) && all(bool3(float3(-5.0f, 4.0f, 1.0f).x == float3(-5.0f, 4.0f, 1.0f).x, float3(-5.0f, 4.0f, 1.0f).y == float3(-5.0f, 4.0f, 1.0f).y, float3(-5.0f, 4.0f, 1.0f).z == float3(-5.0f, 4.0f, 1.0f).z)); 121 } 122 else 123 { 124 _93 = false; 125 } 126 bool _108 = false; 127 if (_93) 128 { 129 _108 = ((all(bool4(float4(-2.0f, -0.5f, 1.0f, 0.5f).x == float4(-2.0f, -0.5f, 1.0f, 0.5f).x, float4(-2.0f, -0.5f, 1.0f, 0.5f).y == float4(-2.0f, -0.5f, 1.0f, 0.5f).y, float4(-2.0f, -0.5f, 1.0f, 0.5f).z == float4(-2.0f, -0.5f, 1.0f, 0.5f).z, float4(-2.0f, -0.5f, 1.0f, 0.5f).w == float4(-2.0f, -0.5f, 1.0f, 0.5f).w)) && all(bool4(float4(1.0f, 0.5f, 0.0f, -0.5f).x == float4(1.0f, 0.5f, 0.0f, -0.5f).x, float4(1.0f, 0.5f, 0.0f, -0.5f).y == float4(1.0f, 0.5f, 0.0f, -0.5f).y, float4(1.0f, 0.5f, 0.0f, -0.5f).z == float4(1.0f, 0.5f, 0.0f, -0.5f).z, float4(1.0f, 0.5f, 0.0f, -0.5f).w == float4(1.0f, 0.5f, 0.0f, -0.5f).w))) && all(bool4(float4(-8.0f, -1.0f, 2.0f, 2.0f).x == float4(-8.0f, -1.0f, 2.0f, 2.0f).x, float4(-8.0f, -1.0f, 2.0f, 2.0f).y == float4(-8.0f, -1.0f, 2.0f, 2.0f).y, float4(-8.0f, -1.0f, 2.0f, 2.0f).z == float4(-8.0f, -1.0f, 2.0f, 2.0f).z, float4(-8.0f, -1.0f, 2.0f, 2.0f).w == float4(-8.0f, -1.0f, 2.0f, 2.0f).w))) && all(bool4(float4(3.0f, 0.5f, -1.0f, -0.5f).x == float4(3.0f, 0.5f, -1.0f, -0.5f).x, float4(3.0f, 0.5f, -1.0f, -0.5f).y == float4(3.0f, 0.5f, -1.0f, -0.5f).y, float4(3.0f, 0.5f, -1.0f, -0.5f).z == float4(3.0f, 0.5f, -1.0f, -0.5f).z, float4(3.0f, 0.5f, -1.0f, -0.5f).w == float4(3.0f, 0.5f, -1.0f, -0.5f).w)); 130 } 131 else 132 { 133 _108 = false; 134 } 135 bool _131 = false; 136 if (_108) 137 { 138 float3x3 _111 = spvInverse(float3x3(float3(1.0f, 2.0f, 3.0f), float3(4.0f, 5.0f, 6.0f), float3(7.0f, 8.0f, 9.0f))); 139 float3 _120 = _111[0]; 140 float3 _123 = _111[1]; 141 float3 _127 = _111[2]; 142 _131 = (any(bool3(_120.x != float3(-24.0f, 18.0f, 5.0f).x, _120.y != float3(-24.0f, 18.0f, 5.0f).y, _120.z != float3(-24.0f, 18.0f, 5.0f).z)) || any(bool3(_123.x != float3(20.0f, -15.0f, -4.0f).x, _123.y != float3(20.0f, -15.0f, -4.0f).y, _123.z != float3(20.0f, -15.0f, -4.0f).z))) || any(bool3(_127.x != float3(-5.0f, 4.0f, 1.0f).x, _127.y != float3(-5.0f, 4.0f, 1.0f).y, _127.z != float3(-5.0f, 4.0f, 1.0f).z)); 143 } 144 else 145 { 146 _131 = false; 147 } 148 bool _147 = false; 149 if (_131) 150 { 151 float2 _135 = _7_colorGreen.z.xx; 152 float2x2 _134 = spvInverse(float2x2(float2(1.0f, 2.0f) + _135, float2(3.0f, 4.0f) + _135)); 153 float2 _140 = _134[0]; 154 float2 _143 = _134[1]; 155 _147 = all(bool2(_140.x == float2(-2.0f, 1.0f).x, _140.y == float2(-2.0f, 1.0f).y)) && all(bool2(_143.x == float2(1.5f, -0.5f).x, _143.y == float2(1.5f, -0.5f).y)); 156 } 157 else 158 { 159 _147 = false; 160 } 161 bool _171 = false; 162 if (_147) 163 { 164 float3 _154 = _7_colorGreen.z.xxx; 165 float3x3 _150 = spvInverse(float3x3(float3(1.0f, 2.0f, 3.0f) + _154, float3(0.0f, 1.0f, 4.0f) + _154, float3(5.0f, 6.0f, 0.0f) + _154)); 166 float3 _160 = _150[0]; 167 float3 _163 = _150[1]; 168 float3 _167 = _150[2]; 169 _171 = (all(bool3(_160.x == float3(-24.0f, 18.0f, 5.0f).x, _160.y == float3(-24.0f, 18.0f, 5.0f).y, _160.z == float3(-24.0f, 18.0f, 5.0f).z)) && all(bool3(_163.x == float3(20.0f, -15.0f, -4.0f).x, _163.y == float3(20.0f, -15.0f, -4.0f).y, _163.z == float3(20.0f, -15.0f, -4.0f).z))) && all(bool3(_167.x == float3(-5.0f, 4.0f, 1.0f).x, _167.y == float3(-5.0f, 4.0f, 1.0f).y, _167.z == float3(-5.0f, 4.0f, 1.0f).z)); 170 } 171 else 172 { 173 _171 = false; 174 } 175 bool _202 = false; 176 if (_171) 177 { 178 float4 _180 = _7_colorGreen.z.xxxx; 179 float4x4 _174 = spvInverse(float4x4(float4(1.0f, 0.0f, 0.0f, 1.0f) + _180, float4(0.0f, 2.0f, 1.0f, 2.0f) + _180, float4(2.0f, 1.0f, 0.0f, 1.0f) + _180, float4(2.0f, 0.0f, 1.0f, 4.0f) + _180)); 180 float4 _187 = _174[0]; 181 float4 _190 = _174[1]; 182 float4 _194 = _174[2]; 183 float4 _198 = _174[3]; 184 _202 = ((all(bool4(_187.x == float4(-2.0f, -0.5f, 1.0f, 0.5f).x, _187.y == float4(-2.0f, -0.5f, 1.0f, 0.5f).y, _187.z == float4(-2.0f, -0.5f, 1.0f, 0.5f).z, _187.w == float4(-2.0f, -0.5f, 1.0f, 0.5f).w)) && all(bool4(_190.x == float4(1.0f, 0.5f, 0.0f, -0.5f).x, _190.y == float4(1.0f, 0.5f, 0.0f, -0.5f).y, _190.z == float4(1.0f, 0.5f, 0.0f, -0.5f).z, _190.w == float4(1.0f, 0.5f, 0.0f, -0.5f).w))) && all(bool4(_194.x == float4(-8.0f, -1.0f, 2.0f, 2.0f).x, _194.y == float4(-8.0f, -1.0f, 2.0f, 2.0f).y, _194.z == float4(-8.0f, -1.0f, 2.0f, 2.0f).z, _194.w == float4(-8.0f, -1.0f, 2.0f, 2.0f).w))) && all(bool4(_198.x == float4(3.0f, 0.5f, -1.0f, -0.5f).x, _198.y == float4(3.0f, 0.5f, -1.0f, -0.5f).y, _198.z == float4(3.0f, 0.5f, -1.0f, -0.5f).z, _198.w == float4(3.0f, 0.5f, -1.0f, -0.5f).w)); 185 } 186 else 187 { 188 _202 = false; 189 } 190 float4 _203 = 0.0f.xxxx; 191 if (_202) 192 { 193 _203 = _7_colorGreen; 194 } 195 else 196 { 197 _203 = _7_colorRed; 198 } 199 return _203; 200} 201 202void frag_main() 203{ 204 float2 _17 = 0.0f.xx; 205 sk_FragColor = main(_17); 206} 207 208SPIRV_Cross_Output main() 209{ 210 frag_main(); 211 SPIRV_Cross_Output stage_output; 212 stage_output.sk_FragColor = sk_FragColor; 213 return stage_output; 214} 215