1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkAlphaType.h"
9 #include "include/core/SkBitmap.h"
10 #include "include/core/SkColor.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkColorType.h"
13 #include "include/core/SkImageInfo.h"
14 #include "include/core/SkRect.h"
15 #include "include/core/SkRefCnt.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkSize.h"
18 #include "include/core/SkString.h"
19 #include "include/core/SkSurfaceProps.h"
20 #include "include/core/SkTypes.h"
21 #include "include/gpu/GpuTypes.h"
22 #include "include/gpu/ganesh/GrBackendSurface.h"
23 #include "include/gpu/ganesh/GrDirectContext.h"
24 #include "include/gpu/ganesh/GrTypes.h"
25 #include "include/private/SkColorData.h"
26 #include "include/private/SkSLSampleUsage.h"
27 #include "include/private/base/SkDebug.h"
28 #include "include/private/base/SkTArray.h"
29 #include "include/private/gpu/ganesh/GrTypesPriv.h"
30 #include "src/base/SkRandom.h"
31 #include "src/gpu/KeyBuilder.h"
32 #include "src/gpu/SkBackingFit.h"
33 #include "src/gpu/Swizzle.h"
34 #include "src/gpu/ganesh/GrAppliedClip.h"
35 #include "src/gpu/ganesh/GrCaps.h"
36 #include "src/gpu/ganesh/GrDirectContextPriv.h"
37 #include "src/gpu/ganesh/GrFragmentProcessor.h"
38 #include "src/gpu/ganesh/GrImageInfo.h"
39 #include "src/gpu/ganesh/GrPixmap.h"
40 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
41 #include "src/gpu/ganesh/GrProcessorSet.h"
42 #include "src/gpu/ganesh/GrProcessorUnitTest.h"
43 #include "src/gpu/ganesh/GrProxyProvider.h"
44 #include "src/gpu/ganesh/GrSurfaceProxy.h"
45 #include "src/gpu/ganesh/GrSurfaceProxyView.h"
46 #include "src/gpu/ganesh/GrTextureProxy.h"
47 #include "src/gpu/ganesh/GrUserStencilSettings.h"
48 #include "src/gpu/ganesh/SkGr.h"
49 #include "src/gpu/ganesh/SurfaceContext.h"
50 #include "src/gpu/ganesh/SurfaceDrawContext.h"
51 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
52 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
53 #include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
54 #include "src/gpu/ganesh/ops/GrOp.h"
55 #include "tests/CtsEnforcement.h"
56 #include "tests/Test.h"
57 #include "tests/TestHarness.h"
58 #include "tests/TestUtils.h"
59 #include "tools/EncodeUtils.h"
60 #include "tools/flags/CommandLineFlags.h"
61
62 #include <algorithm>
63 #include <atomic>
64 #include <cmath>
65 #include <cstdint>
66 #include <initializer_list>
67 #include <memory>
68 #include <random>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73
74 using namespace skia_private;
75
76 class GrDstProxyView;
77 class GrMeshDrawTarget;
78 class GrOpFlushState;
79 class GrProgramInfo;
80 class GrRecordingContext;
81 class GrResourceProvider;
82 class SkArenaAlloc;
83 enum class GrXferBarrierFlags;
84 struct GrContextOptions;
85 struct GrShaderCaps;
86
87 namespace {
88 class TestOp : public GrMeshDrawOp {
89 public:
90 DEFINE_OP_CLASS_ID
Make(GrRecordingContext * rContext,std::unique_ptr<GrFragmentProcessor> fp)91 static GrOp::Owner Make(GrRecordingContext* rContext,
92 std::unique_ptr<GrFragmentProcessor> fp) {
93 return GrOp::Make<TestOp>(rContext, std::move(fp));
94 }
95
name() const96 const char* name() const override { return "TestOp"; }
97
visitProxies(const GrVisitProxyFunc & func) const98 void visitProxies(const GrVisitProxyFunc& func) const override {
99 fProcessors.visitProxies(func);
100 }
101
fixedFunctionFlags() const102 FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
103
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)104 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
105 GrClampType clampType) override {
106 static constexpr GrProcessorAnalysisColor kUnknownColor;
107 SkPMColor4f overrideColor;
108 return fProcessors.finalize(
109 kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
110 &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
111 }
112
113 private:
114 friend class ::GrOp; // for ctor
115
TestOp(std::unique_ptr<GrFragmentProcessor> fp)116 TestOp(std::unique_ptr<GrFragmentProcessor> fp)
117 : INHERITED(ClassID()), fProcessors(std::move(fp)) {
118 this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
119 }
120
programInfo()121 GrProgramInfo* programInfo() override { return nullptr; }
onCreateProgramInfo(const GrCaps *,SkArenaAlloc *,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip &&,const GrDstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)122 void onCreateProgramInfo(const GrCaps*,
123 SkArenaAlloc*,
124 const GrSurfaceProxyView& writeView,
125 bool usesMSAASurface,
126 GrAppliedClip&&,
127 const GrDstProxyView&,
128 GrXferBarrierFlags renderPassXferBarriers,
129 GrLoadOp colorLoadOp) override {}
onPrePrepareDraws(GrRecordingContext *,const GrSurfaceProxyView & writeView,GrAppliedClip *,const GrDstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)130 void onPrePrepareDraws(GrRecordingContext*,
131 const GrSurfaceProxyView& writeView,
132 GrAppliedClip*,
133 const GrDstProxyView&,
134 GrXferBarrierFlags renderPassXferBarriers,
135 GrLoadOp colorLoadOp) override {}
onPrepareDraws(GrMeshDrawTarget *)136 void onPrepareDraws(GrMeshDrawTarget*) override { return; }
onExecute(GrOpFlushState *,const SkRect &)137 void onExecute(GrOpFlushState*, const SkRect&) override { return; }
138
139 GrProcessorSet fProcessors;
140
141 using INHERITED = GrMeshDrawOp;
142 };
143
144 /**
145 * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
146 * of resources owned by child FPs.
147 */
148 class TestFP : public GrFragmentProcessor {
149 public:
Make(std::unique_ptr<GrFragmentProcessor> child)150 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
151 return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
152 }
Make(const TArray<GrSurfaceProxyView> & views)153 static std::unique_ptr<GrFragmentProcessor> Make(const TArray<GrSurfaceProxyView>& views) {
154 return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
155 }
156
name() const157 const char* name() const override { return "test"; }
158
onAddToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const159 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
160 static std::atomic<int32_t> nextKey{0};
161 b->add32(nextKey++);
162 }
163
clone() const164 std::unique_ptr<GrFragmentProcessor> clone() const override {
165 return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
166 }
167
168 private:
TestFP(const TArray<GrSurfaceProxyView> & views)169 TestFP(const TArray<GrSurfaceProxyView>& views)
170 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
171 for (const GrSurfaceProxyView& view : views) {
172 this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
173 }
174 }
175
TestFP(std::unique_ptr<GrFragmentProcessor> child)176 TestFP(std::unique_ptr<GrFragmentProcessor> child)
177 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
178 this->registerChild(std::move(child));
179 }
180
TestFP(const TestFP & that)181 explicit TestFP(const TestFP& that) : INHERITED(that) {}
182
onMakeProgramImpl() const183 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
184 class Impl : public ProgramImpl {
185 public:
186 void emitCode(EmitArgs& args) override {
187 args.fFragBuilder->codeAppendf("return half4(1);");
188 }
189
190 private:
191 };
192 return std::make_unique<Impl>();
193 }
194
onIsEqual(const GrFragmentProcessor &) const195 bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
196
197 using INHERITED = GrFragmentProcessor;
198 };
199 } // namespace
200
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ProcessorRefTest,reporter,ctxInfo,CtsEnforcement::kNever)201 DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo, CtsEnforcement::kNever) {
202 auto dContext = ctxInfo.directContext();
203 GrProxyProvider* proxyProvider = dContext->priv().proxyProvider();
204
205 static constexpr SkISize kDims = {10, 10};
206
207 const GrBackendFormat format =
208 dContext->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
209 GrRenderable::kNo);
210 skgpu::Swizzle swizzle = dContext->priv().caps()->getReadSwizzle(format,
211 GrColorType::kRGBA_8888);
212
213 for (bool makeClone : {false, true}) {
214 for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
215 auto sdc = skgpu::ganesh::SurfaceDrawContext::Make(dContext,
216 GrColorType::kRGBA_8888,
217 nullptr,
218 SkBackingFit::kApprox,
219 {1, 1},
220 SkSurfaceProps(),
221 /*label=*/{});
222 {
223 sk_sp<GrTextureProxy> proxy =
224 proxyProvider->createProxy(format,
225 kDims,
226 GrRenderable::kNo,
227 1,
228 skgpu::Mipmapped::kNo,
229 SkBackingFit::kExact,
230 skgpu::Budgeted::kYes,
231 GrProtected::kNo,
232 /*label=*/"ProcessorRefTest");
233
234 {
235 TArray<GrSurfaceProxyView> views;
236 views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
237 auto fp = TestFP::Make(std::move(views));
238 for (int i = 0; i < parentCnt; ++i) {
239 fp = TestFP::Make(std::move(fp));
240 }
241 std::unique_ptr<GrFragmentProcessor> clone;
242 if (makeClone) {
243 clone = fp->clone();
244 }
245 GrOp::Owner op = TestOp::Make(dContext, std::move(fp));
246 sdc->addDrawOp(std::move(op));
247 if (clone) {
248 op = TestOp::Make(dContext, std::move(clone));
249 sdc->addDrawOp(std::move(op));
250 }
251 }
252
253 // If the fp is cloned the number of refs should increase by one (for the clone)
254 int expectedProxyRefs = makeClone ? 3 : 2;
255
256 CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
257
258 dContext->flushAndSubmit();
259
260 // just one from the 'proxy' sk_sp
261 CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
262 }
263 }
264 }
265 }
266
267 static DEFINE_bool(randomProcessorTest, false,
268 "Use non-deterministic seed for random processor tests?");
269 static DEFINE_int(processorSeed, 0,
270 "Use specific seed for processor tests. Overridden by --randomProcessorTest.");
271
272 #if defined(GPU_TEST_UTILS)
273
input_texel_color(int x,int y,SkScalar delta)274 static GrColor input_texel_color(int x, int y, SkScalar delta) {
275 // Delta must be less than 0.5 to prevent over/underflow issues with the input color
276 SkASSERT(delta <= 0.5);
277
278 SkColor color = SkColorSetARGB((uint8_t)(x & 0xFF),
279 (uint8_t)(y & 0xFF),
280 (uint8_t)((x + y) & 0xFF),
281 (uint8_t)((2 * y - x) & 0xFF));
282 SkColor4f color4f = SkColor4f::FromColor(color);
283 // We only apply delta to the r,g, and b channels. This is because we're using this
284 // to test the canTweakAlphaForCoverage() optimization. A processor is allowed
285 // to use the input color's alpha in its calculation and report this optimization.
286 for (int i = 0; i < 3; i++) {
287 if (color4f[i] > 0.5) {
288 color4f[i] -= delta;
289 } else {
290 color4f[i] += delta;
291 }
292 }
293 return color4f.premul().toBytes_RGBA();
294 }
295
296 // The output buffer must be the same size as the render-target context.
render_fp(GrDirectContext * dContext,skgpu::ganesh::SurfaceDrawContext * sdc,std::unique_ptr<GrFragmentProcessor> fp,GrColor * outBuffer)297 static void render_fp(GrDirectContext* dContext,
298 skgpu::ganesh::SurfaceDrawContext* sdc,
299 std::unique_ptr<GrFragmentProcessor> fp,
300 GrColor* outBuffer) {
301 sdc->fillWithFP(std::move(fp));
302 std::fill_n(outBuffer, sdc->width() * sdc->height(), 0);
303 auto ii = SkImageInfo::Make(sdc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
304 GrPixmap resultPM(ii, outBuffer, sdc->width()*sizeof(uint32_t));
305 sdc->readPixels(dContext, resultPM, {0, 0});
306 }
307
308 // This class is responsible for reproducibly generating a random fragment processor.
309 // An identical randomly-designed FP can be generated as many times as needed.
310 class TestFPGenerator {
311 public:
312 TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext * context,GrResourceProvider * resourceProvider)313 TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
314 : fContext(context)
315 , fResourceProvider(resourceProvider)
316 , fInitialSeed(synthesizeInitialSeed())
317 , fRandomSeed(fInitialSeed) {}
318
initialSeed()319 uint32_t initialSeed() { return fInitialSeed; }
320
init()321 bool init() {
322 // Initializes the two test texture proxies that are available to the FP test factories.
323 SkRandom random{fRandomSeed};
324 static constexpr int kTestTextureSize = 256;
325
326 {
327 // Put premul data into the RGBA texture that the test FPs can optionally use.
328 GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
329 for (int y = 0; y < kTestTextureSize; ++y) {
330 for (int x = 0; x < kTestTextureSize; ++x) {
331 rgbaData[kTestTextureSize * y + x] = input_texel_color(
332 random.nextULessThan(256), random.nextULessThan(256), 0.0f);
333 }
334 }
335
336 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
337 kRGBA_8888_SkColorType, kPremul_SkAlphaType);
338 SkBitmap bitmap;
339 bitmap.installPixels(
340 ii, rgbaData, ii.minRowBytes(),
341 [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
342 bitmap.setImmutable();
343 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
344 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
345 SkDebugf("Unable to instantiate RGBA8888 test texture.");
346 return false;
347 }
348 fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
349 kPremul_SkAlphaType};
350 }
351
352 {
353 // Put random values into the alpha texture that the test FPs can optionally use.
354 uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
355 for (int y = 0; y < kTestTextureSize; ++y) {
356 for (int x = 0; x < kTestTextureSize; ++x) {
357 alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
358 }
359 }
360
361 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
362 kAlpha_8_SkColorType, kPremul_SkAlphaType);
363 SkBitmap bitmap;
364 bitmap.installPixels(
365 ii, alphaData, ii.minRowBytes(),
366 [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
367 bitmap.setImmutable();
368 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
369 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
370 SkDebugf("Unable to instantiate A8 test texture.");
371 return false;
372 }
373 fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
374 kPremul_SkAlphaType};
375 }
376
377 return true;
378 }
379
reroll()380 void reroll() {
381 // Feed our current random seed into SkRandom to generate a new seed.
382 SkRandom random{fRandomSeed};
383 fRandomSeed = random.nextU();
384 }
385
make(int type,int randomTreeDepth,std::unique_ptr<GrFragmentProcessor> inputFP)386 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
387 std::unique_ptr<GrFragmentProcessor> inputFP) {
388 // This will generate the exact same randomized FP (of each requested type) each time
389 // it's called. Call `reroll` to get a different FP.
390 SkRandom random{fRandomSeed};
391 GrProcessorTestData testData{&random, fContext, randomTreeDepth,
392 static_cast<int>(std::size(fTestViews)), fTestViews,
393 std::move(inputFP)};
394 return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
395 }
396
make(int type,int randomTreeDepth,GrSurfaceProxyView view,SkAlphaType alpha=kPremul_SkAlphaType)397 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
398 GrSurfaceProxyView view,
399 SkAlphaType alpha = kPremul_SkAlphaType) {
400 return make(type, randomTreeDepth, GrTextureEffect::Make(std::move(view), alpha));
401 }
402
403 private:
synthesizeInitialSeed()404 static uint32_t synthesizeInitialSeed() {
405 if (FLAGS_randomProcessorTest) {
406 std::random_device rd;
407 return rd();
408 } else {
409 return FLAGS_processorSeed;
410 }
411 }
412
413 GrDirectContext* fContext; // owned by caller
414 GrResourceProvider* fResourceProvider; // owned by caller
415 const uint32_t fInitialSeed;
416 uint32_t fRandomSeed;
417 GrProcessorTestData::ViewInfo fTestViews[2];
418 };
419
420 // Creates an array of color values from input_texel_color(), to be used as an input texture.
make_input_pixels(int width,int height,SkScalar delta)421 static std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
422 std::vector<GrColor> pixel(width * height);
423 for (int y = 0; y < width; ++y) {
424 for (int x = 0; x < height; ++x) {
425 pixel[width * y + x] = input_texel_color(x, y, delta);
426 }
427 }
428
429 return pixel;
430 }
431
432 // Creates a texture of premul colors used as the output of the fragment processor that precedes
433 // the fragment processor under test. An array of W*H colors are passed in as the texture data.
make_input_texture(GrRecordingContext * context,int width,int height,GrColor * pixel)434 static GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
435 int width, int height, GrColor* pixel) {
436 SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
437 SkBitmap bitmap;
438 bitmap.installPixels(ii, pixel, ii.minRowBytes());
439 bitmap.setImmutable();
440 return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
441 }
442
443 // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
444 // actually contains unpremul data. Also, even though we made the result data by rendering into
445 // a "unpremul" SurfaceDrawContext, our input texture is unpremul and outside of the random
446 // effect configuration, we didn't do anything to ensure the output is actually premul. We just
447 // don't currently allow kUnpremul GrSurfaceDrawContexts.
448 static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
449
log_pixels(GrColor * pixels,int widthHeight,SkString * dst)450 static bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
451 SkImageInfo info =
452 SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
453 SkBitmap bmp;
454 bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
455 return ToolUtils::BitmapToBase64DataURI(bmp, dst);
456 }
457
log_texture_view(GrDirectContext * dContext,GrSurfaceProxyView src,SkString * dst)458 static bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
459 SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
460 kLogAlphaType);
461
462 auto sContext = dContext->priv().makeSC(std::move(src), ii.colorInfo());
463 SkBitmap bm;
464 SkAssertResult(bm.tryAllocPixels(ii));
465 SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
466 return ToolUtils::BitmapToBase64DataURI(bm, dst);
467 }
468
fuzzy_color_equals(const SkPMColor4f & c1,const SkPMColor4f & c2)469 static bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
470 // With the loss of precision of rendering into 32-bit color, then estimating the FP's output
471 // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
472 // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
473 // too unforgiving).
474 static constexpr SkScalar kTolerance = 0.01f;
475 for (int i = 0; i < 4; i++) {
476 if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
477 return false;
478 }
479 }
480 return true;
481 }
482
483 // Given three input colors (color preceding the FP being tested) provided to the FP at the same
484 // local coord and the three corresponding FP outputs, this ensures that either:
485 // out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
486 // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
487 // change), OR:
488 // out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
489 // (per-channel modulation instead of modulation by just the alpha channel)
490 // It does this by estimating the pre-modulated fp color from one of the input/output pairs and
491 // confirms the conditions hold for the other two pairs.
492 // It is required that the three input colors have the same alpha as fp is allowed to be a function
493 // of the input alpha (but not r, g, or b).
legal_modulation(const GrColor inGr[3],const GrColor outGr[3])494 static bool legal_modulation(const GrColor inGr[3], const GrColor outGr[3]) {
495 // Convert to floating point, which is the number space the FP operates in (more or less)
496 SkPMColor4f inf[3], outf[3];
497 for (int i = 0; i < 3; ++i) {
498 inf[i] = SkPMColor4f::FromBytes_RGBA(inGr[i]);
499 outf[i] = SkPMColor4f::FromBytes_RGBA(outGr[i]);
500 }
501 // This test is only valid if all the input alphas are the same.
502 SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
503
504 // Reconstruct the output of the FP before the shader modulated its color with the input value.
505 // When the original input is very small, it may cause the final output color to round
506 // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
507 // will then have a guaranteed larger channel value (since the offset will be added to it).
508 SkPMColor4f fpPreColorModulation = {0,0,0,0};
509 SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
510 for (int i = 0; i < 4; i++) {
511 // Use the most stepped up frame
512 int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
513 maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
514 const SkPMColor4f& in = inf[maxInIdx];
515 const SkPMColor4f& out = outf[maxInIdx];
516 if (in[i] > 0) {
517 fpPreColorModulation[i] = out[i] / in[i];
518 }
519 if (in[3] > 0) {
520 fpPreAlphaModulation[i] = out[i] / in[3];
521 }
522 }
523
524 // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
525 // of the transformed input colors.
526 SkPMColor4f expectedForAlphaModulation[3];
527 SkPMColor4f expectedForColorModulation[3];
528 for (int i = 0; i < 3; ++i) {
529 expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
530 expectedForColorModulation[i] = fpPreColorModulation * inf[i];
531 // If the input alpha is 0 then the other channels should also be zero
532 // since the color is assumed to be premul. Modulating zeros by anything
533 // should produce zeros.
534 if (inf[i].fA == 0) {
535 SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
536 expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
537 }
538 }
539
540 bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
541 fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
542 fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
543
544 bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
545 fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
546 fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
547
548 // This can be enabled to print the values that caused this check to fail.
549 if ((false)) {
550 if (!isLegalColorModulation && !isLegalAlphaModulation) {
551 SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
552 fpPreColorModulation[0],
553 fpPreColorModulation[1],
554 fpPreColorModulation[2],
555 fpPreColorModulation[3]);
556 for (int i = 0; i < 3; ++i) {
557 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
558 "(%.03f, %.03f, %.03f, %.03f) | "
559 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
560 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
561 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
562 expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
563 expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
564 fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
565 }
566 SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
567 fpPreAlphaModulation[0],
568 fpPreAlphaModulation[1],
569 fpPreAlphaModulation[2],
570 fpPreAlphaModulation[3]);
571 for (int i = 0; i < 3; ++i) {
572 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
573 "(%.03f, %.03f, %.03f, %.03f) | "
574 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
575 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
576 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
577 expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
578 expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
579 fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
580 }
581 }
582 }
583 return isLegalColorModulation || isLegalAlphaModulation;
584 }
585
DEF_GANESH_TEST_FOR_GL_CONTEXT(ProcessorOptimizationValidationTest,reporter,ctxInfo,CtsEnforcement::kNever)586 DEF_GANESH_TEST_FOR_GL_CONTEXT(ProcessorOptimizationValidationTest,
587 reporter,
588 ctxInfo,
589 CtsEnforcement::kNever) {
590 GrDirectContext* context = ctxInfo.directContext();
591 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
592 using FPFactory = GrFragmentProcessorTestFactory;
593
594 TestFPGenerator fpGenerator{context, resourceProvider};
595 if (!fpGenerator.init()) {
596 ERRORF(reporter, "Could not initialize TestFPGenerator");
597 return;
598 }
599
600 // Make the destination context for the test.
601 static constexpr int kRenderSize = 256;
602 auto sdc = skgpu::ganesh::SurfaceDrawContext::Make(context,
603 GrColorType::kRGBA_8888,
604 nullptr,
605 SkBackingFit::kExact,
606 {kRenderSize, kRenderSize},
607 SkSurfaceProps(),
608 /*label=*/{});
609
610 // Coverage optimization uses three frames with a linearly transformed input texture. The first
611 // frame has no offset, second frames add .2 and .4, which should then be present as a fixed
612 // difference between the frame outputs if the FP is properly following the modulation
613 // requirements of the coverage optimization.
614 static constexpr SkScalar kInputDelta = 0.2f;
615 std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
616 std::vector<GrColor> inputPixels2 =
617 make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
618 std::vector<GrColor> inputPixels3 =
619 make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
620 GrSurfaceProxyView inputTexture1 =
621 make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
622 GrSurfaceProxyView inputTexture2 =
623 make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
624 GrSurfaceProxyView inputTexture3 =
625 make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
626
627 // Encoded images are very verbose and this tests many potential images, so only export the
628 // first failure (subsequent failures have a reasonable chance of being related).
629 bool loggedFirstFailure = false;
630 bool loggedFirstWarning = false;
631
632 // Storage for the three frames required for coverage compatibility optimization testing.
633 // Each frame uses the correspondingly numbered inputTextureX.
634 std::vector<GrColor> readData1(kRenderSize * kRenderSize);
635 std::vector<GrColor> readData2(kRenderSize * kRenderSize);
636 std::vector<GrColor> readData3(kRenderSize * kRenderSize);
637
638 // Because processor factories configure themselves in random ways, this is not exhaustive.
639 for (int i = 0; i < FPFactory::Count(); ++i) {
640 int optimizedForOpaqueInput = 0;
641 int optimizedForCoverageAsAlpha = 0;
642 int optimizedForConstantOutputForInput = 0;
643
644 // We start by testing each fragment-processor 100 times, watching the optimization bits
645 // that appear. If we see an optimization bit appear in those first 100 trials, we keep
646 // running tests until we see at least five successful trials that have this optimization
647 // bit enabled. If we never see a particular optimization bit after 100 trials, we assume
648 // that this FP doesn't support that optimization at all.
649 static constexpr int kMinimumTrials = 100;
650 static constexpr int kMaximumTrials = 2000;
651 static constexpr int kExpectedSuccesses = 5;
652
653 for (int trial = 0;; ++trial) {
654 // Create a randomly-configured FP.
655 fpGenerator.reroll();
656 std::unique_ptr<GrFragmentProcessor> fp =
657 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
658
659 // If we have iterated enough times and seen a sufficient number of successes on each
660 // optimization bit that can be returned, stop running trials.
661 if (trial >= kMinimumTrials) {
662 bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
663 optimizedForOpaqueInput < kExpectedSuccesses) ||
664 (optimizedForCoverageAsAlpha > 0 &&
665 optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
666 (optimizedForConstantOutputForInput > 0 &&
667 optimizedForConstantOutputForInput < kExpectedSuccesses);
668 if (!moreTrialsNeeded) break;
669
670 if (trial >= kMaximumTrials) {
671 SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
672 "Seed: 0x%08x, processor:\n%s",
673 kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
674 break;
675 }
676 }
677
678 // Skip further testing if this trial has no optimization bits enabled.
679 if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
680 !fp->compatibleWithCoverageAsAlpha()) {
681 continue;
682 }
683
684 // We can make identical copies of the test FP in order to test coverage-as-alpha.
685 if (fp->compatibleWithCoverageAsAlpha()) {
686 // Create and render two identical versions of this FP, but using different input
687 // textures, to check coverage optimization. We don't need to do this step for
688 // constant-output or preserving-opacity tests.
689 render_fp(context, sdc.get(),
690 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
691 readData2.data());
692 render_fp(context, sdc.get(),
693 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
694 readData3.data());
695 ++optimizedForCoverageAsAlpha;
696 }
697
698 if (fp->hasConstantOutputForConstantInput()) {
699 ++optimizedForConstantOutputForInput;
700 }
701
702 if (fp->preservesOpaqueInput()) {
703 ++optimizedForOpaqueInput;
704 }
705
706 // Draw base frame last so that rtc holds the original FP behavior if we need to dump
707 // the image to the log.
708 render_fp(context, sdc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
709 readData1.data());
710
711 // This test has a history of being flaky on a number of devices. If an FP is logically
712 // violating the optimizations, it's reasonable to expect it to violate requirements on
713 // a large number of pixels in the image. Sporadic pixel violations are more indicative
714 // of device errors and represents a separate problem.
715 static const int kMaxAcceptableFailedPixels =
716 CurrentTestHarnessIsSkQP() ? 0 : // Strict when running as SKQP
717 2 * kRenderSize; // ~0.7% of the image
718
719 // Collect first optimization failure message, to be output later as a warning or an
720 // error depending on whether the rendering "passed" or failed.
721 int failedPixelCount = 0;
722 SkString coverageMessage;
723 SkString opaqueMessage;
724 SkString constMessage;
725 for (int y = 0; y < kRenderSize; ++y) {
726 for (int x = 0; x < kRenderSize; ++x) {
727 bool passing = true;
728 GrColor input = inputPixels1[y * kRenderSize + x];
729 GrColor output = readData1[y * kRenderSize + x];
730
731 if (fp->compatibleWithCoverageAsAlpha()) {
732 GrColor ins[3];
733 ins[0] = input;
734 ins[1] = inputPixels2[y * kRenderSize + x];
735 ins[2] = inputPixels3[y * kRenderSize + x];
736
737 GrColor outs[3];
738 outs[0] = output;
739 outs[1] = readData2[y * kRenderSize + x];
740 outs[2] = readData3[y * kRenderSize + x];
741
742 if (!legal_modulation(ins, outs)) {
743 passing = false;
744 if (coverageMessage.isEmpty()) {
745 coverageMessage.printf(
746 "\"Modulating\" processor did not match alpha-modulation "
747 "nor color-modulation rules.\n"
748 "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
749 input, output, x, y);
750 }
751 }
752 }
753
754 SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
755 SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
756 SkPMColor4f expected4f;
757 if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
758 float rDiff = fabsf(output4f.fR - expected4f.fR);
759 float gDiff = fabsf(output4f.fG - expected4f.fG);
760 float bDiff = fabsf(output4f.fB - expected4f.fB);
761 float aDiff = fabsf(output4f.fA - expected4f.fA);
762 static constexpr float kTol = 4 / 255.f;
763 if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
764 if (constMessage.isEmpty()) {
765 passing = false;
766
767 constMessage.printf(
768 "Processor claimed output for const input doesn't match "
769 "actual output.\n"
770 "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
771 "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
772 std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
773 kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
774 output4f.fR, output4f.fG, output4f.fB, output4f.fA,
775 expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
776 }
777 }
778 }
779 if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
780 passing = false;
781
782 if (opaqueMessage.isEmpty()) {
783 opaqueMessage.printf(
784 "Processor claimed opaqueness is preserved but "
785 "it is not. Input: 0x%08x, Output: 0x%08x.",
786 input, output);
787 }
788 }
789
790 if (!passing) {
791 // Regardless of how many optimizations the pixel violates, count it as a
792 // single bad pixel.
793 failedPixelCount++;
794 }
795 }
796 }
797
798 // Finished analyzing the entire image, see if the number of pixel failures meets the
799 // threshold for an FP violating the optimization requirements.
800 if (failedPixelCount > kMaxAcceptableFailedPixels) {
801 ERRORF(reporter,
802 "Processor violated %d of %d pixels, seed: 0x%08x.\n"
803 "Processor:\n%s\nFirst failing pixel details are below:",
804 failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
805 fp->dumpTreeInfo().c_str());
806
807 // Print first failing pixel's details.
808 if (!coverageMessage.isEmpty()) {
809 ERRORF(reporter, "%s", coverageMessage.c_str());
810 }
811 if (!constMessage.isEmpty()) {
812 ERRORF(reporter, "%s", constMessage.c_str());
813 }
814 if (!opaqueMessage.isEmpty()) {
815 ERRORF(reporter, "%s", opaqueMessage.c_str());
816 }
817
818 if (!loggedFirstFailure) {
819 // Print with ERRORF to make sure the encoded image is output
820 SkString input;
821 log_texture_view(context, inputTexture1, &input);
822 SkString output;
823 log_pixels(readData1.data(), kRenderSize, &output);
824 ERRORF(reporter, "Input image: %s\n\n"
825 "===========================================================\n\n"
826 "Output image: %s\n", input.c_str(), output.c_str());
827 loggedFirstFailure = true;
828 }
829 } else if (failedPixelCount > 0) {
830 // Don't trigger an error, but don't just hide the failures either.
831 INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
832 "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
833 fpGenerator.initialSeed(), fp->dumpInfo().c_str());
834 if (!coverageMessage.isEmpty()) {
835 INFOF(reporter, "%s", coverageMessage.c_str());
836 }
837 if (!constMessage.isEmpty()) {
838 INFOF(reporter, "%s", constMessage.c_str());
839 }
840 if (!opaqueMessage.isEmpty()) {
841 INFOF(reporter, "%s", opaqueMessage.c_str());
842 }
843 if (!loggedFirstWarning) {
844 SkString input;
845 log_texture_view(context, inputTexture1, &input);
846 SkString output;
847 log_pixels(readData1.data(), kRenderSize, &output);
848 INFOF(reporter, "Input image: %s\n\n"
849 "===========================================================\n\n"
850 "Output image: %s\n", input.c_str(), output.c_str());
851 loggedFirstWarning = true;
852 }
853 }
854 }
855 }
856 }
857
assert_processor_equality(skiatest::Reporter * reporter,const GrFragmentProcessor & fp,const GrFragmentProcessor & clone)858 static void assert_processor_equality(skiatest::Reporter* reporter,
859 const GrFragmentProcessor& fp,
860 const GrFragmentProcessor& clone) {
861 REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
862 "\n%s", fp.dumpTreeInfo().c_str());
863 REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
864 clone.compatibleWithCoverageAsAlpha(),
865 "\n%s", fp.dumpTreeInfo().c_str());
866 REPORTER_ASSERT(reporter, fp.isEqual(clone),
867 "\n%s", fp.dumpTreeInfo().c_str());
868 REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
869 "\n%s", fp.dumpTreeInfo().c_str());
870 REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
871 clone.hasConstantOutputForConstantInput(),
872 "\n%s", fp.dumpTreeInfo().c_str());
873 REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
874 "\n%s", fp.dumpTreeInfo().c_str());
875 REPORTER_ASSERT(reporter, fp.sampleUsage() == clone.sampleUsage(),
876 "\n%s", fp.dumpTreeInfo().c_str());
877 REPORTER_ASSERT(reporter, fp.usesSampleCoords() == clone.usesSampleCoords(),
878 "\n%s", fp.dumpTreeInfo().c_str());
879 }
880
verify_identical_render(skiatest::Reporter * reporter,int renderSize,const char * processorType,const GrColor readData1[],const GrColor readData2[])881 static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
882 const char* processorType,
883 const GrColor readData1[], const GrColor readData2[]) {
884 // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
885 // is logically wrong, it's reasonable to expect it produce a large number of pixel differences
886 // in the image. Sporadic pixel violations are more indicative device errors and represents a
887 // separate problem.
888 static const int maxAcceptableFailedPixels =
889 CurrentTestHarnessIsSkQP() ? 0 : // Strict when running as SKQP
890 2 * renderSize; // ~0.002% of the pixels (size 1024*1024)
891
892 int failedPixelCount = 0;
893 int firstWrongX = 0;
894 int firstWrongY = 0;
895 int idx = 0;
896 for (int y = 0; y < renderSize; ++y) {
897 for (int x = 0; x < renderSize; ++x, ++idx) {
898 if (readData1[idx] != readData2[idx]) {
899 if (!failedPixelCount) {
900 firstWrongX = x;
901 firstWrongY = y;
902 }
903 ++failedPixelCount;
904 }
905 if (failedPixelCount > maxAcceptableFailedPixels) {
906 idx = firstWrongY * renderSize + firstWrongX;
907 ERRORF(reporter,
908 "%s produced different output at (%d, %d). "
909 "Input color: 0x%08x, Original Output Color: 0x%08x, "
910 "Clone Output Color: 0x%08x.",
911 processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
912 readData1[idx], readData2[idx]);
913
914 return false;
915 }
916 }
917 }
918
919 return true;
920 }
921
log_clone_failure(skiatest::Reporter * reporter,int renderSize,GrDirectContext * context,const GrSurfaceProxyView & inputTexture,GrColor pixelsFP[],GrColor pixelsClone[],GrColor pixelsRegen[])922 static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
923 GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
924 GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
925 // Write the images out as data URLs for inspection.
926 SkString inputURL, origURL, cloneURL, regenURL;
927 if (log_texture_view(context, inputTexture, &inputURL) &&
928 log_pixels(pixelsFP, renderSize, &origURL) &&
929 log_pixels(pixelsClone, renderSize, &cloneURL) &&
930 log_pixels(pixelsRegen, renderSize, ®enURL)) {
931 ERRORF(reporter,
932 "\nInput image:\n%s\n\n"
933 "==========================================================="
934 "\n\n"
935 "Orig output image:\n%s\n"
936 "==========================================================="
937 "\n\n"
938 "Clone output image:\n%s\n"
939 "==========================================================="
940 "\n\n"
941 "Regen output image:\n%s\n",
942 inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
943 }
944 }
945
946 // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
947 // progenitor.
DEF_GANESH_TEST_FOR_GL_CONTEXT(ProcessorCloneTest,reporter,ctxInfo,CtsEnforcement::kNever)948 DEF_GANESH_TEST_FOR_GL_CONTEXT(ProcessorCloneTest, reporter, ctxInfo, CtsEnforcement::kNever) {
949 GrDirectContext* context = ctxInfo.directContext();
950 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
951
952 TestFPGenerator fpGenerator{context, resourceProvider};
953 if (!fpGenerator.init()) {
954 ERRORF(reporter, "Could not initialize TestFPGenerator");
955 return;
956 }
957
958 // Make the destination context for the test.
959 static constexpr int kRenderSize = 1024;
960 auto sdc = skgpu::ganesh::SurfaceDrawContext::Make(context,
961 GrColorType::kRGBA_8888,
962 nullptr,
963 SkBackingFit::kExact,
964 {kRenderSize, kRenderSize},
965 SkSurfaceProps(),
966 /*label=*/{});
967
968 std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
969 GrSurfaceProxyView inputTexture =
970 make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
971
972 // On failure we write out images, but just write the first failing set as the print is very
973 // large.
974 bool loggedFirstFailure = false;
975
976 // Storage for the original frame's readback and the readback of its clone.
977 std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
978 std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
979 std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
980
981 // Because processor factories configure themselves in random ways, this is not exhaustive.
982 for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
983 static constexpr int kTimesToInvokeFactory = 10;
984 for (int j = 0; j < kTimesToInvokeFactory; ++j) {
985 fpGenerator.reroll();
986 std::unique_ptr<GrFragmentProcessor> fp =
987 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
988 std::unique_ptr<GrFragmentProcessor> regen =
989 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
990 std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
991 if (!clone) {
992 ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
993 continue;
994 }
995 assert_processor_equality(reporter, *fp, *clone);
996
997 // Draw with original and read back the results.
998 render_fp(context, sdc.get(), std::move(fp), readDataFP.data());
999
1000 // Draw with clone and read back the results.
1001 render_fp(context, sdc.get(), std::move(clone), readDataClone.data());
1002
1003 // Check that the results are the same.
1004 if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
1005 readDataFP.data(), readDataClone.data())) {
1006 // Dump a description from the regenerated processor (since the original FP has
1007 // already been consumed).
1008 ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
1009
1010 // Render and readback output from the regenerated FP. If this also mismatches, the
1011 // FP itself doesn't generate consistent output. This could happen if:
1012 // - the FP's TestCreate() does not always generate the same FP from a given seed
1013 // - the FP's Make() does not always generate the same FP when given the same inputs
1014 // - the FP itself generates inconsistent pixels (shader UB?)
1015 // - the driver has a bug
1016 render_fp(context, sdc.get(), std::move(regen), readDataRegen.data());
1017
1018 if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
1019 readDataFP.data(), readDataRegen.data())) {
1020 ERRORF(reporter, "Output from regen did not match original!\n");
1021 } else {
1022 ERRORF(reporter, "Regenerated processor output matches original results.\n");
1023 }
1024
1025 // If this is the first time we've encountered a cloning failure, log the generated
1026 // images to the reporter as data URLs.
1027 if (!loggedFirstFailure) {
1028 log_clone_failure(reporter, kRenderSize, context, inputTexture,
1029 readDataFP.data(), readDataClone.data(),
1030 readDataRegen.data());
1031 loggedFirstFailure = true;
1032 }
1033 }
1034 }
1035 }
1036 }
1037
1038 #endif // defined(GPU_TEST_UTILS)
1039