1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkM44.h"
9 #include "include/core/SkMatrix.h"
10 #include "include/core/SkPoint.h"
11 #include "include/core/SkPoint3.h"
12 #include "include/core/SkRect.h"
13 #include "include/core/SkScalar.h"
14 #include "include/core/SkSize.h"
15 #include "include/core/SkTypes.h"
16 #include "include/private/base/SkDebug.h"
17 #include "include/private/base/SkFloatingPoint.h"
18 #include "include/private/base/SkMalloc.h"
19 #include "src/base/SkRandom.h"
20 #include "src/core/SkMatrixPriv.h"
21 #include "src/core/SkMatrixUtils.h"
22 #include "src/core/SkPointPriv.h"
23 #include "tests/Test.h"
24
25 #include <cstring>
26 #include <initializer_list>
27 #include <string>
28
nearly_equal_scalar(SkScalar a,SkScalar b)29 static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
30 const SkScalar tolerance = SK_Scalar1 / 200000;
31 return SkScalarAbs(a - b) <= tolerance;
32 }
33
nearly_equal(const SkMatrix & a,const SkMatrix & b)34 static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) {
35 for (int i = 0; i < 9; i++) {
36 if (!nearly_equal_scalar(a[i], b[i])) {
37 SkDebugf("matrices not equal [%d] %g %g\n", i, (float)a[i], (float)b[i]);
38 return false;
39 }
40 }
41 return true;
42 }
43
float_bits(float f)44 static int float_bits(float f) {
45 int result;
46 memcpy(&result, &f, 4);
47 return result;
48 }
49
are_equal(skiatest::Reporter * reporter,const SkMatrix & a,const SkMatrix & b)50 static bool are_equal(skiatest::Reporter* reporter,
51 const SkMatrix& a,
52 const SkMatrix& b) {
53 bool equal = a == b;
54 bool cheapEqual = SkMatrixPriv::CheapEqual(a, b);
55 if (equal != cheapEqual) {
56 if (equal) {
57 bool foundZeroSignDiff = false;
58 for (int i = 0; i < 9; ++i) {
59 float aVal = a.get(i);
60 float bVal = b.get(i);
61 int aValI = float_bits(aVal);
62 int bValI = float_bits(bVal);
63 if (0 == aVal && 0 == bVal && aValI != bValI) {
64 foundZeroSignDiff = true;
65 } else {
66 REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
67 }
68 }
69 REPORTER_ASSERT(reporter, foundZeroSignDiff);
70 } else {
71 bool foundNaN = false;
72 for (int i = 0; i < 9; ++i) {
73 float aVal = a.get(i);
74 float bVal = b.get(i);
75 int aValI = float_bits(aVal);
76 int bValI = float_bits(bVal);
77 if (std::isnan(aVal) && aValI == bValI) {
78 foundNaN = true;
79 } else {
80 REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
81 }
82 }
83 REPORTER_ASSERT(reporter, foundNaN);
84 }
85 }
86 return equal;
87 }
88
is_identity(const SkMatrix & m)89 static bool is_identity(const SkMatrix& m) {
90 SkMatrix identity;
91 identity.reset();
92 return nearly_equal(m, identity);
93 }
94
assert9(skiatest::Reporter * reporter,const SkMatrix & m,SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar e,SkScalar f,SkScalar g,SkScalar h,SkScalar i)95 static void assert9(skiatest::Reporter* reporter, const SkMatrix& m,
96 SkScalar a, SkScalar b, SkScalar c,
97 SkScalar d, SkScalar e, SkScalar f,
98 SkScalar g, SkScalar h, SkScalar i) {
99 SkScalar buffer[9];
100 m.get9(buffer);
101 REPORTER_ASSERT(reporter, buffer[0] == a);
102 REPORTER_ASSERT(reporter, buffer[1] == b);
103 REPORTER_ASSERT(reporter, buffer[2] == c);
104 REPORTER_ASSERT(reporter, buffer[3] == d);
105 REPORTER_ASSERT(reporter, buffer[4] == e);
106 REPORTER_ASSERT(reporter, buffer[5] == f);
107 REPORTER_ASSERT(reporter, buffer[6] == g);
108 REPORTER_ASSERT(reporter, buffer[7] == h);
109 REPORTER_ASSERT(reporter, buffer[8] == i);
110
111 REPORTER_ASSERT(reporter, m.rc(0, 0) == a);
112 REPORTER_ASSERT(reporter, m.rc(0, 1) == b);
113 REPORTER_ASSERT(reporter, m.rc(0, 2) == c);
114 REPORTER_ASSERT(reporter, m.rc(1, 0) == d);
115 REPORTER_ASSERT(reporter, m.rc(1, 1) == e);
116 REPORTER_ASSERT(reporter, m.rc(1, 2) == f);
117 REPORTER_ASSERT(reporter, m.rc(2, 0) == g);
118 REPORTER_ASSERT(reporter, m.rc(2, 1) == h);
119 REPORTER_ASSERT(reporter, m.rc(2, 2) == i);
120 }
121
test_set9(skiatest::Reporter * reporter)122 static void test_set9(skiatest::Reporter* reporter) {
123
124 SkMatrix m;
125 m.reset();
126 assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1);
127
128 m.setScale(2, 3);
129 assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1);
130
131 m.postTranslate(4, 5);
132 assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1);
133
134 SkScalar buffer[9];
135 sk_bzero(buffer, sizeof(buffer));
136 buffer[SkMatrix::kMScaleX] = 1;
137 buffer[SkMatrix::kMScaleY] = 1;
138 buffer[SkMatrix::kMPersp2] = 1;
139 REPORTER_ASSERT(reporter, !m.isIdentity());
140 m.set9(buffer);
141 REPORTER_ASSERT(reporter, m.isIdentity());
142 }
143
test_matrix_recttorect(skiatest::Reporter * reporter)144 static void test_matrix_recttorect(skiatest::Reporter* reporter) {
145 SkRect src, dst;
146 SkMatrix matrix;
147
148 src.setLTRB(0, 0, 10, 10);
149 dst = src;
150 matrix = SkMatrix::RectToRect(src, dst);
151 REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType());
152 REPORTER_ASSERT(reporter, matrix.rectStaysRect());
153
154 dst.offset(1, 1);
155 matrix = SkMatrix::RectToRect(src, dst);
156 REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType());
157 REPORTER_ASSERT(reporter, matrix.rectStaysRect());
158
159 dst.fRight += 1;
160 matrix = SkMatrix::RectToRect(src, dst);
161 REPORTER_ASSERT(reporter,
162 (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType());
163 REPORTER_ASSERT(reporter, matrix.rectStaysRect());
164
165 dst = src;
166 dst.fRight = src.fRight * 2;
167 matrix = SkMatrix::RectToRect(src, dst);
168 REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType());
169 REPORTER_ASSERT(reporter, matrix.rectStaysRect());
170 }
171
test_flatten(skiatest::Reporter * reporter,const SkMatrix & m)172 static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) {
173 // add 100 in case we have a bug, I don't want to kill my stack in the test
174 static const size_t kBufferSize = SkMatrixPriv::kMaxFlattenSize + 100;
175 char buffer[kBufferSize];
176 size_t size1 = SkMatrixPriv::WriteToMemory(m, nullptr);
177 size_t size2 = SkMatrixPriv::WriteToMemory(m, buffer);
178 REPORTER_ASSERT(reporter, size1 == size2);
179 REPORTER_ASSERT(reporter, size1 <= SkMatrixPriv::kMaxFlattenSize);
180
181 SkMatrix m2;
182 size_t size3 = SkMatrixPriv::ReadFromMemory(&m2, buffer, kBufferSize);
183 REPORTER_ASSERT(reporter, size1 == size3);
184 REPORTER_ASSERT(reporter, are_equal(reporter, m, m2));
185
186 char buffer2[kBufferSize];
187 size3 = SkMatrixPriv::WriteToMemory(m2, buffer2);
188 REPORTER_ASSERT(reporter, size1 == size3);
189 REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
190 }
191
test_matrix_min_max_scale(skiatest::Reporter * reporter)192 static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
193 SkScalar scales[2];
194 bool success;
195
196 SkMatrix identity;
197 identity.reset();
198 REPORTER_ASSERT(reporter, 1 == identity.getMinScale());
199 REPORTER_ASSERT(reporter, 1 == identity.getMaxScale());
200 success = identity.getMinMaxScales(scales);
201 REPORTER_ASSERT(reporter, success && 1 == scales[0] && 1 == scales[1]);
202
203 SkMatrix scale;
204 scale.setScale(2, 4);
205 REPORTER_ASSERT(reporter, 2 == scale.getMinScale());
206 REPORTER_ASSERT(reporter, 4 == scale.getMaxScale());
207 success = scale.getMinMaxScales(scales);
208 REPORTER_ASSERT(reporter, success && 2 == scales[0] && 4 == scales[1]);
209
210 SkMatrix rot90Scale;
211 rot90Scale.setRotate(90).postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
212 REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
213 REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
214 success = rot90Scale.getMinMaxScales(scales);
215 REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4 == scales[0] && SK_Scalar1 / 2 == scales[1]);
216
217 SkMatrix rotate;
218 rotate.setRotate(128);
219 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, rotate.getMinScale(), SK_ScalarNearlyZero));
220 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, rotate.getMaxScale(), SK_ScalarNearlyZero));
221 success = rotate.getMinMaxScales(scales);
222 REPORTER_ASSERT(reporter, success);
223 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, scales[0], SK_ScalarNearlyZero));
224 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, scales[1], SK_ScalarNearlyZero));
225
226 SkMatrix translate;
227 translate.setTranslate(10, -5);
228 REPORTER_ASSERT(reporter, 1 == translate.getMinScale());
229 REPORTER_ASSERT(reporter, 1 == translate.getMaxScale());
230 success = translate.getMinMaxScales(scales);
231 REPORTER_ASSERT(reporter, success && 1 == scales[0] && 1 == scales[1]);
232
233 SkMatrix perspX;
234 perspX.reset().setPerspX(SK_Scalar1 / 1000);
235 REPORTER_ASSERT(reporter, -1 == perspX.getMinScale());
236 REPORTER_ASSERT(reporter, -1 == perspX.getMaxScale());
237 success = perspX.getMinMaxScales(scales);
238 REPORTER_ASSERT(reporter, !success);
239
240 // skbug.com/4718
241 SkMatrix big;
242 big.setAll(2.39394089e+36f, 8.85347779e+36f, 9.26526204e+36f,
243 3.9159619e+36f, 1.44823453e+37f, 1.51559342e+37f,
244 0.f, 0.f, 1.f);
245 success = big.getMinMaxScales(scales);
246 REPORTER_ASSERT(reporter, !success);
247
248 // skbug.com/4718
249 SkMatrix givingNegativeNearlyZeros;
250 givingNegativeNearlyZeros.setAll(0.00436534f, 0.114138f, 0.37141f,
251 0.00358857f, 0.0936228f, -0.0174198f,
252 0.f, 0.f, 1.f);
253 success = givingNegativeNearlyZeros.getMinMaxScales(scales);
254 REPORTER_ASSERT(reporter, success && 0 == scales[0]);
255
256 SkMatrix perspY;
257 perspY.reset().setPerspY(-SK_Scalar1 / 500);
258 REPORTER_ASSERT(reporter, -1 == perspY.getMinScale());
259 REPORTER_ASSERT(reporter, -1 == perspY.getMaxScale());
260 scales[0] = -5;
261 scales[1] = -5;
262 success = perspY.getMinMaxScales(scales);
263 REPORTER_ASSERT(reporter, !success && -5 == scales[0] && -5 == scales[1]);
264
265 SkMatrix baseMats[] = {scale, rot90Scale, rotate,
266 translate, perspX, perspY};
267 SkMatrix mats[2*std::size(baseMats)];
268 for (size_t i = 0; i < std::size(baseMats); ++i) {
269 mats[i] = baseMats[i];
270 bool invertible = mats[i].invert(&mats[i + std::size(baseMats)]);
271 REPORTER_ASSERT(reporter, invertible);
272 }
273 SkRandom rand;
274 for (int m = 0; m < 1000; ++m) {
275 SkMatrix mat;
276 mat.reset();
277 for (int i = 0; i < 4; ++i) {
278 int x = rand.nextU() % std::size(mats);
279 mat.postConcat(mats[x]);
280 }
281
282 SkScalar minScale = mat.getMinScale();
283 SkScalar maxScale = mat.getMaxScale();
284 REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
285 REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());
286
287 success = mat.getMinMaxScales(scales);
288 REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
289 REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));
290
291 if (mat.hasPerspective()) {
292 m -= 1; // try another non-persp matrix
293 continue;
294 }
295
296 // test a bunch of vectors. All should be scaled by between minScale and maxScale
297 // (modulo some error) and we should find a vector that is scaled by almost each.
298 static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
299 static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
300 SkScalar max = 0, min = SK_ScalarMax;
301 SkVector vectors[1000];
302 for (size_t i = 0; i < std::size(vectors); ++i) {
303 vectors[i].fX = rand.nextSScalar1();
304 vectors[i].fY = rand.nextSScalar1();
305 if (!vectors[i].normalize()) {
306 i -= 1;
307 continue;
308 }
309 }
310 mat.mapVectors(vectors, std::size(vectors));
311 for (size_t i = 0; i < std::size(vectors); ++i) {
312 SkScalar d = vectors[i].length();
313 REPORTER_ASSERT(reporter, d / maxScale < gVectorScaleTol);
314 REPORTER_ASSERT(reporter, minScale / d < gVectorScaleTol);
315 if (max < d) {
316 max = d;
317 }
318 if (min > d) {
319 min = d;
320 }
321 }
322 REPORTER_ASSERT(reporter, max / maxScale >= gCloseScaleTol);
323 REPORTER_ASSERT(reporter, minScale / min >= gCloseScaleTol);
324 }
325 }
326
test_matrix_preserve_shape(skiatest::Reporter * reporter)327 static void test_matrix_preserve_shape(skiatest::Reporter* reporter) {
328 SkMatrix mat;
329
330 // identity
331 mat.setIdentity();
332 REPORTER_ASSERT(reporter, mat.isSimilarity());
333 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
334
335 // translation only
336 mat.setTranslate(100, 100);
337 REPORTER_ASSERT(reporter, mat.isSimilarity());
338 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
339
340 // scale with same size
341 mat.setScale(15, 15);
342 REPORTER_ASSERT(reporter, mat.isSimilarity());
343 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
344
345 // scale with one negative
346 mat.setScale(-15, 15);
347 REPORTER_ASSERT(reporter, mat.isSimilarity());
348 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
349
350 // scale with different size
351 mat.setScale(15, 20);
352 REPORTER_ASSERT(reporter, !mat.isSimilarity());
353 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
354
355 // scale with same size at a pivot point
356 mat.setScale(15, 15, 2, 2);
357 REPORTER_ASSERT(reporter, mat.isSimilarity());
358 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
359
360 // scale with different size at a pivot point
361 mat.setScale(15, 20, 2, 2);
362 REPORTER_ASSERT(reporter, !mat.isSimilarity());
363 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
364
365 // skew with same size
366 mat.setSkew(15, 15);
367 REPORTER_ASSERT(reporter, !mat.isSimilarity());
368 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
369
370 // skew with different size
371 mat.setSkew(15, 20);
372 REPORTER_ASSERT(reporter, !mat.isSimilarity());
373 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
374
375 // skew with same size at a pivot point
376 mat.setSkew(15, 15, 2, 2);
377 REPORTER_ASSERT(reporter, !mat.isSimilarity());
378 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
379
380 // skew with different size at a pivot point
381 mat.setSkew(15, 20, 2, 2);
382 REPORTER_ASSERT(reporter, !mat.isSimilarity());
383 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
384
385 // perspective x
386 mat.reset().setPerspX(SK_Scalar1 / 2);
387 REPORTER_ASSERT(reporter, !mat.isSimilarity());
388 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
389
390 // perspective y
391 mat.reset().setPerspY(SK_Scalar1 / 2);
392 REPORTER_ASSERT(reporter, !mat.isSimilarity());
393 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
394
395 // rotate
396 for (int angle = 0; angle < 360; ++angle) {
397 mat.setRotate(SkIntToScalar(angle));
398 REPORTER_ASSERT(reporter, mat.isSimilarity());
399 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
400 }
401
402 // see if there are any accumulated precision issues
403 mat.reset();
404 for (int i = 1; i < 360; i++) {
405 mat.postRotate(1);
406 }
407 REPORTER_ASSERT(reporter, mat.isSimilarity());
408 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
409
410 // rotate + translate
411 mat.setRotate(30).postTranslate(10, 20);
412 REPORTER_ASSERT(reporter, mat.isSimilarity());
413 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
414
415 // rotate + uniform scale
416 mat.setRotate(30).postScale(2, 2);
417 REPORTER_ASSERT(reporter, mat.isSimilarity());
418 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
419
420 // rotate + non-uniform scale
421 mat.setRotate(30).postScale(3, 2);
422 REPORTER_ASSERT(reporter, !mat.isSimilarity());
423 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
424
425 // non-uniform scale + rotate
426 mat.setScale(3, 2).postRotate(30);
427 REPORTER_ASSERT(reporter, !mat.isSimilarity());
428 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
429
430 // all zero
431 mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
432 REPORTER_ASSERT(reporter, !mat.isSimilarity());
433 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
434
435 // all zero except perspective
436 mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 1);
437 REPORTER_ASSERT(reporter, !mat.isSimilarity());
438 REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
439
440 // scales zero, only skews (rotation)
441 mat.setAll(0, 1, 0,
442 -1, 0, 0,
443 0, 0, 1);
444 REPORTER_ASSERT(reporter, mat.isSimilarity());
445 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
446
447 // scales zero, only skews (reflection)
448 mat.setAll(0, 1, 0,
449 1, 0, 0,
450 0, 0, 1);
451 REPORTER_ASSERT(reporter, mat.isSimilarity());
452 REPORTER_ASSERT(reporter, mat.preservesRightAngles());
453 }
454
455 // For test_matrix_decomposition, below.
scalar_nearly_equal_relative(SkScalar a,SkScalar b,SkScalar tolerance=SK_ScalarNearlyZero)456 static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
457 SkScalar tolerance = SK_ScalarNearlyZero) {
458 // from Bruce Dawson
459 // absolute check
460 SkScalar diff = SkScalarAbs(a - b);
461 if (diff < tolerance) {
462 return true;
463 }
464
465 // relative check
466 a = SkScalarAbs(a);
467 b = SkScalarAbs(b);
468 SkScalar largest = (b > a) ? b : a;
469
470 if (diff <= largest*tolerance) {
471 return true;
472 }
473
474 return false;
475 }
476
check_matrix_recomposition(const SkMatrix & mat,const SkPoint & rotation1,const SkPoint & scale,const SkPoint & rotation2)477 static bool check_matrix_recomposition(const SkMatrix& mat,
478 const SkPoint& rotation1,
479 const SkPoint& scale,
480 const SkPoint& rotation2) {
481 SkScalar c1 = rotation1.fX;
482 SkScalar s1 = rotation1.fY;
483 SkScalar scaleX = scale.fX;
484 SkScalar scaleY = scale.fY;
485 SkScalar c2 = rotation2.fX;
486 SkScalar s2 = rotation2.fY;
487
488 // We do a relative check here because large scale factors cause problems with an absolute check
489 bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
490 scaleX*c1*c2 - scaleY*s1*s2) &&
491 scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
492 -scaleX*s1*c2 - scaleY*c1*s2) &&
493 scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
494 scaleX*c1*s2 + scaleY*s1*c2) &&
495 scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
496 -scaleX*s1*s2 + scaleY*c1*c2);
497 return result;
498 }
499
test_matrix_decomposition(skiatest::Reporter * reporter)500 static void test_matrix_decomposition(skiatest::Reporter* reporter) {
501 SkMatrix mat;
502 SkPoint rotation1, scale, rotation2;
503
504 const float kRotation0 = 15.5f;
505 const float kRotation1 = -50.f;
506 const float kScale0 = 5000.f;
507 const float kScale1 = 0.001f;
508
509 // identity
510 mat.reset();
511 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
512 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
513 // make sure it doesn't crash if we pass in NULLs
514 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, nullptr, nullptr, nullptr));
515
516 // rotation only
517 mat.setRotate(kRotation0);
518 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
519 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
520
521 // uniform scale only
522 mat.setScale(kScale0, kScale0);
523 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
524 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
525
526 // anisotropic scale only
527 mat.setScale(kScale1, kScale0);
528 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
529 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
530
531 // rotation then uniform scale
532 mat.setRotate(kRotation1).postScale(kScale0, kScale0);
533 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
534 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
535
536 // uniform scale then rotation
537 mat.setScale(kScale0, kScale0).postRotate(kRotation1);
538 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
539 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
540
541 // rotation then uniform scale+reflection
542 mat.setRotate(kRotation0).postScale(kScale1, -kScale1);
543 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
544 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
545
546 // uniform scale+reflection, then rotate
547 mat.setScale(kScale0, -kScale0).postRotate(kRotation1);
548 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
549 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
550
551 // rotation then anisotropic scale
552 mat.setRotate(kRotation1).postScale(kScale1, kScale0);
553 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
554 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
555
556 // rotation then anisotropic scale
557 mat.setRotate(90).postScale(kScale1, kScale0);
558 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
559 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
560
561 // anisotropic scale then rotation
562 mat.setScale(kScale1, kScale0).postRotate(kRotation0);
563 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
564 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
565
566 // anisotropic scale then rotation
567 mat.setScale(kScale1, kScale0).postRotate(90);
568 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
569 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
570
571 // rotation, uniform scale, then different rotation
572 mat.setRotate(kRotation1).postScale(kScale0, kScale0).postRotate(kRotation0);
573 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
574 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
575
576 // rotation, anisotropic scale, then different rotation
577 mat.setRotate(kRotation0).postScale(kScale1, kScale0).postRotate(kRotation1);
578 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
579 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
580
581 // rotation, anisotropic scale + reflection, then different rotation
582 mat.setRotate(kRotation0).postScale(-kScale1, kScale0).postRotate(kRotation1);
583 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
584 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
585
586 // try some random matrices
587 SkRandom rand;
588 for (int m = 0; m < 1000; ++m) {
589 SkScalar rot0 = rand.nextRangeF(-180, 180);
590 SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
591 SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
592 SkScalar rot1 = rand.nextRangeF(-180, 180);
593 mat.setRotate(rot0).postScale(sx, sy).postRotate(rot1);
594
595 if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
596 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
597 } else {
598 // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
599 SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
600 mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
601 REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
602 }
603 }
604
605 // translation shouldn't affect this
606 mat.postTranslate(-1000.f, 1000.f);
607 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
608 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
609
610 // perspective shouldn't affect this
611 mat[SkMatrix::kMPersp0] = 12.f;
612 mat[SkMatrix::kMPersp1] = 4.f;
613 mat[SkMatrix::kMPersp2] = 1872.f;
614 REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
615 REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
616
617 // degenerate matrices
618 // mostly zero entries
619 mat.reset();
620 mat[SkMatrix::kMScaleX] = 0.f;
621 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
622 mat.reset();
623 mat[SkMatrix::kMScaleY] = 0.f;
624 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
625 mat.reset();
626 // linearly dependent entries
627 mat[SkMatrix::kMScaleX] = 1.f;
628 mat[SkMatrix::kMSkewX] = 2.f;
629 mat[SkMatrix::kMSkewY] = 4.f;
630 mat[SkMatrix::kMScaleY] = 8.f;
631 REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
632 }
633
634 // For test_matrix_homogeneous, below.
point3_array_nearly_equal_relative(const SkPoint3 a[],const SkPoint3 b[],int count)635 static bool point3_array_nearly_equal_relative(const SkPoint3 a[], const SkPoint3 b[], int count) {
636 for (int i = 0; i < count; ++i) {
637 if (!scalar_nearly_equal_relative(a[i].fX, b[i].fX)) {
638 return false;
639 }
640 if (!scalar_nearly_equal_relative(a[i].fY, b[i].fY)) {
641 return false;
642 }
643 if (!scalar_nearly_equal_relative(a[i].fZ, b[i].fZ)) {
644 return false;
645 }
646 }
647 return true;
648 }
649
650 // For test_matrix_homogeneous, below.
651 // Maps a single triple in src using m and compares results to those in dst
naive_homogeneous_mapping(const SkMatrix & m,const SkPoint3 & src,const SkPoint3 & dst)652 static bool naive_homogeneous_mapping(const SkMatrix& m, const SkPoint3& src,
653 const SkPoint3& dst) {
654 SkPoint3 res;
655 SkScalar ms[9] = {m[0], m[1], m[2],
656 m[3], m[4], m[5],
657 m[6], m[7], m[8]};
658 res.fX = src.fX * ms[0] + src.fY * ms[1] + src.fZ * ms[2];
659 res.fY = src.fX * ms[3] + src.fY * ms[4] + src.fZ * ms[5];
660 res.fZ = src.fX * ms[6] + src.fY * ms[7] + src.fZ * ms[8];
661 return point3_array_nearly_equal_relative(&res, &dst, 1);
662 }
663
test_matrix_homogeneous(skiatest::Reporter * reporter)664 static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
665 SkMatrix mat;
666
667 const float kRotation0 = 15.5f;
668 const float kRotation1 = -50.f;
669 const float kScale0 = 5000.f;
670
671 #if defined(SK_BUILD_FOR_GOOGLE3)
672 // Stack frame size is limited in SK_BUILD_FOR_GOOGLE3.
673 const int kTripleCount = 100;
674 const int kMatrixCount = 100;
675 #else
676 const int kTripleCount = 1000;
677 const int kMatrixCount = 1000;
678 #endif
679 SkRandom rand;
680
681 SkPoint3 randTriples[kTripleCount];
682 for (int i = 0; i < kTripleCount; ++i) {
683 randTriples[i].fX = rand.nextRangeF(-3000.f, 3000.f);
684 randTriples[i].fY = rand.nextRangeF(-3000.f, 3000.f);
685 randTriples[i].fZ = rand.nextRangeF(-3000.f, 3000.f);
686 }
687
688 SkMatrix mats[kMatrixCount];
689 for (int i = 0; i < kMatrixCount; ++i) {
690 for (int j = 0; j < 9; ++j) {
691 mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
692 }
693 }
694
695 // identity
696 {
697 mat.reset();
698 SkPoint3 dst[kTripleCount];
699 mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
700 REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(randTriples, dst, kTripleCount));
701 }
702
703 const SkPoint3 zeros = {0.f, 0.f, 0.f};
704 // zero matrix
705 {
706 mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
707 SkPoint3 dst[kTripleCount];
708 mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
709 for (int i = 0; i < kTripleCount; ++i) {
710 REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst[i], &zeros, 1));
711 }
712 }
713
714 // zero point
715 {
716 for (int i = 0; i < kMatrixCount; ++i) {
717 SkPoint3 dst;
718 mats[i].mapHomogeneousPoints(&dst, &zeros, 1);
719 REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst, &zeros, 1));
720 }
721 }
722
723 // doesn't crash with null dst, src, count == 0
724 {
725 mats[0].mapHomogeneousPoints(nullptr, (const SkPoint3*)nullptr, 0);
726 }
727
728 // uniform scale of point
729 {
730 mat.setScale(kScale0, kScale0);
731 SkPoint3 dst;
732 SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
733 SkPoint pnt;
734 pnt.set(src.fX, src.fY);
735 mat.mapHomogeneousPoints(&dst, &src, 1);
736 mat.mapPoints(&pnt, &pnt, 1);
737 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
738 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
739 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1));
740 }
741
742 // rotation of point
743 {
744 mat.setRotate(kRotation0);
745 SkPoint3 dst;
746 SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
747 SkPoint pnt;
748 pnt.set(src.fX, src.fY);
749 mat.mapHomogeneousPoints(&dst, &src, 1);
750 mat.mapPoints(&pnt, &pnt, 1);
751 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
752 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
753 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1));
754 }
755
756 // rotation, scale, rotation of point
757 {
758 mat.setRotate(kRotation1);
759 mat.postScale(kScale0, kScale0);
760 mat.postRotate(kRotation0);
761 SkPoint3 dst;
762 SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
763 SkPoint pnt;
764 pnt.set(src.fX, src.fY);
765 mat.mapHomogeneousPoints(&dst, &src, 1);
766 mat.mapPoints(&pnt, &pnt, 1);
767 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
768 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
769 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1));
770 }
771
772 // compare with naive approach
773 {
774 for (int i = 0; i < kMatrixCount; ++i) {
775 for (int j = 0; j < kTripleCount; ++j) {
776 SkPoint3 dst;
777 mats[i].mapHomogeneousPoints(&dst, &randTriples[j], 1);
778 REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], randTriples[j], dst));
779 }
780 }
781 }
782
783 }
784
check_decompScale(const SkMatrix & original)785 static bool check_decompScale(const SkMatrix& original) {
786 SkSize scale;
787 SkMatrix remaining;
788
789 if (!original.decomposeScale(&scale, &remaining)) {
790 return false;
791 }
792 if (scale.width() <= 0 || scale.height() <= 0) {
793 return false;
794 }
795
796 // First ensure that the decomposition reconstitutes back to the original
797 {
798 SkMatrix reconstituted = remaining;
799
800 reconstituted.preScale(scale.width(), scale.height());
801 if (!nearly_equal(original, reconstituted)) {
802 return false;
803 }
804 }
805
806 // Then push some points through both paths and make sure they are the same.
807 static const int kNumPoints = 5;
808 const SkPoint testPts[kNumPoints] = {
809 { 0.0f, 0.0f },
810 { 1.0f, 1.0f },
811 { 1.0f, 0.5f },
812 { -1.0f, -0.5f },
813 { -1.0f, 2.0f }
814 };
815
816 SkPoint v1[kNumPoints];
817 original.mapPoints(v1, testPts, kNumPoints);
818
819 SkPoint v2[kNumPoints];
820 SkMatrix scaleMat = SkMatrix::Scale(scale.width(), scale.height());
821
822 // Note, we intend the decomposition to be applied in the order scale and then remainder but,
823 // due to skbug.com/7211, the order is reversed!
824 scaleMat.mapPoints(v2, testPts, kNumPoints);
825 remaining.mapPoints(v2, kNumPoints);
826
827 for (int i = 0; i < kNumPoints; ++i) {
828 if (!SkPointPriv::EqualsWithinTolerance(v1[i], v2[i], 0.00001f)) {
829 return false;
830 }
831 }
832
833 return true;
834 }
835
test_decompScale(skiatest::Reporter * reporter)836 static void test_decompScale(skiatest::Reporter* reporter) {
837 SkMatrix m;
838
839 m.reset();
840 REPORTER_ASSERT(reporter, check_decompScale(m));
841 m.setScale(2, 3);
842 REPORTER_ASSERT(reporter, check_decompScale(m));
843 m.setRotate(35, 0, 0);
844 REPORTER_ASSERT(reporter, check_decompScale(m));
845
846 m.setScale(1, 0);
847 REPORTER_ASSERT(reporter, !check_decompScale(m));
848
849 m.setRotate(35, 0, 0).preScale(2, 3);
850 REPORTER_ASSERT(reporter, check_decompScale(m));
851
852 m.setRotate(35, 0, 0).postScale(2, 3);
853 REPORTER_ASSERT(reporter, check_decompScale(m));
854 }
855
DEF_TEST(Matrix,reporter)856 DEF_TEST(Matrix, reporter) {
857 SkMatrix mat, inverse, iden1, iden2;
858
859 mat.reset();
860 mat.setTranslate(1, 1);
861 REPORTER_ASSERT(reporter, mat.invert(&inverse));
862 iden1.setConcat(mat, inverse);
863 REPORTER_ASSERT(reporter, is_identity(iden1));
864
865 mat.setScale(2, 4);
866 REPORTER_ASSERT(reporter, mat.invert(&inverse));
867 iden1.setConcat(mat, inverse);
868 REPORTER_ASSERT(reporter, is_identity(iden1));
869 test_flatten(reporter, mat);
870
871 mat.setScale(SK_Scalar1/2, 2);
872 REPORTER_ASSERT(reporter, mat.invert(&inverse));
873 iden1.setConcat(mat, inverse);
874 REPORTER_ASSERT(reporter, is_identity(iden1));
875 test_flatten(reporter, mat);
876
877 mat.setScale(3, 5, 20, 0).postRotate(25);
878 REPORTER_ASSERT(reporter, mat.invert(nullptr));
879 REPORTER_ASSERT(reporter, mat.invert(&inverse));
880 iden1.setConcat(mat, inverse);
881 REPORTER_ASSERT(reporter, is_identity(iden1));
882 iden2.setConcat(inverse, mat);
883 REPORTER_ASSERT(reporter, is_identity(iden2));
884 test_flatten(reporter, mat);
885 test_flatten(reporter, iden2);
886
887 mat.setScale(0, 1);
888 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
889 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
890 mat.setScale(1, 0);
891 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
892 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
893
894 // Inverting this matrix results in a non-finite matrix
895 mat.setAll(0.0f, 1.0f, 2.0f,
896 0.0f, 1.0f, -3.40277175e+38f,
897 1.00003040f, 1.0f, 0.0f);
898 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
899 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
900
901 // Inverting this matrix results in a non-finite matrix (1/scale overflows to infinity)
902 // b/378231198: Previously this would pass invert() if a null inverse pointer was passed in.
903 mat.setAll(std::numeric_limits<float>::denorm_min(), 0.f, 0.f,
904 0.f, 1.f, 0.f,
905 0.f, 0.f, 1.f);
906 REPORTER_ASSERT(reporter, mat.isScaleTranslate());
907 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
908 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
909
910 // b/378231198: This matrix shouldn't be invertible, but previously the translation wasn't being
911 // validated when taking the optimized scale+translate paths.
912 mat.setAll(2.f, 0.f, std::numeric_limits<float>::quiet_NaN(),
913 0.f, 2.f, 0.f,
914 0.f, 0.f, 1.f);
915 REPORTER_ASSERT(reporter, mat.isScaleTranslate());
916 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
917 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
918 // Variant that tests the translate-only optimized invert()
919 mat.setAll(1.f, 0.f, std::numeric_limits<float>::quiet_NaN(),
920 0.f, 1.f, 0.f,
921 0.f, 0.f, 1.f);
922 REPORTER_ASSERT(reporter, mat.isTranslate());
923 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
924 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
925
926 // A finite scale+translate matrix whose inverse can't be calculated because trans/scale
927 // becomes non-finite.
928 mat.setAll(std::numeric_limits<float>::min(), 0.f, std::numeric_limits<float>::max(),
929 0.f, 1.f, 0.f,
930 0.f, 0.f, 1.f);
931 REPORTER_ASSERT(reporter, mat.isScaleTranslate());
932 REPORTER_ASSERT(reporter, mat.isFinite());
933 REPORTER_ASSERT(reporter, !mat.invert(nullptr));
934 REPORTER_ASSERT(reporter, !mat.invert(&inverse));
935
936 // rectStaysRect test
937 {
938 static const struct {
939 SkScalar m00, m01, m10, m11;
940 bool mStaysRect;
941 }
942 gRectStaysRectSamples[] = {
943 { 0, 0, 0, 0, false },
944 { 0, 0, 0, 1, false },
945 { 0, 0, 1, 0, false },
946 { 0, 0, 1, 1, false },
947 { 0, 1, 0, 0, false },
948 { 0, 1, 0, 1, false },
949 { 0, 1, 1, 0, true },
950 { 0, 1, 1, 1, false },
951 { 1, 0, 0, 0, false },
952 { 1, 0, 0, 1, true },
953 { 1, 0, 1, 0, false },
954 { 1, 0, 1, 1, false },
955 { 1, 1, 0, 0, false },
956 { 1, 1, 0, 1, false },
957 { 1, 1, 1, 0, false },
958 { 1, 1, 1, 1, false }
959 };
960
961 for (size_t i = 0; i < std::size(gRectStaysRectSamples); i++) {
962 SkMatrix m;
963
964 m.reset();
965 m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
966 m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01);
967 m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10);
968 m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
969 REPORTER_ASSERT(reporter,
970 m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
971 }
972 }
973
974 mat.reset();
975 mat.set(SkMatrix::kMScaleX, 1)
976 .set(SkMatrix::kMSkewX, 2)
977 .set(SkMatrix::kMTransX, 3)
978 .set(SkMatrix::kMSkewY, 4)
979 .set(SkMatrix::kMScaleY, 5)
980 .set(SkMatrix::kMTransY, 6);
981 SkScalar affine[6];
982 REPORTER_ASSERT(reporter, mat.asAffine(affine));
983
984 #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e)
985 REPORTER_ASSERT(reporter, affineEqual(ScaleX));
986 REPORTER_ASSERT(reporter, affineEqual(SkewY));
987 REPORTER_ASSERT(reporter, affineEqual(SkewX));
988 REPORTER_ASSERT(reporter, affineEqual(ScaleY));
989 REPORTER_ASSERT(reporter, affineEqual(TransX));
990 REPORTER_ASSERT(reporter, affineEqual(TransY));
991 #undef affineEqual
992
993 mat.set(SkMatrix::kMPersp1, SK_Scalar1 / 2);
994 REPORTER_ASSERT(reporter, !mat.asAffine(affine));
995
996 SkMatrix mat2;
997 mat2.reset();
998 mat.reset();
999 SkScalar zero = 0;
1000 mat.set(SkMatrix::kMSkewX, -zero);
1001 REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
1002
1003 mat2.reset();
1004 mat.reset();
1005 mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
1006 mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
1007 REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
1008
1009 test_matrix_min_max_scale(reporter);
1010 test_matrix_preserve_shape(reporter);
1011 test_matrix_recttorect(reporter);
1012 test_matrix_decomposition(reporter);
1013 test_matrix_homogeneous(reporter);
1014 test_set9(reporter);
1015
1016 test_decompScale(reporter);
1017
1018 mat.setScaleTranslate(2, 3, 1, 4);
1019 mat2.setScale(2, 3).postTranslate(1, 4);
1020 REPORTER_ASSERT(reporter, mat == mat2);
1021 }
1022
DEF_TEST(Matrix_Concat,r)1023 DEF_TEST(Matrix_Concat, r) {
1024 SkMatrix a;
1025 a.setTranslate(10, 20);
1026
1027 SkMatrix b;
1028 b.setScale(3, 5);
1029
1030 SkMatrix expected;
1031 expected.setConcat(a,b);
1032
1033 REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b));
1034 }
1035
1036 // Test that all variants of maprect are correct.
DEF_TEST(Matrix_maprects,r)1037 DEF_TEST(Matrix_maprects, r) {
1038 const SkScalar scale = 1000;
1039
1040 SkMatrix mat;
1041 mat.setScale(2, 3).postTranslate(1, 4);
1042
1043 SkRandom rand;
1044 for (int i = 0; i < 10000; ++i) {
1045 SkRect src = SkRect::MakeLTRB(rand.nextSScalar1() * scale,
1046 rand.nextSScalar1() * scale,
1047 rand.nextSScalar1() * scale,
1048 rand.nextSScalar1() * scale);
1049 SkRect dst[4];
1050
1051 mat.mapPoints((SkPoint*)&dst[0].fLeft, (SkPoint*)&src.fLeft, 2);
1052 dst[0].sort();
1053 mat.mapRect(&dst[1], src);
1054 mat.mapRectScaleTranslate(&dst[2], src);
1055 dst[3] = mat.mapRect(src);
1056
1057 REPORTER_ASSERT(r, dst[0] == dst[1]);
1058 REPORTER_ASSERT(r, dst[0] == dst[2]);
1059 REPORTER_ASSERT(r, dst[0] == dst[3]);
1060 }
1061
1062 // We should report nonfinite-ness after a mapping
1063 {
1064 // We have special-cases in mapRect for different matrix types
1065 SkMatrix m0 = SkMatrix::Scale(1e20f, 1e20f);
1066 SkMatrix m1; m1.setRotate(30); m1.postScale(1e20f, 1e20f);
1067
1068 for (const auto& m : { m0, m1 }) {
1069 SkRect rect = { 0, 0, 1e20f, 1e20f };
1070 REPORTER_ASSERT(r, rect.isFinite());
1071 rect = m.mapRect(rect);
1072 REPORTER_ASSERT(r, !rect.isFinite());
1073 }
1074 }
1075 }
1076
DEF_TEST(Matrix_mapRect_skbug12335,r)1077 DEF_TEST(Matrix_mapRect_skbug12335, r) {
1078 // Stripped down test case from skbug.com/12335. Essentially, the corners of this rect would
1079 // map to homogoneous coords with very small w's (below the old value of kW0PlaneDistance) and
1080 // so they would be clipped "behind" the plane, resulting in an empty mapped rect. Coordinates
1081 // with positive that wouldn't overflow when divided by w should still be included in the mapped
1082 // rectangle.
1083 SkRect rect = SkRect::MakeLTRB(0, 0, 319, 620);
1084 SkMatrix m = SkMatrix::MakeAll( 0.000152695269f, 0.00000000f, -6.53848401e-05f,
1085 -1.75697533e-05f, 0.000157153074f, -1.10847975e-06f,
1086 -6.00415362e-08f, 0.00000000f, 0.000169880834f);
1087 SkRect out = m.mapRect(rect);
1088 REPORTER_ASSERT(r, !out.isEmpty());
1089 }
1090
DEF_TEST(Matrix_Ctor,r)1091 DEF_TEST(Matrix_Ctor, r) {
1092 REPORTER_ASSERT(r, SkMatrix{} == SkMatrix::I());
1093 }
1094
DEF_TEST(Matrix_LookAt,r)1095 DEF_TEST(Matrix_LookAt, r) {
1096 // Degenerate inputs should not trigger *SAN errors.
1097 const auto m = SkM44::LookAt({0,0,0}, {0,0,0}, {0,0,0});
1098 REPORTER_ASSERT(r, m == SkM44());
1099 }
1100
DEF_TEST(Matrix_SetRotateSnap,r)1101 DEF_TEST(Matrix_SetRotateSnap, r) {
1102 SkMatrix m;
1103
1104 // We need to snap sin & cos when we call setRotate, or rotations by multiples of 90 degrees
1105 // will end up with slight drift (and we won't consider them to satisfy rectStaysRect, which
1106 // is an important performance constraint). We test up to +-1080 degrees.
1107 for (float deg = 90.0f; deg <= 1080.0f; deg += 90.0f) {
1108 m.setRotate(deg);
1109 REPORTER_ASSERT(r, m.rectStaysRect());
1110 m.setRotate(-deg);
1111 REPORTER_ASSERT(r, m.rectStaysRect());
1112 }
1113
1114 // But: we don't want to be too lenient with snapping. That prevents small rotations from being
1115 // registered at all. Ensure that .01 degrees produces an actual rotation. (crbug.com/1345038)
1116 m.setRotate(0.01f);
1117 REPORTER_ASSERT(r, !m.rectStaysRect());
1118 }
1119
DEF_TEST(Matrix_rectStaysRect_zeroScale,r)1120 DEF_TEST(Matrix_rectStaysRect_zeroScale, r) {
1121 // rectStaysRect() returns true if the scale factors are non-zero, so preScale(0,0),
1122 // setScale(0,0), setScaleTranslate(0,0,...), ::Scale(), should not have the flag set.
1123 REPORTER_ASSERT(r, !SkMatrix::Scale(0.f, 0.f).rectStaysRect());
1124 REPORTER_ASSERT(r, !SkMatrix::Scale(0.f, 2.f).rectStaysRect());
1125 REPORTER_ASSERT(r, !SkMatrix::Scale(2.f, 0.f).rectStaysRect());
1126
1127 // RectToRect() is like scaling. It fails if the source rect is empty, but if the dst rect is
1128 // empty it's as if it had a zero scale factor, so it's type mask should reflect that.
1129 const SkRect src = {0.f,0.f,10.f,10.f};
1130 REPORTER_ASSERT(r, !SkMatrix::RectToRect(src, {0.f,0.f,0.f,0.f}).rectStaysRect());
1131 REPORTER_ASSERT(r, !SkMatrix::RectToRect(src, {0.f,0.f,0.f,20.f}).rectStaysRect());
1132 REPORTER_ASSERT(r, !SkMatrix::RectToRect(src, {0.f,0.f,20.f,0.f}).rectStaysRect());
1133
1134 {
1135 SkMatrix rectMatrix = SkMatrix::I(); // trivially
1136 REPORTER_ASSERT(r, rectMatrix.rectStaysRect());
1137
1138 SkMatrix nonRectMatrix = rectMatrix;
1139 nonRectMatrix.preScale(0.f, 0.f);
1140 REPORTER_ASSERT(r, !nonRectMatrix.rectStaysRect());
1141
1142 nonRectMatrix = rectMatrix;
1143 nonRectMatrix.preScale(0.f, 2.f);
1144 REPORTER_ASSERT(r, !nonRectMatrix.rectStaysRect());
1145
1146 nonRectMatrix = rectMatrix;
1147 nonRectMatrix.preScale(2.f, 0.f);
1148 REPORTER_ASSERT(r, !nonRectMatrix.rectStaysRect());
1149 }
1150
1151 {
1152 SkMatrix m;
1153 m.setScale(0.f, 0.f);
1154 REPORTER_ASSERT(r, !m.rectStaysRect());
1155 }
1156
1157 {
1158 SkMatrix m;
1159 m.setScale(0.f, 2.f);
1160 REPORTER_ASSERT(r, !m.rectStaysRect());
1161 }
1162
1163 {
1164 SkMatrix m;
1165 m.setScale(2.f, 0.f);
1166 REPORTER_ASSERT(r, !m.rectStaysRect());
1167 }
1168
1169 {
1170 SkMatrix m;
1171 m.setScaleTranslate(0.f, 0.f, 10.f, 10.f);
1172 REPORTER_ASSERT(r, !m.rectStaysRect());
1173 }
1174
1175 {
1176 SkMatrix m;
1177 m.setScaleTranslate(0.f, 2.f, 10.f, 10.f);
1178 REPORTER_ASSERT(r, !m.rectStaysRect());
1179 }
1180
1181 {
1182 SkMatrix m;
1183 m.setScaleTranslate(2.f, 0.f, 10.f, 10.f);
1184 REPORTER_ASSERT(r, !m.rectStaysRect());
1185 }
1186
1187 }
1188